WO2020194593A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2020194593A1
WO2020194593A1 PCT/JP2019/013326 JP2019013326W WO2020194593A1 WO 2020194593 A1 WO2020194593 A1 WO 2020194593A1 JP 2019013326 W JP2019013326 W JP 2019013326W WO 2020194593 A1 WO2020194593 A1 WO 2020194593A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
rotor
magnet
electric machine
permanent magnet
Prior art date
Application number
PCT/JP2019/013326
Other languages
English (en)
French (fr)
Inventor
貴裕 水田
一将 伊藤
貴之 安盛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019007108.4T priority Critical patent/DE112019007108T5/de
Priority to US17/423,912 priority patent/US20220085674A1/en
Priority to CN201980094462.5A priority patent/CN113615041A/zh
Priority to PCT/JP2019/013326 priority patent/WO2020194593A1/ja
Priority to KR1020217028289A priority patent/KR102652587B1/ko
Priority to JP2019545376A priority patent/JP6631763B1/ja
Publication of WO2020194593A1 publication Critical patent/WO2020194593A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotary electric machine provided with a stator provided with a permanent magnet.
  • a rotary electric machine in which the rotor is composed of an iron core and a coil and a permanent magnet are provided on the stator side has been proposed.
  • a rotary electric machine in which a primary side magnetic pole member has a plurality of tooth modules, the plurality of tooth modules include a winding and at least one permanent magnet, and the permanent magnet is formed as a single unit or a divided structure. Is disclosed.
  • Patent Document 2 employs a bond magnet in which one of the main components is an insulating resin as a magnet for a field magnet. Since the bond magnet has a low conductivity, the eddy current generated in the bond magnet can be reduced. However, when a bond magnet having a low conductivity is used, the magnetic force is inferior to that of the sintered magnet, so that the output is reduced.
  • Patent Document 3 it is formed by a first permanent magnet formed by a first magnet piece divided along the axial direction of the rotor core and a second magnet piece divided along a direction intersecting the axial direction of the rotor core.
  • a permanent magnet type rotary electric machine having a second permanent magnet and having the first permanent magnet and the second permanent magnet inserted into the magnet holes of the rotor core has been proposed.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a rotary electric machine that reduces eddy current loss generated in a permanent magnet provided on the stator side of the rotary electric machine.
  • the rotary electric machine has a rotor and a stator arranged so as to face each other at intervals in the radial direction of the rotor, and the stator has a tubular core back and a plurality of teeth.
  • Each of the plurality of teeth protrudes from the core back toward the rotor, and the stator core is provided along the circumferential direction of the rotor, and the stator core is wound around each of the plurality of teeth and is adjacent in the circumferential direction.
  • a stator coil arranged in a slot formed between matching teeth and a plurality of permanent magnets in each of the plurality of teeth, and each of the plurality of permanent magnets has the same magnetic poles in the circumferential direction and the teeth. It is provided with magnet portions arranged in the protruding direction of.
  • the rotary electric machine has a rotor and a stator arranged so as to face each other at intervals in the radial direction of the rotor, and the stator includes a tubular core back and a plurality of teeth.
  • Each of the plurality of teeth protrudes from the core back toward the rotor, and the stator core is provided along the circumferential direction of the rotor, and the stator core is wound around each of the plurality of teeth in the circumferential direction.
  • It has a stator coil arranged in a slot formed between adjacent teeth and a permanent magnet in each of the plurality of teeth, and the permanent magnet is magnetized in the circumferential direction and the teeth of the permanent magnet protrude in the direction of protrusion.
  • a magnet portion in which a groove portion extending in the axial direction of the rotor is formed on a surface along both the axial directions of the rotor.
  • each of the plurality of permanent magnets has the same magnetic poles in the circumferential direction, and the magnet portions arranged in the protruding direction of the teeth or the permanent magnets are magnetized in the circumferential direction and are permanent.
  • Embodiment 1. 1 and 2 are cross-sectional views showing a schematic configuration of a rotary electric machine according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view orthogonal to the axial direction of the rotating shaft
  • FIG. 2 is a cross-sectional view taken along the axial direction of the rotating shaft, and is a cross-sectional view taken along the lines A1-A2 of FIG.
  • the rotary electric machine 1 includes a rotor 2 and a stator 3 arranged so as to surround the rotor 2 in the circumferential direction at intervals on the radial outer side of the rotor 2.
  • the rotation direction of the rotor 2 is the circumferential direction
  • the direction of the rotation axis 4 of the rotor 2 is the axial direction
  • the direction from the rotation center of the rotor 2 to the outer peripheral side is the radial direction.
  • the orthogonal direction includes a direction substantially orthogonal to each other.
  • the rotor 2 has a rotating shaft 4 and a rotor core 5 attached to the rotating shaft 4.
  • the rotor core 5 is fixed to the rotating shaft 4 by shrink fitting, press fitting, or the like.
  • the rotor core 5 is provided with a plurality of protrusions 6 protruding outward in the radial direction.
  • the protrusions 6 are provided at intervals in the circumferential direction of the rotor core 5.
  • the stator 3 has a stator core 7, a stator coil 8 and a magnet portion 9.
  • the stator core 7 is, for example, a magnetic material in which electromagnetic steel plates are laminated along the axial direction.
  • the stator core 7 has a tubular core back 10 and a plurality of teeth 11 protruding inward in the radial direction from the inner peripheral surface side of the core back 10. That is, the teeth 11 project from the core back 10 toward the rotor 2 and are provided at intervals along the circumferential direction.
  • Slots 12 are formed between the teeth 11 adjacent to each other in the circumferential direction, which are open toward the rotor 2 and extend in the axial direction.
  • the slot 12 is provided with a stator coil 8 wound around the teeth 11. Further, a magnet portion 9 is provided at the central portion in the circumferential direction of each of the plurality of teeth 11.
  • the magnet portion 9 is provided, for example, in each of the plurality of teeth 11 so as to extend in the protruding direction and the axial direction of the teeth 11, and is formed of a permanent magnet 91 magnetized in the circumferential direction.
  • the permanent magnets 91 of the magnet portions 9 adjacent to each other in the circumferential direction via the slot 12 are arranged so that the same magnetic poles face each other. That is, the permanent magnets 91 of the magnet portions 9 provided in each of the plurality of teeth 11 are arranged with the magnetic poles alternately arranged in the circumferential direction.
  • the magnet portion 9 is exposed from the teeth 11 on the inner peripheral surface of the stator core 7, for example, and is covered with the core back 10 on the outer peripheral surface of the stator core 7.
  • N and S in the figure indicate the magnetic poles of the permanent magnet 91 of the magnet portion 9.
  • a rare earth sintered magnet such as a neodymium sintered magnet or a ferrite magnet having a non-zero conductivity is used.
  • the magnet portion 9 has a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11.
  • the magnet portion 9 is divided into a plurality of pieces along the protruding direction of the teeth 11 by the surfaces of the permanent magnets 91 facing each other.
  • the permanent magnets 91 arranged in the protruding direction of the teeth 11 have the same magnetic poles in the circumferential direction.
  • the fact that the permanent magnets 91 have the same magnetic poles in the circumferential direction is not only when a plurality of permanent magnets 91 are magnetized in the same directions in the circumferential direction, but also in a certain range in consideration of variation. This includes the case where the magnet is magnetized in the same circumferential direction.
  • the case where the permanent magnets 91 are arranged in the protruding direction of the teeth 11 includes not only the case where they are arranged in the direction parallel to the protruding direction of the teeth 11 but also the case where they are arranged in a direction substantially parallel to each other.
  • the magnet portion 9 is divided into six, and six permanent magnets 91 are arranged, but the present invention is not limited to this.
  • the magnet portions 9a and 9b are provided so as to extend in the protruding direction of the teeth 11, so that the possibility that the magnetic flux does not pass through the rotor 2 but passes through the core back 10 or the teeth 11 can be reduced. Further, since the permanent magnets 91 magnetized in the circumferential direction are arranged in the protruding direction of the teeth 11, the peripheral cross-sectional area of the permanent magnets 91 can be expanded and the torque can be improved.
  • the magnet portion 9 has a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11, but the magnet portion 9 is a single permanent magnet 91 magnetized in the circumferential direction.
  • At least one groove portion 13 extending in the axial direction may be formed on a surface of the permanent magnet 91 along both the protruding direction and the axial direction of the tooth 11 having at least one.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of another example of the rotary electric machine according to the first embodiment of the present invention.
  • the magnet portion 9 has, for example, a single permanent magnet 91 extending in the protruding direction and the axial direction of the teeth 11, and is along both the protruding direction and the axial direction of the teeth 11 of the permanent magnet 91.
  • a plurality of groove portions 13 extending in the axial direction are provided on the surface at intervals along the protruding direction of the teeth 11.
  • the magnet portion 9 is divided into a plurality of regions along the protruding direction of the teeth 11 by the groove portion 13.
  • the groove portion 13 may be provided so as to penetrate the permanent magnet 91 in the axial direction, or may be provided in a part in the axial direction. Further, FIG. 3 shows an example in which the groove portions 13 are provided on both surfaces of the permanent magnet 91 facing the protruding direction and the circumferential direction along the axial direction, but the groove portions 13 are provided on only one surface. May be good.
  • the stator coil 8 is provided in, for example, centrally wound around each of the plurality of teeth 11, and is housed in the slot 12.
  • the winding of the stator coil 8 is wound around the teeth 11 sandwiched by a pair of adjacent slots 12 in the circumferential direction. In the figure, the winding wound around the teeth 11 is omitted.
  • a three-phase alternating current is supplied to the stator coil 8 to generate a rotating magnetic field.
  • each of the three phases is represented by a U phase, a V phase, and a W phase
  • two U phase coils are U1, U2, and two V phase coils are V1,.
  • V2 and two W-phase coils be W1 and W2.
  • the stator coils 8 are arranged in the order of U1, V1, W1, U2, V2, W2 in the counterclockwise direction.
  • the stator coil 8 has a neutral point common to a series circuit in which U1 and U2 are connected in series, a series circuit in which V1 and V2 are connected in series, and a series circuit in which W1 and W2 are connected in series. It is connected with.
  • a rotating magnetic field is generated by energizing each phase with a current that is 120 degrees out of phase.
  • FIGS. 4 and 5 are schematic configuration diagrams of a part of the rotary electric machine according to the first embodiment of the present invention.
  • the rotor 2 is rotating counterclockwise.
  • FIGS. 4 and 5 it is assumed that the teeth 11 adjacent to each other with one slot 12 in between are the teeth 11a and 11b in the counterclockwise order, and the teeth 11a and 11b are provided with magnet portions 9a and 9b, respectively.
  • the protruding portions 6 adjacent to each other in the rotor 2 are set to 6a and 6b in the counterclockwise order.
  • the direction symbol i 1 indicates the current flowing through the stator coil 8.
  • the arrow ⁇ c represents the magnetic flux due to the current flowing through the stator coil 8.
  • the arrows ⁇ a and ⁇ b are the magnetizing directions of the magnet portions 9a and 9b, respectively, and represent a part of the magnetic flux generated by the permanent magnet 91 itself of the magnet portions 9a and 9b.
  • the magnet portion 9a is a plurality of permanent magnets 91 magnetized to the north and south poles in the counterclockwise order
  • the magnet portion 9b is a plurality of permanent magnets magnetized to the south and north poles in the counterclockwise order. It shall have 91 respectively.
  • the magnet portions 9a and 9b are located in front of the protrusions 6a and 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current flowing from one of the axial directions to the other (from the front to the back of the paper) in the stator coil 8 provided in the slot 12 connects the core back 10 from the teeth 11b, and the magnet portion 9a.
  • the coil 2 flows from one protrusion 6a toward the other protrusion 6b and returns to the teeth 11b.
  • the magnet portions 9a and 9b are located behind the protrusions 6a and 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current flowing in the stator coil 8 provided in the slot 12 from the other in the axial direction toward one (from the back to the front of the paper surface) connects the core back 10 from the teeth 11a, and the magnet portion 9b.
  • the coil 2 flows from one protrusion 6b toward the other protrusion 6a and returns to the teeth 11a.
  • torque is generated by controlling whether the magnetic flux passes through the teeth 11a or the teeth 11b by changing the phase of the current energizing the stator coil 8.
  • the magnitude of the magnetic flux interlinking with the magnet portions 9a and 9b is increased by changing the positional relationship between the magnet portions 9a and 9b of the stator 3 and the protrusions 6a and 6b of the rotor 2 and the phase of the current. fluctuate. For example, assuming that the rotor 2 rotates counterclockwise and changes from the state of FIG. 4 to the state of FIG. 5, in FIG. 4, the magnet portion 9a is chained in a direction orthogonal to the protruding direction of the teeth 11. The magnetic flux is reduced when the positional relationship shown in FIG.
  • FIG. 6 is an explanatory diagram for explaining the flow of eddy current generated in the permanent magnet of the rotating electric machine according to the first embodiment of the present invention.
  • 5, 6, direction sign, arrow i 2 indicates the eddy current generated in the magnet portion 9a.
  • the path of the eddy current is the contact resistance of the surfaces of the permanent magnets 91 facing each other. Is divided in the protruding direction of the teeth 11. That is, the eddy current flows in a loop in each of the plurality of permanent magnets 91 forming the magnet portion 9a.
  • FIG. 7 is a relationship diagram showing the relationship between the magnitude of the eddy current of the rotary electric machine according to the first embodiment of the present invention and the distance in the protruding direction of the teeth of the permanent magnet.
  • the vertical axis Y is the magnitude of the eddy current flowing in the axial direction in the cross section of the permanent magnet 91
  • the horizontal axis X is the surface facing both in the direction orthogonal to the protruding direction of the teeth 11 of the permanent magnet 91 and in the axial direction. Of these, the distance from the surface closer to the rotor 2 to the opposite surface.
  • the two broken lines Q1 and Q2 are the magnitude of the eddy current flowing from one of the permanent magnets 91 in the axial direction to the other (from the front to the back of the paper), and the magnitude of the eddy current flowing from the other in the axial direction to the other (from the back to the front of the paper). is there.
  • the magnitude of the eddy current inside the permanent magnet 91 is represented by the ratio when the magnitude of the eddy current on the surface of the permanent magnet 91 is 1.
  • the current density of the eddy current is concentrated on the surface of the permanent magnet 91 due to the skin effect. Therefore, as shown in FIG. 7, the current flowing in the axial direction of the permanent magnet 91 is attenuated from the surface to the inside, and at the skin depth d, it is attenuated to 1 / e of the current flowing on the surface of the permanent magnet 91.
  • e represents the common logarithm.
  • the loop diameter becomes smaller, the eddy currents that flow in opposite directions interfere with each other and cancel each other out. For example, in the region shown between P1 and P2 in FIG.
  • the current from one to the other in the axial direction of the permanent magnet 91 and the current from the other to the other are 1 / e or more of the current flowing on the surface. However, they cancel each other out, and the eddy current can be reduced to the size shown by the solid line Q3 in the figure.
  • the arrow w m1 indicates the length of the permanent magnet 91 in the protruding direction of the teeth 11.
  • the length of the teeth 11 of the permanent magnet 91 in the protruding direction is w m1
  • the depth d preferably satisfies the following relationship.
  • FIG. 8 is a relationship diagram showing the relationship between the magnitude of the eddy current of the rotary electric machine according to the first embodiment of the present invention and the radial distance of the permanent magnet.
  • FIG. 8 shows the magnitude of the eddy current when the length w m1 in the protruding direction and the skin depth d of the teeth 11 of the permanent magnet 91 satisfy the following equations.
  • a magnet portion 9 in which a plurality of permanent magnets 91 are arranged in the protruding direction of the teeth 11 has been described as an example, but in the case of the magnet portion 9 provided with a single permanent magnet 91 in which the groove portion 13 is formed, it is permanent.
  • the length w m1 in the protruding direction of the teeth 11 of the magnet 91 is the length between the groove portions 13 adjacent to each other in the protruding direction of the teeth 11 in the permanent magnet 91 and the length between the surface of the permanent magnet 91 and the groove portion 13.
  • the rotor 2 and the stator 3 arranged so as to face each other at intervals in the radial direction of the rotor 2 are provided, and the stator 3 is a tubular core back 10.
  • Each of the plurality of permanent magnets 91 of the magnet portion 9 has the same magnetic poles in the circumferential direction and is arranged along the protruding direction of the teeth 11.
  • the magnet portion 9 is formed of a single permanent magnet 91 magnetized in the circumferential direction, and the groove portion 13 extends in the axial direction on a surface of the permanent magnet 91 along both the protruding direction and the axial direction of the teeth 11. Provided. Since the permanent magnet 91 is magnetized in the circumferential direction, the area where the magnetic flux generated by the current flowing through the stator coil 8 is interlinked is increased, and the torque is improved.
  • the path of the eddy current that flows when the magnetic flux generated by the current flowing through the stator coil 8 is interlinked with the magnet portion 9 is the path of the teeth 11 due to the surfaces of the plurality of permanent magnets 91 facing each other or the groove portion 13 of the permanent magnets 91. It is divided along the protruding direction. By dividing the eddy current path, the magnitude of the eddy current can be efficiently reduced, the eddy current loss can be reduced, and the torque can be improved.
  • the magnet portion 9 may be provided with an insulating material between the plurality of permanent magnets 91 and inside the groove portion 13. Further, each of the permanent magnets 91 may be coated for rust prevention and the like. This makes it easier to divide the eddy current and reduces the eddy current loss.
  • FIG. 1 of the surfaces of the magnet portion 9 facing each other along the direction orthogonal to the protruding direction of the teeth 11, the surface closer to the rotor 2 is exposed from the teeth 11 on the inner peripheral surface of the stator core 7.
  • An example is shown in which the opposite surface is covered with the core back 10 by the outer peripheral surface of the stator core 7, but other forms may be used.
  • the surface closer to the rotor 2 is simply referred to as the surface facing the rotor 2.
  • 9 and 10 are cross-sectional views showing a schematic configuration of another example of the rotary electric machine according to the first embodiment of the present invention. As shown in FIG. 9, the opposite surface of the surface of the magnet portion 9 facing the rotor 2 is exposed on the outer peripheral surface of the stator core 7, and the surface facing the rotor 2 is the inner peripheral surface. It may be covered with 11.
  • the magnet portion 9 is exposed from both the outer peripheral surface and the inner peripheral surface of the stator core 7 on the surface facing the rotor 2 and the surface opposite to the rotor 2.
  • the magnet portion 9 is the outer peripheral surface or the inner peripheral surface of the stator core 7 and is covered with the core back 10 or the teeth 11, the magnetic flux passes through the core back 10 or the teeth 11 without passing through the rotor 2 and short-circuits. Is generated, and the torque of the rotary electric machine 1 is reduced.
  • FIG. 10 by exposing the magnet portion 9 on both the outer circumference and the inner circumference of the stator core 7, it is possible to prevent a short circuit of magnetic flux and suppress a decrease in torque.
  • stator core 7 is divided at the central portion in the circumferential direction of the teeth 11 and is fixed by sandwiching the magnet portion 9.
  • the stator core 7 may be a divided core divided into a plurality of parts in the circumferential direction.
  • FIG. 11 is an enlarged schematic configuration diagram of a part of the rotary electric machine according to the second embodiment of the present invention.
  • the positional relationship between the magnet portion 9 of the stator 3 and the protrusion 6 of the rotor 2, the phase of the current, and the magnetizing directions of the permanent magnets 91 are the same as in FIG.
  • the description of the same points as in the first embodiment will be omitted, and the differences will be mainly described.
  • the magnet portion 9 is formed of, for example, a plurality of permanent magnets 91 arranged along the protruding direction of the teeth 11. Further, in the present embodiment, the length of the teeth 11 of the permanent magnet 91 in the protruding direction decreases from the outer peripheral side to the inner peripheral side of the stator core 7, that is, as it approaches the rotor 2.
  • the magnet portions 9a and 9b are located in front of the protrusions 6a and 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current is the core back 10 from the teeth 11b.
  • the current flows back from the one protrusion 6a of the rotor 2 toward the other protrusion 6b and back to the teeth 11b.
  • the change in the magnetic flux per unit time is larger in the magnetic flux passing through the radial outer side than in the radial outer side of the stator core 7, and the eddy current generated in the magnet portion 9 is also the permanent magnet closest to the rotor 2.
  • the eddy current generated at 91 is larger.
  • the permanent magnet 91 closest to the rotor 2 of the magnet portion 9 will be referred to as a permanent magnet 91p.
  • the radial inner side of the stator core 7 that is, the protruding direction of the teeth 11 of the permanent magnet 91p closest to the rotor 2.
  • a magnet portion 9 in which a plurality of permanent magnets 91 are arranged has been described as an example, but the permanent magnets 91 extend in the axial direction along both the protruding direction and the axial direction of the teeth 11.
  • the distance between the groove portions 13 adjacent to each other in the protruding direction of the teeth 11 of the permanent magnet 91 or the distance from the surface of the permanent magnet 91 to the groove portion 13 is set to the rotor 2. It may be made smaller as it gets closer.
  • the eddy current flowing through the magnet portion 9 can be reduced and the eddy current loss can be reduced.
  • the length of the teeth 11 of the permanent magnets 91 in the protruding direction is gradually reduced as the length approaches the rotor 2.
  • the magnet portion 9 formed of the permanent magnet 91 provided with the groove portion 13 is provided, the length between the adjacent groove portions 13 along the protruding direction of the teeth 11 and the surface of the permanent magnet 91 to the groove portion 13 The length between the two is gradually reduced as it approaches the rotor 2.
  • the loop diameter of the eddy current generated in the permanent magnet 91 close to the rotor 2 in which the eddy current is likely to be generated is reduced, the currents flowing in opposite directions are likely to interfere with each other, and the eddy current is efficiently reduced. can do.
  • the length w m1 in the protruding direction of the teeth 11 of the permanent magnet 91 is gradually reduced as it approaches the rotor 2, but the eddy current loss is reduced.
  • the length of the permanent magnet 91p closest to the rotor 2 among the plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11 may be smaller than the respective lengths of the remaining permanent magnets 91. ..
  • the magnet portion 9 formed of the permanent magnet 91 provided with the groove portion 13 the length between the surface of the permanent magnet 91 facing the rotor 2 and the groove portion 13 is the other groove portion 13. It should be smaller than the length between them.
  • FIG. 12 is an enlarged schematic configuration diagram of a part of the rotary electric machine according to the third embodiment of the present invention.
  • the description of the same points as in the first embodiment will be omitted, and the differences will be mainly described.
  • the phase of the current and the magnetizing direction of the permanent magnet 91 are the same as those in FIG.
  • the magnet portion 9 is formed of a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11.
  • the magnet portion 9 is formed of a permanent magnet 91 provided with a groove portion 13 extending in the axial direction on a surface along both the protruding direction and the axial direction of the tooth 11.
  • the distance from the magnet portion 9 to the rotor 2 in the radial direction is larger than the distance from the stator core 7 to the rotor 2 in the radial direction.
  • the permanent magnet 91p closest to the rotor 2 in the protruding direction of the teeth 11 is on the rotor 2 side of the stator core 7. It is located radially outside the plane along the circumferential direction.
  • the magnet portion 9a is located facing the protrusion 6a of the rotor 2 and the magnet portion 9b is located behind the protrusion 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current connects the core back 10 from the teeth 11a.
  • the current flows from one protrusion 6b of the rotor 2 toward the other protrusion 6a and returns to the teeth 11a.
  • the surface located on the front side of the rotor 2 in the rotation direction and the surface facing each other along the protruding direction of the teeth 11a of the magnet portion 9a, in the rotation direction.
  • the magnetic flux generated by the current flowing through the stator coil 8 is the circumferential position of the magnet portion 9a facing the protruding direction of the teeth 11 from the protrusion 6a. Flow to.
  • the magnetic flux is linked to the magnet portion 9a in the protruding direction of the teeth 11, an eddy current is generated due to the fluctuation of the magnetic flux.
  • the magnet portion 9 formed of the permanent magnet 91 provided with the above, the eddy current flowing through the magnet portion 9 can be reduced and the eddy current loss can be reduced.
  • the distance from the magnet portion 9 to the rotor 2 in the radial direction is larger than the distance from the stator core 7 to the rotor 2 in the radial direction, a current flowing through the stator coil 8 is created. It is possible to suppress the magnetic flux from interlinking with the magnet portion 9 along the protruding direction of the teeth 11, and further reduce the eddy current loss.
  • FIG. 13 is an enlarged schematic configuration diagram of a part of the rotary electric machine according to the fourth embodiment of the present invention.
  • the description of the same points as in the first embodiment will be omitted, and the differences will be mainly described.
  • the phase of the current and the magnetizing direction of the permanent magnet 91 are the same as those in FIG.
  • the magnet portion 9 is formed of, for example, a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11. Further, in the present embodiment, the magnet portion 9 has a plurality of permanent magnets 91 arranged in a direction orthogonal to the protruding direction of the teeth 11.
  • the permanent magnet 91p closest to the rotor 2 in the protruding direction of the teeth 11 is in the direction orthogonal to the protruding direction of the teeth 11. It is divided into two permanent magnets 911p and 912p along the line.
  • the magnet portion 9a is located facing the protrusion 6a of the rotor 2 and the magnet portion 9b is located behind the protrusion 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current connects the core back 10 from the teeth 11a.
  • the current flows from the protrusion 6b of the rotor 2 toward the protrusion 6a and returns to the teeth 11a.
  • the surface located in front of the rotation direction of the rotor 2 and the surface of the magnet portion 9a facing each other along the protrusion direction of the teeth 11a in the rotation direction are in the same circumferential position.
  • the magnetic flux generated by the current flowing through the stator coil 8 is the magnet portion facing the protrusion 6a along the protrusion direction of the teeth 11 from the protrusion 6a. It flows in the circumferential position of 9a.
  • an eddy current is generated so as to cancel the fluctuation of the magnetic flux.
  • FIG. 14 is an explanatory diagram for explaining the flow of eddy current generated in the permanent magnet of the rotary electric machine according to the fourth embodiment of the present invention.
  • the magnetic flux is interlinked along a projecting direction of the tooth 11 to the magnet portion 9a, eddy current i 3, and axial orthogonal permanent magnet 911P
  • the protruding direction of the teeth 11 of 912p It flows in a loop in the cross section along the. That is, currents flow in the axial directions opposite to each other on both sides of the permanent magnets 911p and 912p in the circumferential direction.
  • the magnet portion 9 in which the plurality of permanent magnets 91 are arranged in the protruding direction of the teeth 11, the eddy current flowing through the magnet portion 9 can be reduced and the eddy current loss can be reduced.
  • a plurality of permanent magnets 91 arranged in a direction orthogonal to the protruding direction of the teeth 11 are provided, and the path of the eddy current flowing along the direction orthogonal to the protruding direction of the teeth 11 is divided.
  • the reduction of eddy current loss is further enhanced by dividing the permanent magnet 91p, which is the closest to the rotor 2 in which the magnetic flux along the protruding direction of the teeth 11 is easily interlocked, in the direction orthogonal to the protruding direction of the teeth 11. be able to.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of another example of the rotary electric machine according to the fourth embodiment of the present invention.
  • the groove portion 14 is provided so as to extend in the axial direction on the surface of the permanent magnet 91p that is closest to the rotor 2 in the protruding direction of the teeth 11 and that faces the rotor 2.
  • the path of the eddy current generated by the interlinking of magnetic fluxes along the protruding direction of the teeth 11 of the magnet portion 9 is along the direction orthogonal to the protruding direction of the teeth 11.
  • the magnitude of the eddy current can be reduced.
  • the installation on the teeth 11 becomes easier, and the assembleability of the stator 3 is improved.
  • the groove portion 14 may penetrate in the axial direction of the magnet portion 9, or may be provided in a part of the axial direction without penetrating, but the axial length of the groove portion 14 is the magnet.
  • the skin depth d can satisfy the following relationship. preferable.
  • the distance between the front surface of the permanent magnets 91 and the groove portions 14 or the grooves 14 to each other By setting the distance between them to twice or less the skin depth d, the effect of reducing the eddy current can be similarly increased.
  • FIG. 16 is an enlarged schematic configuration diagram of a part of the rotary electric machine according to the fifth embodiment of the present invention.
  • the description of the same points as in the first embodiment will be omitted, and the differences will be mainly described.
  • the phase of the current and the magnetizing direction of the permanent magnet 91 are the same as those in FIG.
  • the magnet portion 9 is formed of, for example, a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11.
  • the magnet portion 9 is formed of, for example, a permanent magnet 91 provided with groove portions 13 extending in the axial direction on surfaces along both axial directions.
  • the permanent magnet 91 of the magnet portion 9 has a corner portion formed by intersecting a surface along both the protruding direction and the axial direction of the teeth 11 and a surface facing the rotor 2. It has been dropped to form a chamfered surface 15.
  • the corners formed by intersecting the surfaces of the permanent magnet 91 along both the protruding direction and the axial direction of the teeth 11 and the surfaces facing the rotor 2 are simply on the side facing the rotor 2. It is called the corner of.
  • the permanent magnet 91p closest to the rotor 2 has the front corner in the rotation direction on the side facing the rotor 2 dropped.
  • the chamfered surface 15 is formed.
  • the permanent magnet 91p has a pentagonal cross-sectional shape orthogonal to the axial direction.
  • the magnet portion 9a is located facing the protrusion 6a of the rotor 2 and the magnet portion 9b is located behind the protrusion 6b of the rotor 2 in the rotation direction.
  • the magnetic flux generated by the current connects the core back 10 from the teeth 11a.
  • the current flows from the protrusion 6b of the rotor 2 toward the protrusion 6a and returns to the teeth 11a.
  • the surface located in front of the rotating direction of the rotor 2 and the pair of surfaces facing each other along the protruding direction of the teeth 11a of the magnet portion 9a are about the same as the surface located in front of the rotation direction.
  • the magnetic flux generated by the current flowing through the stator coil 8 is applied from the protrusion 6a to the protrusion 6a along the protrusion direction of the teeth 11. It flows in the circumferential position of the opposing magnet portion 9a.
  • an eddy current flows so as to cancel the fluctuation of the magnetic flux, and an eddy current loss occurs.
  • the permanent magnet 91p closest to the rotor 2 has the front corner in the rotation direction on the side facing the rotor 2 dropped.
  • the magnetic flux returns from the protrusion 6a to the teeth 11a without interlacing the magnet portion 9a.
  • the magnet portion 9 formed by the plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11 or the groove portion 13 extending in the axial direction is formed on the surface of the teeth 11 along both the protruding direction and the axial direction.
  • the permanent magnet 91p has a chamfered surface 15 formed by dropping the corner portion on the side facing the rotor 2, so that the magnetic flux interlinks the magnet portion 9a from the protrusion 6a. Since it returns to the teeth 11a without returning, the generation of eddy current can be suppressed and the eddy current loss can be further reduced.
  • FIG. 16 shows an example in which a corner portion located on the counterclockwise side of the permanent magnet 91 facing the rotor 2 is cut off, assuming a case of rotating counterclockwise.
  • the corner portion on the clockwise side is dropped on the side of the permanent magnet 91 facing the rotor 2.
  • both the counterclockwise corner and the clockwise corner are dropped to have two chamfered surfaces 15.
  • FIG. 17 is a schematic configuration diagram showing another example of the rotary electric machine according to the fifth embodiment of the present invention.
  • the permanent magnet 91p has two chamfered surfaces 15 in which the corners of the teeth 11 on the side facing the rotor 2 of the permanent magnet 91 are dropped both forward and backward in the rotation direction. .. That is, the shape of the cross section of the permanent magnet 91p orthogonal to the axial direction is hexagonal. In this way, both corners of the permanent magnet 91p on the side facing the rotor 2 are dropped to have the two chamfered surfaces 15, so that the eddy current loss of the magnet portion 9 does not depend on the rotation direction of the rotor 2. Can be reduced.
  • the permanent magnet 91p has a chamfered surface 15 with the corners dropped, and the shape of the cross section perpendicular to the axial direction is a pentagon or a hexagon.
  • the polygon may be a pentagon, a hexagon or more, or the corners may be dropped in an arc shape.
  • FIG. 18 is a cross-sectional view showing a schematic configuration of a rotary electric machine according to a sixth embodiment of the present invention.
  • the description of the same points as in the first embodiment will be omitted, and the differences will be mainly described.
  • an example of the inner rotor type rotary electric machine 1 in which the rotor 2 is arranged radially inside the stator 3 is shown, but in the present embodiment, the stator 3 is radially outside.
  • An example of an outer rotor type rotary electric machine 1 in which a rotor 2 is arranged is shown.
  • the rotary electric machine 1 includes a rotor 2 and a tubular stator 3 arranged at intervals inside the rotor 2 in the radial direction.
  • the rotor 2 has a rotor core 5.
  • the rotor core 5 is provided with a plurality of protrusions 6 protruding inward in the radial direction.
  • the protrusions 6 are provided at intervals in the circumferential direction of the rotor core 5.
  • the stator 3 has a stator core 7, a stator coil 8 and a magnet portion 9.
  • the stator core 7 is, for example, a magnetic material in which electromagnetic steel plates are laminated along the axial direction.
  • the stator core 7 has a tubular core back 10 and a plurality of teeth 11 protruding radially outward from the outer peripheral surface side of the core back 10. That is, the plurality of teeth 11 project toward the rotor 2 and are provided at intervals along the circumferential direction of the core back 10.
  • a slot 12 is formed between the teeth 11 adjacent to each other in the circumferential direction, which is a space open to the outside in the radial direction of the stator 3 and extending in the axial direction.
  • the slot 12 is provided with a stator coil 8 wound around the teeth 11. Further, a magnet portion 9 is provided at the central portion of each of the plurality of teeth 11 in the circumferential direction.
  • the magnet portion 9 is provided, for example, at the central portion of each of the plurality of teeth 11 so as to extend in the protruding direction and the axial direction of the teeth 11, and is formed of a permanent magnet 91 magnetized in the circumferential direction.
  • the permanent magnets 91 of the magnet portions 9 adjacent to each other in the circumferential direction via the slot 12 are arranged so that the same magnetic poles face each other. That is, the permanent magnets 91 of the magnet portions 9 provided in each of the plurality of teeth 11 are arranged with the magnetic poles alternately arranged in the circumferential direction.
  • the magnet portion 9 is exposed from the teeth 11 on the inner peripheral surface of the stator core 7, for example, and is covered with the core back 10 on the outer peripheral surface of the stator core 7.
  • N and S in the figure indicate the magnetic poles of the permanent magnet 91 of the magnet portion 9.
  • the permanent magnet 91 of the magnet portion 9 for example, a rare earth sintered magnet or a ferrite magnet is used.
  • the magnet portion 9 is formed of a plurality of permanent magnets 91 arranged in the protruding direction of the teeth 11.
  • the magnet portion 9 is formed of a single permanent magnet 91 in which groove portions 13 extending in the axial direction on the surface along the protruding direction and the axial direction of the teeth 11 are provided at intervals along the protruding direction of the teeth 11. Will be done.
  • the path of the eddy current can be divided along the direction orthogonal to the protruding direction of the teeth 11, and the currents flowing in the opposite directions in the axial direction of the divided eddy current cancel each other out. Therefore, the eddy current loss can be efficiently reduced.
  • the number of protrusions of the rotor 2 is 5, and the number of teeth 11 of the stator 3 and the number of magnets 9 are 6, respectively.
  • the dimensions of the other parts are not particularly limited.
  • the number of protrusions of the rotor 2 may be 4, the number of teeth 11 of the stator 3 and the number of magnet portions 9 may be 6, respectively, the number of protrusions 6 of the rotor 2 may be 10, and the number of teeth 11 of the stator 3
  • the number of magnet portions 9 may be 12 respectively.
  • the electric motor having three-phase windings has been described as the rotary electric machine 1, but this is an example, and an electric motor having multi-phase windings other than three-phase may be used. ..
  • each embodiment can be freely combined, and each embodiment can be appropriately changed or omitted within the scope of the invention.
  • Rotor 1 Rotor, 2 Rotor, 3 Stator, 4 Rotor shaft, 5 Rotor core, 6, 6a, 6b protrusion, 7 Stator core, 8 Stator coil, 9, 9a, 9b Magnet part, 10 Core back , 11, 11a, 11b teeth, 12 slots, 13 grooves, 14 grooves, 91, 91p permanent magnets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

固定子に設けられた磁石部に発生する渦電流損失を低減する回転電機を得る。 回転子(2)と、回転子(2)の径方向に対向して配置された固定子(3)とを備える。固定子(3)は、固定子コア(7)、固定子コイル(8)及び磁石部(9)を有する。固定子コア(7)は、コアバック(10)とティース(11)とを有し、ティース(11)はコアバック(10)から回転子(2)に向かって突出すると共に周方向に沿って配列されている。固定コイル(8)は、複数のティース(11)の各々に巻回され、周方向に隣り合うティース(11)同士の間に形成されたスロット(12)に配置される。磁石部(9)は、ティース(11)の各々において複数の永久磁石(91)で形成される。複数の永久磁石(91)は、周方向に互いに同じ磁極を有し、ティース(11)の突出方向に配列される。

Description

回転電機
 本発明は、永久磁石が設けられた固定子を備えた回転電機に関する。
 産業用のモータや車載用のモータなどの回転電機においては、小型化、高出力化、高速化が求められている。これらの要求に応える回転電機として、回転子が鉄心で構成され、固定子側にコイルと永久磁石が設けられた回転電機が提案されている。例えば特許文献1には、一次側磁極部材が複数の歯モジュールを有し、複数の歯モジュールは巻線と少なくとも1個の永久磁石を備え、永久磁石が単体又は分割構造で形成される回転電機が開示されている。
 回転電機の回転子を回転させると、コイルに流れる電流によって発生される磁束が永久磁石に鎖交し、磁束の変動を打ち消すように永久磁石に渦電流が流れ、渦電流損失を引き起こす。特に固定子側に永久磁石が設けられた回転電機では、回転磁界に対し永久磁石が静止しているため非常に大きな渦電流損失が発生し、回転電機の効率を低下させる。この問題に対し、例えば特許文献2では、界磁用の磁石として主成分の一つが絶縁性の樹脂であるボンド磁石を採用している。ボンド磁石は導電率が低いため、ボンド磁石に生じる渦電流を低減することができるが、導電率が低いボンド磁石を用いた場合、焼結磁石よりも磁力が劣るため出力低下が発生する。
 また、回転子側に永久磁石が設けられた回転電機においては、永久磁石を分割することにより渦電流損失を低減することが提案されている。例えば特許文献3では、ロータコアの軸方向に沿って分割した第1磁石片によって形成された第1永久磁石と、ロータコアの軸方向と交差する方向に沿って分割した第2磁石片によって形成された第2永久磁石とを備え、第1永久磁石及び第2永久磁石がロータコアの磁石孔にそれぞれ挿入される永久磁石型回転電機が提案されている。
特表2009-509490号公報 特開2016-32385号公報 特開2013-176259号公報
 しかしながら、固定子側に永久磁石が設けられた回転電機においては渦電流損失を低減するように永久磁石を分割することについて検討されておらず、永久磁石を分割して配置する方向によっては、渦電流を効率的に抑制し、渦電流損失を低減することが困難であった。
 本発明は、上述の課題を解決するためになされたものであり、回転電機の固定子側に設けられた永久磁石に発生する渦電流損失を低減する回転電機を得ることを目的とする。
 本発明に係る回転電機は、回転子と、回転子の径方向に間隔を空けて対向して配置された固定子とを有し、固定子は、筒状のコアバックと複数のティースとを有し、複数のティースの各々がコアバックから回転子に向かって突出すると共に回転子の周方向に沿って設けられた固定子コアと、複数のティースの各々に巻回され、周方向に隣り合うティース同士の間に形成されたスロットに配置された固定子コイルと、複数のティースの各々に複数の永久磁石を有し、複数の永久磁石の各々が周方向に互いに同じ磁極を有すると共にティースの突出方向に配列された磁石部とを備える。
 また本発明に係る回転電機は、回転子と、回転子の径方向に間隔を空けて対向して配置された固定子とを有し、固定子は、筒状のコアバックと複数のティースとを有し、複数のティースの各々がコアバックから回転子に向かって突出すると共に回転子の周方向に沿って設けられた固定子コアと、複数のティースの各々に巻回され、周方向に隣り合うティース同士の間に形成されたスロットに配置された固定子コイルと、複数のティースの各々に永久磁石を有し、永久磁石が周方向に着磁されると共に永久磁石のティースの突出方向及び回転子の軸方向の双方に沿った面に回転子の軸方向に延びた溝部が形成された磁石部とを備える。
 本発明に係る回転電機によれば、複数の永久磁石の各々が周方向に互いに同じ磁極を有すると共にティースの突出方向に配列された磁石部又は、永久磁石が周方向に着磁されると共に永久磁石のティースの突出方向及び軸方向の双方に沿った面に回転子の軸方向に延びた溝部が形成された磁石部を備えることにより、渦電流の経路がティースの突出方向に分断されるため、永久磁石に流れる渦電流の大きさを効率的に抑制し、渦電流損失を低減することができる。
本発明の実施の形態1に係る回転電機の概略構成を示す断面図である。 本発明の実施の形態1に係る回転電機の概略構成を示す断面図である。 本発明の実施の形態1に係る回転電機の他の例の概略構成を示す断面図である。 本発明の実施の形態1に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態1に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態1に係る回転電機の永久磁石に発生する渦電流を説明するための説明図である。 本発明の実施の形態1に係る回転電機の永久磁石に発生する渦電流の大きさと永久磁石のティースの突出方向の距離との関係を示す関係図である。 本発明の実施の形態1に係る回転電機の永久磁石に発生する渦電流の大きさと永久磁石のティースの突出方向の距離との関係を示す関係図である。 本発明の実施の形態1に係る回転電機の他の例の概略構成を示す断面図である。 本発明の実施の形態1に係る回転電機の他の例の概略構成を示す断面図である。 本発明の実施の形態2に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態3に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態4に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態4に係る回転電機の永久磁石に発生する渦電流を説明するための説明図である。 本発明の実施の形態4に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態5に係る回転電機の一部を拡大した概略構成図である。 本発明の実施の形態5に係る回転電機の他の例の概略構成を示す断面図である。 本発明の実施の形態6に係る回転電機の概略構成を示す断面図である。
 以下、本発明の好適な実施の形態について図面を参照して説明する。各図において同一又は相当部分については同一符号を付して説明する。
 実施の形態1.
 図1、図2は、本発明の実施の形態1に係る回転電機の概略構成を示す断面図である。図1は、回転軸の軸方向に直交する断面図、図2は、回転軸の軸方向に沿った断面図であり、図1のA1-A2線に沿った断面図である。図1に示すように、回転電機1は、回転子2と、回転子2の径方向外側に間隔を空けて、回転子2を周方向に囲んで配置された固定子3とを備える。
 以下の説明では、回転子2の回転方向を周方向、回転子2の回転軸4の方向を軸方向、回転子2の回転中心から外周側に向かう方向を径方向とする。また、以下の説明において、直交する方向とは、略直交する方向も含む。
 回転子2は、回転軸4と、回転軸4に取り付けられた回転子コア5とを有する。回転子コア5は、焼き嵌めや圧入などにより回転軸4に固定されている。回転子コア5は、径方向外側に突出した複数の突部6が設けられている。各突部6は、回転子コア5の周方向に互いに間隔を空けて設けられている。
 固定子3は、固定子コア7、固定子コイル8及び磁石部9を有している。固定子コア7は、例えば電磁鋼板が軸方向に沿って積層された磁性体である。固定子コア7は、筒状のコアバック10と、コアバック10の内周面側から径方向内側に突出した複数のティース11とを有している。すなわち、各ティース11は、コアバック10から回転子2に向かって突出する共に周方向に沿って互いに間隔を空けて設けられている。周方向に隣り合うティース11同士の間には、それぞれ回転子2に向けて開放され、軸方向に延在する空間であるスロット12が形成されている。スロット12には、ティース11に巻回された固定子コイル8が設けられている。また複数のティース11の各々の周方向中央部には、磁石部9が設けられている。
 磁石部9は、例えば複数のティース11の各々において、ティース11の突出方向及び軸方向に延びて設けられており、周方向に着磁された永久磁石91で形成されている。スロット12を介して周方向に隣り合う磁石部9の永久磁石91同士は、互いに同じ磁極を向き合わせて配置されている。すなわち、複数のティース11の各々に設けられた磁石部9の永久磁石91は、周方向において磁極を交互にして配置されている。磁石部9は、例えば固定子コア7の内周面でティース11から露出し、固定子コア7の外周面でコアバック10に覆われている。図中のN、Sは、磁石部9の永久磁石91の磁極を示している。磁石部9の永久磁石91として、例えばネオジム焼結磁石などの希土類焼結磁石やフェライト磁石などの導電率が0ではないものが用いられる。
 複数のティース11の各々において、磁石部9はティース11の突出方向に配列された複数の永久磁石91を有する。磁石部9は、永久磁石91同士の互いに対向する面により、ティース11の突出方向に沿って複数に分割されている。ティース11の突出方向に配列された永久磁石91同士は、互いに周方向に同じ磁極を有する。ここで、永久磁石91同士が互いに周方向に同じ磁極を有するとは、複数の永久磁石91が周方向の一致した方向に着磁されている場合だけでなく、ばらつきを考慮した一定の範囲において周方向の同じ方向に着磁されている場合も含む。また永久磁石91がティース11の突出方向に配列されるとは、ティース11の突出方向に平行な方向に配列される場合だけでなく、略平行な方向に配列される場合も含む。図1に示す例では、磁石部9は6つに分割され、6つの永久磁石91が配列されているが、これに限定されるものではない。
 このように、磁石部9a,9bは、ティース11の突出方向に延びて設けられることで、磁束が回転子2を通らずにコアバック10又はティース11を通って短絡が生じる恐れを低減できる。また、周方向に着磁された永久磁石91がティース11の突出方向に配列されていることで、永久磁石91の周方向断面積を拡大し、トルクを向上させることができる。
 ここで図1では、磁石部9がティース11の突出方向に配列された複数の永久磁石91を有する例を示したが、磁石部9は、周方向に着磁された単体の永久磁石91を少なくとも1つ有し、永久磁石91のティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた溝部13が少なくとも1つ形成されたものであってもよい。
 図3は、本発明の実施の形態1に係る回転電機の他の例の概略構成を示す断面図である。図3に示すように、磁石部9は、例えばティース11の突出方向及び軸方向に延びた単体の永久磁石91を有し、永久磁石91のティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた複数の溝部13がティース11の突出方向に沿って互いに間隔を空けて設けられている。磁石部9は、溝部13によって、ティース11の突出方向に沿って複数の領域に分割されている。ティース11の突出方向に沿って隣接する溝部13同士の間の領域と、永久磁石91のティース11の突出方向に直交する方向及び軸方向の双方に沿った面から溝部13までの間の領域とは、それぞれ図1における1つの永久磁石91に相当する。
 溝部13は、永久磁石91の軸方向に貫通して設けられていてもよいし、軸方向の一部に設けられていてもよい。また図3では、永久磁石91のティース11の突出方向及び軸方向に沿って周方向に対向する両方の面に溝部13が設けられた例を示したが、一方の面のみに設けられていてもよい。
 固定子コイル8は、例えば複数のティース11の各々に集中巻で設けられており、スロット12に収容されている。固定子コイル8の巻線は、周方向において隣り合う一対のスロット12によって挟まれるティース11に対して巻回する。図では、ティース11に巻回する巻線を省略している。
 固定子コイル8には、例えば三相の交流電流が供給されて回転磁界が生成される。ここで、三相の各相をU相、V相、W相でそれぞれ表すとし、各固定子コイル8のうち、2個のU相コイルをU1,U2、2個のV相コイルをV1,V2、2個のW相コイルをW1,W2とする。各固定子コイル8は、例えば図1に示すように、反時計回りの方向へU1,V1,W1,U2,V2,W2の順番に並んで配置される。固定子コイル8は、U1とU2が直列に繋がれた直列回路と、V1とV2が直列に繋がれた直列回路と、W1とW2が直列に繋がれた直列回路とが共通の中性点で接続されている。各相に120度位相がずれた電流が通電されることにより回転磁界が生成される。
 図4、図5は、本発明の実施の形態1に係る回転電機の一部を拡大した概略構成図である。ここで、回転子2は反時計周りに回転しているものとする。図4、図5において、1つのスロット12を挟んで隣り合うティース11を反時計回りの順にティース11a,11bとし、ティース11a,11bにそれぞれ磁石部9a,9bが設けられているとする。また、回転子2において隣り合う突部6を反時計回りの順に6a,6bとする。図中、方向記号iは、固定子コイル8に流れる電流を示している。矢印φは、固定子コイル8に流れる電流による磁束を表している。矢印φ,φは、それぞれ磁石部9a,9bの着磁方向であり、磁石部9a,9bの永久磁石91自身が作る磁束の一部を表している。磁石部9aは、反時計回りの順にN極、S極に着磁された複数の永久磁石91、磁石部9bは、反時計回りの順にS極、N極に着磁された複数の永久磁石91をそれぞれ有するものとする。
 図4に示すように、磁石部9a,9bが回転子2の突部6a,6bの回転方向の前方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の一方から他方(紙面手前から奥)に向かって流れる電流が作る磁束は、ティース11bからコアバック10をつたい、磁石部9aにティース11aの突出方向に直交する方向に鎖交した後に回転子2の一方の突部6aから他方の突部6bに向かいティース11bに戻って流れる。
 また図5に示すように、磁石部9a,9bが回転子2の突部6a,6bの回転方向の後方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の他方から一方(紙面奥から手前)に向かって流れる電流が作る磁束は、ティース11aからコアバック10をつたい、磁石部9bにティース11bの突出方向に直交する方向に鎖交した後に回転子2の一方の突部6bから他方の突部6aに向かいティース11aに戻って流れる。
 このように、固定子コイル8に通電する電流の位相を変えることで磁束がティース11a又はティース11bのいずれ通るかを制御することによりトルクを発生させている。このとき、固定子3の磁石部9a,9bと回転子2の突部6a,6bとの位置関係及び電流の位相が変化することにより、磁石部9a,9bに鎖交する磁束の大きさが変動する。例えば、回転子2が反時計回りに回転して図4の状態から図5の状態に変化したとすると、図4において、磁石部9aをティース11の突出方向に直交する方向に鎖交していた磁束が、図5の位置関係になると減少する。そのため、磁束の変動を打ち消すように磁石部9aのティース11の突出方向及び軸方向の双方に沿った断面に渦電流が流れる。固定子3側に永久磁石91が設けられた回転電機1では、磁石部9が回転磁界に対し静止し、ティース11の突出方向に延びて設けられているため、渦電流がティース11の突出方向に沿って流れた場合、非常に大きな渦電流損失が発生する。
 図6は、本発明の実施の形態1に係る回転電機の永久磁石に発生する渦電流の流れを説明するための説明図である。図5、図6で、方向記号、矢印iは、磁石部9aに発生する渦電流を示している。図6に示すように、磁石部9aは、ティース11の突出方向に沿って複数の永久磁石91が配列されているため、渦電流の経路は、永久磁石91同士の互いに対向する面の接触抵抗によってティース11の突出方向に分断される。すなわち、渦電流は、磁石部9aを形成する複数の永久磁石91の各々においてループ状に流れる。渦電流の経路がティース11の突出方向に沿って分断されることで、渦電流の大きさを小さくし、渦電流損失を低減することができる。
 図7は、本発明の実施の形態1に係る回転電機の渦電流の大きさと永久磁石のティースの突出方向の距離との関係を示す関係図である。縦軸Yは、永久磁石91の断面に軸方向に流れる渦電流の大きさ、横軸Xは、永久磁石91のティース11の突出方向に直交する方向及び軸方向の双方に沿って対向する表面のうち、回転子2に近い方の表面からその反対面までの距離である。図中、2本の破線Q1、Q2は、それぞれ永久磁石91の軸方向の一方から他方(紙面手前から奥)に流れる渦電流の大きさ、軸方向の他方から一方(紙面奥から手前)である。図7では、永久磁石91の内部の渦電流の大きさを永久磁石91の表面における渦電流の大きさを1としたときの割合で表している。
 回転電機1が高速に回転している場合、表皮効果により、永久磁石91の表面では渦電流の電流密度が集中する。そのため、図7に示すように、永久磁石91の軸方向に流れる電流は、表面から内部にかけて減衰し、表皮深さdでは永久磁石91の表面に流れる電流の1/eまで減衰する。ここで、eは常用対数を示す。渦電流は、ループ径が小さくなると相反する方向に流れる電流同士が互いに干渉して打ち消しあう。例えば、図6においてP1-P2間に示す領域においては、永久磁石91の軸方向の一方から他方に向かう電流も、他方から一方に向かう電流も、表面に流れる電流の1/e以上の大きさとなるが、互いに打ち消しあい、図中、実線Q3で示す大きさまで渦電流を小さくすることができる。
 次に、永久磁石91のティース11の突出方向の長さと、渦電流の表皮深さとの関係について説明する。図5、図6で、矢印wm1は、永久磁石91のティース11の突出方向の長さを示している。上述のとおり、固定子コイル8に流れる電流による磁束が永久磁石91に鎖交すると渦電流が流れる。このとき、永久磁石91に流れる渦電流の表皮深さdは、回転電機を駆動させるインバータのキャリア角周波数、すなわち固定子コイル8に流れる電流の角周波数をω、永久磁石91の導電率をσ、透磁率をμとした時に以下で表される。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
 永久磁石91のティース11の突出方向の長さをwm1としたとき、渦電流同士の干渉により渦電流損失を低減させるには、永久磁石91のティース11の突出方向の長さwm1と表皮深さdは以下の関係を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000002
・・・(2)
 図8は、本発明の実施の形態1に係る回転電機の渦電流の大きさと永久磁石の径方向の距離との関係を示す関係図である。図8は、図7の他の一例として、永久磁石91のティース11の突出方向の長さwm1と表皮深さdが以下の式を満たした場合の渦電流の大きさを示している。
Figure JPOXMLDOC01-appb-M000003
・・・(3)
 図8に示すように、永久磁石91のティース11の突出方向の長さwm1が表皮深さdの2倍の大きさである場合、永久磁石91の軸方向において相反して流れる電流同士が1/e以上で打ち消しあう領域は存在しない。式(2)に示すように、永久磁石91のティース11の突出方向の長さwm1を表皮深さdの2倍以下とすることで、ループ状に流れる渦電流において、互いに相反する方向に流れる電流同士が1/e以上で打ち消しあう領域が発生するため、効率よく渦電流を抑制し、渦電流の低減効果を大きくすることができる。
 ここで、複数の永久磁石91がティース11の突出方向に配列された磁石部9を例に説明したが、溝部13が形成された単体の永久磁石91が設けられた磁石部9の場合、永久磁石91のティース11の突出方向の長さwm1は、永久磁石91においてティース11の突出方向に隣り合う溝部13同士の間の長さ及び永久磁石91の表面から溝部13までの間の長さに相当し、同様に表皮深さの2倍以下とすることで、渦電流の低減効果を大きくすることができる。
 上述のとおり、本実施の形態では、回転子2と、回転子2の径方向に間隔を空けて対向して配置された固定子3とを備え、固定子3は、筒状のコアバック10と複数のティース11とを有する固定子コア7と、ティース11に巻回されてスロット12に配置された固定子コイル8と、複数のティース11の各々に複数の永久磁石91を有する磁石部9とを備える。
 磁石部9の複数の永久磁石91の各々は、周方向に互いに同じ磁極を有すると共に、ティース11の突出方向に沿って配列される。又は、磁石部9は、周方向に着磁された単体の永久磁石91で形成され、永久磁石91のティース11の突出方向及び軸方向の双方に沿った面に溝部13が軸方向に延びて設けられる。永久磁石91が周方向に着磁されていることで、固定子コイル8に流れる電流が作る磁束が鎖交する面積を大きくし、トルクを向上させている。
 固定子コイル8に流れる電流が作る磁束が磁石部9に鎖交したときに流れる渦電流の経路は、複数の永久磁石91同士の互いに対向する面又は永久磁石91の溝部13により、ティース11の突出方向に沿って分断される。渦電流の経路が分断されることで、効率的に渦電流の大きさを小さくし渦電流損失を低減することができ、トルクを向上させることができる。
 なお、磁石部9は、複数の永久磁石91同士の間及び溝部13の内部には、絶縁物が設けられてもよい。また、永久磁石91は、それぞれ防錆などのためにコーティングが施されていてもよい。これにより、渦電流をさらに分断しやすくし、渦電流損失を低減できる。
 なお、図1では磁石部9のティース11の突出方向に直交する方向に沿って互いに対向する面のうちの回転子2に近い方の面が固定子コア7の内周面でティース11から露出し、その反対面が固定子コア7の外周面でコアバック10に覆われた例を示したが、その他の形態であってもよい。以下では、ティース11の突出方向に直交する方向に沿って互いに対向する面のうちの回転子2に近い方の面を、単に回転子2と対向する側の面という。図9、10は、本発明の実施の形態1に係る回転電機の他の例の概略構成を示す断面図である。図9に示すように、磁石部9の回転子2と対向する側の面の反対面が固定子コア7の外周面で露出し、回転子2と対向する側の面が内周面でティース11に覆われていてもよい。
 また図10に示すように、磁石部9は、回転子2と対向する側の面及びその反対面において固定子コア7の外周面及び内周面の両方から露出しているとさらに好ましい。磁石部9が固定子コア7の外周面又は内周面で、コアバック10又はティース11に覆われていると、磁束が回転子2を通らずにコアバック10又はティース11を通ることにより短絡が生じ、回転電機1のトルクが減少する。図10に示すように、固定子コア7の外周及び内周の両方で磁石部9を露出させることにより、磁束の短絡が生じるのを防ぎ、トルクの減少を抑制することができる。
 また図10において、固定子コア7は、ティース11の周方向の中央部で分割され、磁石部9を挟んで固定している。このように固定子コア7は、周方向に複数に分割された分割コアであってもよい。
実施の形態2.
 図11は、本発明の実施の形態2に係る回転電機の一部を拡大した概略構成図である。図11において、固定子3の磁石部9と回転子2の突部6との位置関係、電流の位相、永久磁石91のそれぞれの着磁方向は、図4と同様である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。
 図11に示すように、磁石部9は、例えばティース11の突出方向に沿って配列された複数の永久磁石91で形成される。さらに本実施の形態では、永久磁石91のティース11の突出方向の長さは、固定子コア7の外周側から内周側、すなわち回転子2に近づくにつれて小さくなっている。
 図11に示すように、磁石部9a,9bが回転子2の突部6a,6bの回転方向の前方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の一方から他方(紙面手前から奥)に向かって電流が通電されると、電流が作る磁束は、ティース11bからコアバック10をつたい、磁石部9aにティース11aの突出方向に直交する方向に鎖交した後に回転子2の一方の突部6aから他方の突部6bに向かいティース11bに戻って流れる。
 固定子コイル8を流れる電流が作る磁束が、ティース11aの磁石部9aを鎖交して回転子2の一方の突部6aに向かって流れる際、磁石部9aに鎖交する磁束のうち、点線φで示す固定子コア7の径方向外側を通る磁束よりも、実線φで示す径方向内側を通る磁束の方が多くなる。これは、固定子コア7の外周側を通る経路は、回転子2に到達する上で遠回りであり、磁束は最短の経路で流れようとする性質があるためである。そのため、固定子コア7の径方向外側よりも径方向外側を通る磁束の方が磁束の単位時間当たりの変化も大きくなり、磁石部9に発生する渦電流も、最も回転子2に近い永久磁石91に発生する渦電流の方が大きくなる。以下では、磁石部9の最も回転子2に近い永久磁石91を特に永久磁石91pと記載する。
 本実施の形態では、ティース11の突出方向に沿って配置された複数の永久磁石91のうち、固定子コア7の径方向内側、すなわち最も回転子2に近い永久磁石91pのティース11の突出方向の長さを残りの永久磁石91に比べて小さくすることで、渦電流の軸方向に相反する方向に流れる電流同士をより干渉させやすくしている。
 ここで、図11では、複数の永久磁石91が配列された磁石部9を例に説明したが、永久磁石91のティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた溝部13が形成された磁石部9の場合、永久磁石91のティース11の突出方向に隣接する溝部13同士の間の距離又は永久磁石91の表面から溝部13までの距離を、回転子2に近づくにつれて小さくしてもよい。
 上述のとおり、ティース11の突出方向に配列された複数の永久磁石91で形成された磁石部9又は複数の溝部13がティース11の突出方向に沿って設けられた永久磁石91で形成された磁石部9を備えることで、磁石部9に流れる渦電流を小さくし、渦電流損失を低減することができる。さらに本実施の形態では、複数の永久磁石91で形成された磁石部9を備える場合、永久磁石91のティース11の突出方向の長さが回転子2に近づくにつれて徐々に小さく形成されている。また、溝部13が設けられた永久磁石91で形成された磁石部9を備える場合、ティース11の突出方向に沿って隣接する溝部13同士の間の長さ及び永久磁石91の表面から溝部13までの間の長さが回転子2に近づくにつれて徐々に小さく形成されている。これにより、渦電流が発生しやすい回転子2に近い永久磁石91に発生する渦電流のループ径を小さくし、相反する方向に流れる電流同士が互いに干渉しやすくなり、効率的に渦電流を小さくすることができる。
 ここで、図11に示す例では、永久磁石91のティース11の突出方向の長さwm1が、回転子2に近づくにつれて徐々に小さくなっている例を示したが、渦電流損失を低減するには、ティース11の突出方向に配列された複数の永久磁石91のうち、最も回転子2に近い永久磁石91pの長さが、残りの永久磁石91のそれぞれの長さに比べて小さければよい。同様に、溝部13が設けられた永久磁石91で形成された磁石部9の場合、永久磁石91の回転子2と対向する側の面から溝部13までの間の長さが、他の溝部13同士の間の長さに比べて小さければよい。
実施の形態3.
 図12は、本発明の実施の形態3に係る回転電機の一部を拡大した概略構成図である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。図12において、電流の位相、永久磁石91の着磁方向は、図5と同様である。
 磁石部9は、ティース11の突出方向に配列された複数の永久磁石91で形成される。又は磁石部9は、ティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた溝部13が設けられた永久磁石91で形成される。さらに本実施の形態では、径方向における磁石部9から回転子2までの距離が、径方向における固定子コア7から回転子2までの距離よりも大きい。
 例えば、ティース11の突出方向に複数の永久磁石91が配列された磁石部9の場合、ティース11の突出方向において最も回転子2に近い永久磁石91pが、固定子コア7の回転子2側の周方向に沿った面よりも径方向外側に位置している。
 図12に示すように、磁石部9aが回転子2の突部6aに対向して位置し、磁石部9bが回転子2の突部6bの回転方向の後方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の他方から一方(紙面奥から手前)電流が通電されると、電流が作る磁束は、ティース11aからコアバック10をつたい、磁石部9bにティース11bの突出方向に直交する方向に鎖交した後に回転子2の一方の突部6bから他方の突部6aに向かい、ティース11aに戻って流れる。
 突部6aの突出方向に沿って互いに対向する面のうち回転子2の回転方向の前方側に位置する面と、磁石部9aのティース11aの突出方向に沿って互いに対向する面のうち回転方向の前方側に位置する面との周方向位置が同程度である場合、固定子コイル8に流れる電流が作る磁束は、突部6aからティース11の突出方向に対向する磁石部9aの周方向位置に流れる。このとき、磁石部9aにティース11の突出方向に磁束が鎖交すると、磁束の変動により渦電流が発生する。図12に示す例では、最も回転子2に近い永久磁石91pが固定子コア7の回転子2側の周方向に沿った面よりも径方向外側に位置しているため、磁束は磁石部9aを鎖交せずにティース11aに流れる。
 上述のとおり、複数の永久磁石91がティース11の突出方向に配列された磁石部9又は永久磁石91のティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた溝部13が設けられた永久磁石91で形成された磁石部9を備えることで、磁石部9に流れる渦電流を小さくし、渦電流損失を低減することができる。さらに本実施の形態では、径方向における磁石部9から回転子2までの距離が、径方向における固定子コア7から回転子2までの距離よりも大きいため、固定子コイル8に流れる電流が作る磁束がティース11の突出方向に沿って磁石部9に鎖交することを抑制でき、さらに渦電流損失を低減できる。
 実施の形態4.
 図13は、本発明の実施の形態4に係る回転電機の一部を拡大した概略構成図である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。図13において、電流の位相、永久磁石91の着磁方向は、図5と同様である。
 磁石部9は、例えばティース11の突出方向に配列された複数の永久磁石91で形成される。さらに本実施の形態では、磁石部9は、ティース11の突出方向に直交する方向に配列された複数の永久磁石91を有する。
 図13に示す例では、ティース11の突出方向に配列された複数の永久磁石91のうち、ティース11の突出方向において最も回転子2に近い永久磁石91pが、ティース11の突出方向に直交する方向に沿って、2つの永久磁石911p、912pに分割されている。
 図13に示すように、磁石部9aが回転子2の突部6aに対向して位置し、磁石部9bが回転子2の突部6bの回転方向の後方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の他方から一方(紙面奥から手前)電流が通電されると、電流が作る磁束は、ティース11aからコアバック10をつたい、磁石部9bにティース11bの突出方向に直交する方向に鎖交した後に回転子2の突部6bから突部6aに向かい、ティース11aに戻って流れる。
 突部6aの突出方向に沿って対向する互いに面のうち回転子2の回転方向の前方に位置する面と、磁石部9aのティース11aの突出方向に沿って互いに対向する面のうち回転方向の前方に位置する面とが同程度の周方向位置にある場合、固定子コイル8に流れる電流が作る磁束は、突部6aからティース11の突出方向に沿って、突部6aに対向する磁石部9aの周方向位置に流れる。このとき、磁石部9aにティース11の突出方向に沿って磁束が鎖交すると、磁束の変動を打ち消すように渦電流が発生する。
 図14は、本発明の実施の形態4に係る回転電機の永久磁石に発生する渦電流の流れを説明するための説明図である。図14に示すように、磁石部9aにティース11の突出方向に沿って磁束が鎖交した場合、渦電流iが、永久磁石911p、912pのティース11の突出方向に直交する方向及び軸方向に沿った断面にループ状に流れる。すなわち、永久磁石911p、912pの周方向の両側において、それぞれ軸方向の互いに相反する方向に電流が流れる。
 上述のとおり、複数の永久磁石91がティース11の突出方向に配列された磁石部9を備えることで、磁石部9に流れる渦電流を小さくし、渦電流損失を低減することができる。さらに本実施の形態では、ティース11の突出方向に直交する方向に配列された複数の永久磁石91を備え、ティース11の突出方向に直交する方向に沿って流れる渦電流の経路を分断することで、ティース11の突出方向に磁束が鎖交した場合でも、渦電流の軸方向に互いに相反する方向に流れる電流同士が打ち消しあい、渦電流を小さくでき、渦電流損失をさらに低減することができる。特に、ティース11の突出方向に沿った磁束が鎖交しやすい、最も回転子2に近い永久磁石91pをティース11の突出方向に直交する方向に分割することで、渦電流損失の低減をさらに高めることができる。
 なお、図13、図14では、最も回転子2に近い永久磁石91pのみがティース11の突出方向に直交する方向に分割された例を示したが、その他の永久磁石91もティース11の突出方向に直交する方向に分割されていてもよい。
 また、磁石部9をティース11の突出方向に直交する方向に沿って複数に分割する代わりに、回転子2に対向する側の面に軸方向に延びた溝部14が形成された永久磁石91を設けてもよい。図15は、本発明の実施の形態4に係る回転電機の他の例の概略構成を示す断面図である。図15に示す例では、溝部14は、ティース11の突出方向において最も回転子2に近い永久磁石91pの回転子2に対向する側の面に軸方向に延びて設けられている。
 このように、溝部14を設けた場合でも、磁石部9のティース11の突出方向に沿って磁束が鎖交して発生した渦電流の経路を、ティース11の突出方向に直交する方向に沿って分断することで、渦電流の大きさを低減することができる。また、磁石部9として複数の永久磁石91を用いた場合よりも、ティース11への設置が容易となり、固定子3の組み立て性が向上する。
 ここで、溝部14は、磁石部9の軸方向に貫通してもよいし、貫通せずに軸方向の一部に設けられていてもよいが、溝部14の軸方向の長さは、磁石部9の軸方向の長さに対して大きいほど好ましい。溝部14の軸方向の長さを大きくすることにより、渦電流が干渉することによる渦電流損失の低減効果を高めることができる。
 また、ティース11の突出方向に直交する方向に分割された永久磁石91のティース11の突出方向に直交する方向の長さをwm2としたとき、表皮深さdは以下の関係を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000004
・・・(4)
 式(4)に示すように、永久磁石91のティース11の突出方向に直交する方向の長さwm2を表皮深さdの2倍以下とすることで、渦電流の相反する方向に流れる電流同士が1/e以上で打ち消しあう領域が発生するため、効率よく打ち消しあい、渦電流の低減効果を大きくすることができる。
 ここで、溝部14がティース11の突出方向の直交する方向に設けられた永久磁石91で形成された磁石部9の場合、永久磁石91の表から溝部14までの間の距離又は溝部14同士の間の距離を表皮深さdの2倍以下とすることで、同様に渦電流の低減効果を大きくすることができる。
実施の形態5.
 図16は、本発明の実施の形態5に係る回転電機の一部を拡大した概略構成図である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。図16において、電流の位相、永久磁石91の着磁方向は、図5と同様である。
 磁石部9は、例えばティース11の突出方向に配列された複数の永久磁石91で形成される。又は磁石部9は、例えば軸方向の双方に沿った面に、軸方向に延びた溝部13が設けられた永久磁石91で形成される。さらに本実施の形態では、磁石部9の永久磁石91は、ティース11の突出方向及び軸方向の双方に沿った面と、回転子2と対向する面とが交差して形成される角部が落とされ、面取り面15が形成されている。以下では、永久磁石91のティース11の突出方向及び軸方向の双方に沿った面と、回転子2と対向する面とが交差して形成される角部を、単に回転子2と対向する側の角部という。
 図16に示す例では、ティース11の突出方向に配列された永久磁石91のうち、最も回転子2に近い永久磁石91pは、回転子2と対向する側の回転方向前方の角部が落されて面取り面15が形成されている。永久磁石91pは、軸方向に直交する断面形状が5角形となっている。
 図16に示すように、磁石部9aが回転子2の突部6aに対向して位置し、磁石部9bが回転子2の突部6bの回転方向の後方に位置しているとする。このとき、スロット12に設けられた固定子コイル8に、軸方向の他方から一方(紙面奥から手前)電流が通電されると、電流が作る磁束は、ティース11aからコアバック10をつたい、磁石部9bにティース11bの突出方向に直交する方向に鎖交した後に回転子2の突部6bから突部6aに向かい、ティース11aに戻って流れる。
 突部6aの突出方向に沿って互いに対向する一対の面のうち回転子2の回転方向の前方に位置する面と、磁石部9aのティース11aの突出方向に沿って互いに対向する一対の面のうち回転方向の前方に位置する面との周方向位置が同程度である場合、固定子コイル8に流れる電流が作る磁束は、突部6aからティース11の突出方向に沿って、突部6aに対向する磁石部9aの周方向位置に流れる。このとき、磁石部9aに磁束がティース11の突出方向に沿って鎖交すると、磁束の変動を打ち消すように渦電流が流れ、渦電流損失が発生する。
 本実施の形態では、ティース11の突出方向に配列された永久磁石91のうち、最も回転子2に近い永久磁石91pが、回転子2と対向する側の回転方向前方の角部が落とされて形成された面取り面15を有することにより、磁束は突部6aから磁石部9aを鎖交せずにティース11aに戻る。
 上述のとおり、ティース11の突出方向に配列された複数の永久磁石91で形成された磁石部9又はティース11の突出方向及び軸方向の双方に沿った面に、軸方向に延びた溝部13が設けられた永久磁石91で形成された磁石部9を備えることで、磁石部9に流れる渦電流を小さくし、渦電流損失を低減することができる。さらに本実施の形態では、永久磁石91pが、回転子2と対向する側の角部が落とされて形成された面取り面15を有することにより、磁束は突部6aから磁石部9aを鎖交せずにティース11aに戻るため、渦電流の発生を抑制し、さらに渦電流損失を低減することができる。
 なお、図16では、反時計回りに回転する場合を想定し、永久磁石91の回転子2と対向する側で反時計方向側に位置する角部を切り落とした例を示したが、時計回りに回転する場合は、永久磁石91の回転子2と対向する側で時計方向側の角部が落とされていることが好ましい。また回転子2が反時計周りと時計周りの両方で回る場合は、反時計方向側の角部と時計方向側の角部の両方が落とされて2つの面取り面15を有することが好ましい
 図17は、本発明の実施の形態5に係る回転電機の他の一例を示す概略構成図である。図17に示す例では、永久磁石91pは、ティース11の、永久磁石91の回転子2と対向する側の角部が、回転方向前方及び後方の両方とも落とされ、2つの面取り面15を有する。すなわち、永久磁石91pの軸方向に直交する断面の形状は6角形となっている。このように、永久磁石91pの回転子2と対向する側の両方の角部が落されて2つの面取り面15を有することで、回転子2の回転方向によらず磁石部9の渦電流損失を低減することができる。
 また、図16、図17では、永久磁石91pは、角部が落とされて面取り面15を有し、軸方向に垂直な断面の形状が5角形又は6角形である例を示したが、回転子2からティース11に到達する磁束による渦電流を抑制できるのであればよく、5角形、6角形以上の多角形であってもよいし、円弧状に角部が落とされていてもよい。
実施の形態6.
 図18は、本発明の実施の形態6に係る回転電機の概略構成を示す断面図である。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。実施の形態1から6では、固定子3の径方向内側に回転子2が配置されたインナーロータ型の回転電機1の例を示したが、本実施の形態では、固定子3の径方向外側に回転子2が配置されたアウターロータ型の回転電機1である例を示す。
 図1に示すように、回転電機1は、回転子2と、回転子2の径方向内側に間隔を空けて、配置された筒状の固定子3とを備える。回転子2は、回転子コア5を有する。回転子コア5は、径方向内側に突出した複数の突部6が設けられている。各突部6は、回転子コア5の周方向に互いに間隔を空けて設けられている。
 固定子3は、固定子コア7、固定子コイル8及び磁石部9を有している。固定子コア7は、例えば電磁鋼板が軸方向に沿って積層された磁性体である。固定子コア7は、筒状のコアバック10と、コアバック10の外周面側から径方向外側に突出した複数のティース11とを有している。すなわち、複数のティース11は、それぞれ回転子2に向かって突出し、コアバック10の周方向に沿って互いに間隔を空けて設けられている。周方向に隣り合うティース11同士の間には、固定子3の径方向外側に開放され、軸方向に延在する空間であるスロット12が形成されている。スロット12には、ティース11に巻回された固定子コイル8が設けられている。また複数のティース11の各々の周方向中央部には、それぞれ磁石部9が設けられている。
 磁石部9は、例えば複数のティース11の各々の中央部において、ティース11の突出方向及び軸方向に延びて設けられており、それぞれ周方向に着磁された永久磁石91で形成される。スロット12を介して周方向に隣り合う磁石部9の永久磁石91同士は、互いに同じ磁極を向き合わせて配置されている。すなわち、複数のティース11の各々に設けられた磁石部9の永久磁石91は、周方向において磁極を交互にして配置されている。磁石部9は、例えば固定子コア7の内周面でティース11から露出し、固定子コア7の外周面でコアバック10に覆われている。図中のN、Sは、磁石部9の永久磁石91の磁極を示している。磁石部9の永久磁石91として、例えば希土類焼結磁石やフェライト磁石が用いられる。
 磁石部9は、それぞれティース11の突出方向に配列された複数の永久磁石91で形成される。又は、磁石部9は、ティース11の突出方向及び軸方向に沿った面に軸方向に延びた溝部13がティース11の突出方向に沿って間隔を空けて設けられた単体の永久磁石91で形成される。
 このような磁石部9を備えることで、ティース11の突出方向に直交する方向に沿って渦電流の経路を分断でき、分断された渦電流の軸方向の相反する方向に流れる電流同士が打ち消しあうため、渦電流損失を効率的に低減することができる。
 なお、実施の形態1から6では、回転子2の突部の数が5、固定子3のティース11と磁石部9の数がそれぞれ6である例を示したが、極数やスロット数、その他の各部分の寸法は特に限定されるものではない。例えば、回転子2の突部の数が4、固定子3のティース11と磁石部9の数がそれぞれ6でもよく、回転子2の突部6の数が10、固定子3のティース11と磁石部9の数がそれぞれ12でもよい。
 また実施の形態1から6では、回転電機1として、三相の巻線を有する電動機について説明したが、これは一例であり、三相以外の多相の巻線を有する電動機であってもよい。
 また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略したりすることが可能である。
 1 回転電機、2 回転子、3 固定子、4 回転軸、5 回転子コア、6,6a,6b 突部、7 固定子コア、8 固定子コイル、9,9a,9b 磁石部、10 コアバック、11,11a,11b ティース、12 スロット、13 溝部、14 溝部、91,91p 永久磁石。

Claims (11)

  1. 回転子と、前記回転子の径方向に間隔を空けて対向して配置された固定子とを有し、
    前記固定子は、
    筒状のコアバックと複数のティースとを有し、前記複数のティースの各々が前記コアバックから前記回転子に向かって突出すると共に前記回転子の周方向に沿って設けられた固定子コアと、
    前記複数のティースの各々に巻回され、前記周方向に隣り合う前記ティース同士の間に形成されたスロットに配置された固定子コイルと、
    前記複数のティースの各々に複数の永久磁石を有し、前記複数の永久磁石の各々が前記周方向に互いに同じ磁極を有すると共に前記ティースの突出方向に配列された磁石部と
    を備えることを特徴とする回転電機。
  2. 前記スロットを介して前記周方向に隣り合う前記永久磁石は、互いに同じ磁極を向き合わせて配置されていることを特徴とする請求項1に記載の回転電機。
  3. 前記永久磁石の前記ティースの突出方向に沿った長さは、前記固定子コイルに流れる電流の角周波数をω、前記永久磁石の透磁率をμ、前記永久磁石の導電率をσとして、d={2/(ωμσ)}1/2で表される表皮深さdの2倍以下であることを特徴とする請求項1又は2に記載の回転電機。
  4. 前記磁石部は、前記回転子に対向する側の面及びその反対面の少なくともいずれか一方が前記固定子コアから露出していることを特徴とする請求項1から3のいずれか一項に記載の回転電機。
  5. 前記ティースの突出方向に配列された前記複数の永久磁石のうち、前記回転子に最も近い前記永久磁石の前記ティースの突出方向に沿った長さは、残りの前記永久磁石よりも小さいことを特徴とする請求項1から4のいずれか一項に記載の回転電機。
  6. 前記径方向における前記磁石部から前記回転子までの距離は、前記径方向における前記固定子コアから前記回転子までの距離よりも大きいことを特徴とする請求項1から5のいずれか一項に記載の回転電機。
  7. 前記磁石部は、前記ティースの突出方向に直交する方向に前記複数の永久磁石が配列されていることを特徴する請求項1から6のいずれか一項に記載の回転電機。
  8. 前記永久磁石の各々の前記ティースの突出方向に直交する方向に沿った長さは、前記固定子コイルに流れる電流の角周波数をω、前記永久磁石の透磁率をμ、前記永久磁石の導電率をσとして、d={2/(ωμσ)}1/2で表される表皮深さdの2倍以下であることを特徴とする請求項1から7のいずれか一項に記載の回転電機。
  9. 前記ティースの突出方向に配列された前記複数の永久磁石のうち、前記回転子に最も近い前記永久磁石の前記回転子に対向する側の面には、前記回転子の軸方向に延びた溝部が形成されていることを特徴とする請求項1から8のいずれか一項に記載の回転電機。
  10. 前記永久磁石は、前記ティースの突出方向及び前記回転子の軸方向の双方に沿った面と、前記回転子に対向する側の面とが交差して形成される角部が落とされて形成された面取り面を有することを特徴とする請求項1から9のいずれか一項に記載の回転電機。
  11. 回転子と、前記回転子の径方向に間隔を空けて対向して配置された固定子とを有し、
    前記固定子は、
    筒状のコアバックと複数のティースとを有し、前記複数のティースの各々が前記コアバックから前記回転子に向かって突出すると共に前記回転子の周方向に沿って設けられた固定子コアと、
    前記複数のティースの各々に巻回され、前記周方向に隣り合う前記ティース同士の間に形成されたスロットに配置された固定子コイルと、
    前記複数のティースの各々に永久磁石を有し、前記永久磁石が前記周方向に着磁されると共に前記永久磁石の前記ティースの突出方向及び前記回転子の軸方向の双方に沿った面に前記回転子の軸方向に延びた溝部が形成された磁石部と
    を備えることを特徴とする回転電機。
PCT/JP2019/013326 2019-03-27 2019-03-27 回転電機 WO2020194593A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112019007108.4T DE112019007108T5 (de) 2019-03-27 2019-03-27 Rotierende elektrische maschine
US17/423,912 US20220085674A1 (en) 2019-03-27 2019-03-27 Rotary electric machine
CN201980094462.5A CN113615041A (zh) 2019-03-27 2019-03-27 旋转电机
PCT/JP2019/013326 WO2020194593A1 (ja) 2019-03-27 2019-03-27 回転電機
KR1020217028289A KR102652587B1 (ko) 2019-03-27 2019-03-27 회전 전기 기계
JP2019545376A JP6631763B1 (ja) 2019-03-27 2019-03-27 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013326 WO2020194593A1 (ja) 2019-03-27 2019-03-27 回転電機

Publications (1)

Publication Number Publication Date
WO2020194593A1 true WO2020194593A1 (ja) 2020-10-01

Family

ID=69146605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013326 WO2020194593A1 (ja) 2019-03-27 2019-03-27 回転電機

Country Status (6)

Country Link
US (1) US20220085674A1 (ja)
JP (1) JP6631763B1 (ja)
KR (1) KR102652587B1 (ja)
CN (1) CN113615041A (ja)
DE (1) DE112019007108T5 (ja)
WO (1) WO2020194593A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241999A (zh) * 2018-01-18 2022-10-25 美蓓亚三美株式会社 定子构造以及旋转变压器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509490A (ja) * 2005-09-22 2009-03-05 シーメンス アクチエンゲゼルシヤフト 電気機械の永久磁石励磁一次側磁極部材のための歯モジュール
JP2011166868A (ja) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp 永久磁石型回転電機
WO2011148457A1 (ja) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 回転電機制御システム及び回転電機の磁石温度操作方法
JP2015119617A (ja) * 2013-12-18 2015-06-25 現代自動車株式会社 埋め込み型永久磁石同期モータ
WO2017216995A1 (ja) * 2016-06-17 2017-12-21 三菱電機株式会社 永久磁石式同期機および永久磁石式同期機の固定子の製造方法
JP2018074890A (ja) * 2016-10-25 2018-05-10 株式会社豊田自動織機 回転電機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115878A (ja) * 2004-10-19 2006-05-11 Arubion:Kk 化粧用ブラシの携帯用ケース
JP2006238565A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 永久磁石式回転電機、それに用いる永久磁石の製造方法およびその製造方法を用いた永久磁石式回転電機の製造方法
US8510933B2 (en) * 2008-10-02 2013-08-20 Nissan Motor Co., Ltd. Method of manufacturing a field pole magnet
JP5791713B2 (ja) * 2011-05-23 2015-10-07 三菱電機株式会社 永久磁石式回転電機
JP2013176259A (ja) 2012-02-27 2013-09-05 Nissan Motor Co Ltd 永久磁石型回転電機
WO2013157165A1 (ja) * 2012-04-20 2013-10-24 三菱電機株式会社 永久磁石式回転電機、及びその製造方法
EP2693613B1 (en) * 2012-08-03 2018-03-07 Oscar Rolando Avila Cusicanqui Hybrid electric reluctance machine
JP2016032385A (ja) 2014-07-30 2016-03-07 ダイキン工業株式会社 電動機
CN204216691U (zh) * 2014-10-29 2015-03-18 日本电产高科电机株式会社 电动机及包含该电动机的电气设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509490A (ja) * 2005-09-22 2009-03-05 シーメンス アクチエンゲゼルシヤフト 電気機械の永久磁石励磁一次側磁極部材のための歯モジュール
JP2011166868A (ja) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp 永久磁石型回転電機
WO2011148457A1 (ja) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 回転電機制御システム及び回転電機の磁石温度操作方法
JP2015119617A (ja) * 2013-12-18 2015-06-25 現代自動車株式会社 埋め込み型永久磁石同期モータ
WO2017216995A1 (ja) * 2016-06-17 2017-12-21 三菱電機株式会社 永久磁石式同期機および永久磁石式同期機の固定子の製造方法
JP2018074890A (ja) * 2016-10-25 2018-05-10 株式会社豊田自動織機 回転電機

Also Published As

Publication number Publication date
US20220085674A1 (en) 2022-03-17
JP6631763B1 (ja) 2020-01-15
CN113615041A (zh) 2021-11-05
KR20210120100A (ko) 2021-10-06
DE112019007108T5 (de) 2021-12-16
JPWO2020194593A1 (ja) 2021-04-08
KR102652587B1 (ko) 2024-03-28

Similar Documents

Publication Publication Date Title
JP6589624B2 (ja) モータ
JP2007221961A (ja) 電気機械
JP2007074870A (ja) 永久磁石埋込型ロータおよび永久磁石埋込型モータ
JP2009247046A (ja) 回転電機
JP6048191B2 (ja) マルチギャップ型回転電機
JP6139007B2 (ja) 回転電気機械
JP2009136046A (ja) トロイダル巻式回転電機
KR101533228B1 (ko) 고정자 및 이를 구비한 스위치드 릴럭턴스 모터
JP2008067561A (ja) 永久磁石形電動機
JP7047337B2 (ja) 永久磁石式回転電機
WO2020194593A1 (ja) 回転電機
JP6895909B2 (ja) ハイブリッド界磁式ダブルギャップ同期機
JP2009027849A (ja) 永久磁石式回転電機
JP2008199846A (ja) 永久磁石式回転電機
JP7001483B2 (ja) アキシャルギャップ型トランスバースフラックス式回転電機
JP2013132154A (ja) 回転電機および回転電機のロータ
JP2012165506A (ja) アキシャルギャップモータ
JPWO2019187205A1 (ja) 回転電機
JP2019161828A (ja) 回転電機
JP5951897B1 (ja) 同期電動機
JP2018148675A (ja) 回転電機のステータ
JP6282479B2 (ja) アキシャルギャップ形モータ
JP6892219B2 (ja) 回転電機
JP2019140789A (ja) 回転電機
JP7114005B1 (ja) 回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545376

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217028289

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19921759

Country of ref document: EP

Kind code of ref document: A1