WO2020134763A1 - 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池 - Google Patents

一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池 Download PDF

Info

Publication number
WO2020134763A1
WO2020134763A1 PCT/CN2019/120258 CN2019120258W WO2020134763A1 WO 2020134763 A1 WO2020134763 A1 WO 2020134763A1 CN 2019120258 W CN2019120258 W CN 2019120258W WO 2020134763 A1 WO2020134763 A1 WO 2020134763A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
separator
lithium ion
ion conductivity
battery separator
Prior art date
Application number
PCT/CN2019/120258
Other languages
English (en)
French (fr)
Inventor
张祖来
徐延铭
李俊义
李素丽
Original Assignee
珠海冠宇电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池有限公司 filed Critical 珠海冠宇电池有限公司
Publication of WO2020134763A1 publication Critical patent/WO2020134763A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium ion batteries, and particularly relates to a method for preparing a battery separator with high ion conductivity and a lithium ion battery containing the same.
  • lithium-ion batteries Since its introduction, lithium-ion batteries have become the most competitive advantage in the field of chemical power supply due to their advantages of high energy density, long cycle life, small self-discharge rate, no memory effect and green environmental protection compared to other secondary batteries. battery.
  • lithium-ion batteries have been widely used in notebook computers, digital products, electric vehicles, hybrid vehicles and even aerospace. With the development of new energy electric vehicles, the market growth rate of lithium-ion batteries has also stabilized at around 15%. If the new energy electric vehicle market shows massive growth, its true growth rate will be much greater than 15%.
  • the separator plays a role of separating the positive and negative electrodes, preventing the internal short circuit of the battery, allowing electrolyte ions to pass freely, and completing the electrochemical charge and discharge process. Its performance determines the interface structure and internal resistance of the battery. It directly affects the battery's capacity, cycle performance and safety performance. The excellent performance of the separator plays an important role in improving the overall performance of the battery.
  • Lithium ion batteries with high rate charge-discharge performance and excellent cycle performance require high ion conductivity of the separator.
  • the traditional lithium battery separator production process will reduce the mechanical strength of the separator, especially the puncture strength, when the porosity is increased.
  • an inorganic or heat-resistant organic coating By applying an inorganic or heat-resistant organic coating, the increase in thickness will increase the internal resistance of the separator to a certain extent.
  • the types of lithium battery separators used in PE batteries are PE, PP, PP/PE/PP composite separators and coated separators, which cannot meet the requirements for power batteries with high rate and cycle performance and high safety performance.
  • the purpose of this application is to solve the current problems of low ion conductivity and high internal resistance of the separator, to provide a method for preparing a battery separator with high ion conductivity and a lithium ion battery containing the separator.
  • This application uses an adhesive With the appropriate coating process, the prepared lithium ion battery separator has high ion conductivity.
  • This binder will not only play the role of adhesion between inorganic particles and inorganic particles and substrate separator on the surface of inorganic coating, but also serve as an auxiliary cathode material, provide a lithium ion library, improve the battery charge and discharge Specific capacity, rate performance and cycle life.
  • a method for preparing a battery separator with high ion conductivity is as follows:
  • the slurry Based on the total mass of the slurry, first mix the inorganic ceramic particles, dispersant and water according to the mass ratio of 25wt.% to 35wt.%: 2wt.% to 4wt.%: 60wt.% to 70wt.%, and then add 0.5wt .% ⁇ 6wt.% of the adhesive is mixed evenly, add 0.5wt.% ⁇ 6wt.% of the second adhesive, 0.01wt.% ⁇ 1.00wt.% of the wetting agent to mix evenly to obtain the slurry,
  • the prepared slurry can be uniformly coated on the surface of the polyolefin substrate by a diaphragm coating machine.
  • polyolefin substrate is PE, PP or PP/PE/PP.
  • the binder is lithium cellulose acetate, lithium acetate butyrate, lithium acetate propionate, lithium cyanoethyl pullulan, lithium cyanoethyl polyvinyl alcohol, cyanoethyl One or a mixture of lithium cellulose, lithium cyanoethyl sucrose, and lithium carboxymethyl cellulose.
  • the second adhesive is one or a mixture of polyvinyl alcohol, polyethylene oxide, acrylic water-soluble glue, and styrene-butadiene latex.
  • the inorganic ceramic particles are BaTiO 3 , hafnium dioxide, SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , boehmite, One or a mixture of TiO 2 and SiC.
  • a high ion conductivity battery separator is obtained according to any one of the above preparation methods.
  • a lithium ion battery includes the above-mentioned high ion conductivity battery separator, positive electrode, negative electrode, and electrolyte.
  • the separator of the present application has high ion conductivity, and can realize a large-rate charge-discharge performance of a lithium ion battery.
  • the separator of the present application can be used as an auxiliary cathode material to provide a lithium ion library to improve the charge-discharge specific capacity and rate performance of the lithium ion battery.
  • the lithium ion battery using the separator of the present application has sufficient lithium ions and can maintain the long-term excellent power performance and cycle performance of the lithium ion battery.
  • Figure 1 is a schematic diagram of the microstructure of the diaphragm
  • FIG. 2 is a comparison graph of rate performance of lithium ion batteries of Examples 1-3 and Comparative Examples 1-2.
  • Embodiment 1 describes a method for preparing a battery separator with high ion conductivity. The method is as follows:
  • the coating machine Based on the total mass of the slurry, first mix the inorganic ceramic particles, dispersant and water according to the mass ratio of 25wt.% to 35wt.%: 2wt.% to 4wt.%: 60wt.% to 70wt.%, and then add 0.5wt .% ⁇ 6wt.% of the adhesive is mixed evenly, add 0.5wt.% ⁇ 6wt.% of the second adhesive, 0.01wt.% ⁇ 1.00wt.% of the wetting agent to mix evenly, to obtain the slurry, through the diaphragm
  • the coating machine uniformly coats the prepared slurry on the surface of the polyolefin substrate.
  • FIG. 1 is a schematic diagram of the microstructure of a separator. As shown in FIG. 1, in the separator for a high ion conductivity battery prepared in the present application, a binder is evenly distributed between inorganic particles (filled particles) on the surface of a substrate layer.
  • Embodiment 2 The method for preparing a high ion conductivity battery separator according to Embodiment 1, wherein the polyolefin substrate is PE, PP or PP/PE/PP.
  • the PP/PE/PP is a three-layer membrane.
  • Embodiment 3 A method for preparing a battery separator with high ion conductivity according to Embodiment 1, wherein the binder is lithium cellulose acetate, lithium acetate butyrate, and lithium acetate propionate , Lithium cyanoethyl pullulan, lithium cyanoethyl polyvinyl alcohol, lithium cyanoethyl cellulose, lithium cyanoethyl sucrose, lithium carboxymethyl cellulose or a mixture of several.
  • the binder is lithium cellulose acetate, lithium acetate butyrate, and lithium acetate propionate , Lithium cyanoethyl pullulan, lithium cyanoethyl polyvinyl alcohol, lithium cyanoethyl cellulose, lithium cyanoethyl sucrose, lithium carboxymethyl cellulose or a mixture of several.
  • Embodiment 4 The method for preparing a high ion conductivity battery separator as described in Embodiment 1, wherein the second adhesive is polyvinyl alcohol, polyethylene oxide, acrylic water-soluble glue, styrene butadiene One or a mixture of several in latex.
  • the second adhesive is polyvinyl alcohol, polyethylene oxide, acrylic water-soluble glue, styrene butadiene One or a mixture of several in latex.
  • Embodiment 5 A method for preparing a high ion conductivity battery separator as described in Embodiment 1, wherein the inorganic ceramic particles are BaTiO 3 , hafnium dioxide (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2. MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , boehmite, TiO 2 , SiC, or a mixture of several of them.
  • the inorganic ceramic particles are BaTiO 3 , hafnium dioxide (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2.
  • Embodiment 6 A high ion conductivity battery separator prepared according to any one of Embodiments 1 to 5.
  • Embodiment 7 A lithium ion battery, including the high ion conductivity battery separator of Embodiment 6, a positive electrode, a negative electrode, and an electrolyte.
  • Lithium cobaltate, conductive carbon, binder polyvinylidene fluoride is added to nitrogen methylpyrrolidone (NMP) at a mass ratio of 97:1.5:1.5 and mixed uniformly to make a positive electrode slurry, which is then coated, Compact and divide to make a positive electrode.
  • NMP nitrogen methylpyrrolidone
  • negative electrode sheet graphite, conductive carbon, thickener sodium carboxymethylcellulose, binder styrene-butadiene rubber at a mass ratio of 98:0.3:0.5:1.2 were added to deionized water and mixed to make a negative electrode slurry, and then After coating, compacting and slitting, a negative electrode sheet is prepared.
  • Isolation membrane use 12 ⁇ m thick PE membrane
  • LiPF 6 is mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) into a solution with a LiPF 6 concentration of 1.0 mol/L (where the mass ratio of EC and DEC is 7:3) ) To obtain a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Cell molding the positive electrode sheet, the separator and the negative electrode sheet are wound into a cell, and then the cell is placed in an aluminum-plastic packaging bag, after baking, the non-aqueous electrolyte is injected, and the process of packaging and forming is performed. Make a battery.
  • Thickness testing and ion-to-pass rate testing were performed on the separators in Comparative Examples 1-2 and Examples 1-3, and the rate performance, room temperature cycle performance and the lithium ion batteries in Comparative Examples 1-2 and Examples 1-3 were tested.
  • the furnace temperature performance test, the results are shown in Table 1 and Figure 2.
  • FIG. 2 is a comparison diagram of the rate performance of the lithium ion batteries of Examples 1-3 and Comparative Examples 1-2.
  • the ion conduction of the separator is added by adding the adhesive described in this application
  • the rate performance and cycle performance of the battery using this separator are significantly improved; in addition, as the content of additives increases, the ion conductivity of the separator shows a significant positive correlation.
  • Rate performance and cycle performance also show a positive correlation.
  • the adhesive may also be other carboxymethyl cellulose homologues with lithium ions at the ends and a polymer containing the structure. Therefore, this application is not limited to the specific embodiments disclosed and described above, and some equivalent modifications and changes to this application should also fall within the scope of protection of the claims of this application.
  • these terms are just for convenience of description, and do not constitute any limitation to this application.

Abstract

一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池,属于锂离子电池技术领域。所述方法具体如下:先将无机陶瓷颗粒、分散剂和水混合均匀,再加入粘接剂混合均匀,加入第二粘接剂、润湿剂混合均匀,得到浆料,通过隔膜涂覆机将制备好的浆料均匀涂覆在聚烯烃基材隔膜表面即可。本申请的优点是:本申请的隔膜,具有离子导电性高,能够实现锂离子电池的大倍率充放电性能。本申请的隔膜,可以作为一种辅助的正极材料,提供一个锂离子库,提高锂离子电池的充放电比容量及倍率性能。采用本申请的隔膜的锂离子电池,具有足够的锂离子,能够保持锂离子电池长期优异的功率性能、循环性能。

Description

一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
本申请要求于2018年12月24日提交中国专利局、申请号为201811584335.7、申请名称为“一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于锂离子电池技术领域,尤其涉及一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池。
背景技术
锂离子电池自面世以来,以其相对于其他二次电池所具有的能量密度高、循环寿命长、自放电率小、无记忆效应及绿色环保等优点,成为化学电源领域中最具竞争优势的电池。
目前,锂离子电池已广泛应用于笔记本电脑、数码产品以及电动汽车、混合动力汽车甚至航空航天等领域。随着新能源电动车的发展,锂离子电池的市场增长率也稳定在15%左右,如果新能源电动车市场出现放量式增长,其真实增长率将远大于15%。
随着现代移动电子设备、通讯设备和动力电池产业的迅速发展,对锂离子电池性能要求越来越高,一些特殊领域(如高功率电池)对电池的充放电倍率和循环寿命提出更高的要求。
隔膜作为锂离子电池的重要组成部分,起着分隔正、负极,防止电池内部短路,允许电解质离子自由通过,完成电化学充放电过程的作用,其性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用,被业界称为电池的“第三极”。
高倍率充放电性能及循环性能优异的锂离子电池要求隔膜的离子导通率高。传统的锂电池隔膜生产工艺增高孔隙率的情况下会降低隔膜的机械强度,尤其是穿刺强度;通过涂覆无机或耐热有机涂层,由于厚度增加 在一定程度上会增加隔膜内阻,仅仅作为阻隔正负极的作用,基于此种要求,开发高离子导通率、低内阻隔膜就显得非常必要。当前的动力电池,采用的锂电池隔膜种类为PE、PP、PP/PE/PP复合隔膜以及涂覆隔膜,无法满足应用在大倍率和循环性能、安全性能要求高的动力电池上。
发明内容
本申请的目的是为了解决目前的隔膜离子导通率低、内阻高的问题,提供一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池,本申请采用粘接剂配合适当的涂覆工艺,制备的锂离子电池隔膜具有较高的离子导通性。这种粘接剂不仅会在无机涂层表面起到无机颗粒间以及无机颗粒和基材隔膜间的粘接作用,还作为一种辅助的正极材料,提供一个锂离子库,提高电池的充放电比容量、倍率性能及循环寿命。
为实现上述目的,本申请采取的技术方案如下:
一种高离子导通性电池隔膜的制备方法,所述方法具体如下:
基于浆液的总质量,先将无机陶瓷颗粒、分散剂和水按照25wt.%~35wt.%:2wt.%~4wt.%:60wt.%~70wt.%的质量比混合均匀,再加入0.5wt.%~6wt.%的粘接剂混合均匀,加入0.5wt.%~6wt.%的第二粘接剂、0.01wt.%~1.00wt.%润湿剂混合均匀,得到所述浆料,通过隔膜涂覆机将制备好的浆料均匀涂覆在聚烯烃基材表面即可。
进一步地,所述聚烯烃基材为PE、PP或PP/PE/PP。
进一步地,所述粘结剂为乙酸纤维素锂、乙酸丁酸纤维素锂、乙酸丙酸纤维素锂、氰基乙基支链淀粉锂、氰基乙基聚乙烯醇锂、氰基乙基纤维素锂、氰基乙基蔗糖锂、羧甲基纤维素锂中的一种或几种的混合物。
进一步地,所述第二粘接剂为聚乙烯醇、聚氧化乙烯、丙烯酸类水溶性胶、丁苯胶乳中的一种或几种的混合物。
进一步地,所述无机陶瓷颗粒为BaTiO 3、二氧化铪、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、勃姆石、TiO 2、SiC中的一种或几种的混合物。
一种高离子导通性电池隔膜,按照上述任一所述的制备方法得到。
一种锂离子电池,包括上述高离子导通性电池隔膜、正极、负极、电解液。
本申请相对于现有技术的有益效果为:
(1)本申请的隔膜,具有离子导电性高,能够实现锂离子电池的大倍率充放电性能。
(2)本申请的隔膜,可以作为一种辅助的正极材料,提供一个锂离子库,提高锂离子电池的充放电比容量及倍率性能。
(3)采用本申请的隔膜的锂离子电池,具有足够的锂离子,能够保持锂离子电池长期优异的功率性能、循环性能。
附图说明
图1为隔膜的微观结构示意图;
图2为实施例1-3和对比例1-2的锂离子电池的倍率性能对比图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图和实施例对本申请的技术方案作进一步的说明,但并不局限于此,凡是对本申请技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的保护范围中。
具体实施方式一:本实施方式记载的是一种高离子导通性电池隔膜的制备方法,所述方法具体如下:
基于浆液的总质量,先将无机陶瓷颗粒、分散剂和水按照25wt.%~35wt.%:2wt.%~4wt.%:60wt.%~70wt.%的质量比混合均匀,再加入0.5wt.%~6wt.%的粘接剂混合均匀,加入0.5wt.%~6wt.%的第二粘接剂、0.01wt.%~1.00wt.%润湿剂混合均匀,得到浆料,通过隔膜涂覆机将制备好 的浆料均匀涂覆在聚烯烃基材表面即可。本申请制备的高离子导通性电池隔膜的离子导通率≥10 -3Scm -1。图1为隔膜的微观结构示意图,如图1所示,本申请制备的高离子导通性电池隔膜,粘结剂均匀的分布在基材层表面的无机颗粒(填充颗粒)之间。
具体实施方式二:具体实施方式一所述的一种高离子导通性电池隔膜的制备方法,所述的聚烯烃基材为PE、PP或PP/PE/PP。所述的PP/PE/PP为三层隔膜。
具体实施方式三:具体实施方式一所述的一种高离子导通性电池隔膜的制备方法,所述的粘结剂为乙酸纤维素锂、乙酸丁酸纤维素锂、乙酸丙酸纤维素锂、氰基乙基支链淀粉锂、氰基乙基聚乙烯醇锂、氰基乙基纤维素锂、氰基乙基蔗糖锂、羧甲基纤维素锂中的一种或几种的混合物。
具体实施方式四:具体实施方式一所述的一种高离子导通性电池隔膜的制备方法,所述的第二粘接剂为聚乙烯醇、聚氧化乙烯、丙烯酸类水溶性胶、丁苯胶乳中的一种或几种的混合物。
具体实施方式五:具体实施方式一所述的一种高离子导通性电池隔膜的制备方法,所述的无机陶瓷颗粒为BaTiO 3、二氧化铪(HfO 2)、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、勃姆石、TiO 2、SiC中的一种或几种的混合物。
具体实施方式六:一种含有具体实施方式一至五任一具体实施方式制备的高离子导通性电池隔膜。
具体实施方式七:一种锂离子电池,包括具体实施方式六的高离子导通性电池隔膜、正极、负极、电解液。
对比例1
正极片的制备:将钴酸锂、导电碳、粘结剂聚偏氟乙烯按质量比97:1.5:1.5加入氮甲基吡咯烷酮(NMP)中混合均匀制成正极浆料,然后经涂布、压实、分条,制成正极片。
负极片的制备:将石墨、导电碳、增稠剂羧甲基纤维素钠、粘结剂丁苯橡胶按质量比98:0.3:0.5:1.2加入去离子水中混合均匀制成负极浆料,然后经涂布、压实、分条制成负极片。
隔离膜:选用12μm厚的PE隔膜;
非水电解液的制备:将LiPF 6与碳酸乙烯酯(EC)及碳酸二乙酯(DEC)配置成LiPF 6浓度为1.0mol/L的溶液(其中,EC和DEC的质量比为7:3),得到非水电解液。
电芯成型:将上述正极片、隔离膜、负极片卷绕成电芯,然后将该电芯置于铝塑包装袋中,烘烤后注入上述非水电解液,经封装、化成等工序,制成电池。
对比例2
正极片、负极片、非水电解液、电芯成型等过程与对比例1相同,但隔膜采用如下方法制备:
(1)选用12μm厚的PE隔膜作为基体材料;
(2)基于浆液的总质量,将氧化铝、水、分散剂按照31:65:4的质量比预混合均匀;再加入2%的羧甲基纤维素钠进行搅拌混合;混合完毕均匀加入2%丙烯酸甲酯、0.05%PVP混合好,得到浆液;通过隔膜涂覆机将制备好的浆料均匀涂覆在PE基体材料表面,经过40℃/45℃/45℃三段式烘箱烘烤30s去除涂层中的水分,最后收卷并分切成特定幅宽隔膜。
实施例1
正极片、负极片、非水电解液、电芯成型等过程与对比例1相同,但隔膜采用如下方法制备:
(1)选用12μm厚的PE隔膜作为基体材料;
(2)基于浆液的总质量,将氧化铝、水、分散剂按照31:65:4的质量比预混合均匀;再加入2%的羧甲基纤维素锂进行搅拌混合;混合完毕均匀加入2%丙烯酸甲酯、0.05%PVP混合好,得到浆液;通过隔膜涂覆机将制备好的浆料均匀涂覆在PE基体材料表面,经过40℃/45℃/45℃三段式烘箱烘烤30s去除涂层中的水分,最后收卷并分切成特定幅宽隔膜。
实施例2
正极片、负极片、非水电解液、电芯成型等过程与对比例1相同,但隔膜采用如下方法制备:
(1)选用12μm厚的PE隔膜作为基体材料;
(2)基于浆液的总质量,将氧化铝、水、分散剂按照31:65:4的质量比预混合均匀;再加入1.5%的羧甲基纤维素锂进行搅拌混合;混合完毕均 匀加入2%丙烯酸甲酯、0.05%PVP混合好,得到浆液;通过隔膜涂覆机将制备好的浆料均匀涂覆在聚烯烃基材表面,经过40℃/45℃/45℃三段式烘箱烘烤30s去除涂层中的水分,最后收卷并分切成特定幅宽隔膜。
实施例3
正极片、负极片、非水电解液、电芯成型等过程与对比例1相同,但隔膜采用如下方法制备:
(1)选用12μm厚的PE隔膜作为基体材料;
(2)基于浆液的总质量,将氧化铝、水、分散剂按照31:65:4的质量比预混合均匀;再加入1%的羧甲基纤维素锂进行搅拌混合;混合完毕均匀加入2%丙烯酸甲酯、0.05%PVP混合好,得到浆液;通过隔膜涂覆机将制备好的浆料均匀涂覆在PE基体材料表面,经过40℃/45℃/45℃三段式烘箱烘烤30s去除涂层中的水分,最后收卷并分切成特定幅宽隔膜。
对对比例1-2以及实施例1-3中的隔膜进行厚度检测以及离子到通率检测,对对比例1-2以及实施例1-3中的锂离子电池进行倍率性能、常温循环性能以及炉温性能检测,结果见表1以及图2。
表1
Figure PCTCN2019120258-appb-000001
图2为实施例1-3和对比例1-2的锂离子电池的倍率性能对比图,从图2和表1中可以看出,添加本申请所述的粘接剂,隔膜的离子导通性有显著的提高、使用这种隔膜的电池的倍率性能和循环性能有显著的提高;此外随着添加剂含量的增加,隔膜的离子导通率显著呈现正相关性,使用这种 隔膜的电池的倍率性能和循环性能同样呈现正相关性。
需要说明的是,根据上述说明书的揭示和教导,本申请所属领域的技术人员还可以对上述实施方式进行变更和修改。例如,所述的粘接剂还可以是其他末端带有锂离子的羧甲基纤维素同系物及含有该结构的高分子聚合物。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些等同修改和变更也应当落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (7)

  1. 一种高离子导通性电池隔膜的制备方法,其中,所述方法包括:
    基于浆液的总质量,先将无机陶瓷颗粒、分散剂和水按照25wt.%~35wt.%:2wt.%~4wt.%:60wt.%~70wt.%的质量比混合均匀,再加入0.5wt.%~6wt.%的粘接剂混合均匀,加入0.5wt.%~6wt.%的第二粘接剂、0.01wt.%~1.00wt.%润湿剂混合均匀,得到所述浆料,通过隔膜涂覆机将制备好的浆料均匀涂覆在聚烯烃基材表面即可。
  2. 根据权利要求1所述的高离子导通性电池隔膜的制备方法,其中,所述聚烯烃基材为PE、PP或PP/PE/PP。
  3. 根据权利要求1所述的高离子导通性电池隔膜的制备方法,其中,所述粘结剂为乙酸纤维素锂、乙酸丁酸纤维素锂、乙酸丙酸纤维素锂、氰基乙基支链淀粉锂、氰基乙基聚乙烯醇锂、氰基乙基纤维素锂、氰基乙基蔗糖锂、羧甲基纤维素锂中的一种或几种的混合物。
  4. 根据权利要求1所述的高离子导通性电池隔膜的制备方法,其中,所述第二粘接剂为聚乙烯醇、聚氧化乙烯、丙烯酸类水溶性胶、丁苯胶乳中的一种或几种的混合物。
  5. 根据权利要求1所述的高离子导通性电池隔膜的制备方法,其中,所述无机陶瓷颗粒为BaTiO 3、二氧化铪、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、勃姆石、TiO 2、SiC中的一种或几种的混合物。
  6. 一种高离子导通性电池隔膜,其中,按照权利要求1~5任一项所述的制备方法得到。
  7. 一种锂离子电池,其中,包括权利要求6所述的高离子导通性电池隔膜、正极、负极、电解液。
PCT/CN2019/120258 2018-12-24 2019-11-22 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池 WO2020134763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811584335.7A CN109616604A (zh) 2018-12-24 2018-12-24 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
CN201811584335.7 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134763A1 true WO2020134763A1 (zh) 2020-07-02

Family

ID=66010527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120258 WO2020134763A1 (zh) 2018-12-24 2019-11-22 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池

Country Status (2)

Country Link
CN (1) CN109616604A (zh)
WO (1) WO2020134763A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616604A (zh) * 2018-12-24 2019-04-12 珠海光宇电池有限公司 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
CN111029514B (zh) * 2019-11-14 2021-09-28 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的高电压电池
CN112226182B (zh) * 2020-08-24 2023-02-10 湖北亿纬动力有限公司 水性粘结剂、制备方法、涂胶隔膜、制备方法及锂离子二次电池
CN114361714A (zh) * 2021-12-06 2022-04-15 惠州市旭然新能源有限公司 一种涂覆浆料、其制备方法和应用涂覆浆料制成的复合多孔性隔膜、锂离子电池
CN114335897A (zh) * 2021-12-30 2022-04-12 珠海冠宇电池股份有限公司 一种隔膜和包括该隔膜的锂离子电池
WO2023205967A1 (zh) * 2022-04-24 2023-11-02 宁德新能源科技有限公司 隔膜及包含其的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336961A (zh) * 2015-11-30 2016-02-17 四川北方硝化棉股份有限公司 一种锂电池阳极及其制备方法
CN108933219A (zh) * 2018-09-29 2018-12-04 杨晓丽 一种锂电池隔膜的制备方法
CN109616604A (zh) * 2018-12-24 2019-04-12 珠海光宇电池有限公司 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508976B2 (en) * 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
CN105932206B (zh) * 2016-07-13 2020-08-28 洛阳力容新能源科技有限公司 补锂复合隔膜、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336961A (zh) * 2015-11-30 2016-02-17 四川北方硝化棉股份有限公司 一种锂电池阳极及其制备方法
CN108933219A (zh) * 2018-09-29 2018-12-04 杨晓丽 一种锂电池隔膜的制备方法
CN109616604A (zh) * 2018-12-24 2019-04-12 珠海光宇电池有限公司 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池

Also Published As

Publication number Publication date
CN109616604A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2020134763A1 (zh) 一种高离子导通性电池隔膜的制备方法及含有该隔膜的锂离子电池
CN108963327B (zh) 一种无机填料复合peo固体电解质材料及制备方法和全固态电池
WO2020181681A1 (zh) 一种混合固液电解质锂蓄电池
CN110071293B (zh) 电芯和电池、保液涂料和电池极片及其制备方法
CN108232111A (zh) 一种固态电池用的复合正极极片及其制备方法
JP2020053172A (ja) リチウム二次電池
KR20200029961A (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102373313B1 (ko) 무기 전해액을 포함하는 리튬 이차전지
US20210249650A1 (en) Negative electrode sheet and secondary battery
WO2023155604A1 (zh) 复合隔膜及电化学装置
JP2023531545A (ja) 負極シート及びリチウムイオン電池
CN110247009A (zh) 一种防过充隔膜及其制备方法和锂离子电池
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
US20220037636A1 (en) Lithium-manganese dioxide primary battary and preparation thereof
CN109904374B (zh) 一种防过充隔膜及其制备方法和应用
CN109599524B (zh) 离子选择性复合隔膜及其制备方法和应用
CN110190335A (zh) 一种固态电解质界面修饰方法及其应用
KR20230029832A (ko) 전극시트 및 배터리
WO2023093506A1 (zh) 极片及电化学装置
CN115395091A (zh) 一种高性能复合固态电解质膜片及其制备方法和应用
WO2011070748A1 (ja) 非水電解質二次電池及びその充電方法
CN113394516A (zh) 一种锂离子电池隔膜及其制备方法以及锂离子电池
CN111900315A (zh) 具有双面涂覆材料涂层的陶瓷隔膜及其制备方法和应用
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
CN110364681A (zh) 一种三重保护的高安全性的锂离子电池正极片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903214

Country of ref document: EP

Kind code of ref document: A1