WO2020195092A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2020195092A1
WO2020195092A1 PCT/JP2020/002666 JP2020002666W WO2020195092A1 WO 2020195092 A1 WO2020195092 A1 WO 2020195092A1 JP 2020002666 W JP2020002666 W JP 2020002666W WO 2020195092 A1 WO2020195092 A1 WO 2020195092A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
coupling agent
silane coupling
film
Prior art date
Application number
PCT/JP2020/002666
Other languages
English (en)
French (fr)
Inventor
健二 松原
飯田 一博
正信 竹内
福井 厚史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080024859.XA priority Critical patent/CN113632287A/zh
Priority to JP2021508138A priority patent/JP7357235B2/ja
Priority to US17/442,031 priority patent/US20220173434A1/en
Publication of WO2020195092A1 publication Critical patent/WO2020195092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a secondary battery.
  • a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolytic solution and charging / discharging by moving lithium ions between the positive electrode and the negative electrode is widely used. ..
  • an organic solvent-based electrolytic solution is used in order to achieve a high energy density.
  • organic solvents are generally flammable, and ensuring safety is an important issue.
  • Another problem is that the ionic conductivity of the organic solvent is lower than that of the aqueous solution, and the rapid charge / discharge characteristics are not sufficient.
  • Patent Documents 1 and 2 disclose that an aqueous solution containing a high concentration alkaline salt is used as an aqueous electrolytic solution of a secondary battery.
  • Patent Document 3 discloses that an electrolytic solution obtained by adding an organic carbonate to an aqueous solution containing a high-concentration alkaline salt is used.
  • the purpose of the present disclosure is to suppress self-discharge in a secondary battery using an aqueous electrolytic solution.
  • the secondary battery according to the first aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution, the electrolytic solution contains water, a lithium salt, and an additive, and the additive is an alkaline earth metal. It contains at least one of a salt, a dicarboxylic acid, a carboxylic acid anhydride, and an organic carbonate, the negative electrode contains a negative electrode active material, and a silane coupling agent adheres to the surface of the negative electrode active material. There is.
  • the secondary battery according to the second aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution
  • the electrolytic solution contains water, a lithium salt, and an additive
  • the additive is alkaline soil. It contains at least one of a metal salt, a dicarboxylic acid, a carboxylic acid anhydride, and an organic carbonate
  • the negative electrode contains a negative electrode active material
  • the surface of the negative electrode active material is a reduction of a silane coupling agent.
  • a film is formed by decomposition.
  • the reductive decomposition of an aqueous electrolytic solution occurs from about 2 V on the Li basis to a potential lower than the potential, and also of a negative electrode active material such as a carbon material.
  • the charge / discharge reaction occurs at a potential even lower than the reduction / decomposition potential of water. Therefore, in the charging process, water is reduced and decomposed before the charging reaction of the negative electrode active material, and the charging current is consumed in the reaction, so that the progress of the charging reaction of the negative electrode active material is hindered.
  • the present inventors suppressed the reductive decomposition of water by combining a silane coupling agent and a specific additive (alkaline earth metal salt, dicarboxylic acid, carboxylic acid anhydride, organic carbonate). It was found that self-discharge could be suppressed, and a secondary battery having the following aspects was conceived.
  • the secondary battery according to the first aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution, the electrolytic solution contains water, a lithium salt, and an additive, and the additive is an alkaline earth metal. It contains at least one of a salt, a dicarboxylic acid, a carboxylic acid anhydride, and an organic carbonate, the negative electrode contains a negative electrode active material, and a silane coupling agent adheres to the surface of the negative electrode active material. There is. According to the secondary battery according to the first aspect of the present disclosure, the reductive decomposition of water in the charging process is suppressed, the charging reaction of the negative electrode active material proceeds, and the reaction between the negative electrode active material and the electrolytic solution is suppressed. Therefore, the self-discharge of the lithium ions stored in the negative electrode active material from the negative electrode active material is suppressed.
  • the secondary battery according to the second aspect of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution, the electrolytic solution contains water, a lithium salt, and an additive, and the additive is an alkaline earth metal. It contains at least one of a salt, a dicarboxylic acid, a carboxylic acid anhydride, and an organic carbonate, the negative electrode contains a negative electrode active material, and the surface of the negative electrode active material is subjected to reduction decomposition of a silane coupling agent. A film is formed.
  • the secondary battery according to the second aspect of the present disclosure is the secondary battery of the aspect after charging or charging / discharging the secondary battery according to the first aspect of the present disclosure.
  • the reductive decomposition of water in the charging process is suppressed, the charging reaction of the negative electrode active material proceeds, and the reaction between the negative electrode active material and the electrolytic solution is suppressed. Therefore, the self-discharge of the lithium ions stored in the negative electrode active material from the negative electrode active material is suppressed.
  • the mechanism of the effect according to the first aspect and the second aspect of the present disclosure differs depending on the type of additive to be combined with the silane coupling agent, but the following can be considered for each type of additive.
  • the mechanism is a combination of the effects of the additives.
  • the type of additive referred to here is an alkaline earth metal salt, a dicarboxylic acid, a carboxylic acid anhydride, or an organic carbonate, that is, a classification of additives.
  • Alkaline earth metal salt When combining a silane coupling agent and an alkaline earth metal salt, the reduction decomposition of the alkaline earth metal salt is performed in parallel with the reduction decomposition of the silane coupling agent at the time of initial charging, although it depends on the type of the silane coupling agent used.
  • a composite film of a film derived from a silane coupling agent and a film derived from an alkaline earth metal salt is formed.
  • the film component derived from the alkaline earth metal salt include fluoride containing at least one of CaF 2 , MgF 2 , SrF 2 and BaF 2
  • the film component derived from the silane coupling agent is mainly Examples include LiF and SiOx.
  • the robustness of the silane coupling agent-derived film to the aqueous electrolyte is improved by combining with an alkaline earth metal salt. .. Further, in the presence of an alkaline earth metal salt that is reduced and decomposed at a relatively high potential, the electrochemical reduction reaction of dissolved CO 2 and dissolved O 2 dissolved in the aqueous electrolytic solution can be greatly suppressed, and the solubility can be increased. The formation of Li 2 CO 3 and Li 2 O, which are relatively high film components, can be significantly suppressed.
  • the ratio of components having low solubility in water (for example, fluoride) in the composite film can be increased, and the robustness to an aqueous electrolytic solution can be improved.
  • the reduction reaction of the silane coupling agent is suppressed, and the silane coupling agent is unreacted or has a low degree of reduction.
  • the silane coupling agent will remain.
  • the water-repellent effect of the remaining silane coupling agent makes it possible to suppress the permeation of water into the surface of the negative electrode active material.
  • the ratio of components having low solubility in water can be increased in the film, and the robustness of the film to the aqueous electrolytic solution can be improved. It is possible to form an electrochemically stable film. Therefore, the reaction between the negative electrode active material and the electrolytic solution is suppressed, and the self-discharge of the lithium ions occluded in the negative electrode active material from the negative electrode active material can be suppressed. Since the composite film of the film derived from the silane coupling agent and the film derived from the alkaline earth metal salt has lithium ion conductivity, the negative electrode active material occludes lithium ions through the film during the charging process. It is possible.
  • the silane coupling agent having a low degree of reduction in the film is a fluoroalkane group (F1s, 688.8eV (XPS)), a C—Si—O group (Si2p, 102.6eV (XPS)), an O—Si—C group. (Si2p, 103.5eV (XPS)) etc. can be observed.
  • ⁇ Dicarboxylic acid, carboxylic acid anhydride In the case of a combination of a silane coupling agent and a dicarboxylic acid or a carboxylic acid anhydride, the dicarboxylic acid and the carboxylic acid anhydride are redoxically decomposed at a relatively high potential, so that the dissolved CO 2 dissolved in the aqueous electrolytic solution is dissolved.
  • the electrochemical reduction reaction of O 2 can be greatly suppressed, and the formation of Li 2 CO 3 and Li 2 O, which are film components having relatively high solubility, can be significantly suppressed.
  • the reduction reaction of the silane coupling agent is suppressed, and the silane coupling agent is unreacted or reduced in the film.
  • a low degree of silane coupling agent will remain.
  • the water-repellent effect of the remaining silane coupling agent makes it possible to suppress the permeation of water into the surface of the negative electrode active material.
  • the ratio of components having low solubility in water can be increased in the film, and water on the surface of the negative electrode active material can be increased.
  • the robustness of the film to the aqueous electrolytic solution can be improved, and an electrochemically stable film can be formed. Therefore, the reaction between the negative electrode active material and the electrolytic solution is suppressed, and the self-discharge of the lithium ions occluded in the negative electrode active material from the negative electrode active material is suppressed.
  • the negative electrode active material is lithium ion through the film during the charging process. It is possible to occlude.
  • Organic carbonates participate in the solvation structure in addition to water and the lithium salt, so that the aqueous electrolysis
  • the activity of water in the liquid can be reduced, and the electrochemical stability of water in the electrolytic solution can be improved.
  • the presence of the organic carbonate can greatly suppress the electrochemical reduction reaction of the dissolved CO 2 and the dissolved O 2 dissolved in the aqueous electrolytic solution, and Li 2 CO, which is a film component having a relatively high solubility, can be greatly suppressed. 3.
  • the formation of Li 2 O can be significantly suppressed.
  • the molecular weight is relatively large and the film becomes dense after reduction and decomposition.
  • the problematic defects of the silane coupling agent-derived film can be compensated for by the organic carbonate-derived film, and the denseness of the silane coupling agent-derived film can be improved.
  • the robustness of the film to the aqueous electrolytic solution can be improved, and an electrochemically stable film can be formed. Therefore, the reaction between the negative electrode active material and the electrolytic solution is suppressed, and the self-discharge of the lithium ions occluded in the negative electrode active material from the negative electrode active material is suppressed. Since the composite film of the film derived from the silane coupling agent and the film derived from the organic carbonate has lithium ion conductivity, the negative electrode active material can occlude lithium ions through the film during the charging process. Is. Further, in the discharge process, lithium ions occluded in the negative electrode active material can be released.
  • FIG. 1 is a schematic cross-sectional view showing an example of the secondary battery of the present embodiment.
  • the secondary battery 20 shown in FIG. 1 has a cup-shaped battery case 21, a positive electrode 22 provided on the upper portion of the battery case 21, and a negative electrode 23 provided at positions facing the positive electrode 22 via a separator 24.
  • a gasket 25 formed of an insulating material, and a sealing plate 26 arranged in the opening of the battery case 21 and sealing the battery case 21 via the gasket 25 are provided.
  • the space between the positive electrode 22 and the negative electrode 23 is filled with the electrolytic solution 27.
  • the electrolytic solution 27, the positive electrode 22, the negative electrode 23, and the separator 24 will be described in detail.
  • the electrolytic solution 27 contains water, a lithium salt and an additive (hereinafter, may be referred to as an aqueous electrolytic solution). Since the water-based electrolyte contains non-flammable water, the safety of the secondary battery using the water-based electrolyte can be improved. From this viewpoint, the content of water in the electrolytic solution 27 is preferably 6% by mass or more, more preferably 8% by mass to 50% by mass, based on the total amount of the electrolytic solution 27. More preferably, it is in the range of 5.5% by mass to 21% by mass.
  • the electrolytic solution 27 may contain a solvent other than water.
  • Examples of the solvent other than water include ethers, nitriles, alcohols, ketones, amines, amides, sulfur compounds, hydrocarbons and the like.
  • the content of the solvent other than water is preferably 50% by mass or less, more preferably 25% by mass or less, based on the total amount of the electrolytic solution 27.
  • the lithium salt can be used as long as it is a compound that dissolves and dissociates in a solvent containing water and allows lithium ions to be present in the aqueous electrolytic solution. It is preferable that the lithium salt does not cause deterioration of battery characteristics due to the reaction with the materials constituting the positive electrode and the negative electrode.
  • Examples of such a lithium salt include a salt with an inorganic acid such as perchloric acid, sulfuric acid, and nitric acid, a salt with a halide ion such as a chloride ion and a bromide ion, and an organic anion containing a carbon atom in the structure. Salt and the like.
  • organic anion constituting the lithium salt examples include anions represented by the following general formulas (i) to (vi).
  • Fluorine is preferable as the halogen of the halogen-substituted alkyl group.
  • the number of halogen substitutions in the halogen-substituted alkyl group is less than or equal to the number of hydrogens in the original alkyl group.
  • R 1 to R 9 is, for example, a group represented by the following general formula (vii).
  • organic anion represented by the above general formula (i) include, for example, bis (trifluoromethanesulfonyl) imide (TFSI; [N (CF 3 SO 2 ) 2 ] - ), bis (perfluoroethanesulfonyl).
  • organic anion represented by the above general formula (iv) include tris (trifluoromethanesulfonyl) carbonic acid ([(CF 3 SO 2 ) 3 C] - ) and tris (perfluoroethanesulfonyl) carbon. Acids ([(C 2 F 5 SO 2 ) 3 C] - ) and the like can be mentioned.
  • organic anion represented by the above general formula (v) include, for example, sulfonylbis (trifluoromethanesulfonyl) imide ([(CF 3 SO 2 ) N (SO 2 ) N (CF 3 SO 2 )] 2 -), sulfonylbis (perfluoroethanesulfonyl) imide ([(C 2 F 5 SO 2) N (SO 2) N (C 2 F 5 SO 2)] 2-), sulfonyl (perfluoro ethanesulfonyl) (trifluoperazine Lomethanesulfonyl) imide ([(C 2 F 5 SO 2 ) N (SO 2 ) N (CF 3 SO 2 )] 2- ) and the like can be mentioned.
  • organic anion represented by the above general formula (vi) include, for example, carbonylbis (trifluoromethanesulfonyl) imide ([(CF 3 SO 2 ) N (CO) N (CF 3 SO 2 )] 2-. ), carbonyl bis (perfluoroethanesulfonyl) imide ([(C2F5SO2) N (CO ) N (C 2 F 5 SO 2)] 2-), carbonyl (perfluoro ethanesulfonyl) (trifluoromethanesulfonyl) imide ([( C 2 F 5 SO 2 ) N (CO) N (CF 3 SO 2 )] 2- ) and the like.
  • Examples of the organic anion other than the general formulas (i) to (vi) include bis (1,2-benzenegeolate (2-) -O, O') boric acid and bis (2,3-naphthalenedioleate).
  • the anion constituting the lithium salt preferably contains a salt having an imide anion in that the self-discharge of the battery can be effectively suppressed.
  • Suitable specific examples of the imide anion include, for example, the imide anion exemplified as the organic anion represented by the above general formula (i), as well as the bis (fluorosulfonyl) imide (FSI; [N (FSO 2 ) 2 ] -. ), (Fluorosulfonyl) (trifluoromethanesulfonyl) imide (FTI; [N (FSO 2 ) (CF 3 SO 2 )] - ) and the like.
  • the lithium salt having a lithium ion and an imide anion can effectively suppress the self-discharge of the battery.
  • lithium bis (trifluoromethanesulfonyl) imide LiTFSI
  • lithium bis (perfluoroethanesulfonyl) imide LiBETI
  • lithium (perfluoroethanesulfonyl) (trifluoromethanesulfonyl) imide lithium bis (fluorosulfonyl) imide (LiFSI)
  • LiFTI lithium (fluorosulfonyl) (trifluoromethanesulfonyl) imide
  • These may be used alone or in combination of two or more.
  • lithium salts include CF 3 SO 3 Li, C 2 F 5 SO 3 Li, CF 3 CO 2 Li, C 2 F 5 CO 2 Li, (CF 3 SO 2 ) 3 CLi, (C 2).
  • the additive contains at least one of an alkaline earth metal salt, a dicarboxylic acid, a carboxylic acid anhydride, and an organic carbonate.
  • the alkaline earth metal salt can be used as long as it is a compound that dissolves and dissociates in a solvent containing water and allows the alkaline earth metal cation to be present in the aqueous electrolytic solution. It is preferable that the alkaline earth metal salt does not cause deterioration of the battery characteristics due to the reaction with the materials constituting the positive electrode and the negative electrode.
  • Examples of the alkaline earth metal salt include salts of alkaline earth metal and anions.
  • alkaline earth metals include calcium, magnesium, strontium, and barium. Of these, calcium, magnesium and strontium are preferred, with calcium being the most preferred.
  • solubility of fluoride (CaF 2 , MgF 2 , SrF 2 , BaF 2 ), which is a main film component derived from an alkaline earth metal salt formed during the first charge, in water is CaF 2 , MgF 2 , SrF. This is because it is low at 2 and lowest at CaF 2 .
  • the low solubility in water indicates that the robustness of the film with respect to the aqueous electrolytic solution can be improved and an electrochemically stable film can be formed. Since an electrochemically stable film can be formed, the reaction between the negative electrode active material and the electrolytic solution can be suppressed, and the lithium ions occluded in the negative electrode active material are naturally released from the negative electrode active material.
  • alkaline earth metal salt those that reduce and decompose at a potential noble than the reduction and decomposition potential of water are more preferable.
  • the alkaline earth metal salt may be used alone or in combination of two or more.
  • the anion component include anions represented by the following general formulas (viii) to (xi).
  • R 10 SO 2) R 11 SO 2) N - (viii)
  • R 10 and R 11 are independently selected from an alkyl group or a halogen-substituted alkyl group. R 10 and R 11 may be bonded to each other to form a ring.
  • R 12 SO 3 - (ix) R 12 is selected from alkyl groups or halogen-substituted alkyl groups.
  • R 13 CO 2 - (x) R 13 is selected from alkyl groups or halogen-substituted alkyl groups.
  • R 14 SO 2) 3 C - (xi) R 14 is selected from alkyl groups or halogen-substituted alkyl groups.
  • the number of carbon atoms of the alkyl group or halogen-substituted alkyl group is preferably 1 to 6, more preferably 1 to 3, and even more preferably 1 to 2.
  • Fluorine is preferable as the halogen of the halogen-substituted alkyl group.
  • the number of halogen substitutions in the halogen-substituted alkyl group is less than or equal to the number of hydrogens in the original alkyl group.
  • R 10 to R 14 is, for example, a group represented by the following general formula (xii).
  • organic anion represented by the above general formula (viii) include, for example, bis (trifluoromethanesulfonyl) imide (TFSI; [N (CF 3 SO 2 ) 2 ] - ), bis (perfluoroethanesulfonyl).
  • organic anion represented by the above general formula (xi) include tris (trifluoromethanesulfonyl) carbonic acid ([(CF 3 SO 2 ) 3 C] - ) and tris (perfluoroethanesulfonyl) carbon.
  • Examples of the organic anion other than the above general formula (viii) to (xi) include bis (1,2-benzenegeiolate (2-) -O, O') boric acid and bis (2,3-naphthalenedioleate).
  • the anion constituting the alkaline earth metal salt preferably contains a salt having an imide anion in that the self-discharge of the battery can be effectively suppressed.
  • the imide anion include, for example, the imide anion exemplified as the organic anion represented by the above general formula (viii), bis (fluorosulfonyl) imide (FSI; [N (FSO 2 ) 2 ] -. ), (Fluorosulfonyl) (trifluoromethanesulfonyl) imide (FTI; [N (FSO 2 ) (CF 3 SO 2 )] - ) and the like.
  • the alkaline earth metal salt having an alkaline earth metal and an imide anion can effectively suppress the self-discharge of the battery, and thus calcium bis (trifluoromethanesulfonyl) imide (CaTFSI) and calcium bis (perfluoroethane).
  • CaTFSI calcium bis (trifluoromethanesulfonyl) imide
  • CaTFSI calcium bis (perfluoroethane)
  • CaBETI calcium (perfluoroethanesulfonyl) (trifluoromethanesulfonyl) imide
  • CaFSI calcium bis (fluorosulfonyl) imide
  • CaFTI calcium (fluorosulfonyl) (trifluoromethanesulfonyl) imide
  • MgTFSI magnesium bis (perfluoroethanesulfonyl) imide
  • MgBETI magnesium bis (perfluoroethanesulfonyl) imide
  • MgFSI magnesium bis (fluoro) Sulfonyl) (trifluoromethanesulfonyl) imide
  • strontiumbis trifluoromethane
  • calcium salts are particularly preferable. This is because CaF 2 , which is a main film component formed by reduction decomposition, has the lowest solubility in water, so that the electrochemical stability of the film in an aqueous electrolytic solution can be improved.
  • the alkaline earth metal salt those that reduce and decompose at a potential noble than the reduction and decomposition potential of water are more preferable.
  • alkaline earth metal salts include Ca [CF 3 SO 3 ] 2 , Ca [C 2 F 5 SO 3 ] 2 , Ca [CF 3 CO 2 ] 2 , and Ca [C 2 F 5 CO 2].
  • ] 2 Ca [(CF 3 SO 2 ) 3 C] 2 , Ca [(C 2 F 5 SO 2 ) 3 C] 2 , Ca [(C 2 F 5 SO 2 ) 2 (CF 3 SO 2 ) C] 2 , Ca [(C 2 F 5 SO 2 ) (CF 3 SO 2 ) 2 C] 2 , bis (1,2-benzenegeolate (2-) -O, O') calcium borate, bis (2, 3-Naphthalenedioleate (2-) -O, O') Calcium Borate, Bis (2,2'-biphenyldiorate (2-) -O, O') Calcium Borate, Bis (5-Fluoro-2) -Olate-1-benzenesulfonic acid-O, O') Calcium borate,
  • CaF 2 which is a main film component formed by reduction decomposition, has the lowest solubility in water and can improve the electrochemical stability of the film in an aqueous electrolytic solution.
  • alkaline earth metal salt those that are reductively decomposed at a potential noble than the reductive decomposition potential of water are more preferable.
  • calcium bis (trifluoromethanesulfonyl) imide, magnesium bis (trifluoromethanesulfonyl) imide, strontium bis (trifluoromethanesulfonyl) imide and the like are preferable in that the self-discharge of the battery can be effectively suppressed.
  • calcium bis (trifluoromethanesulfonyl) imide, which is a calcium salt is most preferable. This is because the solubility of fluoride, which is a film component formed by reduction decomposition, in water is low for CaF 2 , MgF 2 , and SrF 2 , and the lowest for CaF 2 .
  • the reduction decomposition is carried out at a potential noble than the water decomposition potential.
  • the reason why the bis (trifluoromethanesulfonyl) imide anion is preferable is that it is suitable for preparing a high-concentration aqueous electrolytic solution. This is also because it is suitable from the viewpoint of forming fluoride at a potential that is more noble than water decomposition.
  • the alkaline earth metal salt may be, for example, 0.1% by mass or more and 5.0% by mass or less, preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the aqueous electrolytic solution.
  • self-discharge of the battery may be effectively suppressed without impairing the lithium ion conductivity of the aqueous electrolytic solution. If the amount added exceeds 5.0 wt.%, Lithium ion conductivity may decrease. On the other hand, if it is less than 0.1 wt.%, The effect may not be sufficiently obtained.
  • Examples of the dicarboxylic acid include succinic acid, glutaric acid, phthalic acid, maleic acid, citraconic acid, glutaconic acid, itaconic acid, diglycolic acid and the like.
  • Examples of the carboxylic acid anhydride include succinic anhydride, glutaconic anhydride, phthalic anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride and the like.
  • succinic acid, succinic anhydride, maleic acid, maleic anhydride, diglycolic acid, glutaric acid and the like are preferable in that the self-discharge of the battery can be effectively suppressed.
  • succinic acid succinic anhydride
  • maleic acid maleic anhydride
  • diglycolic acid is preferable. This is because, although it depends on the type of the silane coupling agent used, it is preferable from the viewpoint that it is equal to or higher than the reduction decomposition potential of water and can be reduced and decomposed above the reduction decomposition potential region of the silane coupling agent. Since the reductive decomposition of glutaric acid proceeds competitively with the reductive decomposition of water, the effect is reduced.
  • the dicarboxylic acid or carboxylic acid anhydride may be, for example, 0.1% by mass or more and 5.0% by mass or less, preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the aqueous electrolytic solution.
  • the self-discharge characteristics of the battery may be effectively suppressed without impairing the lithium ion conductivity of the aqueous electrolytic solution. If the amount added exceeds 5.0 wt.%, Lithium ion conductivity may decrease. In addition, the component ratio of the silane coupling agent-derived film in the film may decrease, and the film resistance may increase. On the other hand, if it is less than 0.1 wt.%, The effect may not be sufficiently obtained.
  • organic carbonate examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylidene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, fluoroethylene carbonate, fluorodimethyl carbonate and methyl fluoropropionate ( Examples thereof include fluorinated carbonate containing fluorine as a constituent element such as FMP).
  • organic carbonate is preferable in that it suppresses self-discharge of the battery, improves the charge / discharge efficiency of the battery, and the like.
  • organic carbonates exemplified above cyclic carbonate and fluorine are contained as constituent elements. Fluorinated carbonate is preferred.
  • the organic carbonate is preferably reduced and decomposed at a potential lower than the reduction decomposition potential of the silane coupling agent described later in terms of suppressing a decrease in self-discharge of the battery and improving the charge / discharge efficiency of the battery. ..
  • the reductive decomposition potential of the organic carbonate depends on the type of the silane coupling agent, but is preferably 2.2 V or less based on Li.
  • Examples of the organic carbonate that is reduced and decomposed at 2.2 V or less based on Li include dimethyl carbonate, fluoroethylene carbonate and the like.
  • an organic carbonate containing fluorine as a constituent element as an organic carbonate
  • the ratio of a component having low solubility (for example, LiF) to water containing fluorine can be increased, and the robustness to an aqueous electrolytic solution can be further improved.
  • the organic carbonate preferably exists in a molar ratio in the range of 1: 0.01 to 1: 5 with respect to the lithium salt, and exists in a molar ratio in the range of 1: 0.05 to 1: 1. More preferably, water is preferably present in a molar ratio in the range of 1: 0.5 to 1: 4 with respect to the lithium salt, preferably in the range of 1: 1 to 1: 2.5. It is more preferable to be present in a ratio. Within the above range, it may be possible to effectively suppress a decrease in the self-discharge of the battery, or to further improve the charge / discharge efficiency of the battery.
  • the positive electrode 22 includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector a metal foil that is electrochemically and chemically stable in the potential range of the positive electrode, a film in which the metal is arranged on the surface layer, and the like can be used.
  • the form of the positive electrode current collector is not particularly limited, and for example, a perforated body such as a mesh body of the metal, a punching sheet, or an expanded metal may be used.
  • a known metal or the like that can be used in a secondary battery using an aqueous electrolytic solution can be used. Examples of such a metal include stainless steel, Al, aluminum alloy, Ti and the like.
  • the thickness of the positive electrode current collector is preferably, for example, 3 ⁇ m or more and 50 ⁇ m or less from the viewpoint of current collector, mechanical strength, and the like.
  • the positive electrode mixture layer contains a positive electrode active material. Further, the positive electrode mixture layer may contain a binder, a conductive material and the like.
  • the positive electrode active material examples include lithium (Li) and lithium transition metal oxides containing transition metal elements such as cobalt (Co), manganese (Mn) and nickel (Ni).
  • the positive electrode active material also contains lithium containing one or more transition metals such as transition metal sulfide, metal oxide, lithium iron phosphate (LiFePO 4 ) and lithium iron pyrophosphate (Li 2 FeP 2 O 7 ). polyanionic compounds, sulfur compounds (Li 2 S), an oxygen-containing metal salt such as oxygen and lithium oxide and the like.
  • the positive electrode active material preferably contains a lithium-containing transition metal oxide, and preferably contains at least one of Co, Mn, and Ni as the transition metal element.
  • the lithium transition metal oxide may contain additive elements other than Co, Mn and Ni, for example, aluminum (Al), zirconium (Zr), boron (B), magnesium (Mg), scandium (Sc). ), Yttrium (Y), Titanium (Ti), Iron (Fe), Copper (Cu), Zinc (Zn), Chromium (Cr), Lead (Pb), Tin (Sn), Sodium (Na), Potassium (K) ), Yttrium (Ba), strontium (Sr), calcium (Ca), tungsten (W), molybdenum (Mo), niobium (Nb), silicon (Si) and the like.
  • additive elements other than Co, Mn and Ni for example, aluminum (Al), zirconium (Zr), boron (B), magnesium (Mg), scandium (Sc). ), Yttrium (Y), Titanium (Ti), Iron (Fe), Copper (Cu), Zinc (Zn), Chromium (Cr), Lead (Pb
  • lithium transition metal oxide examples include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li. x Ni 1-y M y O z, in Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F ( each formula, M represents, Na, Mg, Sc, It is at least one of Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B, and is 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0. ⁇ z ⁇ 2.3).
  • a known conductive material that enhances the electrical conductivity of the positive electrode mixture layer can be used.
  • carbon materials such as carbon black, acetylene black, ketjen black, graphite, carbon nanofibers, carbon nanotubes, and graphene can be used.
  • the binder a known binder that maintains a good contact state between the positive electrode active material and the conductive material and enhances the binding property of the positive electrode active material to the surface of the positive electrode current collector can be used, for example.
  • Fluorine resin such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide, acrylic resin, polyolefin, carboxymethyl cellulose (CMC) or a salt thereof, styrene-butadiene rubber (SBR), poly Examples thereof include ethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) and the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • PEO ethylene oxide
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, etc. is applied onto the positive electrode current collector, the coating film is dried and rolled, and the positive electrode mixture layer is used as the positive electrode current collector. It can be manufactured by forming it on top.
  • the negative electrode 23 includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.
  • a negative electrode current collector a metal foil that is electrochemically and chemically stable in the potential range of the negative electrode, a film in which the metal is arranged on the surface layer, and the like can be used.
  • the form of the negative electrode current collector is not particularly limited, and for example, a perforated body such as a mesh body of the metal, a punching sheet, or an expanded metal may be used.
  • a known metal or the like that can be used for a secondary battery using an aqueous electrolytic solution can be used.
  • Such a metal examples include Al, Ti, Mg, Zn, Pb, Sn, Zr, In and the like. These may be used alone, may be alloys of two or more, and may be composed of a material containing at least one as a main component. Moreover, when it contains two or more elements, it does not necessarily have to be alloyed.
  • the thickness of the negative electrode current collector is preferably, for example, 3 ⁇ m or more and 50 ⁇ m or less from the viewpoint of current collector, mechanical strength, and the like.
  • the negative electrode mixture layer contains a negative electrode active material.
  • a silane coupling agent which will be described later, is attached to the surface of the negative electrode active material.
  • the negative electrode mixture layer may contain a binder, a conductive material and the like.
  • the conductive material and the binder material the same materials as those on the positive electrode side can be used.
  • the negative electrode active material a known negative electrode active material that can be used in a secondary battery using a conventional non-aqueous electrolyte solution can be used.
  • a negative electrode active material include carbonaceous materials such as natural graphite (graphite), artificial graphite (graphite), and amorphous carbon such as soft carbon and hard carbon.
  • Still other examples include alloys containing lithium elements, metal oxides, metal sulfides, metal compounds such as metal nitrides, silicon and the like.
  • examples of the alloy having a lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • Examples of the metal oxide having a lithium element include lithium titanate (Li 4 Ti 5 O 12 and the like).
  • Examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
  • sulfur-based compounds can also be exemplified.
  • These negative electrode active materials may be used alone or in combination of two or more. According to the secondary battery 20 of the present embodiment, since the reduction reaction of water is suppressed, a battery using an aqueous electrolyte solution for carbon materials, lithium tin alloy materials, lithium silicon alloy materials, etc., which was difficult in the past. It can be applied as a negative electrode active material of. Further, it becomes possible to use a carbon material as a main component.
  • the main component refers to the component having the highest content among the negative electrode active materials.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto the negative electrode current collector, and the coating film is dried and rolled to form a negative electrode mixture layer on the negative electrode current collector.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto the negative electrode current collector, and the coating film is dried and rolled to form a negative electrode mixture layer on the negative electrode current collector.
  • the silane coupling agent adhering to the surface of the negative electrode active material is reduced and decomposed in the initial charging process of the secondary battery. Then, the reducing decomposition of the silane coupling agent forms an electrochemically stable film on the surface of the negative electrode active material. Since the film is an electrochemically stable film, the reduction decomposition of water hardly occurs with the film as an active site. Further, since the film is chemically stable with respect to the aqueous electrolytic solution, erosion by the aqueous electrolytic solution can be suppressed, and contact of the aqueous electrolytic solution with the surface of the negative electrode active material can be suppressed. Since the film derived from the silane coupling agent has lithium ion conductivity, lithium ions are occluded and released to the negative electrode active material through the film during the charging / discharging process.
  • the silane coupling agent preferably contains fluorine as a constituent element in terms of suppressing the reductive decomposition of water, suppressing the self-discharge of the battery, and the like, and reductively decomposes at a potential noble than the reductive decomposition potential of water. Is preferable.
  • the reductive decomposition potential of the silane coupling agent is preferably 2.1 V or more based on the Li standard (vs. Li / Li + ), and is 2.2 V or more, in terms of easily suppressing the reductive decomposition of water. More preferably, it is more preferably 2.4 V or more.
  • the upper limit is not particularly limited, but for example, it is preferably 3 V or less based on Li. This is because a potential is desirable so that the negative electrode current collector does not oxidize and dissolve.
  • the silane coupling agent containing fluorine as a constituent element is preferably fluoroalkylsilane in terms of suppressing the reductive decomposition of water, suppressing the self-discharge of the battery, etc., and has a potential higher than the reductive decomposition potential of water. It is more preferable that the fluoroalkylsilane is reduced and decomposed in. Specifically, it is preferably a fluoroalkylsilane represented by the following formula.
  • Y1 is a fluoroalkyl group having 3 to 10 carbon atoms and 7 to 21 fluorine atoms, which may be linear or branched, and may be an ether bond, an ester bond, a peptide bond, a vinyl bond, or a sulfonamide bond.
  • At least one of hydrogen atoms may be contained
  • Y2 is represented by (CH 2 ) n , n is an integer of 0 to 6, and may be linear or branched, R1, R2 and R3 is independently an alkoxy group, an alkyl group, an amino group, a halogen atom, or a hydrogen atom).
  • the number of carbon atoms and the number of fluorines of Y1 is 5 to 8 and the number of fluorines is high in that the reduction decomposition is carried out at a potential noble than the reduction decomposition potential of water and the reduction decomposition of water is easily suppressed. It is preferably 11 to 17.
  • Examples of the fluoroalkylsilane in which Y1 is a fluoroalkyl group having a peptide bond include N- (3-trimethoxysyllylopyl) perfluorohexanamide.
  • Examples of the fluoroalkylsilane in which Y1 is a fluoroalkyl group having a vinyl bond include hexadecafluorododec-11-en-1-yltrimethoxysilane.
  • Examples of the fluoroalkylsilane in which Y1 is a fluoroalkyl group having a sulfonamide bond include 3-perfluorooctylsulfonyllaminopropyltrietoxysilane.
  • Examples of the fluoroalkylsilane in which Y1 is a fluoroalkyl group having a hydrogen atom include dedecylfluoro-heptyl-propyltimetoxysilane and dedecylfluoro-heptyl-propylmethyldimethylane.
  • fluoroalkylsilane in which Y1 is a branched fluoroalkyl group examples include Triethoxy [5,5,6,6,7,7,7-heptafluoro-4,4-bis (trifluoro-methyl) heptyl] silane. Can be mentioned.
  • fluoroalkylsilane in which Y2 is branched examples include 4-methyl- (perfluorohexylyl) propyltrimethoxysilane.
  • Y1 is more preferably represented by C n F 2n + 1 (5 ⁇ n ⁇ 10) in that the self-discharge of the battery can be effectively suppressed
  • R1, R2 and R3 are more preferably fluoroalkylsilanes containing a methoxy group.
  • fluoroalkylsilanes are C 5 F 11 CH 2 CH 2- Si (OCH 3 ) 3 , C 6 F 13 CH 2 CH 2- Si (OCH 3 ) 3 , C 8 F 17 CH 2 CH 2 -It is more preferable to contain at least one of Si (OCH 3 ) 3 .
  • the content of the silane coupling agent is preferably in the range of 0.01% by mass to 10% by mass with respect to the mass of the negative electrode active material.
  • the content of the silane coupling agent is preferably in the range of 0.01% by mass to 10% by mass with respect to the mass of the negative electrode active material.
  • the addition amount exceeds 10 wt.%, It is good from the viewpoint that the surface of the negative electrode active material is covered with the film derived from the silane coupling agent, but the lithium ion conductivity in the film may be hindered, that is, the resistance may be increased. There is.
  • the amount of the silane coupling agent is determined by using the molecular model of Stuart-Briegleb, and the following formula is used depending on the BET specific surface area (m 2 / g) of the negative electrode active material and the molecular weight (g / mol) of the silane coupling agent. Therefore, the minimum required standard amount can be calculated.
  • the method of adhering the silane coupling agent to the surface of the negative electrode active material is, for example, a method of directly spraying a solution of the silane coupling agent onto the negative electrode mixture layer of the negative electrode 23 and drying the solution, or vaporizing the solution of the silane coupling agent.
  • Examples thereof include a method in which the vaporized silane coupling agent is brought into contact with the negative electrode mixture layer of the negative electrode 23. It is preferable to ozone-treat the negative electrode mixture layer containing the negative electrode active material before adhering the silane coupling agent to the surface of the negative electrode active material.
  • Examples of the ozone treatment method include UV ozone treatment and atmospheric plasma treatment. Above all, UV ozone treatment is preferable. The UV ozone treatment is performed using, for example, a UV cleaning surface modifier (ASM1101N) (Asumi Giken Co., Ltd.).
  • a silane coupling agent may be attached to the powder of the negative electrode active material before the negative electrode 23 is manufactured, or a silane coupling agent may be added to the negative electrode mixture slurry and adhered to the surface of the negative electrode active material. Is also good.
  • the silane coupling agent-derived film formed on the surface of the negative electrode active material is, for example, LiF, SiOx (0 ⁇ x ⁇ 2), Li 2 CO 3 , Li. 2 Consists of components such as O.
  • LiF and SiOx (0 ⁇ x ⁇ 2) in the film, it is considered that the film is electrochemically stable but exhibits lithium ion conductivity.
  • fluoroalkylsilane as a silane coupling agent, the ratio of LiF and SiOx (0 ⁇ x ⁇ 2) in the film tends to increase.
  • the Si valence of the SiOx is low from the surface side to the deepest side of the film. Further, it is preferable that the LiF is unevenly distributed on the deepest side of the film.
  • the deepest side of the film is the contact surface side with the surface of the negative electrode active material. That is, the peak intensity at a binding energy (686 eV) from LiF in F1s spectrum of XPS and I A, the peak intensity in the unreacted silane coupling agent (fluoroalkane radicals) from the binding energy (688.8eV) I B If a, toward the surface from the deepest side of the electrolyte side of the film, the peak intensity varies to I a ⁇ I B from I a> I B.
  • the film having these characteristics shows that an unreacted or low-reducing silane coupling agent remains on the surface on the electrolytic solution side, and the remaining unreacted or low-reducing silane cup. Due to the effect of the ring agent, the surface layer of the film on the electrolytic solution side is made water repellent. As a result, it is possible to suppress the permeation of water into the surface of the negative electrode active material in the film, resulting in an electrochemically stable film.
  • additives include alkaline earth metal salts, dicarboxylic acids, carboxylic acid anhydrides and the like.
  • CaF 2 derived from CaTFSI and LiF derived from LiTFSI anion are hardly formed before the water decomposition potential, and the film component. Most of them are Li 2 CO 3 and Li 2 O, which are relatively highly soluble in water.
  • the film derived from the silane coupling agent formed on the surface of the negative electrode active material becomes an alkaline earth metal species when the additive contains an alkaline earth metal salt.
  • it will further contain fluoride (CaF 2 , MgF 2 , SrF 2 , BaF 2 ).
  • Fluoride (CaF 2 , MgF 2 , SrF 2 , BaF 2 ) which is a film component derived from an alkaline earth metal salt, has a lower solubility in water than LiF, which is a fluoride derived from a silane coupling agent.
  • the robustness of the film derived from the silane coupling agent to the aqueous electrolytic solution can be improved by combining with the alkaline earth metal salt.
  • the presence of an alkaline earth metal salt that is reductively decomposed at a relatively high potential can suppress the electrochemical reduction reaction of dissolved CO 2 and dissolved O 2 dissolved in the aqueous electrolytic solution, and has a solubility.
  • the formation of Li 2 CO 3 and Li 2 O, which are relatively high film components, can be suppressed.
  • the unreacted portion of the silane coupling agent or the portion having a low degree of reduction remaining in the film it becomes possible to suppress the permeation of water into the surface of the negative electrode active material. Due to the above effects, the robustness to the aqueous electrolytic solution can be further improved, and the film becomes electrochemically stable. This is because simply adding an alkaline earth metal salt to the electrolytic solution does not prevent water from coming into contact with the surface of the negative electrode active material during film formation, and causes an electrochemical reduction reaction of dissolved CO 2 and dissolved O 2.
  • the film cannot be suppressed and has a high ratio of Li 2 CO 3 and Li 2 O components, which are relatively highly soluble in water.
  • a silane cup capable of forming a uniform film on the entire surface of the negative electrode active material at the time of initial charging in a state where a silane coupling agent is attached to the surface of the negative electrode active material in advance to avoid contact with water on the surface of the negative electrode active material.
  • Combination with a rig is necessary to reduce the ratio of Li 2 CO 3 and Li 2 O components.
  • the film derived from the silane coupling agent formed on the surface of the negative electrode active material is aqueous electrolysis when the additive contains a dicarboxylic acid or a carboxylic acid anhydride. It is possible to suppress the electrochemical reduction reaction of dissolved CO 2 and dissolved O 2 dissolved in the liquid, and to significantly suppress the formation of Li 2 CO 3 and Li 2 O, which are film components having relatively high solubility. Will be able to.
  • the unreacted portion of the silane coupling agent or the portion having a low degree of reduction remaining in the film it becomes possible to suppress the permeation of water into the surface of the negative electrode active material. Due to the above effects, the robustness to the aqueous electrolytic solution can be further improved, and the film becomes electrochemically stable. This is because the LiF derived from the LiTFSI anion could hardly be formed before the reduction decomposition of water by simply adding the dicarboxylic acid and the carboxylic acid anhydride to the electrolytic solution, and most of the film components were dissolved in water.
  • the separator 24 is not particularly limited as long as it allows lithium ions to pass through and has a function of electrically separating the positive electrode and the negative electrode.
  • a porous sheet made of a resin, an inorganic material, or the like is used. Be done. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • the material of the separator include olefin resins such as polyethylene and polypropylene, polyamide, polyamide-imide, and cellulose.
  • the inorganic material constituting the separator include glass borosilicate, silica, alumina, titania and the like, and ceramics.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Further, it may be a multilayer separator containing a polyethylene layer and a polypropylene layer, and a separator coated with a material such as an aramid resin or ceramic may be used.
  • Example 1 [Negative electrode] Hard carbon as a negative electrode active material and PVDF as a binder were mixed in N-methyl-2-pyrrolidone (NMP) at a solid content mass ratio of 96: 4 to prepare a negative electrode mixture slurry. .. Next, the negative electrode mixture slurry was applied onto a negative electrode current collector made of copper foil, the coating film was dried, and then rolled with a rolling roller to prepare an electrode.
  • NMP N-methyl-2-pyrrolidone
  • a glass bottle containing a fluoroalkylsilane solution (composition: CF 3 (CF 2 ) 7 CH 2 CH 2- Si- (OCH 3 ) 3 ), which is a silane coupling agent, and the electrode are placed in a metal container with a lid.
  • the metal container was put into a constant temperature bath and heated in a dry room (dew point: ⁇ 40 ° C. or lower) at 120 ° C. for 12 hours.
  • fluoroalkylsilane was volatilized, and fluoroalkylsilane was adhered to the surface of the negative electrode active material constituting the electrode.
  • the electrode after the above treatment was cut to a predetermined size to obtain a negative electrode.
  • the coating amount of the negative electrode and the filling density were 32.3 g / m 2 and 1.0 gcm -3 .
  • LiCoO 2 as a positive electrode active material, carbon black as a conductive material, and PVdF as a binder were mixed in NMP at a mass ratio of 94: 3: 3 to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied onto a positive electrode current collector made of Ti foil, the coating film was dried, and then rolled by a rolling roller. Then, it was cut to a predetermined electrode size to obtain a positive electrode.
  • the coating amount of the positive electrode and the packing density were 65.0 g / cm 2 and 2.8 gcm -3 , respectively.
  • LITFSI lithium salt
  • water so as to have a molar ratio of 1: 2.
  • a three-electrode cell containing the electrolytic solution was constructed with the negative electrode as the working electrode, the positive electrode as the counter electrode, and Ag / AgCl (3M NaCl) as the reference electrode.
  • Example 2 A three-electrode cell was constructed in the same manner as in Example 1 except that 1% by mass of maleic acid was added in place of calcium bis (trifluoromethanesulfonyl) imide in the preparation of the electrolytic solution.
  • Example 3 A three-electrode cell was constructed in the same manner as in Example 1 except that 1% by mass of diglycolic acid was added in place of calcium bis (trifluoromethanesulfonyl) imide in the preparation of the electrolytic solution.
  • Example 4 A three-electrode cell was constructed in the same manner as in Example 1 except that 1% by mass of glutaric acid was added instead of calcium bis (trifluoromethanesulfonyl) imide in the preparation of the electrolytic solution.
  • Example 5 A three-electrode cell was constructed in the same manner as in Example 1 except that 1% by mass of succinic anhydride was added instead of calcium bis (trifluoromethanesulfonyl) imide in the preparation of the electrolytic solution.
  • Example 6 In the preparation of the electrolytic solution, the same as in Example 1 except that 0.5% by mass of succinic acid and 0.5% by mass of maleic anhydride were added instead of calcium bis (trifluoromethanesulfonyl) imide. An electrode type cell was constructed.
  • Comparative Examples 2 to 7 are the same as those of Examples 1 to 6 except that the negative electrode (working electrode) was not subjected to the treatment of adhering fluoroalkylsilane to the surface of the negative electrode active material.
  • Example 8 A three-electrode cell was constructed in the same manner as in Example 1 except that calcium bis (trifluoromethanesulfonyl) imide was not added in the preparation of the electrolytic solution.
  • Linear sweep voltammetry measurement was performed using the three-electrode cell of Examples 1 to 6 and Comparative Examples 1 to 8, and the OCP of the negative electrode was measured. The measurement conditions are shown below.
  • OCV Potential scanning range -3.238V to OCV vs. Ag / AgCl (3M NaCl)
  • OCP of the negative electrode after 0 minutes OCP after potential sweep to -3.28V) in Examples 1 to 6 and Comparative Examples 1 to 8 and OCP of the negative electrode after 1 minute (OCP after potential sweep to -3.23VV) OCP after minutes)
  • OCP of the negative electrode after 10 minutes OCP 10 minutes after the potential sweep to -3.238V
  • the results of OCP) are shown in Table 1.
  • the OCP of the negative electrode shown in Table 1 is a value converted to the lithium standard (vs. Li / Li + ).
  • Example 6 and Comparative Example 7 Comparison with Example 1 and Comparative Example 2, Example 2 and Comparative Example 3, Example 3 and Comparative Example 4, Example 4 and Comparative Example 5, and Example 5 having the same composition of the aqueous electrolytic solution. Comparing Example 6, Example 6 and Comparative Example 7, the OCP of the negative electrode from 0 minute to 20 minutes was lower in that of Example.
  • lithium ions in addition to adhering fluoroalkylsilane to the surface of the negative electrode active material, by adding an alkaline earth metal salt, dicarboxylic acid or carboxylic acid anhydride to the aqueous electrolytic solution, lithium ions can be added to the negative electrode active material. It is shown that the storage property is improved and the stored lithium ions are easily stored in the negative electrode active material. On the other hand, the change in OCP of the negative electrode from 0 minutes to 20 minutes after Comparative Examples 1 to 7 was rapid. This indicates that the occluded lithium ions hardly occur, or even if they occur, the occluded lithium ions are not stored in the negative electrode active material and are released instantaneously.
  • Examples 1 to 6 in which the silane coupling agent was attached to the surface of the negative electrode active material and the alkaline earth metal salt, dicarboxylic acid, or carboxylic acid anhydride was added to the aqueous electrolytic solution, the surface of the negative electrode active material was added. It can be said that the self-discharge is suppressed as compared with Comparative Examples 1 to 7 in which the silane coupling agent is not attached to. Further, in Examples 1 to 6, a silane coupling agent is attached to the surface of the negative electrode active material, but Comparative Example 8 in which an alkaline earth metal salt, a dicarboxylic acid, or a carboxylic acid anhydride is not added to the aqueous electrolytic solution.
  • the OCP of the negative electrode after 10 minutes and 20 minutes was lower than that of the negative electrode. That is, Examples 1 to 6 show that more lithium ions were stored in the negative electrode active material even after 20 minutes had passed. Therefore, Examples 1 to 6 in which an alkaline earth metal salt, a dicarboxylic acid, or a carboxylic acid anhydride was added to the aqueous electrolytic solution were more self-discharged than Comparative Example 8 in which the above compound was not added to the aqueous electrolytic solution. It can be said that it is more suppressed.
  • Comparative Example 8 in which only fluoroalkylsilane was attached was a film derived from fluoroalkylsilane and was subjected to CaTFSI, maleic acid, diglycolic acid, glutaric acid, maleic anhydride, and succinic acid before the reduction decomposition of water.
  • Example 7 A three-electrode cell was constructed in the same manner as in Example 1 except that the following electrolytic solution was used.
  • the ratio of organic carbonates (DMC and FEC) to water is 0.22: 1.8 in terms of molar ratio.
  • Example 8> A three-electrode cell was constructed in the same manner as in Example 1 except that the following electrolytic solution was used. 1.65% by mass of dimethyl carbonate (DMC) and 1.65% by mass of fluoroethylene carbonate (FEC) are added to a solution in which lithium salt (LITFSI) and water are mixed so as to have a molar ratio of 1: 2. Then, an electrolytic solution was prepared. The ratio of organic carbonates (DMC and FEC) to water is 0.11: 2.0 in terms of molar ratio.
  • DMC dimethyl carbonate
  • FEC fluoroethylene carbonate
  • DMC dimethyl carbonate
  • FEC fluoroethylene carbonate
  • DMC dimethyl carbonate
  • LITFSI lithium salt
  • FEC lithium salt
  • Example 11 A three-electrode cell was constructed in the same manner as in Example 1 except that the following electrolytic solution was used.
  • FEC fluoroethylene carbonate
  • Electrolyte was prepared. The ratio of organic carbonate (FEC) to water is 0.03: 2.0 in molar ratio.
  • Example 12 A three-electrode cell was constructed in the same manner as in Example 1 except that the following electrolytic solution was used.
  • FEC fluoroethylene carbonate
  • Electrolyte was prepared.
  • the ratio of organic carbonate (FEC) to water is 0.07: 2.0 in terms of molar ratio.
  • VC vinylidene carbonate
  • Cyclic voltammetry measurement was performed using the three-electrode cells of Examples 7 to 13 and Comparative Examples 9 to 15 to evaluate the charge / discharge efficiency in the first cycle. The measurement conditions are shown below.
  • Table 3 shows the results of charge / discharge efficiency in the first cycle in Examples 7 to 13 and Comparative Examples 9 to 15.
  • Example 7 and Comparative Example 9, Example 8 and Comparative Example 10, Example 9 and Comparative Example 11, and Example 10 and Comparative Example 12 having the same composition of the aqueous electrolytic solution are compared, they are 0.
  • the OCP of the negative electrode after 1 minute to 30 minutes was lower in the examples. Therefore, rather than simply adding organic carbonate to the aqueous electrolyte, the secondary battery can be combined by attaching a silane coupling agent to the surface of the negative electrode active material and adding organic carbonate to the aqueous electrolyte. It can be said that the self-discharge of Silane is further suppressed.
  • Examples 7 to 13 in which the silane coupling agent is attached to the surface of the negative electrode active material and the organic carbonate is added to the aqueous electrolytic solution are carbon-based materials. Even when the negative electrode active material was used, lithium was occluded and released, and the charge / discharge efficiency was calculated. On the other hand, in Comparative Examples 9 to 15 in which the organic carbonate was simply added to the aqueous electrolytic solution, when the carbon-based material was used as the negative electrode active material, lithium was occlusioned, but lithium was not released, and the charge / discharge efficiency was 0. became.

Abstract

二次電池は、正極と、負極と、電解液とを備え、電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤が付着している。

Description

二次電池
 本開示は、二次電池に関する。
 高出力、高エネルギー密度の二次電池として、正極、負極、及び電解液を備え、正極と負極との間でリチウムイオンを移動させて充放電を行うリチウムイオン二次電池が広く利用されている。従来の二次電池では、高エネルギー密度を達成するために、有機溶媒系の電解液が使用されている。
 しかし、有機溶媒は一般に可燃性であり、安全性の確保が重要な課題となっている。また、有機溶媒のイオン伝導度は水溶液と比べて低く、急速な充放電特性が十分でない点も問題となっている。
 このような問題に鑑みて、水を含有する電解液を用いた二次電池の研究が行われているが、水を含有する電解液を用いた二次電池は、電位窓が狭く、高電圧で安定して作動することが困難となる。
 このような電位窓が狭いという課題を解決する方法の一つとして、例えば、特許文献1及び2には、二次電池の水系電解液として、高濃度のアルカリ塩を含む水溶液を用いることが開示され、また、特許文献3には、高濃度のアルカリ塩を含む水溶液に有機カーボネートを添加した電解液を用いることが開示されている。
特許第6423453号公報 国際公開第2017/122597号 特開2018-73819号公報
 ところで、水系電解液を用いた二次電池においては、更なる高電圧化のために、電位窓の拡大と共に、自己放電特性の改善が求められている。
 そこで、本開示は、水系電解液を用いた二次電池において、自己放電を抑制することを目的とする。
 本開示の第1態様である二次電池は、正極と、負極と、電解液とを備え、前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤が付着している。
 また、本開示の第2態様である二次電池は、正極と、負極と、電解液とを備え、前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤の還元分解による皮膜が形成されている。
 本開示に係る二次電池によれば、自己放電を抑制することができる。
本実施形態の二次電池の一例を示す模式断面図である。
 一般的に、水系電解液の還元分解(実質的には水の還元分解)は、Li基準でおよそ2V付近から当該電位より卑な電位の間で起こり、また、炭素材料等の負極活物質の充放電反応は、水の還元分解電位より更に卑な電位で起こる。したがって、充電過程では、負極活物質の充電反応の前に、水の還元分解が起こり、その反応に充電電流が消費されるため、負極活物質の充電反応の進行が阻害される。そこで、本発明者らは鋭意検討した結果、シランカップリング剤及び特定の添加剤(アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネート)の組合せによって、水の還元分解を抑えることができ、自己放電を抑制することができることを見出し、以下に示す態様の二次電池を想到するに至った。
 本開示の第1態様である二次電池は、正極と、負極と、電解液とを備え、前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤が付着している。本開示の第1態様である二次電池によれば、充電過程における水の還元分解が抑制され、負極活物質の充電反応が進行し、ひいては負極活物質と電解液との反応が抑制されるため、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電が抑制される。
 本開示の第2態様である二次電池は、正極と、負極と、電解液とを備え、前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤の還元分解による皮膜が形成されている。本開示の第2態様である二次電池は、本開示の第1態様である二次電池の充電後或いは充放電後における態様の二次電池である。すなわち、本開示の第2態様である二次電池によっても、充電過程における水の還元分解が抑制され、負極活物質の充電反応が進行し、ひいては負極活物質と電解液との反応が抑制されるため、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電が抑制される。
 本開示の第1態様および第2態様にかかる効果のメカニズムは、シランカップリング剤と組み合わせる添加剤の種類によって異なるが、添加剤の種類ごとに以下のことが考えられる。複数の種類の添加剤を添加する場合は、添加剤の各々の効果を組み合わせたメカニズムとなる。ここでいう添加剤の種類とは、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのこと、即ち、添加剤の分類のことである。
 <アルカリ土類金属塩>
 シランカップリング剤とアルカリ土類金属塩を組み合わせる場合、用いるシランカップリング剤の種類によっても異なるが、初回充電時に、シランカップリング剤の還元分解と並行して、アルカリ土類金属塩の還元分解が進行し、シランカップリング剤由来の皮膜とアルカリ土類金属塩由来の皮膜の複合皮膜が形成される。アルカリ土類金属塩由来の皮膜成分としてはCaF,MgF,SrFおよびBaFのうちの少なくともいずれか1つを含むフッ化物が挙げられ、シランカップリング剤由来の皮膜成分としては、主にLiFとSiOxが挙げられる。CaF,MgF,SrF,BaFは、LiFに比べ、水に対する溶解度が低いため、アルカリ土類金属塩と組み合わせることによりシランカップリング剤由来の皮膜の水系電解液に対するロバスト性が向上する。また、比較的高電位で還元分解するアルカリ土類金属塩が存在する場合、水系電解液中に溶存する溶存CO、溶存Oの電気化学的還元反応を大きく抑制することができ、溶解度の比較的高い皮膜成分であるLiCO,LiOの形成を大幅に抑制することができる。その結果、前記複合皮膜中における水に対する溶解度の低い成分比率(例えば、フッ化物)を増加させることができ、水系電解液に対するロバスト性を向上させることができる。また、シランカップリング剤の還元分解電位領域以上の電位領域において還元分解するアルカリ土類金属塩と組み合わせる場合、シランカップリング剤の還元反応が抑制され、皮膜中に未反応、あるいは還元度の低いシランカップリング剤が残存するようになる。その結果、残存したシランカップリング剤の撥水効果により負極活物質表面への水の浸透を抑制することができるようになる。以上の効果により、シランカップリング剤とアルカリ土類金属塩を組み合わせることにより、水に対する溶解度の低い成分比率を皮膜中に増大させることができ、皮膜の水系電解液に対するロバスト性を向上させることができ、電気化学的に安定な皮膜を形成することが可能となる。そのため、負極活物質と電解液との反応が抑制され、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電を抑えることが可能となる。なお、シランカップリング剤由来の皮膜とアルカリ土類金属塩由来の皮膜の複合皮膜は、リチウムイオン導電性を有しているため、充電過程では負極活物質は皮膜を介してリチウムイオンを吸蔵することが可能である。なお、皮膜中における還元度の低いシランカップリング剤は、フルオロアルカン基(F1s, 688.8eV(XPS)), C-Si-O基(Si2p, 102.6eV(XPS)),O-Si-C基(Si2p, 103.5eV(XPS))等が観察できる。
 <ジカルボン酸、カルボン酸無水>
 シランカップリング剤とジカルボン酸、あるいはカルボン酸無水物との組み合わせの場合、ジカルボン酸、カルボン酸無水物は、比較的高電位で還元分解するため、水系電解液中に溶存する溶存CO、溶存Oの電気化学的還元反応を大きく抑制することができ、溶解度の比較的高い皮膜成分であるLiCO,LiOの形成を大幅に抑制することができる。また、シランカップリング剤の還元分解電位領域以上の電位領域において還元分解するジカルボン酸、あるいはカルボン酸無水物と組み合わせる場合、シランカップリング剤の還元反応が抑制され、皮膜中に未反応、あるいは還元度の低いシランカップリング剤が残存するようになる。その結果、残存したシランカップリング剤の撥水効果により負極活物質表面への水の浸透を抑制することができるようになる。以上の効果により、シランカップリング剤とジカルボン酸、あるいはカルボン酸無水物を組み合わせることにより、水に対する溶解度の低い成分比率を皮膜中に増大させることができること、また、負極活物質表面への水の浸透性を抑制できることにより、皮膜の水系電解液に対するロバスト性を向上させることができ、電気化学的に安定な皮膜を形成することが可能となる。そのため、負極活物質と電解液との反応が抑制され、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電が抑えられる。なお、シランカップリング剤由来の皮膜とジカルボン酸、あるいはカルボン酸無水物由来の皮膜の複合皮膜は、リチウムイオン導電性を有しているため、充電過程では負極活物質は皮膜を介してリチウムイオンを吸蔵することが可能である。
 <有機カーボネート>
 シランカップリング剤と有機カーボネートを組み合わせる場合、特に高濃度のアルカリ塩を含む水系電解液系を用いる場合、水とリチウム塩に加え、有機カーボネートが溶媒和構造に参加するようになるため、水系電解液中における水の活量を低下させることができ、電解液中の水の電気化学安定性を向上させることができる。また、有機カーボネートが存在することにより、水系電解液中に溶存する溶存CO、溶存Oの電気化学的還元反応を大きく抑制することができ、溶解度の比較的高い皮膜成分であるLiCO,LiOの形成を大幅に抑制することができる。さらにまた、用いるシランカップリング剤の種類にもよるが、シランカップリング剤よりも卑な電位で還元分解する有機カーボネートと組み合わせることで、比較的分子量が大きく、還元分解後の皮膜の緻密性に課題のあるシランカップリング剤由来の皮膜の欠陥を有機カーボネート由来の皮膜で補うことができ、シランカップリング剤由来の皮膜の緻密性を向上させることができる。以上の効果により、シランカップリング剤と有機カーボネートを組み合わせることで、有機カーボネート添加による水の電気化学安定性の向上効果、そして、シランカップリング剤由来の皮膜と有機カーボネート由来の皮膜の複合皮膜形成による効果により、皮膜の水系電解液に対するロバスト性を向上させることができ、電気化学的に安定な皮膜を形成することが可能となる。そのため、負極活物質と電解液との反応が抑制され、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電が抑えられる。なお、シランカップリング剤由来の皮膜と有機カーボネート由来の皮膜の複合皮膜は、リチウムイオン導電性を有しているため、充電過程では負極活物質は皮膜を介してリチウムイオンを吸蔵することが可能である。また、放電過程では、負極活物質に吸蔵されたリチウムイオンが放出されることが可能である。
 以下、本開示に係る二次電池の実施形態について詳説する。
 本実施形態の二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。図1は、本実施形態の二次電池の一例を示す模式断面図である。図1に示す二次電池20は、カップ形状の電池ケース21と、電池ケース21の上部に設けられた正極22と、正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。図1に示す二次電池20は、正極22と負極23との空間に電解液27が満たされている。以下、電解液27、正極22、負極23、セパレータ24、について詳述する。
 電解液27は、水、リチウム塩及び添加剤を含む(以下、水系電解液と称する場合がある)。水系電解液は可燃性を有さない水を含むため、水系電解液を用いた二次電池の安全性を高めることができる。この観点で、電解液27中の水の含有量は、電解液27の全量に対して6質量%以上であることが好ましく、8質量%~50質量%の範囲であることがより好ましく、8.5質量%~21質量%の範囲であることがより好ましい。電解液27は、水以外の溶媒を含んでいてもよい。水以外の溶媒としては、例えば、エーテル類、ニトリル類、アルコール類、ケトン類、アミン類、アミド類、硫黄化合物類及び炭化水素類等が挙げられる。水以外の溶媒の含有量は、電解液27の全量に対して50質量%以下であることが好ましく、25質量%以下であることがより好ましい。
 リチウム塩は、水を含有する溶媒に溶解して解離し、リチウムイオンを水系電解液中に存在させることができる化合物であれば、いずれも使用できる。リチウム塩は、正極及び負極を構成する材料との反応により電池特性の劣化を引き起こさないことが好ましい。このようなリチウム塩としては、例えば、過塩素酸、硫酸、硝酸等の無機酸との塩、塩化物イオン及び臭化物イオン等のハロゲン化物イオンとの塩、炭素原子を構造内に含む有機アニオンとの塩等が挙げられる。
 リチウム塩を構成する有機アニオンとしては、例えば、下記一般式(i)~(vi)で表されるアニオンが挙げられる。
 (RSO)(RSO)N   (i)
(R、Rは、それぞれ独立に、アルキル基又はハロゲン置換アルキル基から選択される。R及びRは互いに結合して環を形成してもよい。)
 RSO    (ii)
(Rは、アルキル基又はハロゲン置換アルキル基から選択される。)
 RCO    (iii)
(Rは、アルキル基又はハロゲン置換アルキル基から選択される。)
 (RSO   (iV)
(Rは、アルキル基又はハロゲン置換アルキル基から選択される。)
 [(RSO)N(SO)N(RSO)]2-   (v)
(R、Rは、アルキル基又はハロゲン置換アルキル基から選択される。)
 [(RSO)N(CO)N(RSO)]2-   (vi)
(R、Rは、アルキル基又はハロゲン置換アルキル基から選択される。)
 上記一般式(i)~(vi)において、アルキル基又はハロゲン置換アルキル基の炭素数は、1~6が好ましく、1~3がより好ましく、1~2がさらに好ましい。ハロゲン置換アルキル基のハロゲンとしてはフッ素が好ましい。ハロゲン置換アルキル基におけるハロゲン置換数は、もとのアルキル基の水素の数以下である。
 R~Rのそれぞれは、例えば、以下の一般式(vii)で表される基である。
 CClBr   (vii)
(nは1以上の整数であり、a、b、c、d、eは0以上の整数であり、2n+1=a+b+c+d+eを満足する。)
 上記一般式(i)で表される有機アニオンの具体例としては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI;[N(CFSO)、ビス(パーフルオロエタンスルホニル)イミド(BETI;[N(CSO)、(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド([N(CSO)(CFSO)])等が挙げられる。上記一般式(ii)で表される有機アニオンの具体例としては、例えばCFSO 、CSO 等が挙げられる。上記一般式(iii)で表される有機アニオンの具体例としては、例えばCFCO 、CCO 等が挙げられる。上記一般式(iv)で表される有機アニオンの具体例としては、例えば、トリス(トリフルオロメタンスルホニル)炭素酸([(CFSOC])、トリス(パーフルオロエタンスルホニル)炭素酸([(CSOC])等が挙げられる。上記一般式(v)で表される有機アニオンの具体例としては、例えば、スルホニルビス(トリフルオロメタンスルホニル)イミド([(CFSO)N(SO)N(CFSO)]2-)、スルホニルビス(パーフルオロエタンスルホニル)イミド([(CSO)N(SO)N(CSO)]2-)、スルホニル(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド([(CSO)N(SO)N(CFSO)]2-)等があげられる。上記一般式(vi)で表される有機アニオンの具体例としては、例えば、カルボニルビス(トリフルオロメタンスルホニル)イミド([(CFSO)N(CO)N(CFSO)]2-)、カルボニルビス(パーフルオロエタンスルホニル)イミド([(C2F5SO2)N(CO)N(CSO)]2-)、カルボニル(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド([(CSO)N(CO)N(CFSO)]2-)等があげられる。
 上記一般式(i)から(vi)以外の有機アニオンとしては、例えば、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸等のアニオンが挙げられる。
 リチウム塩を構成するアニオンとしては、電池の自己放電を効果的に抑制できる等の点で、イミドアニオンとを有する塩を含むことが好ましい。イミドアニオンの好適な具体例としては、例えば、上記一般式(i)で表される有機アニオンとして例示したイミドアニオンのほか、ビス(フルオロスルホニル)イミド(FSI;[N(FSO)、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(FTI;[N(FSO)(CFSO)])等が挙げられる。
 リチウムイオンとイミドアニオンとを有するリチウム塩は、電池の自己放電を効果的に抑制できる等の点で、例えば、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(パーフルオロエタンスルホニル)イミド(LiBETI)、リチウム(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウム(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(LiFTI)等が挙げられる。これらは単独でもよいし、2種以上を併用してもよい。
 他のリチウム塩の具体例としては、CFSOLi、CSOLi、CFCOLi、CCOLi、(CFSOCLi、(CSOCLi、(CSO(CFSO)CLi、(CSO)(CFSOCLi、[(CFSO)N(SO)N(CFSO)]Li、[(CSO)N(SO)N(CSO)]Li、[(CSO)N(SO)N(CFSO)]Li、[(CFSO)N(CO)N(CFSO)]Li、[(CSO)N(CO)N(CSO)]Li、[(CSO)N(CO)N(CFSO)]Li、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム、過塩素酸リチウム(LiClO)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、水酸化リチウム(LiOH)、硝酸リチウム(LiNO)、硫酸リチウム(LiSO)、硫化リチウム(LiS)、水酸化リチウム(LiOH)等が挙げられる。これらは単独でもよいし、2種以上を併用してもよい。
 添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含む。
 アルカリ土類金属塩は、水を含有する溶媒に溶解して解離し、アルカリ土類金属カチオンを水系電解液中に存在させることができる化合物であれば、いずれも使用できる。アルカリ土類金属塩は、正極及び負極を構成する材料との反応により電池特性の劣化を引き起こさないことが好ましい。アルカリ土類金属塩は、アルカリ土類金属とアニオンとの塩が挙げられる。アルカリ土類金属としてはカルシウム、マグネシウム、ストロンチウム、バリウムが挙げられる。中でも、カルシウム、マグネシウム、ストロンチウムが好まく、カルシウムが最も好ましい。これは、初回充電時に形成されるアルカリ土類金属塩由来の主な皮膜成分である、フッ化物(CaF、MgF、SrF、BaF)の水に対する溶解度がCaF、MgF,SrFで低く、CaFで最も低いためである。水に対する溶解度が低いということは、水系電解液に対する皮膜のロバスト性を向上させることができ、電気化学的に安定な皮膜を形成できることを示している。電気化学的に安定な皮膜を形成することができるため、負極活物質と電解液との反応を抑制することができ、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電を抑えることが可能となる。アルカリ土類金属塩としては、水の還元分解電位より貴な電位で還元分解するものがより好適である。アルカリ土類金属塩は単独でも2種以上を混合して用いてもよい。アニオン成分は、例えば、下記一般式(viii)~(xi)で表されるアニオンが挙げられる。
 (R10SO)(R11SO)N   (viii)
(R10、R11は、それぞれ独立に、アルキル基又はハロゲン置換アルキル基から選択される。R10及びR11は互いに結合して環を形成してもよい。)
 R12SO    (ix)
(R12は、アルキル基又はハロゲン置換アルキル基から選択される。)
 R13CO    (x)
(R13は、アルキル基又はハロゲン置換アルキル基から選択される。)
 (R14SO   (xi)
(R14は、アルキル基又はハロゲン置換アルキル基から選択される。)
 上記一般式(viii)~(xi)において、アルキル基又はハロゲン置換アルキル基の炭素数は、1~6が好ましく、1~3がより好ましく、1~2がさらに好ましい。ハロゲン置換アルキル基のハロゲンとしてはフッ素が好ましい。ハロゲン置換アルキル基におけるハロゲン置換数は、もとのアルキル基の水素の数以下である。
 R10~R14のそれぞれは、例えば、以下の一般式(xii)で表される基である。
 CClBr   (xii)
(nは1以上の整数であり、a、b、c、d、eは0以上の整数であり、2n+1=a+b+c+d+eを満足する。)
 上記一般式(viii)で表される有機アニオンの具体例としては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI;[N(CFSO)、ビス(パーフルオロエタンスルホニル)イミド(BETI;[N(CSO)、(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド([N(CSO)(CFSO)])等が挙げられる。上記一般式(ix)で表される有機アニオンの具体例としては、例えば、CFSO 、CSO 等が挙げられる。上記一般式(x)で表される有機アニオンの具体例としては、例えば、CFCO 、CCO 等が挙げられる。上記一般式(xi)で表される有機アニオンの具体例としては、例えば、トリス(トリフルオロメタンスルホニル)炭素酸([(CFSOC])、トリス(パーフルオロエタンスルホニル)炭素酸([(CSOC])、ビス(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)炭素酸([(CSO(CFSO)C])、(パーフルオロエタンスルホニル)ビス(トリフルオロメタンスルホニル)炭素酸([(CSO)(CFSOC])等があげられる。
 上記一般式(viii)から(xi)以外の有機アニオンとしては、例えば、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸等のアニオンが挙げられる。
 アルカリ土類金属塩を構成するアニオンとしては、電池の自己放電を効果的に抑制できる等の点で、イミドアニオンとを有する塩を含むことが好ましい。イミドアニオンの好適な具体例としては、例えば、上記一般式(viii)で表される有機アニオンとして例示したイミドアニオンのほか、ビス(フルオロスルホニル)イミド(FSI;[N(FSO)、(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(FTI;[N(FSO)(CFSO)])等が挙げられる。
 アルカリ土類金属とイミドアニオンとを有するアルカリ土類金属塩は、電池の自己放電を効果的に抑制できる等の点で、カルシウムビス(トリフルオロメタンスルホニル)イミド(CaTFSI)、カルシウムビス(パーフルオロエタンスルホニル)イミド(CaBETI)、カルシウム(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド、カルシウムビス(フルオロスルホニル)イミド(CaFSI)、カルシウム(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(CaFTI)、マグネシウムビス(トリフルオロメタンスルホニル)イミド(MgTFSI)、マグネシウムビス(パーフルオロエタンスルホニル)イミド(MgBETI)、マグネシウム(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド、マグネシウムビス(フルオロスルホニル)イミド(MgFSI)、マグネシウム(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(MgFTI)、ストロンチウムビス(トリフルオロメタンスルホニル)イミド(SrTFSI)、ストロンチウムビス(パーフルオロエタンスルホニル)イミド(SrBETI)、ストロンチウム(パーフルオロエタンスルホニル)(トリフルオロメタンスルホニル)イミド、ストロンチウムビス(フルオロスルホニル)イミド(SrFSI)、ストロンチウム(フルオロスルホニル)(トリフルオロメタンスルホニル)イミド(SrFTI)等が挙げられる。これらは単独でもよいし、2種以上を併用してもよい。中でも、特にカルシウム塩が好ましい。これは、還元分解により形成される主な皮膜成分、CaFの水に対する溶解度が最も低いため、水系電解液に対する皮膜の電気化学的安定性を向上させることができるためである。アルカリ土類金属塩としては、水の還元分解電位より貴な電位で還元分解するものがより好適である。
 他のアルカリ土類金属塩の具体例としては、Ca[CFSO、Ca[CSO、Ca[CFCO、Ca[CCO、Ca[(CFSOC]、Ca[(CSOC]、Ca[(CSO(CFSO)C]、Ca[(CSO)(CFSOC]、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸カルシウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸カルシウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸カルシウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸カルシウム、過塩素酸カルシウム(Ca(ClO)、塩化カルシウム(CaCl)、臭化カルシウム(CaBr)、水酸化カルシウム(Ca(OH))、硝酸カルシウム(Ca(NO)、硫酸カルシウム(CaSO)、硫化カルシウム(CaS)、水酸化カルシウム(Ca(OH))、Mg[CFSO、Mg[CSO、Mg[CFCO、Mg[CCO、Mg[(CFSOC]、Mg[(CSOC]、Mg[(CSO(CFSO)C]、Mg[(CSO)(CFSOC]、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸マグネシウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸マグネシウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸マグネシウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸マグネシウム、過塩素酸マグネシウム(Mg(ClO)、塩化マグネシウム(MgCl)、臭化マグネシウム(MgBr)、水酸化マグネシウム(Mg(OH))、硝酸マグネシウム(Mg(NO)、硫酸マグネシウム(MgSO)、硫化マグネシウム(MgS)、水酸化マグネシウム(Mg(OH))、Sr[CFSO、Sr[CSO、Sr[CFCO、Sr[CCO、Sr[(CFSOC]、Sr[(CSOC]、Sr[(CSO(CFSO)C]、Sr[(CSO)(CFSOC]、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸ストロンチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸ストロンチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸ストロンチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸ストロンチウム、過塩素酸ストロンチウム(Sr(ClO)、塩化ストロンチウム(SrCl)、臭化ストロンチウム(SrBr)、水酸化ストロンチウム(Sr(OH))、硝酸ストロンチウム(Sr(NO)、硫酸ストロンチウム(SrSO)、硫化ストロンチウム(SrS)、水酸化ストロンチウム(Sr(OH))等が挙げられる。これらは単独でもよいし、2種以上を併用してもよい。中でも、特にカルシウム塩が好ましい。これは、還元分解により形成される主な皮膜成分、CaFの水に対する溶解度が最も低く、水系電解液に対する皮膜の電気化学的安定性を向上させることができるためである。アルカリ土類金属塩としては、水の還元分解電位より貴な電位で還元分解するものがより好適である。
 上記のうち、電池の自己放電を効果的に抑制できる点で、カルシウムビス(トリフルオロメタンスルホニル)イミド、マグネシウムビス(トリフルオロメタンスルホニル)イミド、ストロンチウムビス(トリフルオロメタンスルホニル)イミド等が好ましい。中でも、カルシウム塩であるカルシウムビス(トリフルオロメタンスルホニル)イミド等が最も好ましい。これは、還元分解により形成される皮膜成分であるフッ化物の水に対する溶解度がCaF,MgF,SrFで低く、CaFで最も低いためである。また、水分解電位より貴な電位で還元分解するためである。ビス(トリフルオロメタンスルホニル)イミドアニオンが好ましい理由としては、高濃度の水系電解液を調整するに際し、好適であるためである。また、水分解より貴な電位でフッ化物を形成させるという観点で好適であるためである。
 アルカリ土類金属塩は、例えば水系電解液の総量に対して0.1質量%以上5.0質量%以下であればよく、0.5質量%以上3.0質量%以下が好ましい。上記範囲とすることで、水系電解液のリチウムイオン伝導性を損なうことなく、電池の自己放電を効果的に抑制できる場合がある。添加量が5.0wt.%を超えると、リチウムイオン導電性が低下する場合がある。一方で、0.1wt.%を下回ると、十分に効果が得られない場合がある。
 ジカルボン酸は、例えば、コハク酸、グルタル酸、フタル酸、マレイン酸、シトラコン酸、グルタコン酸、イタコン酸、ジグリコール酸等が挙げられる。カルボン酸無水物としては、例えば、無水コハク酸、無水グルタル酸、無水フタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸等が挙げられる。上記のうち、電池の自己放電を効果的に抑制できる点で、コハク酸、無水コハク酸、マレイン酸、無水マレイン酸、ジグリコール酸、グルタル酸等が好ましい。中でも、コハク酸、無水コハク酸、マレイン酸、無水マレイン酸、ジグリコール酸が好ましい。これは、用いるシランカップリング剤の種類によっても異なるが、水の還元分解電位以上であり、かつ、シランカップリング剤の還元分解電位領域以上で還元分解できるという観点で好ましいためである。グルタル酸の還元分解は、水の還元分解と競争的に進行するため、効果が低くなる。
 ジカルボン酸又はカルボン酸無水物は、例えば水系電解液の総量に対して0.1質量%以上5.0質量%以下であればよく、0.5質量%以上3.0質量%以下が好ましい。上記範囲とすることで、水系電解液のリチウムイオン伝導性を損なうことなく、電池の自己放電特性を効果的に抑制できる場合がある。添加量が5.0wt.%を超えると、リチウムイオン導電性が低下する場合がある。また、皮膜中におけるシランカップリング剤由来皮膜の成分比率が低下し、皮膜抵抗が増大する恐れがある。一方で、0.1wt.%を下回ると、十分に効果が得られない場合がある。
 有機カーボネートは、例えば、エチレンカーボネート、プロピレンカーボネート、ビニリデンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート、フルオロエチレンカーボネート、フルオロジメチルカーボネート、フルオロプロピオン酸メチル(FMP)等のフッ素を構成元素として含むフッ素化カーボネート等が挙げられる。
 添加剤の中で有機カーボネートは、電池の自己放電を抑制する点、電池の充放電効率を向上させる点等で好ましく、特に上記例示した有機カーボネートの中では、環状カーボネートやフッ素を構成元素として含むフッ素化カーボネートが好ましい。また、有機カーボネートは、電池の自己放電の低下を抑制する点、電池の充放電効率を向上させる点等で、後述するシランカップリング剤の還元分解電位より卑な電位で還元分解することが好ましい。有機カーボネートの還元分解電位は、シランカップリング剤の種類にもよるが、Li基準で2.2V以下であることが好ましい。Li基準で2.2V以下で還元分解する有機カーボネートとしては、例えば、ジメチルカーボネート、フルオロエチレンカーボネート等が挙げられる。有機カーボネートがシランカップリング剤より卑な電位で還元分解することにより、シランカップリング剤由来の皮膜の欠陥を有機カーボネート由来の皮膜で補うことができ、皮膜の緻密性を向上させることができる。すなわち、有機カーボネートの還元分解による皮膜がシランカップリング剤の還元分解による皮膜の上に堆積している。この結果、XPSのF1sスペクトルにおけるLiF由来の結合エネルギー(686eV)におけるピーク強度をIとし、未反応のシランカップリング剤C-F種(フルオロアルカン基)由来の結合エネルギー(688.8eV)におけるピーク強度をIとした場合、皮膜の前記電解液側の表層におけるピーク強度はI>Iである。これにより、負極活物質と電解液との反応が抑制されるため、負極活物質に吸蔵されたリチウムイオンが自然に負極活物質から放出される自己放電が抑制され、電池の充放電効率を向上させることができる。有機カーボネートとしてフッ素を構成元素として含む有機カーボネートを添加することにより、フッ素を含む水に対する溶解度の低い成分(例えばLiF)の比率を増大させることができ、水系電解液に対するロバスト性をさらに向上させることができ、さらに、電気化学的に安定な皮膜を形成することが可能となる傾向にある。
 有機カーボネートは、リチウム塩に対して、1:0.01~1:5の範囲であるモル比で存在することが好ましく、1:0.05~1:1の範囲であるモル比で存在することがより好ましく、水は、リチウム塩に対して、1:0.5~1:4の範囲であるモル比で存在することが好ましく、1:1~1:2.5の範囲であるモル比で存在することがより好ましい。上記範囲とすることで、電池の自己放電の低下を効果的に抑制できたり、電池の充放電効率をより向上できたりする場合がある。
 正極22は、例えば、正極集電体と、正極集電体上に形成された正極合材層とを備える。正極集電体としては、正極の電位範囲で電気化学的、化学的に安定な金属の箔、及び、当該金属を表層に配置したフィルム等を用いることができる。正極集電体の形態は特に限定されるものではなく、例えば、当該金属のメッシュ体、パンチングシート、エキスパンドメタル等の多孔体を使用してもよい。正極集電体の材料としては、水系電解液を用いた二次電池に使用可能な公知の金属等を使用することができる。そのような金属としては、例えば、ステンレス鋼、Al、アルミニウム合金、Ti等が挙げられる。正極集電体の厚さは、集電性、機械的強度等の観点から、例えば3μm以上50μm以下が好ましい。
 正極合材層は、正極活物質を含む。また、正極合材層は、結着材、導電材等を含んでいてもよい。
 正極活物質としては、例えば、リチウム(Li)、並びに、コバルト(Co)、マンガン(Mn)及びニッケル(Ni)等の遷移金属元素を含有するリチウム遷移金属酸化物が挙げられる。正極活物質としては、そのほか、遷移金属硫化物、金属酸化物、リン酸鉄リチウム(LiFePO)やピロリン酸鉄リチウム(LiFeP)などの1種類以上の遷移金属を含むリチウム含有ポリアニオン系化合物、硫黄系化合物(LiS)、酸素や酸化リチウムなどの酸素含有金属塩等が挙げられる。正極活物質としては、リチウム含有遷移金属酸化物が好ましく、遷移金属元素としてCo、Mn及びNiの少なくとも1種を含むことが好ましい。
 リチウム遷移金属酸化物は、Co、Mn及びNi以外の他の添加元素を含んでいてもよく、例えば、アルミニウム(Al)、ジルコニウム(Zr)、ホウ素(B)、マグネシウム(Mg)、スカンジウム(Sc)、イットリウム(Y)、チタン(Ti)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、鉛(Pb)、錫(Sn)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)及びケイ素(Si)等を含んでいてもよい。
 リチウム遷移金属酸化物の具体例としては、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(各化学式において、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBのうち少なくとも1種であり、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3である)が挙げられる。リチウム遷移金属酸化物は、1種を単独で用いてもよいし、複数種を混合して用いてもよい。高容量化の観点からは、リチウム遷移金属酸化物がリチウム以外の遷移金属の総量に対して80モル%以上のNiを含有することが好ましい。また、結晶構造の安定性の観点からは、リチウム遷移金属酸化物が、LiNiCoAl(0<a≦1.2、0.8≦b<1、0<c<0.2、0<d≦0.1、b+c+d=1)であることがより好ましい。
 導電材としては、正極合材層の電気伝導性を高める公知の導電材が使用でき、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノファイバー、カーボンナノチューブ、グラフェン等の炭素材料が挙げられる。結着材としては、正極活物質や導電材の良好な接触状態を維持し、また、正極集電体表面に対する正極活物質等の結着性を高める公知の結着材が使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン、カルボキシメチルセルロース(CMC)またはその塩、スチレン-ブタジエンゴム(SBR)、ポリエチレンオキシド(PEO)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等が挙げられる。
 正極22は、例えば正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布し、塗膜を乾燥、圧延して、正極合材層を正極集電体上に形成することにより製造できる。
 負極23は、例えば、負極集電体と、負極集電体上に形成された負極合材層とを備える。負極集電体としては、負極の電位範囲で電気化学的、化学的に安定な金属の箔、及び、当該金属を表層に配置したフィルム等を用いることができる。負極集電体の形態は特に限定されるものではなく、例えば、当該金属のメッシュ体、パンチングシート、エキスパンドメタル等の多孔体を使用してもよい。負極集電体の材料としては、水系電解液を用いた二次電池に使用可能な公知の金属等を使用することができる。そのような金属としては、例えば、Al、Ti、Mg、Zn、Pb、Sn、Zr、In等が挙げられる。これらは1種を単独で用いても良く、2種以上の合金等でもよく、少なくとも1つを主成分とする材料から構成されていればよい。また、2つ以上の元素を含む場合において、必ずしも合金化されている必要性はない。負極集電体の厚さは、集電性、機械的強度等の観点から、例えば3μm以上50μm以下が好ましい。
 負極合材層は、負極活物質を含む。負極活物質の表面には、後述するシランカップリング剤が付着している。また、負極合材層は、結着材、導電材等を含んでいてもよい。導電材や結着材は、正極側と同様のものを使用できる。
 負極活物質は、従来の非水系電解液を用いた二次電池に使用可能な公知の負極活物質を使用することができる。そのような負極活物質としては、例えば、天然グラファイト(黒鉛)、人造グラファイト(黒鉛)、ソフトカーボンやハードカーボン等の非晶質炭素等の炭素質材料が挙げられる。さらに他の例として、リチウム元素を含む合金や金属酸化物、金属硫化物、金属窒化物のような金属化合物、シリコン等が挙げられる。例えば、リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を有する金属酸化物としては、例えばチタン酸リチウム(LiTi12等)等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。さらに、硫黄系化合物を例示することもできる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。本実施形態の二次電池20によれば、水の還元反応が抑制されるため、従来では困難であった炭素材料、リチウムスズ合金材料およびリチウムケイ素合金材料等を、水系電解液を用いた電池の負極活物質として適用することが可能となる。また、炭素材料を主成分とすることが可能となる。なお、主成分とは、負極活物質の中で最も含有量が多い成分を指す。
 負極23は、例えば負極活物質、結着材等を含む負極合材スラリーを負極集電体上に塗布し、塗膜を乾燥、圧延して、負極合材層を負極集電体上に形成することにより製造できる。
 負極活物質の表面に付着するシランカップリング剤は、二次電池の初期の充電過程で、還元分解される。そして、シランカップリング剤の還元分解により、負極活物質の表面に電気化学的に安定な皮膜が形成される。当該皮膜は電気化学的に安定な皮膜であるため、皮膜を活性点として水の還元分解はほとんど起こらない。また、水系電解液に対し、化学的に安定な皮膜であるため、水系電解液による侵食が抑制され、水系電解液の負極活物質表面への接触を抑制することができる。なお、当該シランカップリング剤由来の皮膜は、リチウムイオン導電性を有しているため、充放電過程ではリチウムイオンは当該皮膜を介して負極活物質に吸蔵および放出される。
 シランカップリング剤は、水の還元分解の抑制、電池の自己放電の抑制等の点で、フッ素を構成元素として含むことが好ましく、また、水の還元分解電位より貴な電位で還元分解することが好ましい。シランカップリング剤の還元分解電位は、水の還元分解を抑制し易い等の点で、Li基準(vs.Li/Li)で2.1V以上であることが好ましく、2.2V以上であることがより好ましく、2.4V以上であることがより好ましい。これは、競争的に進行する水の還元分解を避け、水の還元分解電位に到達する前に緻密な皮膜で完全に覆っておくという観点で好ましいためである。上限値は特に限定されないが、例えば、Li基準で3V以下であることが好ましい。これは、負極集電体が酸化溶解しないような電位が望ましいためである。
 また、フッ素を構成元素として含むシランカップリング剤は、水の還元分解の抑制、電池の自己放電の抑制等の点で、フルオロアルキルシランであることが好ましく、水の還元分解電位より貴な電位で還元分解するフルオロアルキルシランであることがより好ましい。具体的には、以下の式で表されるフルオロアルキルシランであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、Y1は、炭素数3~10、フッ素数7~21のフルオロアルキル基であり、直鎖でも分岐状でもよく、また、エーテル結合、エステル結合、ペプチド結合、ビニル結合、スルホンアミド結合、水素原子のうちの少なくとも1種を含んでいてもよく、Y2は、(CHで表され、nは0~6の整数であり、直鎖でも分岐状でもよく、R1、R2及びR3はそれぞれ独立して、アルコキシ基、アルキル基、アミノ基、ハロゲン原子、又は水素原子である)。
 Y1の炭素数及びフッ素数においては、水の還元分解電位より貴な電位で還元分解し、水の還元分解を抑制し易い等の点で、炭素数は5~8であり、且つフッ素数は11~17であることが好ましい。
 Y1がペプチド結合を有するフルオロアルキル基であるフルオロアルキルシランとしては、例えば、N-(3-trimethoxysilylpropyl)perfluorohexanamideが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 Y1がビニル結合を有するフルオロアルキル基であるフルオロアルキルシランとしては、例えば、hexadecafluorododec-11-en-1-yltrimethoxysilaneが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 Y1がスルホンアミド結合を有するフルオロアルキル基であるフルオロアルキルシランとしては、例えば、3-perfluorooctylsulfonylaminopropyltriethoxysilaneが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 Y1が水素原子を有するフルオロアルキル基であるフルオロアルキルシランとしては、例えば、dedecylfluoro-heptyl-propyltrimethoxysilane、dedecylfluoro-heptyl-propylmethyldimethoxysilaneが挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 Y1が分岐状のフルオロアルキル基であるフルオロアルキルシランとしては、例えば、Triethoxy[5,5,6,6,7,7,7-heptafluoro-4,4-bis(trifluoro-methyl)heptyl]silaneが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 Y2が分岐状であるフルオロアルキルシランとしては、例えば、4-methyl-(perfluorohexylethyl)propyltrimethoxysilaneが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 フルオロアルキルシランとしては、電池の自己放電を効果的に抑制することができる等の点で、Y1はC2n+1(5≦n≦10)で表されることがより好ましく、R1、R2及びR3はそれぞれ独立して、OC2n+1(1≦n≦5)又はC2n+1(1≦n≦5)で表されることがより好ましい。Y1は、アルキル鎖長が長いほど好ましい。これは、シランカップリング剤中におけるフッ素化率を高めることができ、皮膜中におけるフッ素量を増大させることができるためである。R1,R2,及びR3は、メトキシ基を含有するフルオロアルキルシランがより好ましい。これは、上記負極活物質の表面の親水基、例えば、水酸基との反応性をより高めることができるためである。具体的には、フルオロアルキルシランは、C11CHCH-Si(OCH、C13CHCH-Si(OCH、C17CHCH-Si(OCHのうちの少なくともいずれか1つを含むことがより好ましい。
 シランカップリング剤の含有量は、負極活物質の質量に対して0.01質量%~10質量%の範囲であることが好ましい。シランカップリング剤の含有量を上記範囲とすることで、電池の自己放電をより抑制できる。シランカップリング剤の量が、0.01質量%未満の場合には、負極活物質表面を、シランカップリング剤由来皮膜により完全に被覆することが難しく、その結果、シランカップリング剤由来皮膜により水系電解液の分解を遮断することができず、還元側の電位窓を拡大することができなくなる恐れがある。また、添加量が10wt.%を超過すると、シランカップリング剤由来の皮膜で負極活物質表面を覆うという観点では良いが、皮膜中のリチウムイオン伝導性を阻害する、即ち、抵抗を増大する恐れがある。シランカップリング剤の量は、Stuart-Brieglebの分子モデルを用いることで、負極活物質のBET比表面積(m/g)、シランカップリング剤の分子量(g/mol)により、下記式を用いて、必要最小目安量を算出することができる。負極活物質表面をシランカップリング剤由来皮膜で完全に覆うという観点で、下記式で算出される以上のシランカップリング剤を用いることが望ましい。
・シランカップリング剤の量(g)
= 負極活物質の重量(g)× 負極活物質の比表面積(m/g)÷ シランカップリング剤の最小被覆面積(m/g)
・シランカップリング剤の最小被覆面積(m/g)
=6.02×1023×13×10-20 ÷ シランカップリング剤の分子量 (g/mol)
 シランカップリング剤を負極活物質の表面に付着させる方法は、例えば、負極23の負極合材層に、シランカップリング剤の溶液を直接噴霧して乾燥する方法、シランカップリング剤の溶液を気化させて、気化したシランカップリング剤を負極23の負極合材層に接触させる方法等が挙げられる。シランカップリング剤を負極活物質の表面に付着させる前に、負極活物質を含む負極合材層をオゾン処理することが好ましい。オゾン処理の方法としては、例えば、UVオゾン処理、大気プラズマ処理等があげられる。中でもUVオゾン処理が好ましい。UVオゾン処理は、例えば、UV洗浄表面改質装置(ASM1101N)((株)あすみ技研)を用いて行う。なお、負極23を作製する前の負極活物質の粉末に、シランカップリング剤を付着させてもよいし、負極合材スラリーにシランカップリング剤を添加し、負極活物質の表面に付着させても良い。
 本実施形態の二次電池20の充電後において、負極活物質の表面に形成されるシランカップリング剤由来の皮膜は、例えば、LiF、SiOx(0<x<2)、LiCO、LiO等の成分から構成される。皮膜にLiFやSiOx(0<x<2)が含まれることで、電気化学的に安定である一方でリチウムイオン導電性を示す皮膜になると考えられる。なお、前述したフルオロアルキルシランをシランカップリング剤として用いることで、皮膜中のLiF、SiOx(0<x<2)の割合が増加する傾向にある。
 上記SiOxは、皮膜の表面側から最深側に向かって、Siの価数が低価数となっていることが好ましい。また、上記LiFは、皮膜の最深側に偏在していることが好ましい。皮膜の最深側とは、負極活物質の表面との接触面側である。つまり、XPSのF1sスペクトルにおけるLiF由来の結合エネルギー(686eV)におけるピーク強度をIとし、未反応のシランカップリング剤(フルオロアルカン基)由来の結合エネルギー(688.8eV)におけるピーク強度をIとした場合、皮膜の最深側から前記電解液側の表層にかけて、ピーク強度がI>IからI<Iに変化する。これらの特徴は、例えば、前述したフルオロアルキルシランをシランカップリング剤として用いることで達成される。また、これらの特徴を備える皮膜は、電解液側表面に、未反応、あるいは還元度の低いシランカップリング剤が残存することを示しており、この残存する未反応、あるいは還元度の低いシランカップリング剤の効果により、電解液側の皮膜表層が、撥水化される。その結果、皮膜中、負極活物質表面への水の浸透を抑制することができ、電気化学的に安定な皮膜となる。シランカップリング剤の還元分解電位領域以上の電位で還元分解し、皮膜形成を行う添加剤を加えることで、未反応、あるいは還元度の低いシランカップリング剤の残存量を大きく増大させることが可能となる。このような添加剤として例えば、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物等が挙げられる。アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物を単に電解液中に添加しただけでは、水分解電位前にCaTFSI由来のCaF,LiTFSIアニオン由来のLiFは、ほとんど形成されず、皮膜成分の大部分は、水に対する溶解性の比較的高いLiCO,LiOとなる。
 本実施形態の二次電池20の充電後において、負極活物質の表面に形成されるシランカップリング剤由来の皮膜は、前記添加剤がアルカリ土類金属塩を含む場合、アルカリ土類金属種に対応し、さらにフッ化物(CaF,MgF,SrF、BaF)を含むようになる。アルカリ土類金属塩由来の皮膜成分であるフッ化物(CaF,MgF,SrF,BaF)は、シランカップリング剤由来のフッ化物であるLiFに比べ、水に対する溶解度が低い。そのため、アルカリ土類金属塩と組み合わせることによりシランカップリング剤由来の皮膜の水系電解液に対するロバスト性を向上させることができる。また、比較的高電位で還元分解するアルカリ土類金属塩が存在することにより、水系電解液中に溶存する溶存CO、溶存Oの電気化学的還元反応を抑制することができ、溶解度の比較的高い皮膜成分であるLiCO,LiOの形成を抑制することができるようになる。また、シランカップリング剤の還元分解電位領域以上の電位で還元分解するアルカリ土類金属塩を用いる場合、シランカップリング剤の還元反応の進行が抑制され、皮膜中に、シランカップリング剤の未反応、あるいは還元度の低い部位(フルオロアルカン基(F1s, 688.8eV(XPS)), C-Si-O基(Si2p, 102.6eV(XPS)),O-Si-C基(Si2p, 103.5eV(XPS))等)を意図的に多量に残存させることができるようになる。皮膜中にシランカップリング剤の未反応、あるいは還元度の低い部位が残存するようになった結果、負極活物質表面への水の浸透を抑制することができるようになる。以上の効果により、水系電解液に対するロバスト性をさらに向上させることができるようになり、電気化学的に安定な皮膜となる。これは、アルカリ土類金属塩を単に電解液中に添加しただけでは、皮膜形成時に、負極活物質表面への水の接触を回避できず、溶存CO,溶存Oの電気化学還元反応を抑制できず、水に対する溶解性の比較的高いLiCO,LiO成分比率の高い皮膜となる。そのため、水の還元分解が開始される前に十分に水系電解液に対してロバスト性のある電気化学的に安定な皮膜を形成させることはできない。あらかじめ負極活物質表面にシランカップリング剤を付着させ、負極活物質表面への水の接触を回避した状態で、初充電時に、負極活物質表面全体に均一な皮膜を形成させることができるシランカップリグ剤と組み合わせることがLiCO,LiO成分比率を低下させるために必要である。また、負極活物質表面への水の接触回避のためには、シランカップリング剤の還元分解電位領域以上で還元分解するアルカリ土類金属塩と組み合わせることが必要である。
 本実施形態の二次電池20の充電後において、負極活物質の表面に形成されるシランカップリング剤由来の皮膜は、前記添加剤がジカルボン酸、あるいは、カルボン酸無水物を含む場合、水系電解液中に溶存する溶存CO、溶存Oの電気化学的還元反応を抑制することができ、溶解度の比較的高い皮膜成分であるLiCO,LiOの形成を大幅に抑制することができるようになる。また、シランカップリング剤の還元分解電位領域以上の電位において還元分解するジカルボン酸、あるいはカルボン酸無水物が存在する場合、シランカップリング剤の還元反応の進行が抑制され、皮膜中に、シランカップリング剤の未反応、あるいは還元度の低い部位(フルオロアルカン基(F1s, 688.8eV(XPS)), C-Si-O基(Si2p, 102.6eV(XPS)),O-Si-C基(Si2p, 103.5eV(XPS))等)を意図的に多量に残存させることができるようになる。皮膜中にシランカップリング剤の未反応、あるいは還元度の低い部位が残存するようになった結果、負極活物質表面への水の浸透を抑制することができるようになる。以上の効果により、水系電解液に対するロバスト性をさらに向上させることができるようになり、電気化学的に安定な皮膜となる。これは、ジカルボン酸、カルボン酸無水物を単に電解液中に添加しただけでは、水の還元分解前にLiTFSIアニオン由来のLiFをほとんど形成させることができず、皮膜成分の大部分が水に対する溶解性の比較的高いLiCO,LiOとなり、負極活物質表面で水の還元分解が開始される前に十分に水系電解液に対してロバスト性のある電気化学的に安定な皮膜を形成させることはできない。あらかじめ負極活物質表面にシランカップリング剤を付着させ、負極活物質表面への水のアクセスを回避した状態で、初充電時に、負極活物質表面全体に均一な皮膜を形成させておくことが必要である。また、シランカップリング剤の還元分解電位領域以上で還元分解するジカルボン酸、カルボン酸無水物を選択することが重要である。
 セパレータ24は、リチウムイオンを透過し、且つ、正極と負極とを電気的に分離する機能を有するものであれば特に限定されず、例えば、樹脂や無機材料等で構成される多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリアミド、ポリアミドイミド、セルロース等が挙げられる。セパレータを構成する無機材料としては、ホウ珪酸ガラス、シリカ、アルミナ、チタニア等のガラス及びセラミックスが挙げられる。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [負極]
 負極活物質としてのハードカーボンと、結着材としてのPVDFとを、N-メチル-2-ピロリドン(NMP)中で96:4の固形分質量比で混合して、負極合材スラリーを調製した。次に、当該負極合材スラリーを銅箔からなる負極集電体上に塗布し、塗膜を乾燥させた後、圧延ローラーにより圧延することにより、電極を作製した。
 シランカップリング剤であるフルオロアルキルシラン溶液(組成:CF(CFCHCH-Si-(OCH)を入れたガラス瓶と当該電極を、蓋つき金属容器に入れ、当該金属容器を恒温槽に投入して、ドライルーム内(露点:-40℃以下)、120℃で12時間加熱した。当該処理により、フルオロアルキルシランを揮発させ、電極を構成する負極活物質表面にフルオロアルキルシランを付着させた。上記処理後の電極を所定のサイズに切断して、負極を得た。負極の塗布量、及び充填密度は32.3g/m、1.0gcm-3であった。
 [正極]
 正極活物質としてのLiCoOと、導電材としてのカーボンブラックと、結着剤としてのPVdFとを、NMP中で94:3:3の質量比で混合して、正極合材スラリーを調製した。次に、当該正極合材スラリーを、Ti箔からなる正極集電体上に塗布し、塗膜を乾燥させた後、圧延ローラーにより圧延した。そして、所定の電極サイズに切断して、正極を得た。正極の塗布量、及び充填密度は、それぞれ65.0g/cm、2.8gcm-3であった。
 [電解液]
 リチウム塩(LITFSI:LIBETI=0.7:0.3(モル比))と水とを、モル比で1:2となるように混合した溶液に、カルシウムビス(トリフルオロメタンスルホニル)イミド(CaTFSI)を1質量%添加して、電解液を調製した。
 [三電極式セル]
 上記負極を作用極、上記正極を対極、Ag/AgCl(3M NaCl)を参照極として、上記電解液を入れた三電極式セルを構築した。
 <実施例2>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドに代えてマレイン酸を1質量%添加したこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <実施例3>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドに代えてジグリコール酸を1質量%添加したこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <実施例4>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドに代えてグルタル酸を1質量%添加したこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <実施例5>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドに代えて無水コハク酸を1質量%添加したこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <実施例6>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドに代えてコハク酸を0.5質量%及び無水マレイン酸を0.5質量%添加したこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <比較例1>
 負極(作用極)の作製において、負極活物質表面にフルオロアルキルシランを付着させる処理を行わなかったこと、電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドを添加しなかったこと以外は、実施例1と同様にして、三電極式セルを構築した。
 <比較例2~7>
 比較例2~7は、負極(作用極)の作製において、負極活物質表面にフルオロアルキルシランを付着させる処理を行わなかったこと以外は、実施例1~6と同様である。
 <比較例8>
 電解液の調製において、カルシウムビス(トリフルオロメタンスルホニル)イミドを添加しなかったこと以外は、実施例1と同様にして、三電極式セルを構築した。
 実施例1~6及び比較例1~8の三電極式セルを用いてリニアスイープボルタンメトリー測定を行い、負極のOCPを測定した。測定条件を、以下に示した。
 開始電位:OCV
 電位走査範囲:-3.238V~OCV vs.Ag/AgCl(3M NaCl)
 OCP測定時間:-3.238Vvs.Ag/AgCl(3M NaCl)へ電位掃引
         後から30分
 掃引速度:0.1mV/sec
 測定温度:25℃
 実施例1~6及び比較例1~8における0分後の負極のOCP(-3.238Vへ電位掃引後のOCP)、1分後の負極のOCP(-3.238Vへ電位掃引後から1分後のOCP)、10分後の負極のOCP(-3.238Vへ電位掃引後から10分後のOCP)、20分後の負極のOCP(-3.238Vへ電位掃引後から20分後のOCP)の結果を表1に示す。表1に示す負極のOCPはリチウム基準(vs.Li/Li)に換算した値である。
Figure JPOXMLDOC01-appb-T000010
 表1において、水系電解液の組成が同じである実施例1と比較例2、実施例2と比較例3、実施例3と比較例4、実施例4と比較例5、実施例5と比較例6、実施例6と比較例7をそれぞれ比較すると、0分後~20分後までの負極のOCPは、いずれも実施例の方が低い値を示した。
 実施例では、負極活物質表面へフルオロアルキルシランを付着させることに加え、水系電解液にアルカリ土類金属塩やジカルボン酸やカルボン酸無水物を添加することにより、負極活物質へのリチウムイオンの吸蔵性が向上しさらに吸蔵したリチウムイオンが負極活物質内に蓄えられやすくなっていることを示している。一方、比較例1~7の0分後から20分後までの負極のOCPの変化は急激であった。これは、リチウムイオンの吸蔵はほとんど起こっていない、或いは起こっているとしても、吸蔵したリチウムイオンが負極活物質内に蓄えられず、瞬時に放出されていることを示している。したがって、負極活物質表面にシランカップリング剤を付着させたことに加え、水系電解液にアルカリ土類金属塩やジカルボン酸やカルボン酸無水物を添加した実施例1~6は、負極活物質表面にシランカップリング剤を付着させていない比較例1~7に比べて、自己放電が抑制されていると言える。さらに、実施例1~6は、負極活物質表面にシランカップリング剤を付着させているが、水系電解液にアルカリ土類金属塩やジカルボン酸やカルボン酸無水物を添加していない比較例8と比べて、10分後及び20分後の負極のOCPが低い値であった。すなわち、実施例1~6の方が、20分経過してもより多くのリチウムイオンが負極活物質内に蓄えられていたことを示している。したがって、水系電解液にアルカリ土類金属塩やジカルボン酸やカルボン酸無水物を添加した実施例1~6の方が、水系電解液に上記化合物を添加していない比較例8より、自己放電がより抑制されると言える。これは、フルオロアルキルシランを付着させたことに加え、CaTFSI,マレイン酸、ジグリコール酸、グルタル酸、無水コハク酸、そして、コハク酸と無水マレイン酸のみを添加した実施例1~6は、比較的高電位で還元分解する添加剤が存在することで、溶存O,溶存COの電気化学還元反応が抑制され、LiCO,LiOの成分比率を大幅に削減することができるようになり、水系電解液に対する皮膜のロバスト性が高めることができ、電気化学的に安定な皮膜を形成することができるためである。一方で、CaTFSI,マレイン酸、ジグリコール酸、グルタル酸、無水コハク酸、そして、コハク酸と無水マレイン酸のみを添加した比較例2~7は、水の還元分解前にCaTFSI由来のCaF、LiTFSI由来のLiFをほとんど形成させることができず、皮膜成分の大部分は、水に対する溶解性の比較的高いLiCO,LiOとなる。また、フルオロアルキルシランのみを付着させた比較例8は、フルオロアルキルシラン由来の皮膜で水の還元分解前に、CaTFSI,マレイン酸、ジグリコール酸、グルタル酸、無水コハク酸、そして、コハク酸と無水マレイン酸のみを添加した場合に比べ、多くのLiFで負極活物質表面を覆うことができるが、フルオロアルキルシランが還元分解されると同時に負極活物質表面の撥水性が低下し、溶存O、溶存COの電気化学還元反応が進行し、比較的溶解度の高いLiCO,LiO成分比率の高い皮膜となる。そのため、CaTFSI,マレイン酸、ジグリコール酸、グルタル酸、無水コハク酸、そして、コハク酸と無水マレイン酸のみを添加した比較例2~7,フルオロアルキルシランを付着させたのみの比較例8は、水系電解液に対する皮膜のロバスト性が低く、電気化学的に不安定な皮膜となる。そのため、自己放電を大きく抑制することが難しい。
 <実施例7>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI)と水とを、モル比で1:1.8となるように混合した溶液に、ジメチルカーボネート(DMC)を3.34質量%及びフルオロエチレンカーボネート(FEC)を3.34質量%添加して、電解液を調製した。なお、有機カーボネート(DMC及びFEC)と水との割合は、モル比で、0.22:1.8である。
 <実施例8>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI)と水とを、モル比で1:2となるように混合した溶液に、ジメチルカーボネート(DMC)を1.65質量%及びフルオロエチレンカーボネート(FEC)を1.65質量%添加して、電解液を調製した。なお、有機カーボネート(DMC及びFEC)と水との割合は、モル比で、0.11:2.0である。
 <実施例9>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI:LIBETI=0.7:0.3)と水とを、モル比で1:2となるように混合した溶液に、ジメチルカーボネート(DMC)を1.0質量%及びフルオロエチレンカーボネート(FEC)を1.0質量%添加して、電解液を調製した。なお、有機カーボネート(DMC及びFEC)と水との割合は、モル比で、0.07:2.0である。
 <実施例10>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI:LIBETI=0.7:0.3)と水とを、モル比で1:2となるように混合した溶液に、ジメチルカーボネート(DMC)を1.65質量%及びフルオロエチレンカーボネート(FEC)を1.65質量%添加して、電解液を調製した。なお、有機カーボネート(DMC及びFEC)と水との割合は、モル比で、0.11:2.0である。
 <実施例11>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI:LIBETI=0.7:0.3)と水とを、モル比で1:2となるように混合した溶液に、フルオロエチレンカーボネート(FEC)を1.0質量%添加して、電解液を調製した。なお、有機カーボネート(FEC)と水との割合は、モル比で、0.03:2.0である。
 <実施例12>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI:LIBETI=0.7:0.3)と水とを、モル比で1:2となるように混合した溶液に、フルオロエチレンカーボネート(FEC)を2.0質量%添加して、電解液を調製した。なお、有機カーボネート(FEC)と水との割合は、モル比で、0.07:2.0である。
 <実施例13>
 下記電解液を用いたこと以外は、実施例1と同様にして、三電極式セルを構築した。リチウム塩(LITFSI:LIBETI=0.7:0.3)と水とを、モル比で1:2となるように混合した溶液に、ビニリデンカーボネート(VC)を2.0質量%添加して、電解液を調製した。なお、有機カーボネート(VC)と水との割合は、モル比で、0.08:2である。
 <比較例9~15>
 比較例8~13は、負極(作用極)の作製において、負極活物質表面にフルオロアルキルシランを付着させる処理を行わなかったこと以外は、実施例7~13と同様である。
 実施例7~13、比較例9~15の三電極式セルを用いてサイクリックボルタンメトリー測定を行い、1サイクル目の充放電効率を評価した。測定条件を、以下に示した。
 開始電位:OCV
 第一折り返し電位:-2.950V vs.Ag/AgCl(3M NaCl)
          (Li基準で0.288V)
 第二折り返し電位:-0.238V vs.Ag/AgCl(3M NaCl)
          (Li基準で3V)
 サイクル数:2サイクル
 掃引速度:0.5mV/sec
 測定温度:25℃
 充放電効率:(酸化電気量(C)/還元電気量(C))×100
(還元電気量には、シランカップリング剤および添加剤由来の還元電気量を含む。)
 また、別途、実施例7~10及び比較例9~12の三電極式セルを用いて、リニアスイープボルタンメトリー測定を行い、負極のOCPを測定した。測定条件を、以下に示した。
 開始電位:OCV
 電位走査範囲:-3.238V~OCV vs.Ag/AgCl(3M NaCl)
 OCP測定時間:-3.238Vvs.Ag/AgCl(3M NaCl)へ電位掃引
         後から30分
 掃引速度:0.1mV/sec
 測定温度:25℃
 実施例7~10及び比較例9~12における0分後の負極のOCP(-3.238Vへ電位掃引後のOCP)、1分後の負極のOCP(-3.238Vへ電位掃引後から1分後のOCP)、10分後の負極のOCP(-3.238Vへ電位掃引後から10分後のOCP)、20分後の負極のOCP(-3.238Vへ電位掃引後から20分後のOCP)、30分後の負極のOCP(-3.238Vへ電位掃引後から30分後のOCP)の結果を表2に示す。表2に示す負極のOCPはリチウム基準(vs.Li/Li)に換算した値である。
Figure JPOXMLDOC01-appb-T000011
 また、実施例7~13及び比較例9~15における1サイクル目の充放電効率の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000012
 表2において、水系電解液の組成が同じである実施例7と比較例9、実施例8と比較例10、実施例9と比較例11、実施例10と比較例12をそれぞれ比較すると、0分後~30分後の負極のOCPは、いずれも実施例の方が低い値を示した。したがって、単に水系電解液に有機カーボネートを添加するより、負極活物質の表面にシランカップリング剤を付着させることと、水系電解液に有機カーボネートを添加することとを組合せることで、二次電池の自己放電がより抑制されると言える。
 また、表3から分かるように、負極活物質の表面にシランカップリング剤を付着させることと、水系電解液に有機カーボネートを添加することとを組み合わせた実施例7~13は、炭素系材料を負極活物質とする場合でも、リチウム吸蔵および放出が行われ、充放電効率が算出された。一方、単に、水系電解液に有機カーボネートを添加した比較例9~15では、炭素系材料を負極活物質とする場合、リチウム吸蔵は行われるが、リチウム放出は行われず、充放電効率が0となった。
 20 二次電池
 21 電池ケース
 22 正極
 23 負極
 24 セパレータ
 25 ガスケット
 26 封口板
 27 電解液

Claims (26)

  1.  正極と、負極と、電解液とを備える二次電池であって、
     前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、
     前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤が付着している、二次電池。
  2.  前記負極活物質は、主成分としての炭素材料を含む、請求項1に記載の二次電池。
  3.  前記シランカップリング剤は、フッ素を構成元素として含む、請求項1又は2に記載の二次電池。
  4.  前記シランカップリング剤は、水の還元分解電位より貴な電位で還元分解する、請求項1~3のいずれか1項に記載の二次電池。
  5.  前記シランカップリング剤の還元分解電位は、Li基準で2.1V以上である、請求項4に記載の二次電池。
  6.  前記シランカップリング剤は、フルオロアルキルシランである、請求項1~5のいずれか1項に記載の二次電池。
  7.  前記フルオロアルキルシランは、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Y1は、炭素数3~10、フッ素数7~21のフルオロアルキル基であり、直鎖でも分岐状でもよく、また、エーテル結合、エステル結合、ペプチド結合、ビニル結合、スルホンアミド結合、水素原子のうちの少なくとも1種を含んでいてもよく、Y2は、(CHで表され、nは0~6の整数であり、直鎖でも分岐状でもよく、R1、R2及びR3はそれぞれ独立して、アルコキシ基、アルキル基、アミノ基、ハロゲン原子、又は水素原子である)で表される、請求項4に記載の二次電池。
  8.  前記フルオロアルキルシランは、C11CHCH-Si(OCH、C13CHCH-Si(OCH、C17CHCH-Si(OCHのうちの少なくともいずれか1つを含む、請求項6~7のいずれか1項に記載の二次電池。
  9.  前記シランカップリング剤の含有量は、前記負極活物質の質量に対して0.01質量%~10質量%の範囲である、請求項1~8のいずれか1項に記載の二次電池。
  10.  正極と、負極と、電解液とを備える二次電池であって、
     前記電解液は、水、リチウム塩、及び添加剤を含み、前記添加剤は、アルカリ土類金属塩、ジカルボン酸、カルボン酸無水物、有機カーボネートのうちの少なくともいずれか1つを含み、
     前記負極は、負極活物質を含み、前記負極活物質の表面には、シランカップリング剤の還元分解による皮膜が形成されている、二次電池。
  11.  前記皮膜は、LiF及びSiOx(0<x<2)を含む、請求項10に記載の二次電池。
  12. 前記添加剤がアルカリ土類金属塩を含み、
     前記皮膜はCaF,MgF,SrFまたはBaFのうちの少なくともいずれか1つを含む、請求項11に記載の二次電池。
  13.  前記皮膜は、フルオロアルカン基を含むシランカップリング剤を含む、請求項10~12のいずれか一項に記載の二次電池。
  14.  前記皮膜は、シランカップリング剤およびフルオロアルカン基を含むシランカップリング剤をのうち少なくとも一方を含み、
     前記シランカップリング剤および前記フルオロアルカン基を含むシランカップリング剤は、前記皮膜の最深側よりも前記皮膜の電解液側の表層側に偏在する、請求項10~13のいずれか一項に記載の二次電池。
  15.  前記皮膜は、LiFが含まれ、
     XPSのF1sスペクトルにおける前記LiF由来の結合エネルギー(686eV)におけるピーク強度をIとし、前記フルオロアルカン基由来の結合エネルギー(688.8eV)におけるピーク強度をIとした場合、前記皮膜の最深側から前記電解液側の表層にかけて、ピーク強度がI>IからI<Iに変化する、請求項14に記載の二次電池。
  16.  前記添加剤は、有機カーボネートを含み、
     前記有機カーボネートの還元分解による皮膜が前記シランカップリング剤の還元分解による皮膜の上に堆積している、請求項10から15のいずれか1項に記載の二次電池。
  17.  前記添加剤は、有機カーボネートを含み、
     前記皮膜は、LiFが含まれ、
     XPSのF1sスペクトルにおける前記LiF由来の結合エネルギー(686eV)におけるピーク強度をIとし、前記フルオロアルカン基由来の結合エネルギー(688.8eV)におけるピーク強度をIとした場合、前記皮膜の前記電解液側の表層におけるピーク強度がI>Iである、請求項13に記載の二次電池。
  18.  前記リチウム塩は、リチウムイオンとイミドアニオンとを有する塩を含む、請求項1~17のいずれか1項に記載の二次電池。
  19.  前記リチウム塩は、リチウムビス(トリフルオロメタンスルホニル)イミドを含む、請求項1~18のいずれか1項に記載の二次電池。
  20.  前記有機カーボネートは、前記リチウム塩に対して、1:0.01~1:5の範囲である第1のモル比で存在し、前記水は、前記リチウム塩に対して1:0.5~1:4の範囲である第2のモル比で存在している、請求項1~19のいずれか1項に記載の二次電池。
  21.  前記第1のモル比が、1:0.05~1:1の範囲である、請求項20に記載の二次電池。
  22.  前記第2のモル比が、1:1~1:2.5の範囲である、請求項20又は21に記載の二次電池。
  23.  前記有機カーボネートは、前記シランカップリング剤の還元分解電位より卑な電位で還元分解する、請求項1~22のいずれか1項に記載の二次電池。
  24.  前記有機カーボネートの還元分解電位は、Li基準で2.2V以下である、請求項23に記載の二次電池。
  25.  前記有機カーボネートは環状カーボネートを含む、請求項1~24のいずれか1項に記載の二次電池。
  26.  前記有機カーボネートは、フッ素を構成元素として含む、請求項1~25のいずれか1項に記載の二次電池。
PCT/JP2020/002666 2019-03-27 2020-01-27 二次電池 WO2020195092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024859.XA CN113632287A (zh) 2019-03-27 2020-01-27 二次电池
JP2021508138A JP7357235B2 (ja) 2019-03-27 2020-01-27 二次電池
US17/442,031 US20220173434A1 (en) 2019-03-27 2020-01-27 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061485 2019-03-27
JP2019061485 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195092A1 true WO2020195092A1 (ja) 2020-10-01

Family

ID=72609796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002666 WO2020195092A1 (ja) 2019-03-27 2020-01-27 二次電池

Country Status (4)

Country Link
US (1) US20220173434A1 (ja)
JP (1) JP7357235B2 (ja)
CN (1) CN113632287A (ja)
WO (1) WO2020195092A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021152999A1 (ja) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 水系二次電池用負極活物質、水系二次電池用負極及び水系二次電池
WO2021152998A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 水系二次電池用負極活物質、水系二次電池用負極及び水系二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614979A (zh) 2019-03-26 2021-11-05 松下知识产权经营株式会社 二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109549A (ja) * 2005-10-14 2007-04-26 Toyota Central Res & Dev Lab Inc 水系リチウム二次電池
WO2009008280A1 (ja) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho 水系リチウム二次電池
WO2017122597A1 (ja) * 2016-01-14 2017-07-20 国立大学法人東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
JP2019046687A (ja) * 2017-09-04 2019-03-22 トヨタ自動車株式会社 水系リチウムイオン二次電池用負極の製造方法、及び、水系リチウムイオン二次電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354104A (ja) * 1998-04-09 1999-12-24 Denso Corp 非水電解液二次電池及び電極の製造方法
JP5408702B2 (ja) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 リチウムイオン電池
JP2013131374A (ja) 2011-12-21 2013-07-04 Panasonic Corp 複合素子
JP6085994B2 (ja) * 2012-04-27 2017-03-01 日産自動車株式会社 非水電解質二次電池の製造方法
JP2015118871A (ja) * 2013-12-19 2015-06-25 凸版印刷株式会社 非水電解質二次電池用負極、及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109549A (ja) * 2005-10-14 2007-04-26 Toyota Central Res & Dev Lab Inc 水系リチウム二次電池
WO2009008280A1 (ja) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho 水系リチウム二次電池
WO2017122597A1 (ja) * 2016-01-14 2017-07-20 国立大学法人東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
JP2019046687A (ja) * 2017-09-04 2019-03-22 トヨタ自動車株式会社 水系リチウムイオン二次電池用負極の製造方法、及び、水系リチウムイオン二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021152999A1 (ja) * 2020-01-30 2021-08-05 パナソニックIpマネジメント株式会社 水系二次電池用負極活物質、水系二次電池用負極及び水系二次電池
WO2021152998A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 水系二次電池用負極活物質、水系二次電池用負極及び水系二次電池

Also Published As

Publication number Publication date
JP7357235B2 (ja) 2023-10-06
CN113632287A (zh) 2021-11-09
JPWO2020195092A1 (ja) 2020-10-01
US20220173434A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
CN104577197B (zh) 非水电解质二次电池
JP6846627B2 (ja) 正極活物質、および、電池
JP5601338B2 (ja) 正極活物質、及びそれを用いたリチウムイオン二次電池
WO2020195092A1 (ja) 二次電池
JP7065341B2 (ja) 正極活物質、および、電池
US20140110641A1 (en) Method for producing active material particles for lithium ion secondary battery, electrode and lithium ion secondary battery
CN110383557A (zh) 非水电解液和非水电解液二次电池
WO2014155988A1 (ja) 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池
KR101084068B1 (ko) 리튬 이차 전지
JPWO2017047018A1 (ja) 電池
KR20160059948A (ko) 리튬 이차 전지용 양극 활물질, 그리고 이를 포함하는 양극 활물질층 및 리튬 이차 전지
JP2020043052A (ja) 正極活物質およびそれを備えた電池
JP2021073666A (ja) 正極活物質、および、電池
JPWO2019065497A1 (ja) 水系二次電池
JP2009187880A (ja) 非水電解液二次電池
WO2020195025A1 (ja) 二次電池
CN115053372B (zh) 水系二次电池用负极活性物质、水系二次电池用负极及水系二次电池
WO2020066263A1 (ja) 二次電池用正極活物質及び二次電池
JPWO2019225081A1 (ja) 電解液及び二次電池
CN115023833B (zh) 水系二次电池用负极活性物质、水系二次电池用负极及水系二次电池
JP2015176644A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021059725A1 (ja) 二次電池
WO2022070650A1 (ja) リチウムイオン二次電池
WO2021059726A1 (ja) 二次電池
WO2021059727A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778874

Country of ref document: EP

Kind code of ref document: A1