WO2020199755A1 - 一种离子导体浆料及其制备方法和应用 - Google Patents

一种离子导体浆料及其制备方法和应用 Download PDF

Info

Publication number
WO2020199755A1
WO2020199755A1 PCT/CN2020/074655 CN2020074655W WO2020199755A1 WO 2020199755 A1 WO2020199755 A1 WO 2020199755A1 CN 2020074655 W CN2020074655 W CN 2020074655W WO 2020199755 A1 WO2020199755 A1 WO 2020199755A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
ion conductor
polyoxyethylene
type solid
slurry
Prior art date
Application number
PCT/CN2020/074655
Other languages
English (en)
French (fr)
Inventor
闫昭
罗飞
李泓
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Priority to US17/593,782 priority Critical patent/US20220131153A1/en
Priority to EP20783706.3A priority patent/EP3951913A4/en
Priority to JP2021557700A priority patent/JP7372692B2/ja
Priority to KR1020217031070A priority patent/KR20210131412A/ko
Publication of WO2020199755A1 publication Critical patent/WO2020199755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium battery materials, in particular to an ion conductor slurry, and a preparation method and application thereof.
  • lithium ion secondary batteries have been widely used in portable appliances such as mobile phones and notebook computers. With the development of technology, lithium-ion batteries also have very good application prospects in the fields of electric vehicles and energy storage, and they will definitely have a profound impact on people's lives in the future.
  • lithium-ion batteries With the wide application and rapid development of lithium batteries, people have higher and higher performance requirements for lithium-ion batteries. Not only are they required to have a higher capacity, but they also require better capacity retention during repeated charging and discharging. Rate, showing good cycle performance and long service life.
  • the pulping process has an impact on the quality of the product by more than 40% in the entire production process of lithium-ion batteries, and is the most important link in the entire production process.
  • most of the current processes still use the traditional slurry preparation process, and the high-speed dispersion process is used to disperse the slurry.
  • the slurry prepared by this process is prone to agglomeration, poor uniformity, poor stability, and long preparation process time.
  • the performance of lithium ion batteries prepared by using this slurry has a problem of poor consistency, which affects the configuration and use of lithium ion batteries.
  • the purpose of the present invention is to provide an ion conductive paste and a preparation method and application thereof, so as to solve the problems existing in the prior art and improve the performance of the ion conductive paste by improving the quality of the pulping process.
  • embodiments of the present invention provide an ion conductor paste
  • the ion conductor paste includes, in terms of parts by mass: 0.05wt%-99.98wt% ion conductor powder material, 0wt%-2wt % Anti-settling agent, 0wt%-10wt% binder, 0wt%-2wt% dispersant, 0wt%-2wt% auxiliary agent and 20wt%-99.95wt% solvent;
  • the ion conductor powder material includes one of a garnet type solid electrolyte material, a NASCION type solid electrolyte material, a LISCION solid electrolyte material, a perovskite type solid electrolyte material and derivatives thereof; the ion conductor powder The particle size is between 1nm-100um;
  • the ion conductor slurry is used for separator coating materials, positive electrode material coating materials, negative electrode material coating materials, positive electrode material additives, negative electrode material additives, polymer solid electrolyte additives or solid-liquid mixed solid electrolytes.
  • the garnet-type solid electrolyte is specifically Li 7+mn-3z Al z La 3-m A4 m Zr 2-n B4 n O 12 ; wherein m, n, and z are all between [0-1] , A4 is one or more of La, Ca, Sr, Ba or K, B4 is one or more of Ta, Nb, W or hafnium element Hf;
  • the LISICON-type solid electrolyte is specifically Li 14 A1(B1O 4 ) 4 ; wherein A1 is one or more of Zn, Zr, Cr or Sn, and B1 is one or more of Ge, Si, S or P Species
  • the NASICON-type solid electrolyte is specifically Li 1+x A2 x B2 2-x (PO 4 ) 3 ; where 0.01 ⁇ x ⁇ 0.5, and A2 is Al, Y, Ga, Cr, In, Fe, Se or La One or more, B2 is one or more of Ti, Ge, Ta, Zr, Sn, Fe, V or hafnium element Hf;
  • the perovskite-type solid electrolyte is specifically Li 3y A3 2/3-y B3O 3 ; wherein 0.01 ⁇ y ⁇ 2/3, A3 is one or more of La, Al, Mg, Fe or Ta, B3 It is one or more of Ti, Nb, Sr or Pr.
  • the anti-settling agent includes one of polyamide wax, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty alcohol sulfate, polyglycol ether or titanate coupling agent. kind or more.
  • the binder includes: polyvinylidene fluoride, carboxymethyl cellulose, sodium carboxymethyl cellulose, polymethyl methacrylate, polyacrylonitrile, styrene butadiene rubber, polyvinyl alcohol, polytetrafluoroethylene One or more of ethylene, polyolefins, fluorinated rubber, sodium alginate, polyacrylamide, polymethylmethacrylate-butyl acrylate, ethylene-vinyl acetate copolymer, polyvinyl acetate or polyurethane or gelatinkind.
  • the dispersant includes: sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium hexametaphosphate, polyacrylic acid, cetyltrimethylammonium bromide, polyethylene glycol, poly One or more of vinylpyrrolidone, potassium polyacrylate, octylphenol polyoxyethylene ether, monoglyceride, glyceryl tristearate, oleic acid or succinic acid.
  • the additives include: polydimethylsiloxane, silicone oil, polyethers, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, sodium alkylbenzene sulfonate, alkyl One or more of phenol polyoxyethylene ether, polyoxyethylene alkylamine or polyoxyethylene amide.
  • the solvent includes one or more of deionized water, alcohol, N-methylpyrrolidone NMP, tetrahydrofuran, dimethylformamide DMF or acetone.
  • an embodiment of the present invention provides a method for preparing the ion conductor paste described in the first aspect, including:
  • the ion conductor powder material includes one of a garnet-type solid electrolyte material, a NASCION-type solid electrolyte material, a LISCION solid-state electrolyte material, a perovskite-type solid electrolyte material and derivatives thereof;
  • the particle size of ion conductor powder is between 1nm-100um;
  • 0wt%-2wt% dispersant and 0wt%-2wt% auxiliary agent are added for stirring and dispersing to obtain the second slurry; wherein the stirring speed is 10rpm-50rpm, and the dispersion speed is 1000rpm-5000rpm;
  • the second slurry is subjected to ultrasonic treatment for 30 minutes to 1 hour, and the ultrasonic frequency is 1 to 10 kHz to obtain the desired ion conductor slurry.
  • the garnet-type solid electrolyte is specifically Li 7+mn-3z Al z La 3-m A4 m Zr 2-n B4 n O 12 ; wherein m, n, and z are all between [0-1] , A4 is one or more of La, Ca, Sr, Ba or K, B4 is one or more of Ta, Nb, W or hafnium element Hf;
  • the LISICON-type solid electrolyte is specifically Li 14 A1(B1O 4 ) 4 ; wherein A1 is one or more of Zn, Zr, Cr or Sn, and B1 is one or more of Ge, Si, S or P Species
  • the NASICON-type solid electrolyte is specifically Li 1+x A2 x B2 2-x (PO 4 ) 3 ; where 0.01 ⁇ x ⁇ 0.5, and A2 is Al, Y, Ga, Cr, In, Fe, Se or La One or more, B2 is one or more of Ti, Ge, Ta, Zr, Sn, Fe, V or hafnium element Hf;
  • the perovskite-type solid electrolyte is specifically Li 3y A3 2/3-y B3O 3 ; wherein 0.01 ⁇ y ⁇ 2/3, A3 is one or more of La, Al, Mg, Fe or Ta, B3 One or more of Ti, Nb, Sr or Pr;
  • the anti-settling agent includes: one or more of polyamide wax, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty alcohol sulfate, polyglycol ether or titanate coupling agent Species
  • the binder includes: polyvinylidene fluoride, carboxymethyl cellulose, sodium carboxymethyl cellulose, polymethyl methacrylate, polyacrylonitrile, styrene butadiene rubber, polyvinyl alcohol, polytetrafluoroethylene, poly One or more of olefins, fluorinated rubber, sodium alginate, polyacrylamide, polymethylmethacrylate-butyl acrylate, ethylene-vinyl acetate copolymer, polyvinyl acetate or polyurethane or gelatin;
  • the dispersant includes: sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium hexametaphosphate, polyacrylic acid, cetyltrimethylammonium bromide, polyethylene glycol, polyvinylpyrrolidone, One or more of potassium polyacrylate, polyoxyethylene octylphenol ether, monoglyceride, glyceryl tristearate, oleic acid or succinic acid;
  • the additives include: polydimethylsiloxane, silicone oil, polyethers, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, sodium alkylbenzene sulfonate, alkylphenol polyoxy One or more of vinyl ether, polyoxyethylene alkylamine or polyoxyethylene amide;
  • the solvent includes one or more of deionized water, alcohol, N-methylpyrrolidone NMP, tetrahydrofuran, dimethylformamide DMF or acetone.
  • an embodiment of the present invention provides an application including the ion conductor paste described in the above first aspect, the ion conductor paste being applied to an energy storage device and a product containing the energy storage device;
  • the energy storage device includes one or more of liquid lithium ion batteries, metal lithium batteries, solid-liquid hybrid batteries, semi-solid batteries or all solid-state batteries.
  • the ion conductive paste provided by the present invention improves the performance of the ion conductive paste by improving the quality of the pulping process, and has better cycle performance.
  • Figure 1 is a flow chart of a method for preparing an ion conductor paste provided by an embodiment of the present invention
  • FIG. 3 is the second diagram of the half-cell cycle performance test comparison diagram provided by the embodiment of the present invention.
  • Figure 4 is a graph of electrochemical performance provided by an embodiment of the present invention.
  • the embodiment of the present invention provides an ion conductor paste, which comprises: 0.05wt%-99.98wt% ion conductor powder material and 20wt%-99.95wt% solvent; in addition, it may also include: no more than 2wt% of anti-settling agent, not more than 10wt% of binder, not more than 2wt% of dispersant and not more than 2wt% of auxiliary agent; anti-settling agent, anti-settling agent, dispersant and auxiliary agent One or more components can also be zero.
  • the ion conductor powder material includes one of the garnet solid electrolyte material, the NASCION solid electrolyte material, the LISCION solid electrolyte material, the perovskite solid electrolyte material and its derivative materials; the particle size of the ion conductor powder is in Between 1nm-100um;
  • the above-mentioned garnet-type solid electrolyte is specifically Li 7+mn-3z Al z La 3-m A4 m Zr 2-n B4 n O 12 ; where m, n, and z are all between [0-1], and A4 is La One or more of, Ca, Sr, Ba or K, B4 is one or more of Ta, Nb, W or hafnium element Hf;
  • the above-mentioned LISICON type solid electrolyte is specifically Li 14 A1(B1O 4 ) 4 ; wherein A1 is one or more of Zn, Zr, Cr or Sn, and B1 is one or more of Ge, Si, S or P ;
  • the above-mentioned NASICON solid electrolyte is specifically Li 1+x A2 x B2 2-x (PO 4 ) 3 ; where 0.01 ⁇ x ⁇ 0.5, and A2 is one of Al, Y, Ga, Cr, In, Fe, Se or La One or more, B2 is one or more of Ti, Ge, Ta, Zr, Sn, Fe, V or hafnium element Hf;
  • the above-mentioned perovskite-type solid electrolyte is specifically Li 3y A3 2/3-y B3O 3 ; where 0.01 ⁇ y ⁇ 2/3, A3 is one or more of La, Al, Mg, Fe or Ta, and B3 is One or more of Ti, Nb, Sr or Pr.
  • the anti-settling agent includes one or more of polyamide wax, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty amine alcohol, polyoxyethylene fatty alcohol sulfate, polyglycol ether, or titanate coupling agent.
  • Binders include: polyvinylidene fluoride, carboxymethyl cellulose, sodium carboxymethyl cellulose, polymethyl methacrylate, polyacrylonitrile, styrene butadiene rubber, polyvinyl alcohol, polytetrafluoroethylene, polyolefins , Fluorinated rubber, sodium alginate, polyacrylamide, polymethyl methacrylate-butyl acrylate, ethylene-vinyl acetate copolymer, polyvinyl acetate or one or more of polyurethane or gelatin.
  • Dispersants include: sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium hexametaphosphate, polyacrylic acid, cetyltrimethylammonium bromide, polyethylene glycol, polyvinylpyrrolidone, polyacrylic acid One or more of potassium, octylphenol polyoxyethylene ether, monoglyceride, glyceryl tristearate, oleic acid or succinic acid.
  • Additives include: polydimethylsiloxane, silicone oil, polyethers, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkylphenol ether, sodium alkylbenzene sulfonate, alkylphenol polyoxyethylene ether , One or more of polyoxyethylene alkylamine or polyoxyethylene amide.
  • the solvent includes one or more of deionized water, alcohol, N-methylpyrrolidone (NMP), tetrahydrofuran, dimethylformamide (DMF), or acetone.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • the method for preparing the above-mentioned ion conductor paste of the present invention includes:
  • Step 110 according to the required total mass of the ion conductor paste, add 0wt%-10wt% of the binder and 20wt%-99.95wt% of the solvent into the pre-stirred tank in the required proportions, and wait until the binder is completely Dissolve to obtain a uniform first slurry;
  • Step 120 Add 0.05wt%-99.98wt% ion conductor powder material to the first slurry according to the required proportion, add 0wt%-2wt% anti-settling agent and centrifuge at a centrifugal speed of 500rpm-5000rpm Processing for 30 minutes to 1 hour;
  • Step 130 after centrifugation, add a sand mill for sanding, and the time is 30 minutes to 1 hour;
  • Step 140 Add 0wt%-2wt% of the dispersant and 0wt%-2wt% of the auxiliary agent after the sand mill is taken out for stirring and dispersing to obtain the second slurry;
  • the stirring speed is 10rpm-50rpm, and the dispersion speed is 1000rpm-5000rpm;
  • step 150 ultrasonic treatment is performed on the second slurry for 30 minutes to 1 hour, and the ultrasonic frequency is 1-10 kHz to obtain the desired ion conductor slurry.
  • the ion conductor slurry prepared by the present invention can be used for diaphragm coating materials, positive electrode material coating materials, negative electrode material coating materials, positive electrode material additives, negative electrode material additives, polymer solid electrolyte additives or solid-liquid mixed solid electrolytes, etc. , Can be specifically applied to energy storage devices and products containing energy storage devices.
  • Energy storage devices may include: liquid lithium ion batteries, metal lithium batteries, solid-liquid hybrid batteries, semi-solid batteries or all-solid batteries, and so on.
  • the ion conductor paste provided by the present invention improves the performance of the ion conductor paste by improving the quality of the pulping process, and has better cycle performance than the existing commercial ion conductor paste.
  • This embodiment provides a preparation method and performance test results of an ion conductor paste.
  • the ionic conductor slurry prepared above and the commercial lithium cobalt oxide are mixed, dried, and sintered to obtain the coated and modified lithium cobalt oxide material of Example 1.
  • the coated and modified lithium cobalt oxide materials and the commercial lithium cobalt oxide materials that have not been coated and modified by the ion conductor slurry are mixed with the binder polyvinylidene fluoride (PVDF) and the conductive additive conductive carbon black (SP) respectively , Were prepared into pole pieces.
  • PVDF binder polyvinylidene fluoride
  • SP conductive additive conductive carbon black
  • the two pole pieces were prepared into half-cells by using lithium metal as the counter electrode respectively, and tested and compared.
  • the electrochemical performance of the coated modified lithium cobalt oxide material and the electrochemical performance of the commercial lithium cobalt oxide are compared with the electrochemical performance of the commercial lithium cobalt oxide in the 1C rate test as shown in Figure 2. It can be seen that after the 20-week cycle, the discharge capacity of the existing commercial lithium cobalt oxide is rapidly reduced, and the coated and modified lithium cobalt oxide material provided by the present invention can still be maintained above 180 mAh/g. The cycle performance is much better than the existing commercial lithium cobalt oxide materials.
  • This embodiment provides a preparation method and performance test results of an ion conductor paste.
  • the ionic conductor slurry prepared above and the commercial lithium cobalt oxide are mixed, dried, and sintered to obtain the coated and modified lithium cobalt oxide material of Example 2.
  • the coated modified lithium cobalt oxide material is mixed with the binder polyvinylidene fluoride (PVDF) and the conductive additive conductive carbon black (SP) according to the above method to prepare pole pieces respectively.
  • PVDF binder polyvinylidene fluoride
  • SP conductive additive conductive carbon black
  • metal lithium is used as the counter electrode to prepare a half-cell for test comparison.
  • the electrochemical performance of the coated modified lithium cobalt oxide material is also shown in Figure 2 at a rate of 1C. It can be seen that after the 20-week cycle, the discharge capacity of the existing commercial lithium cobalt oxide is rapidly reduced, and the coated and modified lithium cobalt oxide material provided by the present invention can still be maintained above 180 mAh/g. The cycle performance is much better than the existing commercial lithium cobalt oxide materials.
  • Example 1 and Example 2 of the present invention is coated with a modified material, and has better cycle performance.
  • the coated and modified lithium cobalt oxide material of this embodiment and the electrode made of the commercial lithium cobalt oxide material not coated and modified by the ion conductor paste The film was assembled into a half-cell according to the above method for comparison test. The result is shown in Figure 3.
  • the ionic conductor slurry coating modified material provided by the present invention has more excellent cycle performance.
  • This embodiment provides a method for preparing ion conductor paste.
  • ionic conductor powder Li 7 La 3 Zr 2 O 12 1kg to 50L of alcohol solvent, centrifuge for 30 minutes at a centrifugal speed of 1000 rpm, and then take the upper slurry and add it to the sand mill for sanding for 1 hour. Then ultrasonic treatment and grinding for 1 hour, the ultrasonic frequency is 3000 Hz, to obtain ion conductor slurry.
  • This embodiment provides a preparation method and performance test results of an ion conductor paste.
  • the ionic conductor slurry is used to coat the surface of the diaphragm, and then the lithium-on-lithium button battery is assembled, and then the cycle test is performed under the condition of a current density of 3 mA/cm 2 .
  • the uncoated commercial diaphragm was assembled and tested under the same conditions for comparison. It can be seen that the material of this embodiment has lower DC internal resistance.
  • This embodiment provides a method for preparing ion conductor paste.
  • the ion conductive paste provided by the present invention improves the quality and performance of the ion conductive paste by improving the pulping process, and is applied to liquid lithium ion batteries and metal lithium batteries.
  • Energy storage devices such as solid-liquid hybrid batteries, semi-solid batteries or all-solid batteries, and product pools containing energy storage devices, have better cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种离子导体浆料及其制备方法和应用,所述离子导体浆料按照质量份数包括:0.05wt%-99.98wt%的离子导体粉体材料,0wt%-2wt%的防沉降剂,0wt%-10wt%的粘结剂,0wt%-2wt%的分散剂,0wt%-2wt%的助剂和20wt%-99.95wt%的溶剂;其中,所述离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙钛矿型固态电解质材料及其衍生材料中的一种;所述离子导体粉体的颗粒尺寸在1nm-100um之间;所述离子导体浆料用于隔膜涂覆材料、正极材料包覆材料、负极材料包覆材料、正极材料添加剂、负极材料添加剂、聚合物固态电解质的添加剂或固液混合固态电解质。

Description

一种离子导体浆料及其制备方法和应用
本申请要求于2019年03月29日提交中国专利局、申请号为201910250707.0发明名称为“一种离子导体浆料及其制备方法和应用”的中国专利申请的优先权。
技术领域
本发明涉及锂电池材料技术领域,尤其涉及一种离子导体浆料及其制备方法和应用。
背景技术
目前,锂离子二次电池已广泛应用于移动电话、笔记本电脑等便携式电器中。随着技术的发展,锂离子电池在电动汽车和储能领域也有着非常好的应用前景,必将对未来人们的生活产生深刻的影响。
随着锂电池的广泛应用和快速发展,人们对锂离子电池的性能要求也越来越高,不仅要求锂电池具有较高的容量,而且要求在反复的充放电过程中具有较好的容量保持率,表现出良好的循环性能,具有较长的使用寿命。
制浆工艺在锂离子电池的整个生产工艺中对产品的品质质量影响度大于40%,是整个生产工艺中最重要的环节。但目前大部分工艺仍采用传统浆料制备工艺,采用高速分散工艺分散浆料,该工艺制备的浆料容易出现有结块且均匀性不好、稳定性差、制备工艺时间长等缺点。采用这种浆料制备的锂离子电池的性能存在一致性差的问题,从而影响锂离子电池的配组和使用。
因此,迫切的需要一种新型浆料及其制备方法来弥补现有的技术缺陷。
发明内容
本发明的目的是提供一种离子导体浆料及其制备方法和应用,用以解决现有技术存在的问题,通过提升制浆工艺质量来提升离子导体浆料的性能。
为实现上述目的,第一方面,本发明实施例提供了一种离子导体浆料,离子导体浆料按照质量份数包括:0.05wt%-99.98wt%的离子导体粉体材料,0wt%-2wt%的防沉降剂,0wt%-10wt%的粘结剂,0wt%-2wt%的分散剂,0wt%-2wt%的助剂和20wt%-99.95wt%的溶剂;
其中,所述离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙钛矿型固态电解质材料及其衍生材料中的一种;所述离子导体粉体的颗粒尺寸在1nm-100um之间;
所述离子导体浆料用于隔膜涂覆材料、正极材料包覆材料、负极材料包覆材料、正极材料添加剂、负极材料添加剂、聚合物固态电解质的添加剂或固液混合固态电解质。
优选的,所述石榴石型固态电解质具体为Li 7+m-n-3zAl zLa 3-mA4 mZr 2-nB4 nO 12;其中m,n,z均在[0-1]之间,A4为La、Ca、Sr、Ba或K中的一种或多种,B4为Ta、Nb、W或铪元素Hf中的一种或多种;
所述LISICON型固态电解质具体为Li 14A1(B1O 4) 4;其中A1为Zn、Zr、Cr或Sn中的一种或多种,B1为Ge、Si、S或P中的一种或多种;
所述NASICON型固态电解质具体为Li 1+xA2 xB2 2-x(PO 4) 3;其中0.01≤x≤0.5,A2为Al、Y、Ga、Cr、In、Fe、Se或La中的一种或多种,B2为Ti、Ge、Ta、Zr、Sn、Fe、V或铪元素Hf中的一种或多种;
所述钙钛矿型固态电解质具体为Li 3yA3 2/3-yB3O 3;其中0.01≤y≤2/3,A3为La、Al、Mg、Fe或Ta中的一种或多种,B3为Ti、Nb、Sr或Pr中的一种或多种。
优选的,所述防沉降剂包括:聚酰胺蜡、聚氧乙烯脂肪胺醇、聚氧乙 烯脂肪胺醇、聚氧乙烯脂肪醇硫酸盐、聚二醇醚或钛酸酯偶联剂中的一种或多种。
优选的,所述粘结剂包括:聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶、聚乙烯醇、聚四氟乙烯、聚烯烃类、氟化橡胶、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯或聚氨酯或明胶中的一种或多种。
优选的,所述分散剂包括:十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚乙烯吡咯烷酮、聚丙烯酸钾、辛基苯酚聚氧乙烯醚、单甘油酯、三硬脂酸甘油酯、油酸酰或丁二酸中的一种或多种。
优选的,所述助剂包括:聚二甲基硅氧烷、硅油、聚醚类、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺中的一种或多种。
优选的,所述溶剂包括:去离子水、酒精、N-甲基吡咯烷酮NMP、四氢呋喃、二甲基甲酰胺DMF或丙酮中的一种或多种混合。
第二方面,本发明实施例提供了一种上述第一方面所述的离子导体浆料的制备方法,包括:
按照所需离子导体浆料总质量份数,将0wt%-10wt%的粘结剂和20wt%-99.95wt%的溶剂按所需比例加入到预搅拌罐中,待粘结剂完全溶解得到均匀的第一浆料;
按所需比例将0.05wt%-99.98wt%的离子导体粉体材料加入第一浆料中,加入0wt%-2wt%的防沉降剂后在离心速度为500rpm-5000rpm的条件下离心处理30分钟-1小时;其中,所述离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙钛矿型固态电解质材料及其衍生材料中的一种;所述离子导体粉体的颗 粒尺寸在1nm-100um之间;
离心处理后,加入砂磨机进行砂磨,时间为30分钟-1小时;
砂磨取出后加入0wt%-2wt%的分散剂和0wt%-2wt%的助剂进行搅拌分散,得到第二浆料;其中,搅拌速度为10rpm-50rpm,分散速度为1000rpm-5000rpm;
对第二浆料进行超声处理,时间为30分钟-1小时,超声频率为1-10kHz,得到所需离子导体浆料。
优选的,所述石榴石型固态电解质具体为Li 7+m-n-3zAl zLa 3-mA4 mZr 2-nB4 nO 12;其中m,n,z均在[0-1]之间,A4为La、Ca、Sr、Ba或K中的一种或多种,B4为Ta、Nb、W或铪元素Hf中的一种或多种;
所述LISICON型固态电解质具体为Li 14A1(B1O 4) 4;其中A1为Zn、Zr、Cr或Sn中的一种或多种,B1为Ge、Si、S或P中的一种或多种;
所述NASICON型固态电解质具体为Li 1+xA2 xB2 2-x(PO 4) 3;其中0.01≤x≤0.5,A2为Al、Y、Ga、Cr、In、Fe、Se或La中的一种或多种,B2为Ti、Ge、Ta、Zr、Sn、Fe、V或铪元素Hf中的一种或多种;
所述钙钛矿型固态电解质具体为Li 3yA3 2/3-yB3O 3;其中0.01≤y≤2/3,A3为La、Al、Mg、Fe或Ta中的一种或多种,B3为Ti、Nb、Sr或Pr中的一种或多种;
所述防沉降剂包括:聚酰胺蜡、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪醇硫酸盐、聚二醇醚或钛酸酯偶联剂中的一种或多种;
所述粘结剂包括:聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶、聚乙烯醇、聚四氟乙烯、聚烯烃类、氟化橡胶、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯或聚氨酯或明胶中的一种或多种;
所述分散剂包括:十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚乙烯吡咯烷酮、聚丙烯 酸钾、辛基苯酚聚氧乙烯醚、单甘油酯、三硬脂酸甘油酯、油酸酰或丁二酸中的一种或多种;
所述助剂包括:聚二甲基硅氧烷、硅油、聚醚类、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺中的一种或多种;
所述溶剂包括:去离子水、酒精、N-甲基吡咯烷酮NMP、四氢呋喃、二甲基甲酰胺DMF或丙酮中的一种或多种混合。
第三方面,本发明实施例提供了一种包括上述第一方面所述的离子导体浆料的应用,所述离子导体浆料应用于储能器件以及包含所述储能器件的产品;
所述储能器件包括:液态锂离子电池、金属锂电池、固液混合电池、半固态电池或全固态电池中的一种或多种。
本发明提供的离子导体浆料,通过提升制浆工艺质量来提升离子导体浆料的性能,具有更好的循环性能。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的离子导体浆料的制备方法流程图;
图2为本发明实施例提供的本发明实施例的半电池循环性能测试对比图之一;
图3为本发明实施例提供的本发明实施例的半电池循环性能测试对比图之二;
图4为本发明实施例提供的电化学性能图。
具体实施方式
下面结合实施例,对本发明进行进一步的详细说明,但并不意于限制本 发明的保护范围。
本发明实施例提供了一种离子导体浆料,按照质量份数包括:0.05wt%-99.98wt%的离子导体粉体材料和20wt%-99.95wt%的溶剂;此外还可以包括:不多于2wt%的防沉降剂,不多于10wt%的粘结剂,不多于2wt%的分散剂和不多于2wt%的助剂;防沉降剂,防沉降剂,分散剂和助剂中的一种或几种的组分也可以为0。
其中,离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙钛矿型固态电解质材料及其衍生材料中的一种;离子导体粉体的颗粒尺寸在1nm-100um之间;
上述石榴石型固态电解质具体为Li 7+m-n-3zAl zLa 3-mA4 mZr 2-nB4 nO 12;其中m,n,z均在[0-1]之间,A4为La、Ca、Sr、Ba或K中的一种或多种,B4为Ta、Nb、W或铪元素Hf中的一种或多种;
上述LISICON型固态电解质具体为Li 14A1(B1O 4) 4;其中A1为Zn、Zr、Cr或Sn中的一种或多种,B1为Ge、Si、S或P中的一种或多种;
上述NASICON型固态电解质具体为Li 1+xA2 xB2 2-x(PO 4) 3;其中0.01≤x≤0.5,A2为Al、Y、Ga、Cr、In、Fe、Se或La中的一种或多种,B2为Ti、Ge、Ta、Zr、Sn、Fe、V或铪元素Hf中的一种或多种;
上述钙钛矿型固态电解质具体为Li 3yA3 2/3-yB3O 3;其中0.01≤y≤2/3,A3为La、Al、Mg、Fe或Ta中的一种或多种,B3为Ti、Nb、Sr或Pr中的一种或多种。
防沉降剂包括:聚酰胺蜡、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪醇硫酸盐、聚二醇醚或钛酸酯偶联剂中的一种或多种。
粘结剂包括:聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶、聚乙烯醇、聚四氟乙烯、聚烯烃类、氟化橡胶、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯或聚氨酯或明胶中的一种或多种。
分散剂包括:十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚乙烯吡咯烷酮、聚丙烯酸钾、辛基苯酚聚氧乙烯醚、单甘油酯、三硬脂酸甘油酯、油酸酰或丁二酸中的一种或多种。
助剂包括:聚二甲基硅氧烷、硅油、聚醚类、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺中的一种或多种。
溶剂包括:去离子水、酒精、N-甲基吡咯烷酮(NMP)、四氢呋喃、二甲基甲酰胺(DMF)或丙酮中的一种或多种混合。
本发明上述离子导体浆料的制备方法如图1所示的方法步骤流程,包括:
步骤110,按照所需离子导体浆料总质量份数,将0wt%-10wt%的粘结剂和20wt%-99.95wt%的溶剂按所需比例加入到预搅拌罐中,待粘结剂完全溶解得到均匀的第一浆料;
步骤120,按所需比例将0.05wt%-99.98wt%的离子导体粉体材料加入第一浆料中,加入0wt%-2wt%的防沉降剂后在离心速度为500rpm-5000rpm的条件下离心处理30分钟-1小时;
步骤130,离心处理后,加入砂磨机进行砂磨,时间为30分钟-1小时;
步骤140,砂磨取出后加入0wt%-2wt%的分散剂和0wt%-2wt%的助剂进行搅拌分散,得到第二浆料;
其中,搅拌速度为10rpm-50rpm,分散速度为1000rpm-5000rpm;
步骤150,对第二浆料进行超声处理,时间为30分钟-1小时,超声频率为1-10kHz,得到所需离子导体浆料。
上述方法步骤中所提及的各材料,已经在先进行了说明,此处不再赘述。
本发明制备得到的离子导体浆料可以用于隔膜涂覆材料、正极材料包覆材料、负极材料包覆材料、正极材料添加剂、负极材料添加剂、聚合物固态电解质的添加剂或固液混合固态电解质等,具体可以应用于储能器件以及包含储能器件的产品。储能器件可以包括:液态锂离子电池、金属锂电池、固液混合电池、半固态电池或全固态电池等等。
本发明提供的离子导体浆料,通过提升制浆工艺质量来提升离子导体浆料的性能,相比于现有商用离子导体浆料,具有更好的循环性能。
下面通过具体的实例,对本发明的技术方案进行进一步详细说明。
实施例1
本实施例提供了一种离子导体浆料的制备方法及性能测试结果。
将1Kg的离子导体粉体Li 1.5Al 0.5Ti 1.5(PO 4) 3加入到100L去离子水中,离心速度1000rpm的条件下离心处理30分钟,然后取上层浆料加入砂磨机中砂磨1小时,再超声处理1小时,超声频率3000Hz,得到离子导体浆料。
用上述制备得到的离子导体浆料和商业化钴酸锂进行混合、干燥、烧结,得到本实施例1的包覆改性的钴酸锂材料。
将包覆改性的钴酸锂材料和未经离子导体浆料包覆改性的商业化钴酸锂材料分别与粘结剂聚偏氟乙烯(PVDF)、导电添加剂导电碳黑(SP)混合,分别制备成极片。
将两种极片分别采用金属锂做对电极,制备成半电池,进行测试对比。在2.7-4.6v的范围制备内,1C倍率测试包覆改性的钴酸锂材料的电化学性能和商业化钴酸锂的电化学的性能对比如图2所示。可以看到在20周循环后,现有商业化钴酸锂的放电容量迅速降低,而本发明提供的包覆改性的钴酸锂材料依然可以维持在180mAh/g以上。循环性能大大优于现有商业化钴酸锂材料。
实施例2
本实施例提供了一种离子导体浆料的制备方法及性能测试结果。
将1kg的离子导体粉体LiAl 1/3TiO 3加入到30L的N-甲基吡咯烷酮溶剂中,离心速度1000rpm的条件下离心处理30分钟,然后取上层浆料加入砂磨机中砂磨30分钟,再超声处理30分钟,超声频率3000Hz,得到离子导体浆料。
用上述制备得到的离子导体浆料和商业化钴酸锂进行混合、干燥、烧结,得到本实施例2的包覆改性的钴酸锂材料。
将包覆改性的钴酸锂材料按照上述方法与粘结剂聚偏氟乙烯(PVDF)、导电添加剂导电碳黑(SP)混合,分别制备成极片。
同样采用金属锂做对电极,制备成半电池,进行测试对比。在2.7-4.6v的范围制备内,1C倍率测试包覆改性的钴酸锂材料的电化学性能也如图2所示。可以看到在20周循环后,现有商业化钴酸锂的放电容量迅速降低,而本发明提供的包覆改性的钴酸锂材料依然可以维持在180mAh/g以上。循环性能大大优于现有商业化钴酸锂材料。
通过以上对比可以看出,本发明实施例1和实施例2提供的离子导体浆料包覆改性的材料,具有更优异的循环性能。
此外,测试温度为45℃,4.2V,1C倍率下,对本实施例的包覆改性的钴酸锂材料和未经离子导体浆料包覆改性的商业化钴酸锂材料制成的极片,按上述方法装配成半电池进行对比测试,结果如图3所示。本发明提供的离子导体浆料包覆改性的材料具有更优异的循环性能。
实施例3
本实施例提供了一种离子导体浆料的制备方法。
将1kg的离子导体粉体Li 7La 3Zr 2O 121kg加入到50L的酒精溶剂中,离 心速度1000rpm的条件下离心处理30分钟,然后取上层浆料加入砂磨机中砂磨1小时,再超声处理磨1小时,超声频率3000Hz,得到离子导体浆料。
实施例4
本实施例提供了一种离子导体浆料的制备方法及性能测试结果。
200g粘结剂聚偏氟乙烯加入到5.2kg的N-甲基吡咯烷酮溶剂中,搅拌至充分溶解,随后缓慢加入1kg的离子导体粉体Li 14Zr(PO 4) 4,离心速度1000rpm的条件下离心处理30分钟,然后取上层浆料加入砂磨机中砂磨30分钟,再超声处理磨30分钟,超声频率3000Hz,得到离子导体浆料。
采用上述离子导体浆料涂敷于隔膜表面,然后组装锂对锂扣式电池后,在电流密度3mA/cm 2的条件之下进行循环测试。为对比性能,采用未涂覆的商业化隔膜以同样条件组装、测试,进行对比,结果如图4。可以看出本实施例的材料,直流内阻更小。
实施例5
本实施例提供了一种离子导体浆料的制备方法。
取300g粘结剂聚丙烯腈加入到5kg二甲基甲酰胺(DMF)中,搅拌至充分溶解,随后缓慢加入1kg的离子导体粉体Li 2TiO 3,离心速度1000rpm的条件下离心处理30分钟,将混合后的浆料加入砂磨机中砂磨1小时,完成后加入50g分散剂聚乙烯吡咯烷酮和15g助剂聚氧乙烯烷基酚醚,放入打浆机中搅拌1小时,搅拌速度20rpm,分散速度3000rpm;再超声处理磨30分钟,超声频率3000Hz,得到离子导体浆料。
通过上述对比测试图所示,可以看出:本发明提供的离子导体浆料, 通过提升制浆工艺提升了离子导体浆料的质量、性能,将其应用于如液态锂离子电池、金属锂电池、固液混合电池、半固态电池或全固态电池等的储能器件,及包含储能器件的产品池中,具有更好的循环性能。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种离子导体浆料,其特征在于,所述离子导体浆料按照质量份数包括:0.05wt%-99.98wt%的离子导体粉体材料,0wt%-2wt%的防沉降剂,0wt%-10wt%的粘结剂,0wt%-2wt%的分散剂,0wt%-2wt%的助剂和20wt%-99.95wt%的溶剂;
    其中,所述离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙钛矿型固态电解质材料及其衍生材料中的一种;所述离子导体粉体的颗粒尺寸在1nm-100um之间;
    所述离子导体浆料用于隔膜涂覆材料、正极材料包覆材料、负极材料包覆材料、正极材料添加剂、负极材料添加剂、聚合物固态电解质的添加剂或固液混合固态电解质。
  2. 根据权利要求1所述的离子导体浆料,其特征在于,
    所述石榴石型固态电解质具体为Li 7+m-n-3zAl zLa 3-mA4 mZr 2-nB4 nO 12;其中m,n,z均在[0-1]之间,A4为La、Ca、Sr、Ba或K中的一种或多种,B4为Ta、Nb、W或铪元素Hf中的一种或多种;
    所述LISICON型固态电解质具体为Li 14A1(B1O 4) 4;其中A1为Zn、Zr、Cr或Sn中的一种或多种,B1为Ge、Si、S或P中的一种或多种;
    所述NASICON型固态电解质具体为Li 1+xA2 xB2 2-x(PO 4) 3;其中0.01≤x≤0.5,A2为Al、Y、Ga、Cr、In、Fe、Se或La中的一种或多种,B2为Ti、Ge、Ta、Zr、Sn、Fe、V或铪元素Hf中的一种或多种;
    所述钙钛矿型固态电解质具体为Li 3yA3 2/3-yB3O 3;其中0.01≤y≤2/3,A3为La、Al、Mg、Fe或Ta中的一种或多种,B3为Ti、Nb、Sr或Pr中的一种或多种。
  3. 根据权利要求1所述的离子导体浆料,其特征在于,所述防沉降剂包括:聚酰胺蜡、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪醇硫酸盐、聚二醇醚或钛酸酯偶联剂中的一种或多种。
  4. 根据权利要求1所述的离子导体浆料,其特征在于,所述粘结剂包括:聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶、聚乙烯醇、聚四氟乙烯、聚烯烃类、氟化橡胶、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯或聚氨酯或明胶中的一种或多种。
  5. 根据权利要求1所述的离子导体浆料,其特征在于,所述分散剂包括:十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚乙烯吡咯烷酮、聚丙烯酸钾、辛基苯酚聚氧乙烯醚、单甘油酯、三硬脂酸甘油酯、油酸酰或丁二酸中的一种或多种。
  6. 根据权利要求1所述的离子导体浆料,其特征在于,所述助剂包括:聚二甲基硅氧烷、硅油、聚醚类、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺中的一种或多种。
  7. 根据权利要求1所述的离子导体浆料,其特征在于,所述溶剂包括:去离子水、酒精、N-甲基吡咯烷酮NMP、四氢呋喃、二甲基甲酰胺DMF或丙酮中的一种或多种混合。
  8. 一种上述权利要求1-7任一所述的离子导体浆料的制备方法,其特征在于,所述方法包括:
    按照所需离子导体浆料总质量份数,将0wt%-10wt%的粘结剂和20wt%-99.95wt%的溶剂按所需比例加入到预搅拌罐中,待粘结剂完全溶解得到均匀的第一浆料;
    按所需比例将0.05wt%-99.98wt%的离子导体粉体材料加入第一浆料中,加入0wt%-2wt%的防沉降剂后在离心速度为500rpm-5000rpm的条件下离心处理30分钟-1小时;其中,所述离子导体粉体材料包括石榴石型固态电解质材料、NASCION型固态电解质材料、LISCION固态电解质材料、钙 钛矿型固态电解质材料及其衍生材料中的一种;所述离子导体粉体的颗粒尺寸在1nm-100um之间;
    离心处理后,加入砂磨机进行砂磨,时间为30分钟-1小时;
    砂磨取出后加入0wt%-2wt%的分散剂和0wt%-2wt%的助剂进行搅拌分散,得到第二浆料;其中,搅拌速度为10rpm-50rpm,分散速度为1000rpm-5000rpm;
    对第二浆料进行超声处理,时间为30分钟-1小时,超声频率为1-10kHz,得到所需离子导体浆料。
  9. 根据权利要求8所述的离子导体浆料的制备方法,其特征在于,
    所述石榴石型固态电解质具体为Li 7+m-n-3zAl zLa 3-mA4 mZr 2-nB4 nO 12;其中m,n,z均在[0-1]之间,A4为La、Ca、Sr、Ba或K中的一种或多种,B4为Ta、Nb、W或铪元素Hf中的一种或多种;
    所述LISICON型固态电解质具体为Li 14A1(B1O 4) 4;其中A1为Zn、Zr、Cr或Sn中的一种或多种,B1为Ge、Si、S或P中的一种或多种;
    所述NASICON型固态电解质具体为Li 1+xA2 xB2 2-x(PO 4) 3;其中0.01≤x≤0.5,A2为Al、Y、Ga、Cr、In、Fe、Se或La中的一种或多种,B2为Ti、Ge、Ta、Zr、Sn、Fe、V或铪元素Hf中的一种或多种;
    所述钙钛矿型固态电解质具体为Li 3yA3 2/3-yB3O 3;其中0.01≤y≤2/3,A3为La、Al、Mg、Fe或Ta中的一种或多种,B3为Ti、Nb、Sr或Pr中的一种或多种;
    所述防沉降剂包括:聚酰胺蜡、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪胺醇、聚氧乙烯脂肪醇硫酸盐、聚二醇醚或钛酸酯偶联剂中的一种或多种;
    所述粘结剂包括:聚偏氟乙烯、羧甲基纤维素、羧甲基纤维素钠、聚甲基丙烯酸甲酯、聚丙烯腈、丁苯橡胶、聚乙烯醇、聚四氟乙烯、聚烯烃类、氟化橡胶、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯或聚氨酯或明胶中的一种或多种;
    所述分散剂包括:十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚乙烯吡咯烷酮、聚丙烯酸钾、辛基苯酚聚氧乙烯醚、单甘油酯、三硬脂酸甘油酯、油酸酰或丁二酸中的一种或多种;
    所述助剂包括:聚二甲基硅氧烷、硅油、聚醚类、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺中的一种或多种;
    所述溶剂包括:去离子水、酒精、N-甲基吡咯烷酮NMP、四氢呋喃、二甲基甲酰胺DMF或丙酮中的一种或多种混合。
  10. 一种上述权利要求1-7任一所述的离子导体浆料的应用,其特征在于,所述离子导体浆料应用于储能器件以及包含所述储能器件的产品;
    所述储能器件包括:液态锂离子电池、金属锂电池、固液混合电池、半固态电池或全固态电池中的一种或多种。
PCT/CN2020/074655 2019-03-29 2020-02-10 一种离子导体浆料及其制备方法和应用 WO2020199755A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/593,782 US20220131153A1 (en) 2019-03-29 2020-02-10 Ionic conductor slurry, preparation method therefor and application thereof
EP20783706.3A EP3951913A4 (en) 2019-03-29 2020-02-10 ION CONDUCTOR SLURRY, ITS PREPARATION METHOD AND ITS APPLICATION
JP2021557700A JP7372692B2 (ja) 2019-03-29 2020-02-10 イオン導電体スラリーの調製方法
KR1020217031070A KR20210131412A (ko) 2019-03-29 2020-02-10 이온 전도성 페이스트 및 그 제조방법과 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910250707.0A CN109817871A (zh) 2019-03-29 2019-03-29 一种离子导体浆料及其制备方法和应用
CN201910250707.0 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199755A1 true WO2020199755A1 (zh) 2020-10-08

Family

ID=66610926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074655 WO2020199755A1 (zh) 2019-03-29 2020-02-10 一种离子导体浆料及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220131153A1 (zh)
EP (1) EP3951913A4 (zh)
JP (1) JP7372692B2 (zh)
KR (1) KR20210131412A (zh)
CN (1) CN109817871A (zh)
WO (1) WO2020199755A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
CN109817871A (zh) * 2019-03-29 2019-05-28 溧阳天目先导电池材料科技有限公司 一种离子导体浆料及其制备方法和应用
CN113471412A (zh) * 2020-03-31 2021-10-01 北京卫蓝新能源科技有限公司 一种复合导电浆料及制备方法、正极极片及锂离子电池
CN113193199A (zh) * 2021-04-30 2021-07-30 中国科学院宁波材料技术与工程研究所 一种石墨烯-锂离子导体材料复合导电浆料、其制备方法及应用
CN113707933B (zh) * 2021-09-02 2024-04-09 浙江蓝珧新材料科技有限公司 一种锂离子电池固态电解质纳米分散液的配制方法及固态电解质纳米分散液
CN115000503B (zh) * 2022-08-01 2022-10-21 江苏蓝固新能源科技有限公司 一种混合导电浆料及改善其稳定性的方法
CN117673647B (zh) * 2024-02-02 2024-04-23 吉林大学 一种离子导体涂层修饰的隔膜、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598563A (zh) * 2018-04-27 2018-09-28 溧阳天目先导电池材料科技有限公司 一种水性固态电解质膜及其制备方法和二次电池
CN109301314A (zh) * 2017-07-24 2019-02-01 微宏动力系统(湖州)有限公司 一种无机固体电解质复合浆料的制备方法及无机固体电解质复合浆料
CN109817871A (zh) * 2019-03-29 2019-05-28 溧阳天目先导电池材料科技有限公司 一种离子导体浆料及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594233B2 (ja) 2000-03-23 2004-11-24 松下電池工業株式会社 非水電解質二次電池用電極の製造法および非水電解質二次電池
US7700236B2 (en) * 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
EP2182574B1 (en) 2008-10-29 2014-03-05 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink used to form solid electrolyte membrane
JP5652344B2 (ja) 2011-06-27 2015-01-14 日本ゼオン株式会社 全固体二次電池
JP5939519B2 (ja) 2012-07-27 2016-06-22 東邦チタニウム株式会社 リチウムランタンチタン酸化物焼結体の製造方法、及びリチウムランタンチタン酸化物粒子含有スラリー
CN103682356B (zh) * 2012-09-18 2016-11-23 华为技术有限公司 一种锂离子电池正极材料及其制备方法
KR101615439B1 (ko) * 2014-07-17 2016-05-13 오씨아이 주식회사 탄소-실리콘 복합체의 제조방법
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
US10734676B2 (en) 2016-06-30 2020-08-04 Wildcat Discovery Technologies, Inc Solid electrolyte compositions
CN106207060A (zh) * 2016-08-24 2016-12-07 合肥国轩高科动力能源有限公司 一种含有锂离子的陶瓷涂覆隔膜及制备方法与应用
CN106784609A (zh) * 2017-03-10 2017-05-31 江西佳沃新能源有限公司 一种锂电池负极浆料制备工艺
JP6825978B2 (ja) 2017-04-28 2021-02-03 トヨタ自動車株式会社 リチウムイオン二次電池用正極およびその製造方法
JP6926972B2 (ja) * 2017-11-10 2021-08-25 トヨタ自動車株式会社 全固体電池の製造方法
CN108511712B (zh) * 2018-03-23 2020-09-01 溧阳天目先导电池材料科技有限公司 锂离子电子导电剂材料、制备方法、锂电池极片及锂电池
WO2020059806A1 (ja) * 2018-09-19 2020-03-26 株式会社村田製作所 二次電池
CN109638202A (zh) * 2018-11-22 2019-04-16 溧阳天目先导电池材料科技有限公司 一种离子电子导体复合膜及其制备方法和锂电池
CN110265665B (zh) * 2019-05-24 2020-11-17 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301314A (zh) * 2017-07-24 2019-02-01 微宏动力系统(湖州)有限公司 一种无机固体电解质复合浆料的制备方法及无机固体电解质复合浆料
CN108598563A (zh) * 2018-04-27 2018-09-28 溧阳天目先导电池材料科技有限公司 一种水性固态电解质膜及其制备方法和二次电池
CN109817871A (zh) * 2019-03-29 2019-05-28 溧阳天目先导电池材料科技有限公司 一种离子导体浆料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951913A4 *

Also Published As

Publication number Publication date
JP2022528080A (ja) 2022-06-08
CN109817871A (zh) 2019-05-28
JP7372692B2 (ja) 2023-11-01
EP3951913A1 (en) 2022-02-09
KR20210131412A (ko) 2021-11-02
US20220131153A1 (en) 2022-04-28
EP3951913A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2020199755A1 (zh) 一种离子导体浆料及其制备方法和应用
WO2023174335A1 (zh) 一种负极浆料组合物和应用
CN108987800B (zh) 固态电解质及其制备方法和含有该固态电解质的固态电池
CN109004265B (zh) 固态电解质正极及包含其的固态电池
US6399246B1 (en) Latex binder for non-aqueous battery electrodes
CN108565396A (zh) 一种预锂化膜及其制备方法和应用
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN108615861B (zh) 经改性的锂离子电池正极材料、其制备方法及包含其的锂离子电池
CN109065811B (zh) 水性pvdf涂覆隔膜及其制备方法和应用
CN111900328A (zh) 一种正极片及含有该正极片的锂离子电池
CN101752558A (zh) 一种锂离子电池正极材料及其制备方法
CN108172893B (zh) 一种锂离子电池
CN105336918B (zh) 一种锂离子电池高镍系正极材料浆料的制备方法
WO2020134763A1 (zh) 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
CN115020696B (zh) 正极活性材料、电化学装置和电子设备
CN101752545A (zh) 锂离子电池电极及其制备方法和采用该电极的锂离子电池
CN106471645A (zh) 表面涂覆的正极活性材料、其制备方法和包含其的锂二次电池
CN112751002A (zh) 正极片及锂离子电池
CN109904374A (zh) 一种防过充隔膜及其制备方法和应用
CN108539188A (zh) 一种液态金属纳米粒子的制备方法及锂离子电池的制备方法
WO2024055730A1 (zh) 正极片、电芯和电池
CN111554933A (zh) 一种功能性纳米导体浆料及其制备方法和锂电池
CN116404114A (zh) 极片和电池
WO2022194089A1 (zh) 负极材料及其制备方法和全固态锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557700

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217031070

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783706

Country of ref document: EP

Effective date: 20211029