WO2020194972A1 - 絶縁シート - Google Patents

絶縁シート Download PDF

Info

Publication number
WO2020194972A1
WO2020194972A1 PCT/JP2019/051286 JP2019051286W WO2020194972A1 WO 2020194972 A1 WO2020194972 A1 WO 2020194972A1 JP 2019051286 W JP2019051286 W JP 2019051286W WO 2020194972 A1 WO2020194972 A1 WO 2020194972A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating sheet
insulating
particles
binder resin
volume
Prior art date
Application number
PCT/JP2019/051286
Other languages
English (en)
French (fr)
Inventor
譲章 前田
池田 吉紀
畳開 真之
拓哉 村上
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201980094332.1A priority Critical patent/CN113544798B/zh
Priority to US17/440,893 priority patent/US20220165457A1/en
Priority to JP2019572707A priority patent/JP6755421B1/ja
Priority to KR1020217020887A priority patent/KR102568478B1/ko
Priority to EP19921727.4A priority patent/EP3944263B1/en
Publication of WO2020194972A1 publication Critical patent/WO2020194972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen

Definitions

  • the present disclosure is to rapidly diffuse the heat generated in heat-generating components such as semiconductor elements, power supplies, and light sources inside electrical products to mitigate a local temperature rise, or to transport heat to a location away from the heat-generating source. It relates to an insulating sheet having excellent in-plane thermal conductivity and thermal transport characteristics.
  • Patent Document 1 As a method for increasing the thermal conductivity of a resin material having insulating properties and flexibility, a composite of an inorganic filler, particularly boron nitride and a resin material, has been proposed.
  • the in-plane thermal conductivity of 24 W / (m ⁇ K) is achieved by containing 85% by volume of boron nitride in the thermoplastic elastomer and liquid paraffin.
  • Patent Document 2 80% by volume of boron nitride is mixed with the fluororesin to achieve an in-plane thermal conductivity of 35 W / (m ⁇ K).
  • Patent Document 3 an in-plane thermal conductivity of 42 W / (m ⁇ K) is achieved by mixing 83% by volume of boron nitride with an epoxy resin having a naphthalene structure and heat-curing it.
  • the present disclosure aims to provide an insulating sheet having high thermal conductivity in the in-plane direction.
  • a method for producing an insulating sheet which comprises a molding step of shaping and drying the slurry after the mixing step into a sheet to form an insulating sheet precursor, and a roll pressing step of roll-pressing the insulating sheet precursor.
  • the insulating particles include flat particles.
  • the insulating particles contain 50% by volume or more of boron nitride.
  • FIG. 1 shows a schematic cross-sectional view of an insulating sheet according to one embodiment of the present disclosure.
  • FIG. 2 shows a schematic cross-sectional view of the insulating sheet according to another embodiment of the present disclosure.
  • FIG. 3 shows a schematic view of a cross section of an insulating sheet according to the prior art.
  • FIG. 4 shows an SEM photograph of a cross section perpendicular to the surface direction of the insulating sheet according to the first embodiment.
  • FIG. 5 shows an SEM photograph of a cross section of the insulating sheet according to the second embodiment perpendicular to the plane direction.
  • FIG. 6 shows an SEM photograph of a cross section of the insulating sheet according to the third embodiment perpendicular to the plane direction.
  • FIG. 1 shows a schematic cross-sectional view of an insulating sheet according to one embodiment of the present disclosure.
  • FIG. 2 shows a schematic cross-sectional view of the insulating sheet according to another embodiment of the present disclosure.
  • FIG. 3 shows a
  • FIG. 7 shows an SEM photograph of a cross section of the insulating sheet according to the fourth embodiment perpendicular to the plane direction.
  • FIG. 8 shows an SEM photograph of a cross section of the insulating sheet according to the fifth embodiment perpendicular to the plane direction.
  • FIG. 9 shows an SEM image of the insulating sheet precursor according to Reference Example 1 in a cross section perpendicular to the plane direction.
  • FIG. 10 shows an SEM photograph of a cross section of the insulating sheet according to Comparative Example 1 perpendicular to the plane direction.
  • FIG. 11 shows an SEM photograph of a cross section of the insulating sheet according to Comparative Example 2 perpendicular to the plane direction.
  • the insulating sheet of the present disclosure is When the total of the insulating particles, the binder resin, and the voids is 100 area% for the entire cross section that contains the insulating particles and the binder resin and is perpendicular to the plane direction. 75-97 area% insulating particles, It contains 3 to 25 area% of binder resin and 10 area% or less of voids.
  • the insulating sheet of the present disclosure has a relatively high filling rate of insulating particles and a relatively high thermal conductivity in the plane direction.
  • FIG. 1 shows a schematic view of a cross section perpendicular to the plane direction of one embodiment of the insulating sheet according to the present disclosure.
  • the filling rate of the insulating particles 11 is relatively high because the content of the binder resin 12 is reduced.
  • the distance between the particles is relatively small due to the high filling rate of the insulating particles 11, resulting in high thermal conductivity in the in-plane direction. Be done.
  • the thermal resistance caused by the resin is suppressed by reducing the content of the binder resin 12.
  • the voids 13 in the sheet are also relatively reduced.
  • the filling rate of the insulating particles 11 is further increased, and it is considered that the effect of increasing the thermal conductivity in the in-plane direction is further increased.
  • the insulating sheet according to the present disclosure can be obtained, for example, by performing a roll press treatment on an insulating sheet precursor containing insulating particles and a binder resin.
  • the sheet-shaped insulating sheet precursor contains a large amount of air bubbles.
  • the insulating particles inside the sheet can be oriented in the in-plane direction of the sheet and the bubbles inside the insulating sheet precursor can be reduced, resulting in the result. It is considered that the thermal conductivity of the insulating sheet in the in-plane direction is enhanced.
  • FIG. 3 shows a schematic view of a cross section of the insulating sheet 30 according to the prior art, which is perpendicular to the plane direction.
  • the proportion of the binder resin 32 is relatively high, and the voids 33 between the particles are relatively large, so that the filling rate of the insulating particles 31 is relatively low.
  • the distance between the insulating particles 31 is large, it is considered that high thermal conductivity in the plane direction cannot be obtained.
  • the insulating sheet according to the present disclosure contains insulating particles.
  • the insulating sheet according to the present disclosure contains 75 to 97 area% of the insulating particles in the entire cross section perpendicular to the plane direction, where the total of the insulating particles, the binder resin, and the voids is 100 area%. ..
  • the content of the insulating particles is 75 area% or more, good thermal conductivity is obtained, and when it is 97 area% or less, an increase in the viscosity of the resin composition is suppressed, and molding is easy. To be secured.
  • the insulating particles contained in the insulating sheet according to the present disclosure are 80 area% when the total of the insulating particles, the binder resin, and the voids is 100 area% with respect to the entire cross section perpendicular to the plane direction. 85 area% or more, 90 area% or more, and / or 96 area% or less, 95 area% or less, 94 area% or less, 93 area% or less, 92 area% or less, or 91 area% or less. It may be.
  • the "area%" of the insulating particles is perpendicular to the surface direction of the insulating sheet, where the total of the insulating particles, the binder resin, and the voids is 100 area% for the entire cross section perpendicular to the surface direction. It can be calculated by taking a cross section with a scanning electron microscope (SEM) and measuring the total area of insulating particles present in a certain area in the acquired image.
  • SEM scanning electron microscope
  • the insulating particles are set by setting the fixed area so that the additive is not included in the fixed area.
  • the binder resin, and the voids can be calculated as "area%" of the insulating particles with the total of 100 area%.
  • the insulating particles are not particularly limited, and for example, carbon nitride, aluminum nitride, aluminum oxide, magnesium oxide, silicon nitride, silicon carbide, metallic silicon particles whose surface is insulated, and carbon whose surface is coated with an insulating material such as a resin.
  • Examples include fibers and graphite, and polymer-based fillers. From the viewpoint of thermal conductivity and insulating properties in the plane direction, it is preferable that the insulating particles are boron nitride, particularly hexagonal boron nitride.
  • the average particle size of the insulating particles is preferably 1 to 200 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 5 to 100 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the average particle size is the median diameter measured by the laser diffraction method using a laser diffraction / scattering type particle size distribution measuring device (when a certain powder is divided into two from a certain particle size, the particles are larger than the particle size.
  • the particle size is such that small particles are equal in quantity, also commonly referred to as D50).
  • the insulating particles include deformed flat particles.
  • the thermal conductivity in the plane direction is further improved.
  • the reason is that the voids inside the sheet are further reduced by the deformation of the flat particles.
  • the flat particles 21 are deformed, thereby filling the gaps between the particles, and as a result.
  • the void 23 is further reduced. It is also conceivable that the deformation of the flat particles 21 during the roll press treatment promotes the discharge of the bubbles trapped between the particles to the outside of the sheet, further promoting the reduction of the voids 23.
  • the method for obtaining an insulating sheet containing the deformed flat particles is not particularly limited, and for example, a roll press treatment is performed on the insulating sheet precursor containing the insulating particles containing the flat particles.
  • a roll press treatment is performed on the insulating sheet precursor containing the insulating particles containing the flat particles.
  • the deformation of the particles becomes more remarkable according to the method of performing the roll press treatment on the insulating sheet precursor in which the insulating particles contain flat particles and the insulating particles are highly filled. Be done.
  • it is believed that such a method results in a relatively high shear stress applied between the flat particles, resulting in accelerated deformation of the flat particles. Taking the embodiment of FIG. 2 as an example, in FIG.
  • the content of the binder resin 22 is relatively low and the insulating particles are relatively densely packed.
  • high shear stress is likely to act between the insulating particles, so that it is considered that the insulating particles are particularly easily deformed.
  • the insulating particles may be deformed, but in this case, the degree of deformation is relatively small, and it is considered that the porosity has not been reduced.
  • the flat particles When the insulating particles include flat particles, that is, scaly particles or flake-like particles, the flat particles preferably occupy 50% by volume or more per 100% by volume of the total insulating particles. When it is 50% by volume or more, good thermal conductivity in the in-plane direction can be ensured.
  • the flat particles per 100% by volume of the insulating particles are more preferably 60% by volume or more, further preferably 70% by volume or more, still more preferably 80% by volume or more, and particularly preferably 90% by volume or more, most preferably.
  • the insulating particles consist of flat particles.
  • the aspect ratio of the flat particles is preferably 10 to 1000.
  • the aspect ratio is 10 or more, it is preferable because important orientation for enhancing the thermal diffusivity is secured and high thermal diffusivity can be obtained.
  • a filler having an aspect ratio of 1000 or less is preferable from the viewpoint of ease of processing because an increase in the viscosity of the composition due to an increase in the specific surface area is suppressed.
  • the aspect ratio is the value obtained by dividing the major axis of the particles by the thickness of the particles, that is, the major axis / thickness.
  • the aspect ratio is 1, and the aspect ratio increases as the degree of flatness increases.
  • the aspect ratio can be obtained by measuring the major axis and thickness of the particles at a magnification of 1500 times using a scanning electron microscope and calculating the major axis / thickness.
  • the average particle size of the flat particles is, for example, 1 ⁇ m or more, preferably 1 to 200 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 5 to 100 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • boron nitride hexagonal boron nitride (h-BN).
  • the average particle size of the boron nitride particles is, for example, 1 ⁇ m or more, preferably 1 to 200 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 5 to 100 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the specific surface area of boron nitride is small and compatibility with the resin is ensured, which is preferable.
  • the uniformity of thickness can be ensured during sheet molding. preferable.
  • boron nitride boron nitride having a single average particle size may be used, or a plurality of types of boron nitride having different average particle sizes may be mixed and used.
  • the aspect ratio of the boron nitride particles is preferably 10 to 1000.
  • insulating particles other than the boron nitride particles may be used in combination. Even in that case, the boron nitride particles preferably occupy 50% by volume or more per 100% by volume of the total insulating inorganic particles. When it is 50% by volume or more, good thermal conductivity in the in-plane direction is ensured, which is preferable.
  • the boron nitride particles per 100% by volume of the insulating inorganic particles are more preferably 60% by volume or more, further preferably 70% by volume or more, still more preferably 80% by volume, and particularly preferably 90% by volume or more.
  • boron nitride particles and ceramic particles having isotropic thermal conductivity are used in combination as insulating inorganic particles, it is necessary to balance the thermal conductivity in the thickness direction and the thermal conductivity in the in-plane direction of the insulating sheet. This is a preferred embodiment because it can be adjusted accordingly. Further, since the boron nitride particles are an expensive material, it is convenient to use them together with an inexpensive material such as metallic silicon particles whose surface is thermally oxidized to insulate. In this case, the raw material cost of the insulating sheet is used. This is a preferable embodiment because the balance between the heat conductivity and the thermal conductivity can be adjusted as needed.
  • the insulating sheet according to the present disclosure contains a binder resin.
  • the insulating sheet according to the present disclosure contains 3 to 25 area% of the binder resin when the total of the insulating particles, the binder resin, and the voids is 100 area% for the entire cross section perpendicular to the plane direction.
  • the content of the binder resin is 25 area% or less, a sufficiently high thermal conductivity can be ensured, and when it is 3 area% or more, moldability can be ensured. Further, when the content of the binder resin is 3 area% or more, it is considered that the voids are reduced by filling the gaps between the insulating particles with the binder resin.
  • the binder resin contained in the insulating sheet according to the present disclosure is 5 area% or more when the total of the insulating particles, the binder resin and the voids is 100 area% with respect to the entire cross section perpendicular to the plane direction. 5, 5 area% or more, 6 area% or more, 7 area% or more, or 8 area% or more, and / or 24 area% or less, 20 area% or less, 15 area% or less, 12 area% or less, or It may be 10 area% or less.
  • the content of the binder resin is 5 area% or more, it is considered that a sufficient amount of the binder resin is secured to fill the gaps between the insulating particles and the voids are further reduced.
  • the "area%" of the binder resin when the total of the insulating particles, the binder resin, and the voids is 100 area% with respect to the entire cross section perpendicular to the surface direction is the cross section perpendicular to the surface direction of the insulating sheet.
  • the insulating sheet has additives other than the insulating particles and the binder resin
  • the insulating particles are set by setting the fixed area so that the additive is not included in the fixed area.
  • the binder resin, and the "area%" of the binder resin when the total of the voids is 100 area% can be calculated.
  • the binder resin according to the present disclosure is not particularly limited.
  • the binder resin include aramid resin (aromatic polyamide), polyvinylidene fluoride (PVDF), silicone resin, polyimide resin, polytetrafluoroethylene (PTFE) resin, phenol resin, epoxy resin, and liquid crystal polymer (LCP) resin.
  • Polyarylate (PAR) resin, polyetherimide (PEI) resin, polyethersulfone (PES) resin, polyamideimide (PAI) resin, polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) resin, and polybenzoxazole. (PBO) can be mentioned.
  • the binder resin is particularly preferably an aromatic polyamide. Since aromatic polyamide has excellent strength as compared with aliphatic polyamide, when aromatic polyamide is used as a binder resin, an insulating sheet having particularly excellent retention of insulating particles and stability of sheet shape. Can be provided.
  • the binder resin has excellent properties in heat resistance and / or flame retardancy.
  • the melting point or thermal decomposition temperature of the binder resin is preferably 150 ° C. or higher.
  • the melting point of the binder resin is measured with a differential scanning calorimeter.
  • the melting point of the binder resin is more preferably 200 ° C. or higher, further preferably 250 ° C. or higher, and particularly preferably 300 ° C. or higher.
  • the lower limit of the melting point of the binder resin is not particularly limited, but is, for example, 600 ° C. or lower, 500 ° C. or lower, or 400 ° C. or lower.
  • the thermal decomposition temperature of the binder is measured with a differential scanning calorimeter.
  • the thermal decomposition temperature of the binder resin is more preferably 200 ° C. or higher, further preferably 300 ° C. or higher, particularly preferably 400 ° C. or higher, and most preferably 500 ° C. or higher.
  • the lower limit of the thermal decomposition temperature of the binder resin is not particularly limited, but is, for example, 1000 ° C. or lower, 900 ° C. or lower, or 800 ° C. or lower.
  • the heat resistant temperature of the resin material is also required to be high.
  • heat resistance of around 300 ° C. is required. Therefore, a resin having a heat resistance of 300 ° C. or higher can be suitably used for in-vehicle applications, especially for heat dissipation around power semiconductors. Examples of such a resin include an aramid resin.
  • the binder resin is a thermoplastic binder resin. Since the insulating sheet containing the thermoplastic resin does not require thermosetting during production, it has excellent flexibility and can be applied to the inside of an electronic device relatively easily.
  • the binder resin is a thermoplastic binder resin
  • the voids in the insulating sheet can be further reduced, which is particularly preferable.
  • the thermoplastic resin is softened and has insulating properties, for example, by heat treatment during the roll press treatment during the production of an insulating sheet. It is considered that the discharge of the bubbles trapped between the particles is further promoted, and as a result, the effect of reducing the voids can be further enhanced.
  • thermoplastic resin examples include aramid resin, polyvinylidene fluoride (PVDF), thermoplastic polyimide resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP) resin, and poly.
  • Arilate (PAR) resin, polyetherimide (PEI) resin, polyethersulfone (PES) resin, polyamideimide (PAI) resin, polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) resin, and polybenzoxazole ( PBO) and the like can be mentioned.
  • the binder resin is preferably an aramid resin (aromatic polyamide).
  • an aramid resin aromatic polyamide
  • the binder resin is preferably an aramid resin.
  • the aramid resin has a relatively high thermal decomposition temperature, and the insulating sheet using the aramid resin as the binder resin exhibits excellent flame retardancy.
  • the aramid resin is a linear polymer compound in which 60% or more of the amide bonds are directly bonded to the aromatic ring.
  • the aramid resin for example, polymetaphenylene isophthalamide and its copolymer, polyparaphenylene terephthalamide and its copolymer can be used, and examples thereof include copolyparaphenylene 3,4'-diphenyl ether terephthalamide. ..
  • the aramid resin may be used alone or in combination of two or more.
  • the insulating sheet of the present disclosure contains voids of 10 area% or less with respect to the entire cross section perpendicular to the plane direction, where the total of the insulating particles, the binder resin, and the voids is 100 area%. When the voids are 10 area% or less, good thermal conductivity in the plane direction can be obtained.
  • the insulating sheet of the present disclosure has 8 area% or less, 6 area% or less, 4 area% or less when the total of the insulating particles, the binder resin, and the voids is 100 area% with respect to the entire cross section perpendicular to the plane direction. It contains voids of area% or less, 3 area% or less, 2 area% or less, or 1 area% or less.
  • the lower limit of the voids is not particularly limited, but for example, the voids are 0.01 area% or more when the total of the insulating particles, the binder resin, and the voids is 100 area% for the entire cross section perpendicular to the plane direction. It may be 0.1 area% or more, 0.5 area% or more, 0.8 area% or more, or 1.0 area% or more.
  • the "area%" of the voids when the total of the insulating particles, the binder resin, and the voids is 100 area% is the cross section perpendicular to the plane direction of the insulating sheet. It can be calculated by measuring the area of the voids existing in a certain area in the image taken by SEM and acquired.
  • the insulating sheet has additives other than the insulating particles and the binder resin, the insulating particles are set by setting the fixed area so that the additive is not included in the fixed area.
  • the binder resin, and the voids can be calculated as "area%" when the total of the voids is 100 area%.
  • the "void" means a gap formed between the elements constituting the insulating sheet.
  • the voids are generated, for example, by trapping air bubbles or the like between the insulating particles when the insulating sheet is formed.
  • the insulating sheet according to the present disclosure preferably has a skin layer.
  • the skin layer is a layer constituting the surface layer of the insulating sheet, and contains a binder resin, but does not contain insulating particles.
  • the insulating sheet has a skin layer, it is possible to prevent the insulating particles from being exposed and detached from the outside of the insulating sheet.
  • the thickness of the skin layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m.
  • the thickness of the skin layer is 0.01 ⁇ m or more, the effect of retaining the insulating particles in the insulating sheet is further improved.
  • the thickness of the skin layer is 10 ⁇ m or less, the thermal resistance caused by the skin layer can be reduced, so that the thermal conductivity of the insulating sheet is further improved.
  • the thickness of the skin layer in the insulating sheet is determined by observing the cross section perpendicular to the surface direction of the insulating sheet by SEM, measuring the thickness of the surface layer of the insulating sheet at five points in the cross section SEM image, and averaging the measured values. , Can be calculated.
  • the insulating sheet according to the present disclosure preferably has a surface structure in which the exposure of insulating particles on the surface of the insulating sheet is reduced and the surface structure is relatively smooth.
  • the surface roughness Ra of the insulating sheet according to the present disclosure is preferably 0.5 ⁇ m or less.
  • the surface roughness Ra is more preferably 0.4 ⁇ m or less, particularly preferably 0.2 ⁇ m or less, and most preferably 0.1 ⁇ m or less.
  • the lower limit of the surface roughness is not particularly limited, but may be, for example, 0.01 ⁇ m or more.
  • the surface roughness Ra can be measured using a fine shape measuring machine. Specifically, a range of 1 mm on the surface of the insulating sheet along the surface direction was scanned under the conditions of 0.2 ⁇ m interval, stylus pressure 50 ⁇ N, and speed 5 ⁇ m / s, and the measurement of each point was measured. The surface height is determined by calculating the difference between the value and the average value of the measured values of the points existing in the 40 ⁇ m section before and after, and the average value of the surface heights of all the measured points is calculated, and this average value is calculated. Can be the surface roughness Ra.
  • the salt contained in the insulating sheet according to the present disclosure is reduced.
  • the upper limit of the salt concentration contained in the insulating sheet varies depending on the intended use of the insulating sheet, but the salt concentration is preferably 900 ppm or less, and in particular, the chlorine concentration (chloride ion concentration) in the insulating sheet is 900 ppm or less. It is preferable, or the total concentration of bromine and chlorine is preferably 1500 ppm or less. When the chlorine concentration in the insulating sheet is 900 ppm or less, or the total concentration of bromine and chlorine is 1500 ppm or less, the insulating sheet can be treated as a general halogen-free material.
  • the chlorine concentration in the insulating sheet is more preferably 500 ppm or less, further preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • the lower limit of the chlorine concentration is not particularly limited, but may be, for example, 0.1 ppm or more, or 1 ppm or more.
  • the salt concentration contained in the insulating sheet can be measured by an ion chromatograph method.
  • the total amount of residual solvent and water (residual solvent concentration) in the insulating sheet is preferably 3% by weight or less with respect to the insulating sheet.
  • the total amount of the residual solvent and water contained in the insulating sheet is preferably 2.5% by weight or less, more preferably 2.0% by weight or less, and particularly preferably 1.5% by weight or less, based on the insulating sheet.
  • the lower limit of the total amount of the residual solvent and water in the insulating sheet is not particularly limited, but may be, for example, 0.01% by weight or more, or 0.1% by weight or more.
  • the residual solvent concentration of the insulating sheet can be measured by thermogravimetric differential thermal analysis (TG-DTA).
  • the thickness of the insulating sheet is preferably 100 ⁇ m or less.
  • the thickness of the insulating sheet is 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, or 50 ⁇ m or less.
  • the lower limit of the thickness of the insulating sheet is not particularly limited, but may be, for example, 0.1 ⁇ m or more, 1 ⁇ m or more, or 10 ⁇ m or more.
  • the thermal resistance value of the insulating sheet itself becomes low, which is preferable. Further, since the insulating sheet itself is thin, heat dissipation performance can be exhibited in the limited space inside the electronic device.
  • the insulating sheet according to the present disclosure comprises 75 to 97 parts by volume of insulating particles and 3 to 25 parts by volume of a binder resin with respect to 100 parts by volume of the insulating sheet. It contains voids of 10 parts by volume or less.
  • the insulating particles contained in the insulating sheet according to the present disclosure may be 80 parts by volume or more, 85 parts by volume or more, or 90 parts by volume or more with respect to 100 parts by volume of the insulating sheet, and / or. It may be 96 parts by volume or less, 95 parts by volume or less, 94 parts by volume or less, 93 parts by volume or less, 92 parts by volume or less, or 91 parts by volume or less.
  • the binder resin contained in the insulating sheet according to the present disclosure may be 5 parts by volume or more, 6 parts by volume or more, 7 parts by volume or more, or 8 parts by volume or more with respect to 100 parts by volume of the insulating sheet. And / or 24 parts by volume or less, 20 parts by volume or less, 15 parts by volume or less, 12 parts by volume or less, or 10 parts by volume or less.
  • the insulating sheet of the present disclosure is 8 parts by volume or less, 6 parts by volume or less, 4 parts by volume or less, 3 parts by volume or less, 2 parts by volume or less, or 1 part by volume or less with respect to 100 parts by volume of the insulating sheet.
  • the lower limit of the void is not particularly limited, but may be, for example, 0.01 part by volume or more, 0.1 part by volume or more, 0.5 part by volume or more, 0.8 part by volume or more, or 1.0 part by volume or more. ..
  • the area% of each component obtained from the cross section perpendicular to the plane direction is the volume ratio of each component in the insulating sheet (volume with respect to 100 parts by volume of the insulating sheet). Part) is considered to be substantially equal to. Therefore, the volume portion of the void in the insulating sheet can be calculated in the same manner as the method described above for the area% related to the void.
  • the insulating sheet of the present invention may contain a flame retardant, a discoloration inhibitor, a surfactant, a coupling agent, a colorant, a viscosity modifier, and / or a reinforcing material.
  • a fibrous reinforcing material may be contained in order to increase the strength of the sheet. It is preferable to use short fibers of aramid resin as the fibrous reinforcing material because the heat resistance of the insulating sheet does not decrease due to the addition of the reinforcing material.
  • the fibrous reinforcing material is preferably added in the range of 0.5 to 25 parts by volume, and more preferably in the range of 1 to 20 parts by volume with respect to 100 parts by volume of the insulating sheet. When a reinforcing material or the like is added, the ratio of the binder resin to 100 parts by volume of the insulating sheet is preferably not less than 3 parts by volume.
  • the insulating sheet according to the present disclosure can be used, for example, to rapidly diffuse heat generated in a semiconductor element inside an electric product or a heat generating component such as a power source or a light source to mitigate a local temperature rise. Alternatively, it can be used to transport heat to a location away from the heat source.
  • the heat of the heat generating source is diffused by attaching the insulating sheet to the heat generating source (CPU, etc.) side, thereby reducing the heat generating source (chip) temperature.
  • a method of reducing a local increase in the temperature of the housing by attaching an insulating sheet to the housing side is a method of reducing a local increase in the temperature of the housing by attaching an insulating sheet to the housing side.
  • the application method is not particularly limited.
  • the insulating sheet may be placed in direct contact with a heat source, such as a semiconductor inside an electronic device, or via another heat conductor, thus efficiently reducing the surface temperature of the heat source. can do.
  • a heat source such as a semiconductor inside an electronic device
  • the insulating sheet may be placed in direct contact with a heat source, such as a semiconductor inside an electronic device, or via another heat conductor, thus efficiently reducing the surface temperature of the heat source. can do.
  • the heat transferred to the electronic component having low heat resistance can be diffused, thereby protecting the electronic component from heat.
  • the insulating sheet between the heat generating source and the liquid crystal display it is possible to reduce defects of the liquid crystal display due to local heating, for example, color unevenness.
  • the insulating sheet between the heat source and the outer surface of the electronic device, it is possible to reduce the local temperature rise of the outer surface of the electronic device, thereby providing safety to the user, eg, for example.
  • the effect of avoiding low temperature burns can be further improved.
  • An adhesive layer and / or an adhesive layer may be arranged on one surface or both surfaces of the insulating sheet.
  • the adhesive layer and the adhesive layer may be known.
  • the thermal conductivity of the insulating sheet is 30 W / (m ⁇ K) or more in the in-plane direction, and the dielectric breakdown voltage is 5 kV / mm or more.
  • thermal conductivity in the in-plane direction When the thermal conductivity is 30 W / (m ⁇ K) or more in the in-plane direction, the heat generated by the electronic device can be sufficiently diffused, so that heat spots are less likely to occur, which is preferable.
  • the thermal conductivity of the insulating sheet is 35 W / (m ⁇ K) or more, 40 W / (m ⁇ K) or more, 45 W / (m ⁇ K) or more, 50 W / (m ⁇ K) in the in-plane direction. Or more, or 55 W / (m ⁇ K) or more.
  • the above thermal diffusivity can be measured by the optical AC method using an optical AC method thermal diffusivity measuring device.
  • the specific heat can be determined by a differential scanning calorimeter.
  • the specific gravity can be obtained from the outer dimensions and weight of the insulating sheet.
  • the thermal conductivity of the insulating sheet is 0.5 W / (m ⁇ K) or more and 5.0 W / (m ⁇ K) or less in the thickness direction.
  • the thermal conductivity of the insulating sheet may be 0.8 W / (m ⁇ K) or more, or 1.0 W / (m ⁇ K) or more in the thickness direction, and / or 4.5 W / (. It may be m ⁇ K) or less, or 4.0 W / (m ⁇ K) or less.
  • the thermal diffusivity in the thickness direction can be obtained by the temperature wave analysis method (phase delay measurement method of temperature waves).
  • the specific heat can be determined by a differential scanning calorimeter.
  • the specific gravity can be obtained from the outer dimensions and weight of the insulating sheet.
  • the dielectric breakdown voltage of the insulating sheet is 5 kV / mm or more, 8 kV / mm or more, or 10 kV / mm or more.
  • the dielectric breakdown voltage is 5 kV / mm or more, dielectric breakdown is less likely to occur and defects of electronic devices are avoided, which is preferable.
  • the breakdown voltage of the insulation sheet is measured in accordance with the test standard ASTM D149.
  • a dielectric strength tester can be used for the measurement.
  • the relative permittivity at 1 GHz is 6 or less.
  • the relative permittivity of the insulating sheet at 1 GHz is 6 or less, interference of electromagnetic waves can be avoided, which is preferable.
  • the relative permittivity at 1 GHz is 5.5 or less, 5.3 or less, 5.0 or less, or 4.8 or less.
  • the lower limit of the relative permittivity is not particularly limited, but may be, for example, 1.5 or more, or 2.0 or more.
  • the relative permittivity according to the present disclosure can be measured by a network analyzer using a perturbation type sample hole closed cavity resonator method.
  • the present disclosure includes methods for producing the insulating sheets according to the present disclosure, including: Mixing step of mixing insulating particles, binder resin, and solvent to obtain a slurry, A molding step of shaping and drying the slurry after the mixing step into a sheet to form an insulating sheet precursor, and a roll pressing step of roll-pressing the insulating sheet precursor.
  • insulating particles, a binder resin, and a solvent are mixed to obtain a slurry.
  • the contents described above for the insulating sheet can be referred to.
  • additives such as flame retardants, discoloration inhibitors, surfactants, coupling agents, colorants, viscosity regulators, and / or reinforcing materials may be added at will.
  • a fibrous reinforcing material may be added to increase the strength of the sheet.
  • anhydrous calcium chloride or anhydrous lithium chloride may be added.
  • anhydrous calcium chloride or anhydrous lithium chloride in the mixing step, the solubility of the binder resin in the solvent may be improved.
  • an aramid resin it is preferable to add anhydrous calcium chloride or anhydrous lithium chloride in the mixing step, and in this case, the solubility of the aramid resin in the solvent can be further improved.
  • solvent a solvent capable of dissolving the binder resin
  • aramid resin 1-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, or dimethyl sulfoxide can be used.
  • Mixture For mixing the insulating particles, the binder resin and the solvent, for example, a paint shaker, a bead mill, a planetary mixer, a stirring type disperser, a self-revolving stirring mixer, a triple roll, a kneader, a single shaft or a twin shaft kneader, etc.
  • a general kneading device can be used.
  • the slurry after the mixing step is shaped into a sheet and dried to form an insulating sheet precursor.
  • Drying may be carried out by a known method.
  • the slurry coated on the substrate may be dried, and then the shaped slurry may be peeled from the substrate in water and then further dried.
  • the drying temperature may be, for example, 50 ° C. to 120 ° C.
  • the drying time may be, for example, 10 minutes to 3 hours.
  • water washing may be performed.
  • the water washing treatment may be performed, for example, by drying the slurry coated on the substrate and shaping it, and then immersing it in ion-exchanged water for 10 minutes to 3 hours.
  • the washing treatment may be performed on the insulating sheet precursor.
  • anhydrous calcium chloride or anhydrous lithium chloride is added in the mixing step, it is preferable to carry out a washing treatment with water.
  • the shaped slurry or insulating sheet precursor has more voids than the insulating sheet that has undergone the roll press treatment, and is therefore considered to have high water permeability. Therefore, it is considered that the residual solvent and salt can be removed more efficiently by performing the washing treatment with water before performing the roll press.
  • the water contained in the insulating sheet can be reduced by drying after washing with water or by roll pressing.
  • an insulating sheet having excellent thermal conductivity in the in-plane direction can be obtained.
  • an insulating sheet having a skin layer can be obtained.
  • the reason why the skin layer is formed by roll-pressing the insulating sheet precursor is not clear, but by rolling-pressing, the binder resin existing between the insulating particles is extruded and the surface layer is formed. It is believed that an insulating sheet with a skin layer is provided to form the skin layer.
  • the skin layer formed by roll pressing suppresses the exposure of insulating particles to the surface of the insulating sheet, resulting in further improvement in the smoothness of the surface of the insulating sheet. Conceivable.
  • the roll press may be performed by a known method, and for example, the insulating sheet precursor may be pressurized by a calendar roll machine.
  • the pressure applied to the insulating sheet precursor in the roll pressing step is preferably 400 to 8000 N / cm in linear pressure.
  • the linear pressure is 8000 N / cm or less, the insulating particles are sufficiently deformed and densely packed so as not to be destroyed, and the voids in the sheet can be reduced.
  • the diameter of the roll used in the roll press is preferably 200 to 1500 mm, for example.
  • Heating temperature During the roll press treatment, it is preferable to heat the insulating sheet precursor.
  • the heating temperature can be appropriately set according to the type of binder resin used and the like.
  • the heating temperature is preferably 100 to 400 ° C.
  • the heating temperature is 100 ° C. or higher, the binder resin is easily softened, and the effect of filling the gaps between the insulating particles by the roll press treatment can be easily obtained.
  • the heating temperature is 100 ° C. or lower, the strength of the binder resin is less likely to decrease due to the heat history.
  • the insulating particles contained in the slurry contain flat particles.
  • the voids in the sheet are further reduced by deforming the particles by the roll press treatment.
  • flat particles may be more easily deformed than, for example, spherical particles.
  • the insulating particles preferably contain 50% by volume or more of flat particles with respect to 100% by volume of the insulating particles, and in particular, 50% by volume or more of boron nitride with respect to 100% by volume of the insulating particles. Includes.
  • the flat particles per 100% by volume of the insulating particles, particularly the boron nitride particles, are more preferably 60% by volume or more, further preferably 70% by volume or more, still more preferably 80% by volume or more, and particularly preferably 90% by volume. That is all.
  • the insulating particles contain flat particles, and the slurry is 75 to 97 volumes based on a total of 100 parts by volume of the insulating particles and the binder resin. It contains 3 to 25 parts by volume of insulating particles and 3 to 25 parts by volume of binder resin.
  • the insulating sheet precursor formed from such a slurry is roll-pressed, it is considered that the deformation of the flat particles is further promoted and the voids in the insulating sheet are further reduced.
  • the content of insulating particles in the insulating sheet precursor is relatively high, it is insulated during roll pressing due to the relatively short distance between the insulating particles.
  • the shear stress applied between the sex particles becomes relatively high, and as a result, the deformation of the insulating particles is promoted. Then, it is considered that the porosity in the sheet is further reduced by deforming the flat insulating particles so as to fill the gaps in the sheet.
  • Examples 1 to 5, Comparative Examples 1 to 2, and Reference Example 1 An insulating sheet according to Examples 1 to 5, an insulating sheet according to Comparative Examples 1 and 2, and an insulating sheet precursor according to Reference Example 1 were prepared. The characteristics of the obtained insulating sheet and insulating sheet precursor were measured. The measurement was carried out by the following method.
  • Thermal conductivity The thermal conductivity of the insulating sheet was calculated by multiplying the thermal diffusivity, specific gravity and specific heat in each of the thickness direction and the in-plane direction.
  • Thermal conductivity (Thermal diffusivity) x (Specific heat) x (Specific gravity)
  • the thermal diffusivity in the thickness direction was determined by the temperature wave analysis method.
  • an i-Phase mobile M3 type 1 manufactured by Eye Phase was used.
  • the thermal diffusivity in the in-plane direction was determined by the optical AC method.
  • a LaserPIT manufactured by Advance Riko Co., Ltd. was used as the measuring device.
  • the specific heat was determined using a differential scanning calorimeter (DSCQ10 manufactured by TA Instruments).
  • the specific gravity was determined from the outer dimensions and weight of the insulating sheet.
  • the dielectric breakdown voltage of the insulating sheet was measured in accordance with the test standard ASTM D149. A dielectric strength test device manufactured by Tokyo Transformer Co., Ltd. was used as the measuring device.
  • Average particle size and aspect ratio As the average particle size, a laser diffraction / scattering type particle size distribution measuring device (MT3000 manufactured by Microtrack Bell Co., Ltd.) is used, and the measurement time is 10 seconds and the number of measurements is 1. The measurement was performed once, and the D50 value in the volume distribution was obtained.
  • the aspect ratio (ii) was determined by measuring the major axis and thickness of the particles at a magnification of 1500 times using a scanning electron microscope (TM3000 type microscope manufactured by Hitachi High-Technologies Corporation).
  • the bulk density was obtained by cutting an insulating sheet into a 50 mm square, measuring the mass using a precision electronic balance, measuring the thickness with a micrometer, and measuring the sheet area with a caliper.
  • Porosity area% The porosity was calculated from the area of the voids existing in a certain area of the obtained cross-sectional image obtained by observing the cross section perpendicular to the plane direction at a magnification of 3000 with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Relative Permittivity The relative permittivity of the insulating sheet at 1 GHz was measured by a network analyzer (E8631A manufactured by Keycom) using a perturbation type sample hole closed cavity resonator method.
  • Tensile strength and tensile elastic modulus The tensile strength and tensile elastic modulus were measured based on ISO527-1. As the testing machine, Tensilon UCT-30T type manufactured by Orientec Co., Ltd. was used.
  • the surface roughness was measured using a fine shape measuring machine ET200 manufactured by Kosaka Research Institute. A range of 1 mm on the surface of the insulating sheet along the surface direction was scanned under the conditions of 0.2 ⁇ m interval, stylus pressure 50 ⁇ N, and speed 5 ⁇ m / s. Then, for each of the measured points, the surface height was determined by calculating the difference between the measured value of that point and the average value of the measured values of the points existing in the 40 ⁇ m section before and after. Then, the average value of the surface heights of all the measured points was calculated and used as the surface roughness Ra.
  • Thickness of skin layer is the thickness of the surface layer of the insulating sheet at five points of the cross section of the insulating sheet in the obtained SEM image obtained by observing the cross section perpendicular to the surface direction of the insulating sheet by SEM. was measured and calculated by averaging the measured values.
  • Residual Solvent Concentration The residual concentration (residual solvent concentration) of water and solvent (NMP) contained in the insulating sheet was measured by a horizontally differential type TG-DTA (ThermoMass Photo, manufactured by Rigaku). Specifically, a test piece of about 1 mm square is prepared by cutting a plurality of insulating sheets, and these test pieces (6.7 mg in total) are subjected to 10 ° C. from room temperature to 500 ° C. under a helium atmosphere. The temperature was raised at / min, and the rate of weight loss was measured. The measured rate of weight loss was taken as the residual solvent concentration.
  • TG-DTA ThermoMass Photo, manufactured by Rigaku.
  • the salt concentration (calcium chloride concentration) contained in the insulating sheet was measured by an ion chromatograph method. Specifically, 100 mg of the insulating sheet was burned at 900 ° C. under an oxygen stream for 10 minutes, and the generated gas was absorbed by 5 mL of pure water. Then, the chloride ion concentration in the pure water that absorbed the gas was measured by integration manufactured by Thermo Fisher Scientific, and this was used as the residual salt concentration.
  • Example 1 1-Methyl-2-pyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 350 parts by volume, aramid resin "Technora” as a binder resin (copolyparaphenylene manufactured by Teijin Co., Ltd., 3,4'-diphenyl ether terephthalamide) 5 Scale-like boron nitride particles "HSL” (Dandong Chemical Engineering) as insulating particles with 2 volumes of anhydrous calcium chloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) dissolved Made by Institute Co., an average particle size of 30 ⁇ m, an aspect ratio of 38) 95 parts by volume was added, and the mixture was mixed by stirring with a rotation / revolution mixer for 10 minutes to obtain a slurry.
  • aramid resin "Technora” as a binder resin
  • HSL Scale-like boron nitride particles
  • HSL Scale-like boron nit
  • the obtained slurry was applied onto a glass plate using a bar coater having a clearance of 0.14 mm, shaped, and dried at 115 ° C. for 20 minutes. Then, after immersing and desalting in ion-exchanged water for 1 hour, the sheet-shaped slurry was peeled from the glass plate in water. The peeled sheet was dried at 100 ° C. for 30 minutes to obtain an insulating sheet precursor having a thickness of 100 ⁇ m. The obtained insulating sheet precursor was compressed by a calendar roll machine under the conditions of a temperature of 280 ° C. and a linear pressure of 4000 N / cm to obtain a flexible insulating sheet having a thickness of 37 ⁇ m (insulation sheet of Example 1). ..
  • Example 2 An insulating sheet having a thickness of 27 ⁇ m was obtained in the same manner as in Example 1 except that the aramid resin was 8 parts by volume and the scaly boron nitride particles were 92 parts by volume (insulation sheet of Example 2).
  • Example 3 1-Methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 450 parts by volume, 10 parts by volume of aramid resin "Technora” as a binder resin, and anhydrous calcium chloride as a stabilizer of dissolved resin (Fujifilm Wako Pure Chemical Industries, Ltd.) (Made by Yakuhin Co., Ltd.) With 2 parts by volume dissolved, add 90 parts by volume of scaly boron nitride particles "PT110" (manufactured by Momentive, average particle size 45 ⁇ m, aspect ratio 35) as insulating particles to 80 ° C. The mixture was mixed by stirring with a three-one motor stirrer for 60 minutes while heating to obtain a uniform slurry.
  • the obtained slurry was applied onto a glass plate using a bar coater having a clearance of 0.28 mm, shaped into a sheet, and dried at 70 ° C. for 1 hour. Then, the shaped slurry was peeled off from the glass plate in water and then dried at 100 ° C. for 1 hour to obtain an insulating sheet precursor having a thickness of 100 ⁇ m.
  • the obtained insulating sheet precursor was compressed by a calendar roll machine under the conditions of a temperature of 270 ° C. and a linear pressure of 4000 N / cm to obtain an insulating sheet having a thickness of 48 ⁇ m (insulation sheet of Example 3).
  • Example 4 An insulating sheet having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1 except that the aramid resin was 20 parts by volume and the scaly boron nitride particles were 80 parts by volume (insulation sheet of Example 4).
  • Example 5 The amount of aramid resin was 4 parts by volume, the number of scaly boron nitride particles was 92 parts by volume, and the fiber length was 0.
  • An insulating sheet having a thickness of 32 ⁇ m was obtained in the same manner as in Example 1 except that 4 parts by volume of 25 mm) was added (insulation sheet of Example 5).
  • ⁇ Comparative example 1> A vacuum vertical heating press machine was used to apply an insulating sheet precursor having a thickness of 100 ⁇ m prepared in the same manner as in Example 1 except that the aramid resin was 8 parts by volume and the scaly boron nitride particles were 92 parts by volume. By hot-pressing under a vacuum atmosphere of 280 ° C. and 5 Pa for 2 minutes (40 minutes for raising the temperature, 2 minutes for holding, and 70 minutes for lowering the temperature after the start of pressing) under a load of 5 tons (20 MPa), the thickness is 42 ⁇ m. An insulating sheet was obtained (insulation sheet of Comparative Example 1).
  • Insulation sheet precursor having a thickness of 100 ⁇ m was dried at 100 ° C. for 30 minutes in the same manner as in Example 1 except that the aramid resin was 8 parts by volume and the scaly boron nitride particles were 92 parts by volume. A body was obtained (insulation sheet precursor of Reference Example 1).
  • Table 1 shows the measurement results of Examples 1 to 5, Comparative Examples 1 and 2, and Reference Example 1.
  • Reference Example 1 since the gap is large, it is not possible to define a cross section perpendicular to the plane direction, and it is not possible to evaluate the cross section. Therefore, the area% of the insulating particles, the binder resin, and the porosity of Reference Example 1 is "not measurable".
  • the entire cross section perpendicular to the plane direction contains 75 to 97 area% of insulating particles, 3 to 25 area% of binder resin, and 10 area% or less of voids.
  • the insulating sheet of No. 5 a relatively high thermal conductivity was observed in the in-plane direction.
  • the area% of the binder resin and the insulating particles substantially correspond to their volume parts, respectively.
  • the area% estimated in this way is indicated by “()”. Shown.
  • Example 2 showed a particularly high thermal conductivity in the in-plane direction, although the content of insulating particles was lower than that of Example 1.
  • One of the reasons for obtaining such a result is that the porosity of Example 2 was lower than that of Example 1.
  • the insulating sheet of Comparative Example 1 in which the vacuum heat press treatment was performed instead of the roll press treatment contains 75 to 97 area% of insulating particles and 3 to 25 area% of binder resin for the entire cross section perpendicular to the plane direction.
  • the void ratio was more than 10 area%, and a relatively low thermal conductivity in the in-plane direction was observed.
  • FIGS. 4 to 8 show SEM photographs of the insulating sheets of Examples 1 to 5, respectively, in a cross section perpendicular to the plane direction.
  • FIGS. 4 to 8 in the insulating sheets of Examples 1 to 5, flat boron nitride particles are deformed so as to fill the gaps in the sheets, and for example, a comparison obtained by vacuum heat pressing. Compared with the case of Example 1 (FIG. 10), the voids are relatively small.
  • twaron short fibers can be seen over the lower part of the photograph.
  • FIG. 9 shows an SEM image of the insulating sheet precursor according to Reference Example 1 in a cross section perpendicular to the plane direction.
  • the sheet of Reference Example 1 which is an insulating sheet precursor that has not been pressure-treated, has a relatively large void and a relatively low degree of filling of insulating particles. In addition, no deformation of the flat insulating particles was observed.
  • FIG. 10 shows an SEM image of the cross section of the sheet according to Comparative Example 1 perpendicular to the plane direction.
  • the voids were larger than those in Reference Example 1 in which the pressure treatment was not performed. Although reduced, a relatively large number of voids remained in the insulating sheet due to the steric hindrance of the flat boron nitride.
  • the insulating sheet of Comparative Example 1 although the flat insulating particles are deformed to some extent, the degree of deformation is not sufficient and the gaps between the particles are filled. There wasn't.
  • FIG. 11 shows an SEM image of the cross section of the sheet according to Comparative Example 2 perpendicular to the plane direction.
  • the content of the binder resin is relatively large.
  • the distance between the insulating particles was relatively large.
  • Example 6 and Comparative Example 3 >> Next, the case where the surface-insulating metal silicon particles were contained in addition to boron nitride as the insulating particles and the aramid resin "Conex" (polymetaphenylene isophthalamide manufactured by Teijin Co., Ltd.) was used as the binder resin was investigated. Insulating sheets according to Example 6 and Comparative Example 3 were prepared and their physical properties were evaluated.
  • Example 6 In a state where 20 parts by volume of aramid resin "Conex” as a binder resin is dissolved in 130 parts by volume of 1-methyl-2-pyrrolidone, 60 parts by volume of scaly boron nitride particles "PT110" as insulating particles and thermal oxidation 20 parts by volume of metal silicon particles "# 350" (manufactured by Kinsei Matek Co., Ltd., average particle size 15 ⁇ m, aspect ratio 1) whose surface is insulated by the method (at air, 900 ° C., 1 hour) is added, and the clearance is 0.
  • An insulating sheet was prepared in the same manner as in Example 3 except that a .40 mm bar coater was used to obtain an insulating sheet having a thickness of 56 ⁇ m (insulation sheet of Example 6).
  • ⁇ Comparative example 3 50 parts by volume of aramid resin "Technora” as a binder resin was dissolved in 520 parts by volume of 1-methyl-2-pyrrolidone, and 60 parts by volume of boron nitride particles "PT110" as insulating particles were added.
  • An insulating sheet was produced in the same manner as in Example 3 except that a 0.80 mm bar coater was used to obtain an insulating sheet having a thickness of 50 ⁇ m (insulation sheet of Comparative Example 3).
  • Table 2 shows the measurement results performed for Example 6 and Comparative Example 3.
  • Example 6 which contains 75 to 97 area% of insulating particles, 3 to 25 area% of binder resin, and 10 area% or less of voids in the entire cross section perpendicular to the plane direction.
  • a relatively high thermal conductivity in the in-plane direction was observed as compared with the insulating sheet of Comparative Example 3 in which the insulating particles were less than 75 area% and the binder resin was more than 25 area%. Since the insulating sheet of Example 6 contains metallic silicon particles in addition to the boron nitride particles, the thermal conductivity in the thickness direction is improved as compared with Example 4.
  • the insulating sheet of the present invention can be suitably used as an insulating heat radiating member of a heat generating member of an electronic / electrical device, for example, as an insulating heat radiating member for releasing heat of a semiconductor to a coolant or a housing.
  • the insulating sheet of the present disclosure can efficiently diffuse and transport heat in the in-plane direction, and exhibits excellent insulating properties. Further, since the insulating sheet of the present disclosure does not cause an electrical short circuit in the circuit even if it is damaged, heat spots in electric / electronic devices can be eliminated, heat equalization, heat diffusion, etc. It can be suitably used for various purposes.

Abstract

面内方向での高い熱伝導性を有する絶縁シートを提供すること。 絶縁性粒子及びバインダー樹脂を含有し、かつ 面方向に垂直な断面全体について、75~97面積%の絶縁性粒子、3~25面積%のバインダー樹脂、及び10面積%以下の空隙を含有する、絶縁シート。

Description

絶縁シート
 本開示は、電気製品内部の半導体素子や電源、光源などの発熱部品において発せられる熱を速やかに拡散し、局所的な温度上昇を緩和する、又は発熱源から離れた箇所に熱を輸送することの可能な、面内方向の熱伝導性・熱輸送特性に優れる絶縁シートに関する。
 近年、電子機器の薄短小化、高出力化に伴う発熱密度の増加により、放熱対策の重要性が高まっている。電子機器の熱トラブルを軽減するためには、周辺部材に悪影響を及ぼさないよう、機器内で発生した熱をすみやかに冷却材や筐体等へ拡散して逃がすことが重要である。このために、特定の方向への熱伝導が可能な熱伝導部材が求められる。また多くの場合、冷却材や筐体への漏電を防ぐため、熱伝導部材には電気絶縁性も求められる。
 絶縁性かつ柔軟性を有する樹脂材料の熱伝導率を高める手法として、無機フィラー、特に窒化ホウ素と樹脂材料との複合が提案されている。例えば特許文献1では、熱可塑性エラストマーと流動パラフィンに窒化ホウ素を85体積%含有することで、24W/(m・K)の面内方向熱伝導率を達成している。また、特許文献2では、フッ素樹脂に窒化ホウ素を80体積%混合することで、35W/(m・K)の面内熱伝導率を達成している。また、特許文献3では、ナフタレン構造を有するエポキシ樹脂に窒化ホウ素を83体積%混合して熱硬化することで42W/(m・K)の面内方向熱伝導率を達成している。
特開2012-64691号公報 特開2010-137562号公報 特開2011-90868号公報
 従来の絶縁シートでは、面内方向における十分に高い熱伝導率が得られない場合があった。
 このような背景において、本開示は、面内方向での高い熱伝導性を有する絶縁シートを提供することを目的とする。
 本件発明者らは、上記の課題が下記の態様によって解決されることを見出した:
〈態様1〉
 絶縁性粒子及びバインダー樹脂を含有し、かつ
 面方向に垂直な断面全体について、前記絶縁性粒子、前記バインダー樹脂、及び空隙の合計を100面積%としたときに、75~97面積%の前記絶縁性粒子、3~25面積%の前記バインダー樹脂、及び10面積%以下の前記空隙を含有する、
絶縁シート。
〈態様2〉
 前記絶縁性粒子が、変形している扁平状粒子を含む、態様1に記載の絶縁シート。
〈態様3〉
 前記絶縁性粒子が、窒化ホウ素を50体積%以上含む、態様2に記載の絶縁シート。
〈態様4〉
 前記バインダー樹脂は、融点又は熱分解温度が150℃以上である、態様1~3のいずれか一項に記載の絶縁シート。
〈態様5〉
 前記バインダー樹脂が、アラミド樹脂である、態様1~4のいずれか一項に記載の絶縁シート。
〈態様6〉
 バインダー樹脂を含有しており絶縁性粒子を含有していないスキン層を有している、態様1~5のいずれか一項に記載の絶縁シート。
〈態様7〉
 表面粗さRaが0.5μm以下である、態様1~6のいずれか一項に記載の絶縁シート。
〈態様8〉
 塩濃度が900ppm以下である、態様1~7のいずれか一項に記載の絶縁シート。
〈態様9〉
 残留溶剤濃度が3重量%以下である、態様1~8のいずれか一項に記載の絶縁シート。
〈態様10〉
 熱伝導率が面内方向で30W/(m・K)以上であり、絶縁破壊電圧が5kV/mm以上である、態様1~9のいずれか一項に記載の絶縁シート。
〈態様11〉
 1GHzにおける比誘電率が6以下である、態様1~10のいずれか一項に記載の絶縁シート。
〈態様12〉
 態様1~11のいずれか一項に記載の絶縁シートの製造方法であって、
 絶縁性粒子、バインダー樹脂、及び溶剤を混合してスラリーを得る混合工程、
 混合工程後のスラリーをシート状に賦形及び乾燥して絶縁シート前駆体を成形する成形工程、及び
 前記絶縁シート前駆体をロールプレスするロールプレス工程
を含む、絶縁シートの製造方法。
〈態様13〉
 前記絶縁性粒子が、扁平状粒子を含む、態様12に記載の方法。
〈態様14〉
 前記絶縁性粒子が、窒化ホウ素を50体積%以上含む、態様13に記載の方法。
〈態様15〉
 前記スラリーが、前記絶縁性粒子及び前記バインダー樹脂の合計100体積部に対して、75~97体積部の前記絶縁性粒子及び3~25体積部の前記バインダー樹脂を含んでいる、態様12~14のいずれか一項に記載の方法。
 本発明によれば、面内方向での高い熱伝導性を有する絶縁シートを提供することができる。
図1は、本開示の1つの実施態様に係る絶縁シートの断面の概略図を示す。 図2は、本開示の別の実施態様に係る絶縁シートの断面の概略図を示す。 図3は、従来技術に係る絶縁シートの断面の概略図を示す。 図4は、実施例1に係る絶縁シートの面方向に垂直な断面のSEM写真を示す。 図5は、実施例2に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。 図6は、実施例3に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。 図7は、実施例4に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。 図8は、実施例5に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。 図9は、参考例1に係る絶縁シート前駆体の、面方向に垂直な断面のSEM画像を示す。 図10は、比較例1に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。 図11は、比較例2に係る絶縁シートの、面方向に垂直な断面のSEM写真を示す。
 以下、本発明の実施の形態について説明する。
≪絶縁シート≫
 本開示の絶縁シートは、
 絶縁性粒子及びバインダー樹脂を含有しており、かつ面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、
 75~97面積%の絶縁性粒子、
 3~25面積%のバインダー樹脂、及び
 10面積%以下の空隙
を含有している。
 本開示の絶縁シートは、絶縁性粒子の充填率が比較的高く、面方向における比較的高い熱伝導率を有している。
 図1は、本開示に係る絶縁シートの1つの実施態様の、面方向に垂直な断面の概略図を示す。本開示に係る絶縁シート10では、バインダー樹脂12の含有量が低減されていることによって、絶縁性粒子11の充填率が比較的高くなっている。このような絶縁シート10では、絶縁性粒子11の充填率が高いことによって、粒子間の距離が比較的小さくなっており、結果として面内方向における高い熱伝導率がもたらされていると考えられる。また、同時に、バインダー樹脂12の含有量が低減されていることによって、樹脂に起因する熱抵抗が抑制されていると考えられる。
 さらに、図1の本開示に係る絶縁シート10では、バインダー樹脂12の含有量が低減されていることに加えて、シート内の空隙13も比較的低減されている。このような絶縁シートでは、絶縁性粒子11の充填率がさらに高まっており、面内方向における熱伝導率の増加効果がさらに高まっていると考えられる。
 本開示に係る絶縁シートは、例えば、絶縁性粒子及びバインダー樹脂を含む絶縁シート前駆体に対してロールプレス処理を行うことによって得ることができる。シート状に成形された絶縁シート前駆体は、多量の気泡を含んでいる。この状態でロールプレス法を用いて圧縮することで、シート内部の絶縁性粒子をシートの面内方向に配向させるとともに、絶縁シート前駆体内部の気泡を低減することができ、その結果、得られる絶縁シートの面内方向の熱伝導率が高められると考えられる。
 図3は、従来技術に係る絶縁シート30の、面方向に垂直な断面の概略図を示している。この絶縁シート30では、バインダー樹脂32の割合が比較的高く、かつ粒子間の空隙33が比較的大きいため、絶縁性粒子31の充填率が比較的低くなっている。このような絶縁シートでは、絶縁性粒子31間の距離が大きいため、面方向における高い熱伝導率が得られないと考えられる。
 以下では、本開示の絶縁シートを構成する各要素について、より詳細に説明する。
〈絶縁性粒子〉
 本開示に係る絶縁シートは、絶縁性粒子を含有している。
 本開示に係る絶縁シートは、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、75~97面積%の前記絶縁性粒子を含有する。絶縁性粒子の含有率が75面積%以上である場合には良好な熱伝導性が得られ、97面積%以下である場合には樹脂組成物の粘度の上昇が抑制され、成形の容易性が確保される。
 好ましくは、本開示に係る絶縁シートに含有される絶縁性粒子は、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、80面積%以上、85面積%以上、若しくは90面積%以上であってよく、かつ/又は96面積%以下、95面積%以下、94面積%以下、93面積%以下、92面積%以下、若しくは91面積%以下であってよい。
 本開示において、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたとの絶縁性粒子の「面積%」は、絶縁シートの面方向に垂直な断面を走査型電子顕微鏡(SEM)によって撮影し、かつ取得された画像における一定面積中に存在する絶縁性粒子の面積の合計を計測することによって、算出することができる。なお、絶縁シートが絶縁性粒子及びバインダー樹脂以外の添加物を有する場合には、上記の一定面積中に当該添加物が含まれないように上記の一定面積を設定することなどによって、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたとの絶縁性粒子の「面積%」を算出することができる。
 絶縁性粒子は、特に限定されず、例えば、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、窒化ケイ素、炭化ケイ素、表面を絶縁化した金属シリコン粒子、樹脂などの絶縁性材料で表面被覆した炭素繊維及び黒鉛、並びにポリマー系フィラーが挙げられる。面方向における熱伝導性、及び絶縁性の観点から、絶縁性粒子が窒化ホウ素、特には六方晶系窒化ホウ素であることが好ましい。
 絶縁性粒子の平均粒径は、好ましくは1~200μm、より好ましくは5~200μm、さらに好ましくは5~100μm、特に好ましくは10~100μmである。
 平均粒径は、レーザー回折・散乱式粒子径分布測定装置を用いてレーザー回折法によって測定されるメジアン径(ある粉体をある粒径から二つに分けたとき、その粒径より大きい粒子と小さい粒子が等量となる粒径、一般にD50とも呼ばれる)である。
(変形)
 本開示に係る絶縁シートの1つの有利な実施態様では、絶縁性粒子が、変形している扁平状粒子を含んでいる。
 このような絶縁シートでは、面方向における熱伝導率がさらに向上している。理論によって限定する意図はないが、その理由としては、扁平状粒子が変形していることによって、シート内部の空隙がさらに低減されていることが挙げられる。一般に、扁平状粒子の場合には、その形状に起因する立体障害によって粒子間に隙間ができやすいと考えられる。したがって、従来は、粒子の含有率が高くなると空隙率が大きくなると考えられていた。これに対して、本開示の1つの有利な実施態様に係る絶縁シートでは、例えば図2に示すように、扁平状粒子21が変形し、そのようにして粒子間の隙間が埋められ、結果として、空隙23がさらに低下している。また、ロールプレス処理の間に扁平状粒子21が変形することによって、粒子間に閉じ込められた気泡のシート外への排出が促進され、空隙23の低減がさらに促進されるということも考えられる。
 変形している扁平状粒子を含有している絶縁シートを得る方法は、特に限定されないが、例えば、扁平状粒子を含有している絶縁性粒子を含む絶縁シート前駆体に対してロールプレス処理を行う方法が挙げられる。特に、絶縁性粒子が扁平状粒子を含有しておりかつ絶縁性粒子が高充填されている絶縁シート前駆体に対してロールプレス処理を行う方法によれば、粒子の変形がより顕著になると考えられる。理論によって限定する意図はないが、このような方法では、扁平状粒子間に付与されるせん断応力が比較的高くなり、結果として扁平状粒子の変形が促進されると考えられる。図2の実施態様を例として説明すると、図2では、バインダー樹脂22の含有率が比較的低くかつ絶縁性粒子が比較的密に充填されている。このような状態でロールプレス処理を行った場合には、絶縁性粒子間に高いせん断応力が働きやすいため、絶縁性粒子が特に変形しやすいと考えられる。
 なお、従来の絶縁シートにおいても、絶縁性粒子が変形している場合があり得るが、この場合には、変形の程度が比較的小さく、空隙率を低減するには至っていないと考えられる。
(扁平状粒子)
 絶縁性粒子が扁平状粒子、すなわち鱗片状粒子又はフレーク状粒子を含む場合、扁平状粒子は、絶縁性粒子全体の100体積%あたり50体積%以上を占めることが好ましい。50体積%以上である場合は、良好な面内方向の熱伝導率が確保されうる。絶縁性粒子100体積%あたりの扁平状粒子は、より好ましくは60体積%以上、さらに好ましくは70体積%以上、さらにより好ましくは80体積%以上、特に好ましくは90体積%以上であり、最も好ましくは、絶縁性粒子が扁平状粒子からなる。
 扁平状粒子のアスペクト比は、10~1000であることが好ましい。アスペクト比が10以上である場合には、熱拡散性を高めるために重要な配向性が確保され、高い熱拡散性を得ることができるため好ましい。また、1000以下のアスペクト比を持つフィラーは、比表面積の増大による組成物の粘度の上昇が抑制されるため、加工の容易性の観点から好ましい。
 アスペクト比は、粒子の長径を、粒子の厚みで除した値であり、つまり長径/厚みである。粒子が球状の場合のアスペクト比は1であり、扁平な度合いが増すにつれてアスペクト比は高くなる。
 アスペクト比は、走査型電子顕微鏡を用いて、倍率1500倍で粒子の長径と厚みを測定し、長径/厚みを計算することによって、得ることができる。
 扁平状粒子の平均粒径は、例えば1μm以上、好ましくは1~200μm、さらに好ましくは5~200μm、さらに好ましくは5~100μm、特に好ましくは10~100μmである。
(窒化ホウ素)
 扁平状粒子としては、例えば六方晶系窒化ホウ素(h-BN)を挙げることができる。
 窒化ホウ素粒子の平均粒径は、例えば1μm以上、好ましくは1~200μm、さらに好ましくは5~200μm、さらに好ましくは5~100μm、特に好ましくは10~100μmである。1μm以上である場合には、窒化ホウ素の比表面積が小さく、樹脂との相溶性が確保されるため好ましく、200μm以下である場合には、シート成形の際に厚さの均一性を確保できるため好ましい。窒化ホウ素は、単一の平均粒径を有する窒化ホウ素を用いてもよく、異なる平均粒径を有する窒化ホウ素の複数種類を混合して用いてもよい。
 窒化ホウ素粒子のアスペクト比は、10~1000であることが好ましい。
 絶縁性粒子として窒化ホウ素を用いる場合には、窒化ホウ素粒子以外の絶縁性粒子を併用してもよい。その場合でも、窒化ホウ素粒子は、絶縁性無機粒子全体の100体積%あたり50体積%以上を占めることが好ましい。50体積%以上であれば、良好な面内方向の熱伝導率が確保されるため好ましい。絶縁性無機粒子100体積%あたりの窒化ホウ素粒子は、より好ましくは60体積%以上、さらに好ましくは70体積%以上、さらにより好ましくは80体積%、特に好ましくは90体積%以上である。
 絶縁性無機粒子として窒化ホウ素粒子と等方性の熱伝導率を有するセラミックス粒子とを併用する場合には、絶縁シートの厚み方向の熱伝導率と面内方向の熱伝導率のバランスを必要に応じて調節することができるため、好ましい態様である。また、窒化ホウ素粒子は高価な材料であるため、例えば表面を熱酸化して絶縁化した金属シリコン粒子のような安価な材料と併用することが便宜であり、この場合に、絶縁シートの原料コストと熱伝導率とのバランスを必要に応じて調節することができるため、好ましい態様である。
〈バインダー樹脂〉
 本開示に係る絶縁シートは、バインダー樹脂を含有している。
 本開示に係る絶縁シートは、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、3~25面積%のバインダー樹脂を含有する。バインダー樹脂の含有率が25面積%以下である場合には、十分に高い熱伝導率を確保することができ、3面積%以上である場合には、成形性を確保することができる。また、バインダー樹脂の含有率が3面積%以上である場合には、バインダー樹脂が絶縁性粒子間等の隙間を埋めることによって、空隙が低減されると考えらえる。
 好ましくは、本開示に係る絶縁シートに含有されるバインダー樹脂は、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、5面積%以上、5面積%超、6面積%以上、7面積%以上、若しくは8面積%以上であってよく、かつ/又は24面積%以下、20面積%以下、15面積%以下、12面積%以下、若しくは10面積%以下であってよい。特に、バインダー樹脂の含有率が5面積%以上である場合には、絶縁性粒子間等の隙間を埋めるために十分な量のバインダー樹脂が確保され、空隙がさらに低減されると考えられる。
 本開示において、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときのバインダー樹脂の「面積%」は、絶縁シートの面方向に垂直な断面をSEMによって撮影し、かつ取得された画像における一定面積中に存在するバインダー樹脂の面積を計測することによって、算出することができる。なお、絶縁シートが絶縁性粒子及びバインダー樹脂以外の添加物を有する場合には、上記の一定面積中に当該添加物が含まれないように上記の一定面積を設定することなどによって、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときのバインダー樹脂の「面積%」を算出することができる。
 本開示に係るバインダー樹脂は、特に限定されない。バインダー樹脂としては、例えば、アラミド樹脂(芳香族ポリアミド)、ポリフッ化ビニリデン(PVDF)、シリコーン樹脂、ポリイミド樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、フェノール樹脂、エポキシ樹脂、液晶ポリマー(LCP)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルイミド(PEI)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、及びポリベンゾオキサゾール(PBO)を挙げることができる。バインダー樹脂は、特に好ましくは芳香族ポリアミドである。芳香族ポリアミドは、脂肪族ポリアミドと比較して優れた強度を有するため、バインダー樹脂として芳香族ポリアミドを用いた場合には、絶縁性粒子の保持性及びシート形状の安定性が特に優れた絶縁シートを提供することができる。
(熱特性)
 絶縁シートの熱特性の観点からは、バインダー樹脂が耐熱性及び/又は難燃性において優れた性質を有していることが好ましい。特には、バインダー樹脂の融点又は熱分解温度が、150℃以上であることが好ましい。
 バインダー樹脂の融点は、示差走査熱量計で測定される。バインダー樹脂の融点は、より好ましくは、200℃以上、さらに好ましくは250℃以上、特に好ましくは300℃以上である。バインダー樹脂の融点の下限は、特に限定されないが、例えば、600℃以下、500℃以下、又は400℃以下である。
 バインダーの熱分解温度は、示差走査熱量計で測定される。バインダー樹脂の熱分解温度は、より好ましくは200℃以上、さらに好ましくは300℃以上、特に好ましくは400℃以上、最も好ましくは500℃以上である。バインダー樹脂の熱分解温度の下限は、特に限定されないが、例えば、1000℃以下、900℃以下、又は800℃以下である。
 車載向けの電子機器内部の放熱用途として用いる場合、樹脂材料の耐熱温度の高さも必要となる。炭化ケイ素を用いたパワー半導体の場合、300℃前後の耐熱性が要求される。したがって、300℃以上の耐熱性を有している樹脂は、車載用途、得にパワー半導体周辺の放熱用途に好適に用いることができる。そのような樹脂としては、例えばアラミド樹脂を挙げることができる。
(熱可塑性樹脂)
 柔軟性及びハンドリング性の観点からは、バインダー樹脂が熱可塑性バインダー樹脂であることが特に好ましい。熱可塑性樹脂を含む絶縁シートは、製造時に熱硬化を必要としないため、柔軟性に優れており、かつ電子機器内部への適用を比較的容易に行うことができる。
 また、バインダー樹脂が熱可塑性バインダー樹脂である場合には、絶縁シート内の空隙をさらに低減できると考えられるため、特に好ましい。理論によって限定する意図はないが、バインダー樹脂として熱可塑性樹脂を用いた場合には、例えば絶縁シートの製造時におけるロールプレス処理の際に加熱処理することによって、熱可塑性樹脂が軟化し、絶縁性粒子間にトラップされた気泡の排出がさらに促進され、結果として空隙の低減効果をさらに高めることができると考えられる。
 本開示に係るバインダー樹脂として使用することができる熱可塑性樹脂としては、アラミド樹脂、ポリフッ化ビニリデン(PVDF)、熱可塑性ポリイミド樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルイミド(PEI)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、及びポリベンゾオキサゾール(PBO)等を挙げることができる。
(アラミド樹脂)
 特には、バインダー樹脂がアラミド樹脂(芳香族ポリアミド)であることが好ましい。バインダー樹脂としてアラミド樹脂を用いた場合には、絶縁性粒子を高い割合で充填しながらも機械的強度がさらに優れた絶縁シートがもたらされる。従来の絶縁シートでは、シート自体の厚みが大きく、結果的に熱抵抗値が高くなってしまう場合があった。これに対して、アラミド樹脂を用いた絶縁シートは、絶縁性粒子、特には窒化ホウ素を高い割合で充填しながらも機械的強度に優れており、その結果、シートの厚さ自体が薄く、シート全体の熱抵抗値の低さに優れている。また、熱特性の観点からも、バインダー樹脂がアラミド樹脂であることが好ましい。アラミド樹脂は比較的高い熱分解温度を有しており、かつバインダー樹脂としてアラミド樹脂を用いた絶縁シートは、優れた難燃性を示す。
 アラミド樹脂は、アミド結合の60%以上が芳香環に直接結合した線状高分子化合物である。アラミド樹脂として例えば、ポリメタフェニレンイソフタルアミド及びその共重合体、ポリパラフェニレンテレフタルアミド及びその共重合体を用いることができ、例えばコポリパラフェニレン・3、4‘-ジフェニルエーテルテレフタルアミドを挙げることができる。アラミド樹脂は単一で用いてもよく、複数を混合して用いてもよい。
〈空隙〉
 本開示の絶縁シートは、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、10面積%以下の空隙を含有している。空隙が10面積%以下であることによって、良好な面方向の熱伝導率を得ることができる。
 好ましくは、本開示の絶縁シートは、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、8面積%以下、6面積%以下、4面積%以下、3面積%以下、2面積%以下、又は1面積%以下の空隙を含有している。空隙の下限は特に限定されないが、例えば、空隙は、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときに、0.01面積%以上、0.1面積%以上、0.5面積%以上、0.8面積%以上、又は1.0面積%以上であってよい。
 本開示において、面方向に垂直な断面全体について、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときの空隙の「面積%」は、絶縁シートの面方向に垂直な断面をSEMによって撮影し、かつ取得された画像における一定面積中に存在する空隙の面積を計測することによって、算出することができる。なお、絶縁シートが絶縁性粒子及びバインダー樹脂以外の添加物を有する場合には、上記の一定面積中に当該添加物が含まれないように上記の一定面積を設定することなどによって、絶縁性粒子、バインダー樹脂、及び空隙の合計を100面積%としたときの空隙の「面積%」を算出することができる。
 本開示において「空隙」は、絶縁シートを構成する要素の間に形成される隙間を意味する。空隙は、例えば、絶縁シートの形成時に、絶縁性粒子間などに気泡等がトラップされることによって生じる。
〈スキン層〉
 本開示に係る絶縁シートは、好ましくは、スキン層を有している。スキン層は、絶縁シートの表層を構成する層であり、バインダー樹脂を含んでいる一方で、絶縁性粒子を含んでいない。絶縁シートがスキン層を有している場合には、絶縁シート外への絶縁性粒子の露出及び脱離を防止することができる。
 スキン層の厚みは、好ましくは0.01μm~10μmであり、より好ましくは0.1μm~1μmである。スキン層の厚みが0.01μm以上である場合には、絶縁性粒子を絶縁シート中に保持する効果がさらに向上する。スキン層の厚みが10μm以下である場合には、スキン層に起因する熱抵抗を低減することができるため、絶縁シートの熱伝導性がさらに向上する。
 絶縁シートにおけるスキン層の厚みは、絶縁シートの面方向に垂直な断面をSEMによって観察し、断面SEM画像の5か所において絶縁シートの表層の厚みを計測し、かつ計測値を平均することによって、算出することができる。
〈表面粗さ〉
 本開示に係る絶縁シートは、好ましくは、絶縁シート表面における絶縁性粒子の露出が低減されており、比較的平滑性が高い表面構造を有している。具体的には、本開示に係る絶縁シートに関して、表面粗さRaが0.5μm以下であることが好ましい。絶縁シートの表面粗さRaが0.5μm以下である場合には、絶縁シートと発熱源との間の界面熱抵抗が抑制されるため、熱拡散性をさらに向上することができる。表面粗さRaは、より好ましくは0.4μm以下、特に好ましくは0.2μm以下、最も好ましくは0.1μm以下である。なお、表面粗さの下限は、特に限定されないが、例えば、0.01μm以上であってよい。
 表面粗さRaは、微細形状測定機を用いて測定することができる。具体的には、絶縁シートの面方向に沿う表面における1mmの範囲を、0.2μm間隔、触針圧力50μN、及び速度5μm/sの条件で走査し、測定した各点について、その点の計測値と前後40μm区間に存在する点の計測値の平均値との差を算出することによって、表面高さを決定し、計測したすべての点の表面高さの平均値を算出し、この平均値を表面粗さRaとすることができる。
〈残留塩濃度〉
 好ましくは、本開示に係る絶縁シートに含有されている塩が低減されている。絶縁シートに含有される塩濃度の上限は絶縁シートの使用用途によって異なるが、塩濃度が900ppm以下であることが好ましく、特には、絶縁シートにおける塩素濃度(塩化物イオン濃度)が900ppm以下であることが好ましく、又は臭素と塩素との合計の濃度が1500ppm以下であることが好ましい。絶縁シートにおける塩素濃度が900ppm以下、又は臭素と塩素との合計の濃度が1500ppm以下である場合には、絶縁シートを一般的なハロゲンフリー素材として取り扱うことが可能になる。絶縁シートにおける塩素濃度は、より好ましくは500ppm以下、さらに好ましくは100ppm以下、特に好ましくは50ppm以下である。なお、塩素濃度の下限は、特に限定されないが、例えば、0.1ppm以上、又は1ppm以上であってよい。絶縁シートに含有される塩濃度は、イオンクロマトグラフ法によって測定することができる。
〈残留溶剤濃度〉
 絶縁シート中の残留溶媒及び水の合計量(残留溶剤濃度)が、絶縁シートに対して、3重量%以下であることが好ましい。絶縁シートに含有される残留溶媒及び水の合計量が絶縁シートに対して3重量%以下である場合には、絶縁シートを電子機器等に実装した際に、残留溶媒及び/又は水の気化・結露が抑制されるため、電子機器のより良好な作動を確保することができる。絶縁シートに含有される残留溶媒及び水の合計量は、絶縁シートに対して、好ましくは2.5重量%以下、より好ましくは2.0重量%以下、特に好ましくは1.5重量%以下、最も好ましくは1.0重量%以下である。なお、絶縁シート中の残留溶媒及び水の合計量の下限は、特に限定されないが、例えば、0.01重量%以上、又は0.1重量%以上であってよい。絶縁シートの残留溶剤濃度は、熱重量示差熱分析法(TG-DTA)によって測定することができる。
〈絶縁シートの厚み〉
 絶縁シートの厚みは、100μm以下であることが好ましい。好ましくは、絶縁シートの厚みが、80μm以下、70μm以下、60μm以下、又は50μm以下である。絶縁シートの厚みの下限は、特に制限されないが、例えば0.1μm以上、1μm以上、又は10μm以上であってよい。絶縁シートの厚みが100μm以下である場合には、絶縁シート自体の熱抵抗値が低くなるため、好ましい。また、絶縁シート自体が薄いことによって、電子機器内部の制限された空間で放熱性能を発現することができる。
〈体積部〉
 本開示に係る絶縁シートの別の実施態様では、本開示に係る絶縁シートが、絶縁シート100体積部に対して、75~97体積部の絶縁性粒子、3~25体積部のバインダー樹脂、及び10体積部以下の空隙を含有している。
 好ましくは、本開示に係る絶縁シートに含有される絶縁性粒子は、絶縁シート100体積部に対して、80体積部以上、85体積部以上、若しくは90体積部以上であってよく、かつ/又は96体積部以下、95体積部以下、94体積部以下、93体積部以下、92体積部以下、若しくは91体積部以下であってよい。
 好ましくは、本開示に係る絶縁シートに含有されるバインダー樹脂は、絶縁シート100体積部に対して、5体積部以上、6体積部以上、7体積部以上、若しくは8体積部以上であってよく、かつ/又は24体積部以下、20体積部以下、15体積部以下、12体積部以下、若しくは10体積部以下であってよい。
 好ましくは、本開示の絶縁シートは、絶縁シート100体積部に対して、8体積部以下、6体積部以下、4体積部以下、3体積部以下、2体積部以下、又は1体積部以下の空隙を含有している。空隙の下限は特に限定されないが、例えば、0.01体積部以上、0.1体積部以上、0.5体積部以上、0.8体積部以上、又は1.0体積部以上であってよい。
 絶縁シートが同一サンプル面内でおおよそ均一な組成、厚みを有する場合、面方向に垂直な断面から求められる各成分の面積%は、絶縁シートにおける各成分の体積比(絶縁シート100体積部に対する体積部)と実質的に等しいと考えられる。したがって、絶縁シートにおける空隙の体積部は、空隙に関する面積%について既述した手法と同様にして、算出することができる。
〈添加物〉
 本発明の絶縁シートは、難燃剤、変色防止剤、界面活性剤、カップリング剤、着色剤、粘度調整剤、及び/又は補強材を含有していてもよい。さらに、シートの強度を高めるために、繊維状の補強材を含有していてもよい。繊維状の補強材としてアラミド樹脂の短繊維を用いると、補強材の添加によって絶縁シートの耐熱性が低下しないので好ましい。繊維状の補強材は、絶縁シート100体積部に対して0.5~25体積部の範囲で添加することが好ましく、1~20体積部の範囲で添加することがより好ましい。補強材等を添加する場合、絶縁シート100体積部に対するバインダー樹脂の割合は、3体積部を下回らないことが好ましい。
〈使用〉
 本開示に係る絶縁シートは、例えば、電気製品内部の半導体素子又は電源、光源などの発熱部品において発せられる熱を速やかに拡散して局所的な温度上昇を緩和するために使用することができ、又は発熱源から離れた箇所に熱を輸送するために使用することができる。
 具体的には、本開示に係る絶縁シートの使用方法の例として、絶縁シートを発熱源(CPUなど)側に貼ることによって発熱源の熱を拡散し、それによって発熱源(チップ)温度の低減を行う使用方法、あるいは、絶縁シートを筐体側に貼ることによって筐体温度の局所的な増加を低減する使用方法などが挙げられる。
 絶縁シートを電子機器に適用する場合、その適用方法は特に限定されない。例えば、絶縁シートを、発熱源、例えば電子機器内部の半導体に、直接に接触させて又は他の熱伝導体を介して配置してよく、そのようにして、発熱源の表面温度を効率よく低減することができる。また、絶縁シートを発熱源と耐熱性の低い電子部品との間に配置することによって、耐熱性の低い電子部品に伝わる熱を拡散し、それによって、電子部品を熱から保護することができる。また、絶縁シートを発熱源と液晶ディスプレイの間に配置することで、局所的な加熱による液晶ディスプレイの不良、例えば色ムラを、低減することができる。さらに、絶縁シートを熱源と電子機器の外表面との間に配置することによって、電子機器の外表面の局所的な温度上昇を低減することができ、それによって、使用者への安全性、例えば低温やけどを回避する効果、をさらに向上することができる。
〈粘着層〉
 絶縁シートの一方の表面又は両方の表面に、粘着層及び/又は接着層を配置してもよい。この場合、粘着層及び接着層は、公知のものであってよい。絶縁シートの表面に粘着層及び/又は接着層を配置することで、電子機器内部等への絶縁シートの設置がより簡便となる。
〈熱伝導率及び絶縁破壊電圧〉
 本開示に係る1つの実施態様では、絶縁シートの熱伝導率が、面内方向で30W/(m・K)以上であり、かつ絶縁破壊電圧が5kV/mm以上である。
(面内方向における熱伝導率)
 熱伝導率が面内方向で30W/(m・K)以上である場合には、電子機器の発熱を十分に拡散することができるため、ヒートスポットが発生しにくくなり、好ましい。熱伝導率は高い程好ましいが、通常達成できる熱伝導率は、面内方向で高々100W/(m・K)である。
 好ましくは、絶縁シートの熱伝導率が、面内方向で、35W/(m・K)以上、40W/(m・K)以上、45W/(m・K)以上、50W/(m・K)以上、又は55W/(m・K)以上である。
 絶縁シートの面内方向の熱伝導率は、熱拡散率、比重、及び比熱を全て乗じて算出することができる。すなわち、
  (熱伝導率)=(熱拡散率)×(比熱)×(比重)
によって算出することができる。
 上記の熱拡散率は、光交流法によって、光交流法熱拡散率測定装置を用いて測定することができる。比熱は、示差走査熱量計によって求めることができる。また、比重は、絶縁シートの外寸法及び重量から求めることができる。
(厚み方向における熱伝導率)
 本開示に係る絶縁シートの別の実施態様では、絶縁シートの熱伝導率が、厚み方向で0.5W/(m・K)以上、5.0W/(m・K)以下である。
 特には、絶縁シートの熱伝導率が、厚み方向で、0.8W/(m・K)以上、若しくは1.0W/(m・K)以上であってよく、かつ/又は4.5W/(m・K)以下、若しくは4.0W/(m・K)以下であってよい。
 絶縁シートの厚み方向の熱伝導率は、熱拡散率、比重及び比熱を全て乗じて算出することができる。すなわち、
  (熱伝導率)=(熱拡散率)×(比熱)×(比重)
によって算出することができる。
 厚み方向の熱拡散率は、温度波分析法(温度波の位相遅れ計測法)により求めることができる。比熱は、示差走査熱量計によって求めることができる。また、比重は、絶縁シートの外寸法及び重量から求めることができる。
(絶縁破壊電圧)
 好ましくは、絶縁シートの絶縁破壊電圧が、5kV/mm以上、8kV/mm以上、又は10kV/mm以上である。絶縁破壊電圧が5kV/mm以上である場合には、絶縁破壊が起こりにくくなり、電子機器の不良が回避されるため好ましい。
 絶縁シートの絶縁破壊電圧は、試験規格ASTM D149に準拠して測定される。測定には、絶縁耐力試験装置を用いることができる。
〈比誘電率〉
 本開示の絶縁シートの1つの実施態様では、1GHzにおける比誘電率が、6以下である。絶縁シートの1GHzにおける比誘電率が6以下である場合には、電磁波の干渉が回避されうるため、好ましい。
 好ましくは、1GHzにおける比誘電率が、5.5以下、5.3以下、5.0以下、又は4.8以下である。比誘電率の下限は特に限定されないが、例えば、1.5以上、又は2.0以上であってよい。
 本開示に係る比誘電率は、摂動方式試料穴閉鎖形空洞共振器法を用いてネットワークアナライザによって計測することができる。
≪製造方法≫
 本開示は、本開示に係る絶縁シートを製造するための、下記を含む方法を含んでいる:
 絶縁性粒子、バインダー樹脂、及び溶剤を混合してスラリーを得る混合工程、
 混合工程後のスラリーをシート状に賦形及び乾燥して絶縁シート前駆体を成形する成形工程、並びに
 絶縁シート前駆体をロールプレスするロールプレス工程。
〈混合工程〉
 本開示に係る製造方法の混合工程では、絶縁性粒子、バインダー樹脂、及び溶剤を混合して、スラリーを得る。
 絶縁性粒子及びバインダー樹脂については、絶縁シートに関して既述した内容を参照することができる。
 混合工程では、随意に、難燃剤、変色防止剤、界面活性剤、カップリング剤、着色剤、粘度調整剤、及び/又は補強材などの添加物を添加してもよい。シートの強度を高めるために、繊維状の補強材を添加してもよい。
 混合工程では、無水塩化カルシウム又は無水塩化リチウムを添加してもよい。混合工程において無水塩化カルシウム又は無水塩化リチウムを添加することによって、溶剤に対するバインダー樹脂の溶解性を向上させることができる場合がある。特に、バインダー樹脂としてアラミド樹脂を用いる場合には、混合工程において無水塩化カルシウム又は無水塩化リチウムを添加することが好ましく、この場合には、溶剤に対するアラミド樹脂の溶解性をさらに向上させることができる。
(溶剤)
 溶剤としては、バインダー樹脂を溶解できる溶剤を用いることができる。例えば、バインダー樹脂としてアラミド樹脂を用いる場合、1-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、又はジメチルスルホキシドを用いることができる。
(混合)
 絶縁性粒子、バインダー樹脂及び溶剤の混合には、例えばペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混錬機等の、一般的な混錬装置を用いることができる。
〈成形工程〉
 本開示に係る製造方法の成形工程では、混合工程後のスラリーをシート状に賦形及び乾燥して、絶縁シート前駆体を成形する。
(賦形)
 混合工程後のスラリーをシート状に賦形するために、コーターにより剥離フィルム上に樹脂組成物を塗工する方法の他、押出成形、射出成形、ラミネート成形といった公知の方法を用いることができる。
(乾燥)
 乾燥は、公知の方法によって行ってよい。例えば、基材上に塗布されたスラリーを乾燥させ、その後、賦形されたスラリーを水中で基材から剥離した後に、さらに乾燥を行ってよい。乾燥温度は、例えば50℃~120℃であってよく、乾燥時間は、例えば10分~3時間であってよい。
 成形工程では、水洗処理を行ってもよい。水洗処理を行うことによって、絶縁シートにおける残留溶媒、及び存在する場合には塩を、低減することができる。水洗処理は、例えば、基材上に塗布されて賦形されたスラリーを乾燥した後に、イオン交換水に10分~3時間にわたって浸漬することによって行ってよい。水洗処理は、絶縁シート前駆体に対して行ってもよい。混合工程において無水塩化カルシウム又は無水塩化リチウムを添加した場合には、水洗処理を行うことが好ましい。
 賦形されたスラリー又は絶縁シート前駆体は、ロールプレス処理を経た絶縁シートと比較して、より多くの空隙を有しているため、水の浸透性が高いと考えられる。したがって、ロールプレスを行う前の段階で水洗処理を行うことによって、より効率的に残留溶媒及び塩を除去することができると考えられる。
 なお、絶縁シートに含まれる水は、水洗後に乾燥を行うことによって、又はロールプレス処理によって、低減されうる。
〈ロールプレス工程〉
 本開示に係る製造方法のロールプレス工程では、絶縁シート前駆体をロールプレスする。
 既述したように、絶縁シート前駆体をロールプレスすることによって、面内方向における優れた熱伝導率を有する絶縁シートを得ることができる。
 また、絶縁シート前駆体に対してロールプレスを行った場合には、スキン層を有する絶縁シートを得ることができる。絶縁シート前駆体に対してロールプレスを行うことによってスキン層が形成される理由は明らかではないが、ロールプレスを行うことによって、絶縁性粒子の間に存在していたバインダー樹脂が押し出されて表層を形成するため、スキン層を有する絶縁シートがもたらされると考えられる。
 さらに、絶縁シート前駆体に対してロールプレスを行った場合には、比較的平滑性が高い表面構造を有している絶縁シートを得ることができる。理論によって限定する意図はないが、ロールプレスを行うことによって形成されるスキン層によって、絶縁性粒子が絶縁シートの表面に露出することが抑制され、結果として絶縁シート表面の平滑性がさらに向上すると考えられる。
(ロールプレス)
 ロールプレスは、公知の方法によって行ってよく、例えば、カレンダーロール機によって、絶縁シート前駆体の加圧処理を行ってよい。ロールプレス工程において絶縁シート前駆体に付与される圧力は、線圧で400~8000N/cmであることが好ましい。線圧を400N/cm以上とすることで、絶縁性粒子の変形が起こりやすく、また気泡のシート外への排出が顕著になる。線圧が8000N/cm以下であることにより、絶縁性粒子が破壊しない程度に十分変形し密に充填され、シート内の空隙が少なくできる。ロールプレスにおいて使用するロールの直径は、例えば、200~1500mmであることが好ましい。
(加熱温度)
 ロールプレス処理の際には、絶縁シート前駆体を加熱することが好ましい。加熱温度は、使用するバインダー樹脂の種類などに応じて適宜設定することができる。バインダー樹脂としてアラミド樹脂を用いる場合、加熱温度は100~400℃であることが好ましい。加熱温度を100℃以上とすることで、バインダー樹脂が軟化しやすくロールプレス処理によって絶縁性粒子間の隙間を埋める効果が得られやすくなる。加熱温度を400℃以下とすることで、熱履歴によるバインダー樹脂の強度低下が生じにくくなる。
〈扁平状粒子〉
 本開示に係る製造方法の1つの実施態様では、スラリーに含まれる絶縁性粒子が、扁平状粒子を含んでいる。この場合には、ロールプレス処理によって粒子が変形することによって、シート内の空隙がさらに低減されると考えられる。理論によって限定する意図はないが、扁平状粒子は、例えば球状粒子と比較して、変形しやすい場合があると考えられる。
 絶縁性粒子は、好ましくは、絶縁性粒子100体積%に対して50体積%以上の扁平状粒子を含んでおり、特には、絶縁性粒子100体積%に対して50体積%以上の窒化ホウ素を含んでいる。絶縁性粒子100体積%あたりの扁平状粒子、特には窒化ホウ素粒子は、より好ましくは60体積%以上、さらに好ましくは70体積%以上、さらにより好ましくは80体積%以上、特に好ましくは90体積%以上である。
 本開示に係る製造方法の別の実施態様では、絶縁性粒子が、扁平状粒子を含んでおり、かつ、スラリーが、絶縁性粒子及びバインダー樹脂の合計100体積部に対して、75~97体積部の絶縁性粒子及び3~25体積部のバインダー樹脂を含んでいる。このようなスラリーから形成される絶縁シート前駆体に対してロールプレスを行った場合には、扁平状粒子の変形がより促進されることによって、絶縁シートの空隙がさらに低減すると考えられる。理論によって限定する意図はないが、絶縁シート前駆体における絶縁性粒子の含有率が比較的高い場合には、絶縁性粒子間の距離が比較的近いことに起因して、ロールプレスの際に絶縁性粒子間に及ぼされるせん断応力が比較的高くなり、結果として絶縁性粒子の変形が促進されると考えられる。そして、扁平状の絶縁性粒子が、シート内における隙間を埋めるように変形することによって、シート内における空隙率がさらに低減されると考えられる。
 以下、本開示に係る発明を、実施例により具体的に説明する。
≪実施例1~5、比較例1~2、及び参考例1≫
 実施例1~5に係る絶縁シート、比較例1~2に係る絶縁シート、及び参考例1に係る絶縁シート前駆体を作製した。得られた絶縁シート及び絶縁シート前駆体の特性を測定した。測定は、以下の方法により行った。
(1)熱伝導率
 絶縁シートの熱伝導率は、厚み方向と面内方向それぞれについて熱拡散率、比重及び比熱を全て乗じて算出した。
  (熱伝導率)=(熱拡散率)×(比熱)×(比重)
 厚み方向の熱拡散率は、温度波分析法により求めた。測定装置には、アイフェイズ製ai-Phase mobile M3 type1を用いた。面内方向の熱拡散率は光交流法により求めた。測定装置には、アドバンス理工製LaserPITを用いた。比熱は、示差走査熱量計(TA Instruments製DSCQ10)を用いて求めた。比重は、絶縁シートの外寸法及び重量から求めた。
(2)絶縁破壊電圧
 絶縁シートの絶縁破壊電圧は、試験規格ASTM D149に準拠して測定した。測定装置には、東京変圧器社製の絶縁耐力試験装置を用いた。
(3)平均粒径、アスペクト比
 (i)平均粒径としては、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製MT3000)を用いて、測定時間10秒、測定回数1回で測定を行い、体積分布におけるD50値を取得した。
 (ii)アスペクト比は、走査型電子顕微鏡(日立ハイテクノロジーズ製TM3000形Miniscope)を用いて、倍率1500倍で粒子の長径と厚みを測定し、計算により求めた。
(4)嵩密度
 嵩密度は、絶縁シートを50mm角に切り出して、精密電子天秤を用いて質量を、マイクロメータで厚みを、ノギスでシート面積を測定し、計算により求めた。
(5)空隙率(面積%)
 空隙率は、面方向に垂直な断面を、走査型電子顕微鏡(SEM)によって3000倍で観察し、得られた断面画像の一定面積に存在する空隙の面積から、算出した。なお、絶縁シートが補強材を有する場合には、上記の一定面積中に当該補強材が含まれないように、上記の一定面積の設定を行った。
(6)配向度
 窒化ホウ素の配向度は、絶縁シートの主たる面を測定面として、透過X線回折(XRD、リガク製NANO―Viewer)のピーク強度比によって評価した。窒化ホウ素結晶のc軸(厚み)方向に対応する(002)ピーク強度I(002)と、a軸(平面)に対応する(100)ピーク強度I(100)を用いて次の式で配向度を定義した。
(窒化ホウ素配向度)=I(002)/I(100)
配向度の値が低いほど、窒化ホウ素がシート面内と同一方向に配向していることになる。
(7)比誘電率
 絶縁シートの1GHzにおける比誘電率は、摂動方式試料穴閉鎖形空洞共振器法を用いてネットワークアナライザ(キーコム製E8361A)によって測定した。
(8)引張強度及び引張弾性率
 引張強度および引張弾性率は、ISO527-1に基づいて測定した。試験機は、オリエンテック社製テンシロンUCT-30T型を用いた。
(9)表面粗さ
 表面粗さは、小坂研究所製微細形状測定機ET200を用いて測定した。絶縁シートの面方向に沿う表面における1mmの範囲を、0.2μm間隔、触針圧力50μN、及び速度5μm/sの条件で走査した。そして、測定した各点について、その点の計測値と、前後40μm区間に存在する点の計測値の平均値との差を算出することによって、表面高さを決定した。そして、計測したすべての点の表面高さの平均値を算出し、これを表面粗さRaとした。
(10)スキン層の厚み
 絶縁シートにおけるスキン層の厚みは、絶縁シートの面方向に垂直な断面をSEMによって観察し、得られたSEM画像における絶縁シート断面の5か所で絶縁シート表層の厚みを計測し、計測された値を平均することによって、算出した。
(11)残留溶剤濃度
 絶縁シートに含まれる水及び溶媒(NMP)の残留濃度(残留溶剤濃度)は、水平差動型TG-DTA(リガク製、ThermoMass Photo)によって測定した。具体的には、複数枚の絶縁シートを切断処理することによって約1mm角の試験片を作製し、これら試験片(合計6.7mg)に対してヘリウム雰囲気下で室温から500℃にまで10℃/分で昇温処理を行い、重量減少の割合を測定した。測定された重量減少の割合を残留溶剤濃度とした。
(12)残留塩濃度
 絶縁シートに含まれる塩濃度(塩化カルシウム濃度)は、イオンクロマトグラフ法で測定した。具体的には、絶縁シート100mgを酸素気流下900℃で10分間にわたって燃焼し、発生したガスを純水5mLに吸収させた。そして、Thermo Fisher Scientic社製のintegrionによって、ガスを吸収した純水中の塩化物イオン濃度を測定し、これを残留塩濃度とした。
〈実施例1〉
 1-メチル-2-ピロリドン(富士フイルム和光純薬株式会社製)350体積部に、バインダー樹脂としてのアラミド樹脂「テクノーラ」(帝人株式会社製コポリパラフェニレン・3,4‘-ジフェニルエーテルテレフタルアミド)5体積部、溶解樹脂の安定化剤としての無水塩化カルシウム(富士フイルム和光純薬株式会社製)2体積部が溶解した状態で、絶縁性粒子としての鱗片状窒化ホウ素粒子「HSL」(Dandong Chemical Engineering Institute Co.製、平均粒径30μm、アスペクト比38)95体積部を加えて、自転・公転ミキサーで10分間撹拌することで混合し、スラリーを得た。得られたスラリーをクリアランス0.14mmのバーコーターを用いてガラス板上に塗布して賦形し、かつ115℃で20分間乾燥させた。その後、イオン交換水に1時間浸漬・脱塩した後に、シート状に賦形されたスラリーを水中でガラス板から剥離した。剥離したシートを、100℃で30分間乾燥して、厚さ100μmの絶縁シート前駆体を得た。得られた絶縁シート前駆体に、温度280℃、線圧4000N/cmの条件でカレンダーロール機による圧縮処理を施して、厚さ37μmの柔軟な絶縁シートを得た(実施例1の絶縁シート)。
〈実施例2〉
 アラミド樹脂を8体積部とし、かつ鱗片状窒化ホウ素粒子を92体積部としたこと以外は、実施例1と同様にして、厚さ27μmの絶縁シートを得た(実施例2の絶縁シート)。
〈実施例3〉
 1-メチル-2-ピロリドン(和光純薬工業株式会社製)450体積部に、バインダー樹脂としてのアラミド樹脂「テクノーラ」10体積部、溶解樹脂の安定化剤としての無水塩化カルシウム(富士フイルム和光純薬株式会社製)2体積部が溶解した状態で、絶縁性粒子としての鱗片状窒化ホウ素粒子「PT110」(Momentive社製、平均粒径45μm、アスペクト比35)90体積部を加えて、80℃に加熱しながらスリーワンモーター撹拌機で60分間攪拌することで混合を行い、均一なスラリーを得た。
 得られたスラリーを、クリアランス0.28mmのバーコーターを用いてガラス板上に塗布してシート状に賦形し、70℃で1時間乾燥させた。その後、賦形されたスラリーを水中でガラス板から剥離した後に、100℃で1時間乾燥して、厚さ100μmの絶縁シート前駆体を得た。得られた絶縁シート前駆体に、温度270℃、線圧4000N/cmの条件でカレンダーロール機による圧縮処理を施して、厚さ48μmの絶縁シートを得た(実施例3の絶縁シート)。
〈実施例4〉
 アラミド樹脂を20体積部とし、かつ鱗片状窒化ホウ素粒子を80体積部としたこと以外は、実施例1と同様にして、厚さ25μmの絶縁シートを得た(実施例4の絶縁シート)。
〈実施例5〉
 アラミド樹脂を4体積部としたこと、鱗片状窒化ホウ素粒子を92体積部としたこと、及び、繊維補強材としてアラミド繊維であるトワロン短繊維(Teijin Aramid B.V.社製、繊維長0.25mm)を4体積部添加したこと以外は、実施例1と同様にして、厚さ32μmの絶縁シートを得た(実施例5の絶縁シート)。
〈比較例1〉
 アラミド樹脂を8体積部とし、かつ鱗片状窒化ホウ素粒子を92体積部としたこと以外は、実施例1と同様の手法で作成した厚さ100μmの絶縁シート前駆体を、真空縦型加熱プレス機によって、280℃、5Paの真空雰囲気下、5トンの荷重(20MPa)で、2分間(プレス開始後に昇温40分間、保持2分間、降温70分間)、熱プレスすることにより、厚さ42μmの絶縁シートを得た(比較例1の絶縁シート)。
〈比較例2〉
 アラミド樹脂を30体積部とし、かつ鱗片状窒化ホウ素粒子を70体積部としたこと以外は、実施例1と同様にして、厚さ26μmの絶縁シートを得た(比較例2の絶縁シート)。
〈参考例1〉
 アラミド樹脂を8体積部とし、かつ鱗片状窒化ホウ素粒子を92体積部としたこと以外は、実施例1と同様にして100℃で30分間の乾燥まで実施して、厚さ100μmの絶縁シート前駆体を得た(参考例1の絶縁シート前駆体)。
≪特性評価≫
 実施例1~5、比較例1~2、及び参考例1について行った測定結果を、表1に示す。なお、参考例1については、空隙が大きいため面方向に垂直な断面を規定することができず、断面における評価を行うことができなかった。そのため、参考例1の絶縁性粒子、バインダー樹脂、及び空隙率の面積%は「計測不可」としている。
Figure JPOXMLDOC01-appb-T000001
 表1で見られるように、面方向に垂直な断面全体について、75~97面積%の絶縁性粒子、3~25面積%のバインダー樹脂、及び10面積%以下の空隙を含有する実施例1~5の絶縁シートでは、面内方向における比較的高い熱伝導率が見られた。なお、上記のとおり、バインダー樹脂及び絶縁性粒子の面積%は、それぞれ、それらの体積部に実質的に対応しており、表1では、このようにして推定した面積%を「()」で示している。
 なお、実施例2は、絶縁性粒子の含有率に関しては実施例1よりも値が低いにもかかわらず、面内方向における特に高い熱伝導率を示した。このような結果が得られた理由の1つとしては、実施例2では、実施例1よりも空隙率が低減されていたことが挙げられる。
 ロールプレス処理の代わりに真空熱プレス処理を行った比較例1の絶縁シートは、面方向に垂直な断面全体について75~97面積%の絶縁性粒子及び3~25面積%のバインダー樹脂を含有する一方で、空隙率が10面積%超であり、面内方向における比較的低い熱伝導率が見られた。
 また、絶縁性粒子が75面積%未満であり、かつバインダー樹脂が25面積%超である比較例2の絶縁シートでも、面内方向における比較的低い熱伝導率が見られた。
≪SEM観察≫
 実施例1~5、比較例1~2、及び参考例1の絶縁シートについて、走査型電子顕微鏡(SEM)による観察を行った。
 図4~図8は、それぞれ、実施例1~5の絶縁シートの、面方向に垂直な断面のSEM写真を示す。図4~図8で見られるように、実施例1~5の絶縁シートでは、扁平状の窒化ホウ素粒子がシート内の隙間を埋めるように変形しており、例えば、真空熱プレスを行った比較例1の場合(図10)と比較して、空隙が比較的小さい。なお、実施例5に係る図8のSEM写真では、写真の下部にわたって、トワロン短繊維が見られる。
 図9は、参考例1に係る絶縁シート前駆体の、面方向に垂直な断面のSEM画像を示す。図9で見られるように、加圧処理を行っていない絶縁シート前駆体である参考例1のシートは、空隙が比較的大きく、絶縁性粒子の充填度が比較的低い。また、扁平状の絶縁性粒子の変形は観察されなかった。
 図10は、比較例1に係るシートの、面方向に垂直な断面のSEM画像を示す。図10で見られるように、加圧処理の際にロールプレス処理ではなく真空縦型加熱プレスを行った比較例1のシートでは、加圧処理を行っていない参考例1と比較して空隙が低減されているものの、扁平状である窒化ホウ素の立体障害に起因して、絶縁シート内に空隙が比較的多く残存していた。また、図10で見られるように、比較例1の絶縁シートでは、扁平状の絶縁性粒子がある程度変形しているものの、変形の度合いが十分ではなく、粒子間の隙間を埋めるには至っていなかった。
 図11は、比較例2に係るシートの、面方向に垂直な断面のSEM画像を示す。図11で見られるように、絶縁性粒子が75面積%未満でありかつバインダー樹脂が25面積%超である比較例2のシートでは、バインダー樹脂の含有率が比較的大きいことに起因して、絶縁性粒子間の距離が比較的大きくなっていた。
≪実施例6及び比較例3≫
 次に、絶縁性粒子として窒化ホウ素に加えて表面絶縁化金属シリコン粒子を含み、かつバインダー樹脂としてアラミド樹脂「コーネックス」(帝人株式会社製ポリメタフェニレンイソフタルアミド)を用いた場合について調べた。実施例6及び比較例3に係る絶縁シートを作製し、物性等を評価した。
〈実施例6〉
 1-メチル-2-ピロリドン130体積部に、バインダー樹脂としてのアラミド樹脂「コーネックス」20体積部が溶解した状態で、絶縁性粒子としての鱗片状窒化ホウ素粒子「PT110」60体積部及び熱酸化法(大気中、900℃、1時間)によって表面を絶縁化した金属シリコン粒子「♯350」(キンセイマテック株式会社製、平均粒径15μm、アスペクト比1)20体積部を加えた点、クリアランス0.40mmのバーコーターを用いた点以外は実施例3と同様にして、絶縁シートを作成し、厚さ56μmの絶縁シートを得た(実施例6の絶縁シート)。
〈比較例3〉
 1-メチル-2-ピロリドン520体積部に、バインダー樹脂としてのアラミド樹脂「テクノーラ」40体積部が溶解した状態で、絶縁性粒子としての窒化ホウ素粒子「PT110」60体積部を加えた点、クリアランス0.80mmのバーコーターを用いた点以外は実施例3と同様にして絶縁シートを作製し、厚さ50μmの絶縁シートを得た(比較例3の絶縁シート)。
 実施例6及び比較例3について行った測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2で見られるように、面方向に垂直な断面全体について、75~97面積%の絶縁性粒子、3~25面積%のバインダー樹脂、及び10面積%以下の空隙を含有する実施例6の絶縁シートでは、絶縁性粒子が75面積%未満でありかつバインダー樹脂が25面積%超である比較例3の絶縁シートと比較して、面内方向における比較的高い熱伝導率が見られた。実施例6の絶縁シートは、窒化ホウ素粒子の他に金属シリコン粒子を含有しているので、実施例4対比、厚み方向の熱伝導率が向上している。
 本発明の絶縁シートは、電子・電気機器の発熱部材の絶縁放熱部材として、例えば半導体の熱を冷却材や筐体に逃がすための絶縁放熱部材として、好適に用いることができる。
 本開示の絶縁シートは、面内方向に熱を効率よく拡散、輸送することができ、また、優れた絶縁性を示す。また、本開示の絶縁シートは、仮に破損した場合であっても、回路内で電気的ショートを起こす恐れがないため、電気・電子機器類におけるヒートスポットの解消、均熱化、熱拡散等の用途に好適に用いることができる。
 10、20,30  絶縁シート
 11,21,31  絶縁性粒子
 12,22,32  バインダー樹脂
 13,23,33  空隙

Claims (15)

  1.  絶縁性粒子及びバインダー樹脂を含有し、かつ
     面方向に垂直な断面全体について、前記絶縁性粒子、前記バインダー樹脂、及び空隙の合計を100面積%としたときに、75~97面積%の前記絶縁性粒子、3~25面積%の前記バインダー樹脂、及び10面積%以下の前記空隙を含有する、
    絶縁シート。
  2.  前記絶縁性粒子が、変形している扁平状粒子を含む、請求項1に記載の絶縁シート。
  3.  前記絶縁性粒子が、窒化ホウ素を50体積%以上含む、請求項2に記載の絶縁シート。
  4.  前記バインダー樹脂は、融点又は熱分解温度が150℃以上である、請求項1~3のいずれか一項に記載の絶縁シート。
  5.  前記バインダー樹脂が、アラミド樹脂である、請求項1~4のいずれか一項に記載の絶縁シート。
  6.  バインダー樹脂を含有しており絶縁性粒子を含有していないスキン層を有している、請求項1~5のいずれか一項に記載の絶縁シート。
  7.  表面粗さRaが0.5μm以下である、請求項1~6のいずれか一項に記載の絶縁シート。
  8.  塩濃度が900ppm以下である、請求項1~7のいずれか一項に記載の絶縁シート。
  9.  残留溶剤濃度が3重量%以下である、請求項1~8のいずれか一項に記載の絶縁シート。
  10.  熱伝導率が面内方向で30W/(m・K)以上であり、絶縁破壊電圧が5kV/mm以上である、請求項1~9のいずれか一項に記載の絶縁シート。
  11.  1GHzにおける比誘電率が6以下である、請求項1~10のいずれか一項に記載の絶縁シート。
  12.  請求項1~11のいずれか一項に記載の絶縁シートの製造方法であって、
     絶縁性粒子、バインダー樹脂、及び溶剤を混合してスラリーを得る混合工程、
     混合工程後のスラリーをシート状に賦形及び乾燥して絶縁シート前駆体を成形する成形工程、及び
     前記絶縁シート前駆体をロールプレスするロールプレス工程、
    を含む、絶縁シートの製造方法。
  13.  前記絶縁性粒子が、扁平状粒子を含む、請求項12に記載の方法。
  14.  前記絶縁性粒子が、窒化ホウ素を50体積%以上含む、請求項13に記載の方法。
  15.  前記スラリーが、前記絶縁性粒子及び前記バインダー樹脂の合計100体積部に対して、75~97体積部の前記絶縁性粒子及び3~25体積部の前記バインダー樹脂を含んでいる、請求項12~14のいずれか一項に記載の方法。
PCT/JP2019/051286 2019-03-22 2019-12-26 絶縁シート WO2020194972A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980094332.1A CN113544798B (zh) 2019-03-22 2019-12-26 绝缘片材
US17/440,893 US20220165457A1 (en) 2019-03-22 2019-12-26 Insulation sheet
JP2019572707A JP6755421B1 (ja) 2019-03-22 2019-12-26 絶縁シート
KR1020217020887A KR102568478B1 (ko) 2019-03-22 2019-12-26 절연 시트
EP19921727.4A EP3944263B1 (en) 2019-03-22 2019-12-26 Insulating sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-054540 2019-03-22
JP2019054540 2019-03-22
JP2019160540 2019-09-03
JP2019-160540 2019-09-03

Publications (1)

Publication Number Publication Date
WO2020194972A1 true WO2020194972A1 (ja) 2020-10-01

Family

ID=72610739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051286 WO2020194972A1 (ja) 2019-03-22 2019-12-26 絶縁シート

Country Status (5)

Country Link
EP (1) EP3944263B1 (ja)
KR (1) KR102568478B1 (ja)
CN (1) CN113544798B (ja)
TW (1) TWI826621B (ja)
WO (1) WO2020194972A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137562A (ja) 2008-11-12 2010-06-24 Nitto Denko Corp 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
JP2011090868A (ja) 2009-10-22 2011-05-06 Denki Kagaku Kogyo Kk 絶縁シート、回路基板及び絶縁シートの製造方法
JP2011100757A (ja) * 2009-11-04 2011-05-19 Denki Kagaku Kogyo Kk 電子部品及びその製造方法
JP2011124077A (ja) * 2009-12-10 2011-06-23 Sekisui Chem Co Ltd 絶縁シート、積層構造体及び積層構造体の製造方法
JP2012064691A (ja) 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The 熱拡散シート
JP2012212727A (ja) * 2011-03-30 2012-11-01 Nitto Denko Corp 熱伝導性シートの製造方法および熱伝導性シート
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置
JP2016092407A (ja) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2017213248A1 (ja) * 2016-06-10 2017-12-14 日立化成株式会社 接着フィルム及びダイシングダイボンディング一体型フィルム
WO2018123012A1 (ja) * 2016-12-28 2018-07-05 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法及び放熱装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129832A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Composition for forming gate insulating layer of organic thin-film transistor and organic thin film transistor using the same
CN101899209B (zh) * 2010-03-30 2012-12-26 金发科技股份有限公司 一种导热绝缘材料及其制备方法
TWI462831B (zh) * 2010-10-06 2014-12-01 Hitachi Chemical Co Ltd 多層樹脂片及其製造方法、樹脂片層合體及其製造方法、多層樹脂片硬化物、附金屬箔之多層樹脂片、以及半導體裝置
JP5888584B2 (ja) * 2011-08-31 2016-03-22 日立化成株式会社 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
JP2013177563A (ja) * 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シート
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
WO2016031212A1 (ja) * 2014-08-26 2016-03-03 バンドー化学株式会社 熱伝導性樹脂成形品
JP6683715B2 (ja) * 2015-08-26 2020-04-22 デンカ株式会社 熱伝導性樹脂組成物
JP6135817B1 (ja) * 2016-03-09 2017-05-31 東洋インキScホールディングス株式会社 熱伝導性絶縁シート、およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137562A (ja) 2008-11-12 2010-06-24 Nitto Denko Corp 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
JP2011090868A (ja) 2009-10-22 2011-05-06 Denki Kagaku Kogyo Kk 絶縁シート、回路基板及び絶縁シートの製造方法
JP2011100757A (ja) * 2009-11-04 2011-05-19 Denki Kagaku Kogyo Kk 電子部品及びその製造方法
JP2011124077A (ja) * 2009-12-10 2011-06-23 Sekisui Chem Co Ltd 絶縁シート、積層構造体及び積層構造体の製造方法
JP2012064691A (ja) 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The 熱拡散シート
JP2012212727A (ja) * 2011-03-30 2012-11-01 Nitto Denko Corp 熱伝導性シートの製造方法および熱伝導性シート
WO2014208694A1 (ja) * 2013-06-27 2014-12-31 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂シート構造体、樹脂シート構造体硬化物、樹脂シート構造体硬化物の製造方法、半導体装置、及びled装置
JP2016092407A (ja) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2017213248A1 (ja) * 2016-06-10 2017-12-14 日立化成株式会社 接着フィルム及びダイシングダイボンディング一体型フィルム
WO2018123012A1 (ja) * 2016-12-28 2018-07-05 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法及び放熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944263A4

Also Published As

Publication number Publication date
KR102568478B1 (ko) 2023-08-18
KR20210099091A (ko) 2021-08-11
TW202107493A (zh) 2021-02-16
EP3944263A1 (en) 2022-01-26
EP3944263A4 (en) 2022-05-11
TWI826621B (zh) 2023-12-21
EP3944263B1 (en) 2024-01-03
CN113544798A (zh) 2021-10-22
CN113544798B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
JP5322894B2 (ja) 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
JP7233564B2 (ja) 放熱シート及びその製造方法
EP3761355B1 (en) Insulating heat dissipation sheet
WO2022193572A1 (zh) 氮化硼散热膜及其制备方法和应用
JP5442491B2 (ja) 熱伝導性金属−絶縁樹脂基板及びその製造方法
TWI697016B (zh) 絕緣電線
JP6755421B1 (ja) 絶縁シート
EP4105173A1 (en) Heat dissipation sheet and method for manufacturing heat dissipation sheet
KR102073532B1 (ko) 방열 회로 기판
EP3981829A1 (en) Thermally conductive sheet and production method therefor
WO2020194972A1 (ja) 絶縁シート
TW201910482A (zh) 具有高熱傳導性及高絕緣性的散熱片
JP6552935B2 (ja) 層間熱接合材料およびパワー半導体用冷却システム
JP2022095514A (ja) 絶縁性熱伝導シート及びその製造方法
TW202223064A (zh) 導熱性片材及導熱性片材之製造方法
WO2024090364A1 (ja) 積層体及びその製造方法
KR102367298B1 (ko) 강화방열시트 및 이의 제조방법
Fink et al. Hybrid polymer incorporating BN particles: Thermal, mechanical, and electrical properties
WO2023190236A1 (ja) 複合体及びその製造方法、並びに、接合体、回路基板及びパワーモジュール
WO2014103327A1 (ja) 熱伝導性粘着シート及びその製造方法
Liu et al. Enhanced thermal conductivity of electrically insulating polydimethylsiloxane composites with boron nitride nanosheet and aluminum oxide for thermal management on flexible electronics
JP2022007554A (ja) 絶縁性放熱材料、絶縁膜及び絶縁膜の製造方法
JP2024039214A (ja) 水性分散液
JP2012214562A (ja) 絶縁性樹脂組成物および絶縁性フィルム、ならびに絶縁性フィルムの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019572707

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217020887

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019921727

Country of ref document: EP