WO2020189294A1 - 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 - Google Patents

石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 Download PDF

Info

Publication number
WO2020189294A1
WO2020189294A1 PCT/JP2020/009316 JP2020009316W WO2020189294A1 WO 2020189294 A1 WO2020189294 A1 WO 2020189294A1 JP 2020009316 W JP2020009316 W JP 2020009316W WO 2020189294 A1 WO2020189294 A1 WO 2020189294A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coke
container
defective
evaluated
Prior art date
Application number
PCT/JP2020/009316
Other languages
English (en)
French (fr)
Inventor
一穂 穐鹿
勇介 土肥
井川 大輔
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080019357.8A priority Critical patent/CN113544237A/zh
Priority to CA3130078A priority patent/CA3130078C/en
Priority to BR112021018265A priority patent/BR112021018265A2/pt
Priority to AU2020241658A priority patent/AU2020241658B2/en
Priority to KR1020217028499A priority patent/KR102549069B1/ko
Priority to JP2020553559A priority patent/JP6822622B1/ja
Priority to EP20774444.2A priority patent/EP3922701A4/en
Priority to US17/439,741 priority patent/US20220170835A1/en
Publication of WO2020189294A1 publication Critical patent/WO2020189294A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to a method for evaluating coal as a raw material for coke for metallurgy, a method for preparing blended coal using the evaluation method, and a method for producing coke from the blended coal obtained by the preparation method.
  • the metallurgical coke used as a raw material for the blast furnace to produce hot metal in the blast furnace has high strength. This is because if the strength of coke is low, it will be pulverized in the blast furnace, the air permeability of the blast furnace will be hindered, and stable hot metal production will not be possible. Therefore, from the viewpoint of obtaining high-strength coke or not lowering the strength of coke, a technique for evaluating coal as a raw material for metallurgical coke is required.
  • Patent Document 1 describes that coal in a softened and melted state has a great influence on the quality of coke in the coking process in a coke oven. As described above, in the evaluation of coal, it is important to accurately evaluate the properties of the softened and melted state of coal. As described in Patent Document 1, as a method for evaluating the evaluation, a fluidity measuring method by the Gieseler plastometer method specified in JIS-M8801 is known.
  • Patent Document 1 it is known that using the fluidity of the Gieseler plastometer has a problem in that it cannot be said to simulate the phenomenon occurring in an actual coke oven. There is. There is a problem that it is not sufficient from the viewpoint of accuracy to estimate the quality of coke using the fluidity of coal measured by the Giesel plastometer as an index. It is a technique for evaluating coal as a raw material for coke for metallurgy, and an evaluation technique using an index other than the fluidity of coal is required.
  • the present inventors observed a phenomenon in which the shape of the heated coal (semi-coke) remaining in the container of the Gieseller plastometer after the measurement differs depending on the coal during the measurement experiment of the Gieseller fluidity.
  • the present inventors have examined whether this shape can be used for the evaluation of coal, and have completed the present invention. That is, the gist of the present invention is as follows. (1) A method of evaluating coal using a device having a container for accommodating coal and a stirrer arranged so as to be inserted into the container, in which the stirrer is heated while heating the coal contained in the container.
  • the degree of entanglement (ab) represented by the height b of the semi-coal formed in the container on the inner wall of the container and the height a of the semi-coal on the stirrer by rotation.
  • the coal evaluation method according to (1) wherein a certain coal is evaluated as defective as coal for coke for metallurgy.
  • a method for evaluating coal in which the height a of semi-coke formed in the container and entwined with the stirrer by rotation is used as an evaluation index.
  • the apparatus is a giesel plastometer, and the coal having a height a of 30 mm or more, which is obtained under the condition that the temperature for heating the coal is equal to or higher than the resolidification temperature of the coal, is used as coke for metallurgy.
  • the coal evaluation method according to (3) which is evaluated as defective.
  • a method for preparing a blended coal which prepares a blended coal by mixing a coal evaluated as defective by the coal evaluation method according to (2) or (4) and a coal different from the coal.
  • a method for preparing a blended coal wherein the mass ratio of the coal evaluated as defective in the blended coal is 10% by mass or less.
  • (6) A method for preparing a blended coal, which prepares a blended coal by mixing a coal evaluated as defective by the coal evaluation method according to claim 2 or 4 with a coal different from the coal. The strength is determined from the correlation between the strength of coke obtained by drying and distilling a plurality of mixed coals having different mass ratios of the coal evaluated as defective and another coal and the mass ratio of the coal evaluated as defective.
  • the mass ratio of the coal evaluated as defective which is equal to or more than a desired value, is specified, and the compounded coal is prepared so that the mass ratio of the coal evaluated as defective is equal to or less than the specified mass ratio.
  • Preparation method (7) A method for producing coke, wherein the coke is produced by carbonizing the compound coal prepared by the method for preparing a compound coal according to (5) or (6).
  • the present invention it is possible to grasp whether the coal to be evaluated may reduce the strength of coke. Further, even when the coal evaluated as defective in the present invention is used as the blended coal that is the source of coke, the mass ratio of the coal in the blended coal is the mass ratio that can suppress the decrease in the strength of coke. If this is understood, it is possible to realize an operation of producing coke with an optimized amount of coal used while suppressing a decrease in coke strength. As a result, coal that was previously unusable can be used. Further, even when the coal evaluated as defective in the present invention is used as the compound coal, it is possible to specify the coal constituting the compound coal capable of producing coke having a desired strength and the mass ratio thereof.
  • FIG. 1 is a vertical sectional view showing an example of a gee cellar plastometer.
  • FIG. 2 shows the height a of semi-coke on the stirrer of the Gieseller plastometer, the height b of semi-coke on the inner wall of the container and the degree of entanglement (ab) / a, and the maximum fluidity logMF of Gieseller. It is a graph which shows the relationship of.
  • FIG. 3 is a graph showing the relationship between the strength DI (150/15) of coke obtained from the blended coal in the examples and the mass ratio of coal in the blended coal.
  • the present invention is a method for evaluating coal using the shape of semi-coke formed from coal heated by an apparatus having a container for accommodating coal and a stirrer arranged so as to be inserted into the container as an index. More specifically, the method evaluates coal only by the degree of entanglement (ab) / a or height a represented by the height b of the semi-coke container inner wall and the height a of the stirrer. Used as an index.
  • FIG. 1 is a vertical sectional view showing an example of a gee cellar plastometer 10 that can be used in this embodiment.
  • the giesel plastometer 10 has a container 11 for accommodating coal to be evaluated and a stirrer 12 which is inserted into the container 11.
  • the stirrer 12 is provided with a drive device (not shown) and can rotate on its axis.
  • the drive device applies a predetermined rotational force to the stirrer 12 in a state where the stirrer 12 is inserted into the coal contained in the container 11.
  • the container 11 is heated and heated, the heated coal 13 is in a softened and melted state. Since the coal 13 is a viscoelastic body, it deforms and becomes entangled with the rotating stirrer 12, but a force for maintaining the shape acts on the coal 13 and a force against the rotation acts on the stirrer 12.
  • the rotation speed of the stirrer 12 is measured with a predetermined torque applied to the stirrer 12, and the maximum rotation speed during heating is defined as the Gieseller maximum fluidity MF (ddpm). Ask.
  • the measured value may take the common logarithm log of MF and express the maximum fluidity of Gieseller by logMF. Measurement conditions such as the heating temperature of coal and the dimensions of the container 11 are specified in JIS M8801 and are as follows.
  • the two horizontal bars in the center are 180 degrees different from each other in the direction of rotation, and the horizontal bars at the upper and lower ends are also 180 degrees different from each other in the direction of rotation.
  • the horizontal bars of the book are located 90 degrees apart from each other in the direction of rotation.
  • the conditions specified in ASTM D2639 are the same as the conditions in JIS M8801, and the ASTM method may be used.
  • a stir bar having a diameter of 5 to 60% of the inner diameter of the container containing coal. It is preferable to provide a horizontal bar in the stirrer, but entanglement of softened and melted coal with the stirrer occurs even without the horizontal bar.
  • the height a of the semi-coke 13 in contact with the stirrer 12 from the bottom surface of the container 11 is the highest and is in contact with the inner wall of the container 11.
  • the height b of the semi-coke 13 from the bottom surface is the lowest.
  • Heights a and b can be measured by disassembling the container after measurement.
  • a microfocus X-ray CT device By scanning the container 11 with a microfocus X-ray CT device after measuring the fluidity, an image of the shape of semi-coke can be obtained, and the heights a and b can be measured from the image.
  • the micro focus X-ray CT apparatus include XTH320LC manufactured by Nikon Corporation and pheonix v
  • the shape of the semi-coke after measuring the fluidity of the gee cellar differs depending on the coal, and the present inventors consider that the height of the semi-coke in the container is an index showing that the strength of the coke is affected.
  • the degree of entanglement (ab) / a expressed by the height of coke in a container By investigating the relationship between the degree of entanglement (ab) / a expressed by the height of coke in a container and the strength of coke, it is possible to estimate the strength of coke obtained from the coal by the degree of entanglement. I found it.
  • the present inventors have found that the strength of coke can be estimated in the same manner as the degree of entanglement even if the height a of the semi-coke with a stirrer is adopted instead of the degree of entanglement.
  • Coal with a high degree of entanglement and coal with a large semi-coke height a in a stirrer have excessively large expansion in the softened and melted state, and defective structures are likely to form in the coke after heating, which adversely affects the coke strength. Presumed to give. Therefore, in the present embodiment, when the degree of entanglement or the height a of the coal is equal to or more than a predetermined value, the coal is determined to be defective. For example, under the measurement conditions of a gee cellar plastometer defined in JIS or the like, coal having an entanglement degree of 0.20 or more and coal having a height a of 30 mm or more are evaluated as defective as coke coal for metallurgy.
  • the semi-coke 13 may be completely pulled by the stirrer 12, and the semi-coke 13 may not be in contact with the inner wall (side wall) of the container 11 at all. Even in that case, it is presumed that the expansion of coal is excessively large, so there is no problem in calculating the degree of entanglement and evaluating the coal, and 0 may be substituted for b to calculate the degree of entanglement as 1.
  • the coal that has been evaluated as defective is carbonized by suppressing the mass ratio of the coal that has been evaluated as defective in the coal. It is possible to suppress a decrease in the strength of the coke produced in the above.
  • the compounded coal is prepared by setting the mass ratio of the coal evaluated as defective in the compounded coal to, for example, 10% by mass or less. As a result, it is possible to suppress a decrease in the strength of coke in most operations.
  • a plurality of compound coals having different mass ratios of coal evaluated as defective and another coal are prepared in advance, and the strength of coke obtained by carbonizing the compound coal and the mass ratio of coal evaluated as defective To obtain the correlation of.
  • the mass ratio of the coal evaluated as defective when the coke strength is equal to or higher than the desired value can be specified from the correlation, and the mass ratio of the coal evaluated as defective in the compound coal is specified.
  • the correlation between the strength of coke and the mass ratio of coal evaluated as defective is obtained in advance, and from the correlation obtained in advance, the mass ratio of coal evaluated as defective that can increase the strength of coke to a desired value or more.
  • May be specified and a blended coal may be prepared. That is, the subject that prepares the compound coal may be different from the subject that obtains the correlation.
  • the "subject” refers to a person or organization that carries out the act.
  • FIG. 2 shows the height a of semi-coke on the stirrer of the Gieseller plastometer, the height b of semi-coke on the inner wall of the container and the degree of entanglement (ab) / a, and the maximum fluidity logMF of Gieseller. It is a graph which shows the relationship of.
  • FIG. 2A is a graph showing the relationship between the height a of the stirrer and the logMF.
  • FIG. 2B is a graph showing the relationship between the height b on the inner wall of the container and the logMF.
  • FIG. 2C is a graph showing the relationship between the degree of entanglement (ab) / a and logMF.
  • each data is scattered, and it cannot be read if a correlation is established between logMF and height b. Similar to a in FIG. 2A, it was confirmed that the logMFs were substantially the same and the values of b were different. Therefore, it cannot be said that a correlation is established between the logMF and the height b.
  • the degree of entanglement which is the evaluation index used in the present embodiment, has a correlation with the maximum fluidity of the Gieseller, and it can be said that the evaluation index is different from the maximum fluidity of the Gieseller.
  • the black square plot in FIG. 2 (c) shows two types of coal with an entanglement degree (ab) / a of 0.2 or more. It was observed that these two types of coal had a height a of 30 mm or more, and coal with a large degree of entanglement tended to have a height a also high.
  • Table 1 shows the properties of the coal used.
  • the dry distillation test uses an electric furnace that can simulate the dry distillation conditions of a coke oven, and the mixed coal charged into the furnace with a charging bulk density of 750 kg / dry coal is carbonized at 1050 ° C for 6 hours to produce coke. did.
  • Table 1 shows the properties of the prepared coal and the degree of entanglement (ab) / a.
  • “Ash” and “volatile matter” in Table 1 are measured values (each by mass% of dry base) of JIS M 8812 by the industrial analysis method.
  • “Ro” is the average maximum reflectance of the coal vitrinite of JIS M 8816
  • “TI” is calculated based on the Parr's formula described in the method for measuring the fine structure component of coal of JIS M 8816 and its explanation. It is the amount of inertia (% by volume) in the coal structure analysis.
  • “LogMF” is the value of the common logarithm log of the maximum fluidity MF measured by the fluidity measurement method by the Gieseler plastometer method specified in JIS M 8801. As shown in Table 1, the properties of coals A to F are different from each other.
  • the “degree of entanglement” in Table 1 is calculated by measuring the heights a and b in the coal evaluation method according to the present embodiment using the ghee cellar plastometer shown in FIG. 1 and using the a and b. Degree (ab) / a value.
  • the heights a and b were measured by actually measuring the height a and b from the image of the cross-sectional shape of the semi-coke obtained by scanning the container 11 with the X-ray CT apparatus XTH320LC manufactured by Nikon Corporation.
  • coals A and B have a height a of 30 mm or more and an entanglement degree of 0.20 or more.
  • coal F can be regarded as a standard coal in the technical field of producing coke for metallurgy from coal.
  • coke was further produced by carbonizing a mixed coal composed of two types of coal in which each of coals A to E and coal F was mixed at a ratio of 2: 8.
  • the strength of the obtained coke is shown in Table 2.
  • the mass ratio of coke having a particle size of 15 mm or more was measured after 150 rotations of a drum tester loaded with a predetermined amount of coke based on the rotational strength test method of JIS K 2151 at 15 rpm.
  • the drum strength DI 150/15 which is the mass ratio of 100, was determined.
  • Table 2 shows the strength of coke obtained from mixed coal consisting of two types of coal.
  • the coke obtained from the mixed coal obtained by mixing coal A or coal B with coal F has a lower coke strength than the case where coals C, D and E are mixed with coal F.
  • Both coals A and B have an entanglement degree (ab) / a of 0.20 or more or a height a of 30 mm or more. From this, it can be evaluated that coal having an entanglement degree (ab) / a of 0.20 or more is defective as a raw material coal for coke production. Similarly, coal having a height a of 30 mm or more can be evaluated as defective as a raw material coal for coke production.
  • a mixed coal prepared by mixing coals A and C and multiple brands of coal is prepared, the mixing ratio of the mixed coal is 80% by mass, and the total mixing ratio of coal A and coal C is 20% by mass.
  • Five types of blended coal with different blending ratios were prepared. Using an electric furnace capable of simulating the dry distillation conditions of a coke oven, the blended coal was charged into the furnace based on a charging bulk density of 750 kg / drying standard, and the blended coal was carbonized at 1050 ° C. for 6 hours to produce coke.
  • Table 3 shows the properties of the prepared coal and mixed coal. Here, the average properties of the ash content, volatile content, Ro, TI, and logMF of the mixed coal are shown, and the height a and the degree of entanglement are actually measured values using a gieseller plastometer.
  • FIG. 3 is a graph showing the relationship between the coke strength DI (150/15) and the mass ratio of coal A and coal C in the blended coal that is the source of coke.
  • the mixing ratio of coal A and coal C can be seen from the mass ratio plotted in FIG. According to FIG. 3, although the properties of coal A and coal C are relatively similar, the coke strength when 20% by mass of coal A is blended is higher than that when 20% by mass of coal C is blended. It became lower than the coke strength. That is, it can be confirmed from this test that coal A is defective as coal for coke for metallurgy.
  • the mass ratio of coal A capable of maintaining the coke strength at a high level is 10 mass from the graph of FIG. Can be specified as% or less. Therefore, by preparing coking coal so that the mass ratio of coal A is 10% by mass or less and producing coke, it is possible to produce coke having a desired strength.
  • the mass of coal evaluated as defective at (ab) / a or height a (hereinafter referred to as “defective coal”, which is coal A in this example) and coal different from the defective coal.
  • a correlation has been obtained between the strength of coke obtained by carbonizing a plurality of blended coals having different ratios and the mass ratio of the defective coal.
  • a method for preparing a blended coal in which the mass ratio of defective coal having a coke strength equal to or higher than a desired value is specified based on the correlation, and the blended coal is prepared so that the mass ratio of defective coal is equal to or less than the specified mass ratio.
  • An example is shown in this embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

従来から広く知られているギーセラープラストメータなどの、攪拌子を備えた装置を用い、評価対象の石炭がコークスの強度を低下させる可能性があるかを評価する方法を提供する。 ギーセラープラストメータ10を用いて石炭を評価する。ギーセラー流動度の測定後には、ギーセラープラストメータ10の容器11では加熱された石炭からセミコークス13が形成されている。容器11の内壁でのセミコークス13の高さをbとする。ギーセラープラストメータの攪拌子12でのセミコークス13の高さをaとする。高さa及びbで表される絡みつき度(a-b)/aあるいは高さaのみを石炭の評価指標とする。

Description

石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
 本発明は、冶金用コークスの原料となる石炭の評価方法及び該評価方法を用いる配合炭の調製方法、更には、該調製方法で得られた配合炭からコークスを製造する方法に関する。
 高炉において溶銑を製造するために高炉原料として用いられる冶金用コークスは高強度であることが望ましい。コークスは強度が低いと高炉内で粉化し、高炉の通気性が阻害され、安定的な溶銑の生産が行なえなくなるからである。よって、高強度となるコークスが得られるあるいはコークスの強度を低下させないという観点で、冶金用コークスの原料として石炭を評価する技術が求められている。
 特許文献1には、コークス炉におけるコークス化過程において、軟化溶融状態にある石炭がコークスの品質に大きな影響を与えることが記載されている。このように、石炭の評価では、石炭の軟化溶融状態の性質を正確に評価することが重要である。特許文献1に記載されている通り、その評価を行う方法として、JIS-M8801に規定されているギーセラープラストメータ法による流動度測定法が知られている。
特開2000-304674号公報
 特許文献1に記載の通り、ギーセラープラストメータの流動度を用いることは、実際のコークス炉で起っている現象をシミュレートしているとはいえない点に問題があることが知られている。ギーセラープラストメータで測定された石炭の流動度を指標にして、コークスの品質の推定を行うことは、精度という観点で十分ではないという問題がある。冶金用コークスの原料として石炭を評価する技術であって、石炭の流動度以外を指標とした評価技術が求められている。
 本発明は、上記事情を解決しようとするものであり、従来から広く知られているギーセラープラストメータなどの石炭を収容する容器と、当該容器に挿入可能に配置された攪拌子とを有する装置を用い、評価対象の石炭がコークスの強度を低下させる可能性があるかを評価する方法を提供することを目的とする。本発明は、更に、その方法を用いて評価した石炭を有する配合炭の調製方法及び該調製方法で得られた配合炭を乾留してコークスを製造する方法を提供することを目的とする。
 本発明者らは、ギーセラー流動度の測定実験を行っていた際に、測定後にギーセラープラストメータの容器に残存する加熱された石炭(セミコークス)の形状が石炭によって異なる現象を観察した。本発明者らは、この形状を石炭の評価に用い得るかを検討し、本発明の完成に至った。即ち、本発明の要旨は以下の通りである。
(1)石炭を収容する容器と該容器に挿入可能に配置された攪拌子とを有する装置を用いて石炭を評価する方法であって、前記容器に収容された石炭を加熱しながら攪拌子を回転することで、前記容器に形成されたセミコークスの前記容器の内壁での高さbと、前記攪拌子での前記セミコークスの高さaと、で表される絡みつき度(a-b)/aを評価指標とする、石炭の評価方法。
(2)前記装置がギーセラープラストメータであり、前記石炭を加熱する温度が前記石炭の再固化温度以上である条件下で求められる前記絡みつき度(a-b)/aが0.20以上である石炭を冶金用コークスの石炭として不良と評価する、(1)に記載の石炭の評価方法。
(3)石炭を収容する容器と該容器に挿入可能に配置された攪拌子とを有する装置を用いて石炭を評価する方法であって、前記容器に収容された石炭を加熱しながら攪拌子を回転することで、前記容器に形成され且つ前記攪拌子に絡みつくセミコークスの前記攪拌子での高さaを評価指標とする、石炭の評価方法。
(4)前記装置がギーセラープラストメータであり、前記石炭を加熱する温度が前記石炭の再固化温度以上である条件下で求められる前記高さaが30mm以上である石炭を冶金用コークスの石炭として不良と評価する、(3)に記載の石炭の評価方法。
(5)(2)または(4)に記載の石炭の評価方法で不良と評価された石炭と前記石炭とは別の石炭とを混合して配合炭を調製する配合炭の調製方法であって、前記不良と評価された石炭の前記配合炭中の質量割合を10質量%以下とする、配合炭の調製方法。
(6)請求項2または請求項4に記載の石炭の評価方法で不良と評価された石炭と前記石炭とは別の石炭とを混合して配合炭を調製する配合炭の調製方法であって、前記不良と評価された石炭と別の石炭との質量割合が異なる複数の配合炭を乾留して得られるコークスの強度と前記不良と評価された石炭の質量割合との相関関係から前記強度が所望の値以上となる前記不良と評価された石炭の質量割合を特定し、前記不良と評価された石炭の質量割合が、特定した質量割合以下となるように配合炭を調製する、配合炭の調製方法。
(7)コークスの製造方法であって、(5)または(6)に記載の配合炭の調製方法で調製された配合炭を乾留してコークスを製造する、コークスの製造方法。
 本発明によって、評価対象の石炭がコークスの強度を低下させる可能性があるかを把握できる。また、本発明で不良と評価した石炭をコークスの元となる配合炭に用いる場合であっても、配合炭中のその石炭の質量割合であって、コークスの強度の低下を抑え得る質量割合を把握しておけば、コークスの強度の低下を抑えつつ前記石炭の使用量を最適化したコークスを製造する操業が実現できる。これにより、従来使用不能とされた石炭も使用可能となり得る。更には、本発明で不良と評価した石炭を配合炭に用いる場合であっても、所望の強度となるコークスを製造し得る配合炭を構成する石炭及びその質量割合を特定することもできる。
図1は、ギーセラープラストメータの一例を示す鉛直断面図である。 図2は、ギーセラープラストメータの攪拌子でのセミコークスの高さa、容器の内壁でのセミコークスの高さb及び絡みつき度(a-b)/aと、ギーセラー最高流動度logMFと、の関係を示すグラフである。 図3は、実施例での配合炭から得られるコークスの強度DI(150/15)と配合炭中の石炭の質量割合との関係を示すグラフである。
 本発明は、石炭を収容する容器と、当該容器に挿入可能に配置された攪拌子とを有する装置で加熱された石炭から形成されたセミコークスの形状を指標とする石炭の評価方法である。より具体的には、当該方法は、セミコークスの容器内壁での高さbと攪拌子の高さaとで表される絡みつき度(a-b)/aあるいは高さaのみを石炭の評価指標に用いる。
 図1は、本実施形態で用いることができるギーセラープラストメータ10の一例を示す鉛直断面図である。ギーセラープラストメータ10は、評価対象の石炭を収容する容器11と該容器11に挿入可能に配置される攪拌子12とを有する。攪拌子12は、図示しない駆動装置が設けられており、自転可能となっている。駆動装置は、容器11に収容された石炭に攪拌子12が挿入された状態で該攪拌子12に所定の回転力を与える。次いで、容器11を昇温加熱していくと、加熱された石炭13は軟化溶融状態になる。石炭13は粘弾性体であるので変形して、回転する攪拌子12に絡みついていくが、石炭13には形状を保つ力が働き、回転に抗する力が攪拌子12に作用する。
 ギーセラープラストメータ法による流動度測定法では攪拌子12に所定のトルクをかけた状態で攪拌子12の回転速度を測定し、加熱中の最大の回転速度をギーセラー最高流動度MF(ddpm)として求める。測定値は、MFの常用対数logをとって、ギーセラー最高流動度をlogMFで表すこともある。石炭の加熱温度や容器11の寸法などの測定条件は、JIS M 8801に規定されており、以下の通りである。
 深さ35.0mm及び内径21.4mmの容器11に、直径4.0mmの軸に垂直な4本の横棒(直径1.6mm及び長さ6.4mm)が取り付けられた攪拌子12を挿入し、5gの石炭を当該容器に充填する。次いで、300℃または350℃に予熱した溶融金属に容器11を浸して、3℃/分の速度での加熱を攪拌子12の回転が停止するまで続ける。ここで、攪拌子12の一番低い横棒と容器の底との距離は1.6mmであり、横棒間の軸方向に沿った距離が3.2mmである。中央の2本の横棒は回転方向に互いに180度異なった位置にあり、上下端の横棒も回転方向に互いに180度異なった位置にあり、中央の2本の横棒と上下端の2本の横棒は回転方向に互いに90度異なった位置にある。ASTM D2639に規定された条件もJIS M 8801の条件と同様であり、ASTMの方法を用いてもよい。ギーセラープラストメータを用いない場合、石炭を収容する容器の内径の5~60%の径を有する攪拌子を用いることが好ましい。攪拌子には横棒を設けることが好ましいが、横棒がなくても軟化溶融した石炭の攪拌子への絡みつきは発生する。
 石炭は加熱により軟化溶融して流動性を示し、さらに加熱することによって溶融物が再固化する。このため、前述の条件で測定した後、容器11には、石炭の再固化温度以上の条件下で加熱された石炭がセミコークス13となって収容される。石炭及びセミコークスは塑性体でもあるので、ギーセラー流動度の測定後、加熱・攪拌中の石炭(セミコークス)13は、容器11の内壁に接触しつつも攪拌子12に引っ張られて、攪拌子12に絡みついた形状を維持する。よって、大抵の銘柄の石炭では、図1に示すように、攪拌子12に接触しているセミコークス13の容器11の底面からの高さaが最も高く、容器11の内壁に接触しているセミコークス13の前記底面からの高さbが最も低くなる。軟化溶融した石炭のこのような挙動はワイセンベルグ効果として知られている。
 高さaとbは、測定後の容器を解体することで測定できる。流動度の測定後に容器11をマイクロフォーカスX線CT装置でスキャンすれば、セミコークスの形状の画像が得られ、当該画像から高さa及びbを測定できる。マイクロフォーカスX線CT装置は、例えば、ニコン(株)製XTH320LC、GEセンシング&インスペクション・テクノロジー(株)製phoenix v|tome|x m300などである。高さaとbは、容器円周方向での位置による違いはほとんどないので、ある断面での形状を測定すれば通常は十分である。仮に、位置により違いがある場合には、複数断面で高さを測定し、これらの平均を高さaとbの値に用いてもよい。
 ギーセラー流動度の測定後のセミコークスの形状は石炭によって異なっており、本発明者らは、容器内でのセミコークスの高さがコークスの強度に影響を及ぼすことを示す指標になると考え、セミコークスの容器内での高さで表される絡みつき度(a-b)/aとコークスの強度との関係を調査して、絡みつき度でその石炭から得られるコークスの強度を推定し得ることを見出した。本発明者らは、絡みつき度に代えてセミコークスの攪拌子での高さaを採用しても、絡みつき度と同様にコークスの強度を推定し得ることを見出した。
 絡みつき度が大きい石炭や攪拌子でのセミコークスの高さaが大きい石炭は、軟化溶融状態では膨張性が過剰に大きく、加熱した後のコークス中で欠陥構造ができやすく、コークス強度に悪影響を与えると推測される。よって、本実施形態では、石炭の絡みつき度または高さaが所定の値以上である場合に当該石炭を不良と判断することとする。例えば、JIS等に定められたギーセラープラストメータの測定条件において、絡みつき度が0.20以上である石炭や高さaが30mm以上である石炭を冶金用コークスの石炭として不良と評価する。絡みつき度および高さaが大きいほど膨張性が大きすぎてコークス強度に悪影響があると判断できるので、絡みつき度と高さaについて、石炭を評価するための上限値を設ける必要はない。ただし、絡みつき度、高さaとも、測定値は試料石炭を収容する容器の大きさの制約を受ける。従って、絡みつき度が0.20以上、高さaが30mm以上の値が測定可能な容器を用いて測定を行うことが好ましい。
 石炭の銘柄によってはセミコークス13が攪拌子12に全て引っ張られて、容器11の内壁(側壁)にセミコークス13が全く接触していない場合がある。その場合でも石炭は膨張性が過剰に大きいと推測されるので、絡みつき度を算出して石炭を評価することに支障はなく、bに0を代入して絡みつき度を1と算出すればよい。
 不良と評価した石炭を用いて、それとは別の石炭とを混合して配合炭を調製する操業において、不良と評価した石炭の配合炭中の質量割合を抑えることで、その配合炭を乾留して製造されるコークスの強度の低下を抑えることができる。本実施形態では、不良と評価した石炭の配合炭中の質量割合を、例えば10質量%以下として配合炭を調製する。これにより、大抵の操業で、コークスの強度低下を抑えることができる。
 操業を行うに際して、予め、不良と評価した石炭と別の石炭との質量割合が異なる配合炭を複数調製し、配合炭を乾留して得られるコークスの強度と不良と評価した石炭の質量割合との相関関係を得ておく。これにより、操業において、当該相関関係から、コークスの強度が所望の値以上となる不良と評価される石炭の質量割合を特定でき、不良と評価した石炭の配合炭中の質量割合を特定した質量割合以下となるように配合炭を調製する。この結果、不良と評価された石炭を用いながら、コークスの強度を所望の程度以上とする配合炭を調製できる。
 コークスの強度と、不良と評価した石炭の質量割合との相関関係を予め得ておき、予め得られた相関関係から、コークスの強度を所望の値以上にできる不良と評価された石炭の質量割合を特定し、配合炭を調製してもよい。すなわち、配合炭を調製する主体は、相関関係を得る主体と異なっていてもよい。ここで、「主体」とはその行為を実施する者または組織を指す。上記のように作製した配合炭をコークス炉などで乾留してコークスを製造することで、所望の強度以上のコークスが製造できる。
 <実験>
 次に、性状が相違する様々な石炭を準備し、攪拌子でのセミコークスの高さa、容器内壁でのセミコークスの高さb及び絡みつき度(a-b)/aと、ギーセラー最高流動度logMFとの関係を調査した実験を説明する。図2は、ギーセラープラストメータの攪拌子でのセミコークスの高さa、容器の内壁でのセミコークスの高さb及び絡みつき度(a-b)/aと、ギーセラー最高流動度logMFと、の関係を示すグラフである。図2(a)は、攪拌子での高さaとlogMFとの関係を示すグラフである。図2(b)は、容器内壁での高さbとlogMFとの関係を示すグラフである。図2(c)は、絡みつき度(a-b)/aとlogMFとの関係を示すグラフである。
 図2(a)のグラフによれば、logMFが増加するにつれて高さaが増加しているので、logMFと高さaとには正の相関関係が成立するように読み取れる。ところが、グラフ中の〇で囲って示す通り、logMFが約3で概ね同じであっても、aの値が相違している点が確認された。よって、logMFと高さaとに正の相関関係が成立するとは言い難い。
 図2(b)のグラフによれば、各データがばらついており、logMFと高さbとには相関関係が成立すると読み取れない。図2(a)のaと同様に、logMFが概ね同じでbの値が相違している点が複数確認された。よって、logMFと高さbとに相関関係が成立するとは言えない。
 図2(c)のグラフ中に□で囲って示す通り、logMFは相違しているが、絡みつき度が0で同じとなる2点が確認された。当該グラフ中に〇で囲って示す通り、logMFが概ね同じとしても絡みつき度が相違している。これらの結果から、logMFと絡みつき度とに相関関係が成立するとは言えない。
 上記の結果からすると、本実施形態で用いた評価指標である絡みつき度は、ギーセラー最高流動度と相関関係があるとは言えず、ギーセラー最高流動度とは異質な評価指標であると言える。
 図2(c)の黒四角のプロットは、絡みつき度(a-b)/aが0.2以上となった2種の石炭を示す。この2種の石炭は、高さaが30mm以上となり、絡みつき度の大きな石炭は、高さaも高くなる傾向が認められた。
 絡みつき度(a-b)/aおよび高さaのコークス強度への影響を調査するため、石炭A~Fを用いて乾留試験を行った。用いた石炭の性状を表1に示す。乾留試験はコークス炉の乾留条件をシミュレート可能な電気炉を用い、装入嵩密度750kg/dry石炭で炉内に装入した配合炭を1050℃で6時間の条件で乾留してコークスを製造した。準備した石炭の性状及び絡みつき度(a-b)/aを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1における「灰分」及び「揮発分」は、JIS M 8812の工業分析法による測定値(それぞれドライベース質量%)である。「Ro」は、JIS M 8816の石炭のビトリニットの平均最大反射率であり、「TI」は、JIS M 8816の石炭の微細組織成分の測定方法およびその解説に記載のParrの式に基づいて算出した石炭組織分析におけるイナート量(体積%)である。「logMF」は、JIS M 8801に規定されているギーセラープラストメータ法による流動度測定法で測定した最高流動度MFの常用対数logの値である。表1に示すように、石炭A~Fの性状はそれぞれ異なっている。
 表1の「絡みつき度」は、図1に示すギーセラープラストメータを用いて本実施形態に係る石炭の評価方法における高さaとbとを測定し、当該a、bを用いて算出した絡みつき度(a-b)/a値である。高さa及びbは、容器11をニコン(株)製X線CT装置XTH320LCでスキャンして得られたセミコークスの断面形状の画像から実測することで測定した。
 表1で注目すべきは、石炭A及びBは、高さaが30mm以上であり、絡みつき度が0.20以上であることである。石炭Fは、表1に示されるRoやlogMFの性状を鑑みると、石炭から冶金用コークスを製造する技術分野では標準的な石炭とみなせる。
 本実施例では、更に、石炭A~Eの各々と石炭Fとを2:8の割合で混合した2種の石炭からなる混合炭を乾留してコークスを製造した。得られたコークスの強度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 コークスの強度として、JIS K 2151の回転強度試験法に基づきコークスを所定量装入したドラム試験機を15rpmで150回転させた後の粒径15mm以上のコークスの質量割合を測定し、回転前との質量比×100であるドラム強度DI 150/15を求めた。表2では、2種の石炭からなる混合炭から得られたコークスの強度を記載してある。
 表2からわかるように、石炭Aまたは石炭Bを石炭Fと混合した混合炭から得られるコークスは、石炭C、D及びEを石炭Fと混合した場合よりも、コークスの強度が低くなっていることがわかる。石炭AとBはいずれも絡みつき度(a-b)/aが0.20以上あるいは高さaが30mm以上である。このことから、絡みつき度(a-b)/aが0.20以上の石炭はコークス製造用の原料石炭として不良であると評価できる。同様に高さaが30mm以上の石炭もコークス製造用の原料石炭として不良であると評価できる。
 次に、コークス製造用原料として不良であると評価される石炭の配合比の限界を検討した。
 石炭A、C及び複数銘柄の石炭を混合した混合炭を準備し、混合炭の配合率を80質量%とし、石炭Aと石炭Cの配合率の合計を20質量%として、石炭AとCの配合率を変更した配合炭を5種類調製した。コークス炉の乾留条件をシミュレート可能な電気炉を用いて装入嵩密度750kg/乾燥基準で配合炭を炉内に装入し、配合炭を1050℃で6時間乾留してコークスを製造した。準備した石炭及び混合炭の性状を表3に示す。ここで、混合炭の灰分、揮発分、Ro、TI、logMFについてはその平均性状を、高さaと絡みつき度についてはギーセラープラストメータを用いて実測した値を示している。
Figure JPOXMLDOC01-appb-T000003
 
 図3は、コークスの強度DI(150/15)と、コークスの元となる配合炭中の石炭A及び石炭Cの質量割合と、の関係を示すグラフである。石炭Aと石炭Cの配合率は図3にプロットしてある質量割合からわかる。図3によれば、石炭Aと石炭Cの性状は比較的似ているにもかかわらず、石炭Aを20質量%配合した場合のコークス強度の方が、石炭Cを20質量%配合した場合のコークス強度よりも低くなった。すなわち石炭Aは冶金用コークスの石炭として不良であることがこの試験からも確認できる。
 図3のグラフからは、不良と評価された石炭Aの質量割合とコークスの強度とには、石炭Aの質量割合が減ると、コークスの強度が向上するという相関関係が読み取れる。すなわち、石炭Aの質量割合を抑えれば、コークスの強度は高いレベルを維持する。更に、図3のグラフから、石炭Aの配合炭中の質量割合を10質量%以下に抑えることで、コークスの強度の低下を抑えて、コークスの強度を高いレベルに維持できることがわかる。本実施形態の石炭の評価方法で不良と評価される石炭によるコークス強度への悪影響は、その配合率が少ないほど小さくなるので、不良と評価される石炭の配合率の下限は0質量%である。
 仮に、コークスの所望の強度を、ドラム強度DI(150/15)で84.6程度と設定すると、図3のグラフから、コークスの強度を高いレベルに維持し得る石炭Aの質量割合は10質量%以下と特定できる。よって、石炭Aの質量割合を10質量%以下とするように配合炭を調製してコークスを製造することで、所望の強度のコークスの製造が実現できる。
 本実施例では、(a-b)/aまたは高さaで不良と評価した石炭(以下「不良炭」と呼び、この例では石炭Aである)と不良炭とは別の石炭との質量割合が異なる複数の配合炭を乾留して得られるコークスの強度と前記不良炭の質量割合との相関関係を得ている。相関関係に基づいてコークス強度が所望の値以上となる不良炭の質量割合を特定し、不良炭の質量割合が、特定した質量割合以下となるように配合炭を調製する配合炭の調製方法の一例を本実施例で示してある。
 以上の実施例により、本発明の評価指標である絡みつき度(a-b)/aおよび高さaで不良と評価した石炭を含む配合炭から得られるコークスの強度が低下するかどうかを把握できることが確認された。不良と評価した石炭の配合炭中の質量割合であって、コークスの強度の低下を抑える質量割合を把握できることが確認された。更には、不良と評価した石炭を用いてコークスを製造する操業を行う場合に、所望の強度となるコークスを製造し得る配合炭を構成する石炭及びその質量割合を特定し、特定された石炭及び質量割合となるように調整された配合炭を用いてコークスを製造することで、所望の強度のコークスの製造が実現できることが確認された。
 10  ギーセラープラストメータ
 11  容器
 12  攪拌子
 13  セミコークス(加熱された石炭)

Claims (7)

  1.  石炭を収容する容器と該容器に挿入可能に配置された攪拌子とを有する装置を用いて石炭を評価する方法であって、
     前記容器に収容された石炭を加熱しながら攪拌子を回転することで、前記容器に形成されたセミコークスの前記容器の内壁での高さbと、前記攪拌子での前記セミコークスの高さaと、で表される絡みつき度(a-b)/aを評価指標とする、石炭の評価方法。
  2.  前記装置がギーセラープラストメータであり、前記石炭を加熱する温度が前記石炭の再固化温度以上である条件下で求められる前記絡みつき度(a-b)/aが0.20以上である石炭を冶金用コークスの石炭として不良と評価する、請求項1に記載の石炭の評価方法。
  3.  石炭を収容する容器と該容器に挿入可能に配置された攪拌子とを有する装置を用いて石炭を評価する方法であって、
     前記容器に収容された石炭を加熱しながら攪拌子を回転することで、前記容器に形成され且つ前記攪拌子に絡みつくセミコークスの前記攪拌子での高さaを評価指標とする、石炭の評価方法。
  4.  前記装置がギーセラープラストメータであり、前記石炭を加熱する温度が前記石炭の再固化温度以上である条件下で求められる前記高さaが30mm以上である石炭を冶金用コークスの石炭として不良と評価する、請求項3に記載の石炭の評価方法。
  5.  請求項2または請求項4に記載の石炭の評価方法で不良と評価された石炭と前記石炭とは別の石炭とを混合して配合炭を調製する配合炭の調製方法であって、
     前記不良と評価された石炭の前記配合炭中の質量割合を10質量%以下とする、配合炭の調製方法。
  6.  請求項2または請求項4に記載の石炭の評価方法で不良と評価された石炭と前記石炭とは別の石炭とを混合して配合炭を調製する配合炭の調製方法であって、
     前記不良と評価された石炭と別の石炭との質量割合が異なる複数の配合炭を乾留して得られるコークスの強度と前記不良と評価された石炭の質量割合との相関関係から前記強度が所望の値以上となる前記不良と評価された石炭の質量割合を特定し、
     前記不良と評価された石炭の質量割合が、特定した質量割合以下となるように配合炭を調製する、配合炭の調製方法。
  7.  コークスの製造方法であって、
     請求項5または請求項6に記載の配合炭の調製方法で調製された配合炭を乾留してコークスを製造する、コークスの製造方法。
PCT/JP2020/009316 2019-03-15 2020-03-05 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 WO2020189294A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202080019357.8A CN113544237A (zh) 2019-03-15 2020-03-05 煤的评价方法和混煤的制备方法以及焦炭的制造方法
CA3130078A CA3130078C (en) 2019-03-15 2020-03-05 Method for evaluating coal, method for preparing coal blend, and method for producing coke
BR112021018265A BR112021018265A2 (pt) 2019-03-15 2020-03-05 Método para avaliar carvão, método para preparar blenda de carvão e método para produzir coque
AU2020241658A AU2020241658B2 (en) 2019-03-15 2020-03-05 Method for evaluating coal, method for preparing coal blend, and method for producing coke
KR1020217028499A KR102549069B1 (ko) 2019-03-15 2020-03-05 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법
JP2020553559A JP6822622B1 (ja) 2019-03-15 2020-03-05 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
EP20774444.2A EP3922701A4 (en) 2019-03-15 2020-03-05 COAL EVALUATION METHOD, MIXED COAL PREPARATION METHOD, AND COKE PRODUCTION METHOD
US17/439,741 US20220170835A1 (en) 2019-03-15 2020-03-05 Method for evaluating coal, method for preparing coal blend, and method for producing coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-048575 2019-03-15
JP2019048575 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189294A1 true WO2020189294A1 (ja) 2020-09-24

Family

ID=72520836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009316 WO2020189294A1 (ja) 2019-03-15 2020-03-05 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法

Country Status (10)

Country Link
US (1) US20220170835A1 (ja)
EP (1) EP3922701A4 (ja)
JP (1) JP6822622B1 (ja)
KR (1) KR102549069B1 (ja)
CN (1) CN113544237A (ja)
AU (1) AU2020241658B2 (ja)
BR (1) BR112021018265A2 (ja)
CA (1) CA3130078C (ja)
TW (1) TWI768303B (ja)
WO (1) WO2020189294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022039044A1 (ja) * 2020-08-17 2022-02-24

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304674A (ja) 1999-04-23 2000-11-02 Nippon Steel Corp 軟化溶融石炭粘度の評価方法
JP2011089002A (ja) * 2009-10-22 2011-05-06 Jfe Steel Corp 冶金用コークスの製造方法
WO2013145677A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 石炭間の接着性の評価方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132710B2 (ja) * 2001-03-30 2008-08-13 新日本製鐵株式会社 高炉用コークスの強度推定方法
JP4299693B2 (ja) * 2004-02-20 2009-07-22 新日本製鐵株式会社 コークス収縮率の測定方法及びそれを用いたコークス粒径の推定方法
US6971262B1 (en) * 2004-06-25 2005-12-06 Waters Investment Limited System and method for rheological characterization of granular materials
US8366882B2 (en) * 2009-07-14 2013-02-05 C20 Technologies, Llc Process for treating agglomerating coal by removing volatile components
TWI457555B (zh) * 2010-09-01 2014-10-21 Jfe Steel Corp Evaluation method of softening and melting of coal and binder and method for manufacturing coke
KR101160012B1 (ko) * 2010-10-27 2012-06-25 현대제철 주식회사 미분탄 수송성 측정장치 및 측정방법
CN103740391A (zh) * 2013-12-10 2014-04-23 宝钢集团新疆八一钢铁有限公司 一种动力煤预处理的配煤炼焦方法
CN106133116A (zh) * 2014-03-28 2016-11-16 杰富意钢铁株式会社 煤混合物、煤混合物的制造方法、以及焦炭的制造方法
JP6115509B2 (ja) * 2014-04-11 2017-04-19 新日鐵住金株式会社 コークスの製造方法
CN106574189A (zh) * 2014-08-15 2017-04-19 杰富意钢铁株式会社 冶金用焦炭及其制造方法
CN204656464U (zh) * 2015-06-06 2015-09-23 西安科技大学 一种具有改性功能的水焦浆制备装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304674A (ja) 1999-04-23 2000-11-02 Nippon Steel Corp 軟化溶融石炭粘度の評価方法
JP2011089002A (ja) * 2009-10-22 2011-05-06 Jfe Steel Corp 冶金用コークスの製造方法
WO2013145677A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 石炭間の接着性の評価方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022039044A1 (ja) * 2020-08-17 2022-02-24
WO2022039044A1 (ja) * 2020-08-17 2022-02-24 Jfeスチール株式会社 石炭または粘結材の調製方法およびコークスの製造方法
JP7334806B2 (ja) 2020-08-17 2023-08-29 Jfeスチール株式会社 石炭または粘結材の調製方法およびコークスの製造方法

Also Published As

Publication number Publication date
KR102549069B1 (ko) 2023-06-28
CA3130078A1 (en) 2020-09-24
TWI768303B (zh) 2022-06-21
EP3922701A1 (en) 2021-12-15
JPWO2020189294A1 (ja) 2021-04-01
AU2020241658A1 (en) 2021-08-26
CA3130078C (en) 2023-08-22
US20220170835A1 (en) 2022-06-02
AU2020241658B2 (en) 2022-09-22
TW202100728A (zh) 2021-01-01
JP6822622B1 (ja) 2021-01-27
EP3922701A4 (en) 2022-03-23
CN113544237A (zh) 2021-10-22
KR20210121236A (ko) 2021-10-07
BR112021018265A2 (pt) 2022-02-01

Similar Documents

Publication Publication Date Title
US9845439B2 (en) Method for blending coals for cokemaking and method for producing coke
WO2020189294A1 (ja) 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
JP6379934B2 (ja) コークス強度の推定方法
JP2015199791A (ja) コークス製造方法
JP2018048262A (ja) コークス粒径の推定方法
JP6323610B2 (ja) 石炭の評価方法及びコークスの製造方法
JP6565642B2 (ja) コークス収縮率の推定方法
KR101879554B1 (ko) 야금용 코크스 및 그 제조 방법
JP7070228B2 (ja) コークスの表面破壊強度の推定方法
RU2777620C1 (ru) Способ оценки качества угля, способ приготовления угольной смеси и способ получения кокса
JP7056809B1 (ja) 石炭または粘結材の軟化溶融特性の評価方法
JP6590155B2 (ja) 冶金用コークスおよびその製造方法
WO2022039044A1 (ja) 石炭または粘結材の調製方法およびコークスの製造方法
KR101910405B1 (ko) 페로코크스의 제조 방법
JP2021042378A (ja) 石炭のイナートファクター係数推定方法及びコークス表面破壊強度の推定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020553559

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3130078

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020241658

Country of ref document: AU

Date of ref document: 20200305

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028499

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020774444

Country of ref document: EP

Effective date: 20210907

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018265

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021018265

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, NOVA FOLHA DO RESUMO ADAPTADA AO ART. 22 INCISO I DA INSTRUCAO NORMATIVA 31/2013 UMA VEZ QUE O TITULO DO RESUMO APRESENTADO NA PETICAO NO 870210084767 DE 14/09/2021 E DIVERGENTE DO TITULO DO RELATORIO DESCRITIVO ENVIADO NA PETICAO NO 870210087157 DE 22/09/2021

ENP Entry into the national phase

Ref document number: 112021018265

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210914