WO2020189099A1 - 車両用空調システムおよび車両用空調システムの制御方法 - Google Patents

車両用空調システムおよび車両用空調システムの制御方法 Download PDF

Info

Publication number
WO2020189099A1
WO2020189099A1 PCT/JP2020/005246 JP2020005246W WO2020189099A1 WO 2020189099 A1 WO2020189099 A1 WO 2020189099A1 JP 2020005246 W JP2020005246 W JP 2020005246W WO 2020189099 A1 WO2020189099 A1 WO 2020189099A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
density
vehicle
conditioning system
vehicle air
Prior art date
Application number
PCT/JP2020/005246
Other languages
English (en)
French (fr)
Inventor
貴幸 萩田
中川 信也
英人 野山
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US17/438,638 priority Critical patent/US11940164B2/en
Priority to CN202080020766.XA priority patent/CN113574334B/zh
Priority to DE112020001248.4T priority patent/DE112020001248T5/de
Publication of WO2020189099A1 publication Critical patent/WO2020189099A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00978Control systems or circuits characterised by failure of detection or safety means; Diagnostic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present disclosure relates to a vehicle air-conditioning system and a control method for a vehicle air-conditioning system.
  • Patent Document 1 discloses that a flammable refrigerant detection sensor for detecting the amount of flammable refrigerant leaked into the casing is provided to detect the amount of refrigerant leak.
  • Patent Document 1 since it is necessary to separately provide a flammable refrigerant detection sensor, there is a problem that cost and installation space are required.
  • the present disclosure has been made in view of such circumstances, and provides a control method for a vehicle air-conditioning system and a vehicle air-conditioning system capable of detecting leakage of a flammable refrigerant without requiring a separate sensor. With the goal.
  • the compressor, the switching means, the vehicle exterior condenser, the first decompression means, and the vehicle interior evaporator provided in the HVAC unit are in this order.
  • the cooling refrigerant circuit to which the compressor, the switching means, the passenger compartment condenser, the second decompression means, and the passenger compartment outdoor evaporator are connected in this order, and the heating refrigerant circuit, which have high flammability.
  • the refrigerant having an explosion range near room temperature and flowing through the cooling refrigerant circuit and the heating refrigerant circuit, an outside air temperature sensor for detecting the outside temperature, and a pressure sensor for detecting the pressure of the refrigerant.
  • the refrigerant density which is the density of the refrigerant, is calculated based on the outside temperature and the pressure, and the refrigerant density is the amount of the refrigerant filled, the total volume in the cooling refrigerant circuit and the heating refrigerant circuit, and the like.
  • a control device for determining whether or not the volume falls below a predetermined threshold based on the volume of the vehicle interior, the standard density of the atmosphere, and the explosion limit of the refrigerant is provided.
  • Refrigerants that are highly flammable and have an explosion range near room temperature may leak from the vehicle air conditioning system and explode due to ignition when the composition of the refrigerant in space (ratio to air) reaches the explosion limit. ..
  • the refrigerant density of the highly flammable refrigerant is detected, and whether or not the refrigerant density is below a predetermined threshold based on the explosion limit is determined. Therefore, whether or not the amount of refrigerant leakage is approaching the explosion limit. Can be detected. Therefore, even when a highly flammable refrigerant is used in the vehicle air conditioning system, safety against explosion can be ensured.
  • the refrigerant density is calculated based on the outside air temperature and pressure, it is not necessary to newly install sensors for measuring the leakage of the refrigerant, and the cost can be suppressed accordingly. There is no need to secure a place to install the sensors. Determines whether the refrigerant density is below a predetermined threshold based on the amount of refrigerant filled, the total volume in the cooling refrigerant circuit and the heating refrigerant circuit, the volume in the vehicle interior, the standard density of the atmosphere, and the explosion limit of the refrigerant. Therefore, it is possible to determine whether or not the refrigerant density is close to the value based on the explosion limit in the vehicle air conditioning system that can uniquely determine the volume of the space in which the system is installed.
  • the high flammability is a highly flammable grade represented by CLASS3 among the flammability grades of the refrigerant classified by ISO817 (refrigerant designation and safety grade).
  • Typical refrigerants include R290 (propane) and R600a (isobutane).
  • the explosion range is the range between the lower limit of explosion and the upper limit of explosion. Normally, the explosion range is represented by the concentration of flammable substances at normal temperature and pressure.
  • the explosion range of propane has an explosion lower limit of 2.1% and an explosion upper limit of 9.5%.
  • the explosion limit indicates the above-mentioned lower limit of explosion or upper limit of explosion, and in the case of this embodiment, mainly indicates the lower limit of explosion.
  • control device may include a notification unit that notifies a warning when it is determined that the refrigerant density is below the predetermined threshold value.
  • the notification unit may be any notification device including voice, alarm sound, and visual display.
  • the notification unit may notify the user's mobile terminal via the network, or may make an emergency call via the mobile terminal.
  • the notification unit may notify the car dealer, the maintenance shop, the vehicle manufacturer, and the like through the network.
  • control device may not be able to open the door of the vehicle from the outside when it is determined that the refrigerant density is below a predetermined threshold value.
  • the vehicle door when it is determined that the refrigerant density falls below a predetermined threshold value, the vehicle door cannot be opened from the outside, so that sparks (sparks) caused by contact with metal or the like when opening the closed door. ) And static electricity can prevent the refrigerant leaked into the vehicle interior from igniting and exploding.
  • the control method of the vehicle air conditioning system includes a compressor, a switching means, an outdoor condenser, a first decompression means, and an in-vehicle evaporator provided in the HVAC unit.
  • a method for controlling a vehicle air conditioning system having a pressure sensor wherein the refrigerant density, which is the density of the refrigerant, is calculated based on the outside temperature and the pressure, and the refrigerant density is the amount of the refrigerant filled.
  • the refrigerant density of the highly flammable refrigerant is calculated from the pressure and temperature of the refrigerant, and it is determined whether or not the refrigerant density is below a predetermined threshold. Therefore, a separate leakage amount sensor or the like is installed. It is possible to determine whether or not the leaked refrigerant is approaching the explosion limit.
  • FIG. 1 shows a refrigerant circuit diagram of an aspect of a vehicle air-conditioning system and a control method of the vehicle air-conditioning system according to some embodiments of the present disclosure.
  • the vehicle air-conditioning system 1 according to the present embodiment includes an HVAC unit (Heating Ventilation and Air Conditioning Unit) 2 and a heat pump cycle 3 capable of heating and cooling.
  • HVAC unit Heating Ventilation and Air Conditioning Unit
  • the HVAC unit 2 is sequentially arranged from the upstream side to the downstream side in the blower 5 which switches and introduces the inside air or the outside air from the vehicle interior by the inside / outside air switching damper 4 and pumps it to the downstream side and the air flow path 6 connected to the blower 5.
  • the vehicle interior evaporator 7 and the vehicle interior condenser 8 are provided.
  • the HVAC unit 2 is installed in an instrument panel on the vehicle interior side, and a plurality of air conditioned through the vehicle interior evaporator 7 and the vehicle interior condenser 8 are opened toward the vehicle interior. Air-conditions the interior of the vehicle to a set temperature by blowing out from any of the differential outlet 9, the face outlet 10, and the foot outlet 11 according to the outlet mode selectively switched by the outlet mode switching dampers 12, 13, and 14. It is a thing.
  • the heat pump cycle 3 capable of cooling and heating includes a compressor 15 for compressing the refrigerant, a switching means (three-way switching valve) 16 for switching the flow direction of the refrigerant, an outdoor condenser 17, and a receiver 18.
  • the first pressure reducing means with an on-off valve function temperature type automatic expansion valve with a solenoid valve
  • first pressure reducing means 19 the vehicle interior evaporator 7, the check valve 20, and the accumulator 21 are sequentially connected to the refrigerant pipe 22.
  • It is provided with a closed-cycle cooling refrigeration cycle (cooling refrigerant circuit) 23 connected by the above.
  • An outdoor fan 24 for ventilating outside air is attached to the outdoor condenser 17.
  • the switching means 16 may be replaced by a configuration in which two solenoid valves are combined.
  • the cooling cycle 23 is connected to the discharge pipe (discharge circuit) 22A from the compressor 15 in the HVAC unit 2 via the switching means 16.
  • the passenger compartment condenser 8 provided in the vehicle interior condenser 8 is connected, and the refrigerant outlet thereof is connected to the outlet side liquid refrigerant pipe 22B of the passenger compartment outdoor condenser 17.
  • a second on-off valve (solenoid valve) 25 and a second decompression means (expansion valve) 26 (hereinafter, both are collectively referred to as a second on-off valve function).
  • the vehicle outdoor evaporator 27 is connected via the decompression means 26), and the refrigerant outlet thereof is connected to the accumulator 21 via the check valve 28.
  • the refrigerant flow during operation of the vehicle air conditioning system 1 will be described with reference to FIGS. 2 and 3.
  • the refrigerant flow during operation is indicated by a thick line.
  • the refrigerant compressed by the compressor 15 is circulated from the discharge pipe 22A to the vehicle interior condenser 17 via the switching means 16, and is ventilated by the vehicle exterior fan 24. It is heat exchanged with and condensed.
  • the liquid refrigerant is decompressed through the outlet side liquid refrigerant pipe 22B and the first decompression means 19 with an on-off valve function, and is supplied to the vehicle interior evaporator 7 in the HVAC unit 2.
  • the refrigerant supplied to the vehicle interior evaporator 7 is heat-exchanged with the inside air or the outside air blown from the blower 5 and evaporated, and is sucked into the compressor 15 via the check valve 20 and the accumulator 21. Recompressed. Hereinafter, the same cycle is repeated.
  • the inside air or outside air cooled by heat exchange with the refrigerant in the vehicle interior evaporator 7 is the differential outlet 9, the face outlet 10, and the face outlet 10, depending on the outlet mode switched by the outlet mode switching dampers 12, 13 and 14. It is blown into the vehicle interior from any of the foot outlets 11 and is used for cooling the vehicle interior.
  • Heating operation During the heating operation, as shown in FIG. 3, the refrigerant compressed by the compressor 15 is introduced into the vehicle interior condenser 8 from the discharge pipe 22A via the switching means 16, and is blown from the blower 5 here. Heat is exchanged with the incoming inside air or outside air to dissipate heat. The air heated by this is blown into the vehicle interior from any of the differential outlet 9, the face outlet 10 and the foot outlet 11 according to the outlet mode, and is used for heating the interior of the vehicle. The normal heating operation is performed in the outside air introduction mode in order to prevent fogging of the windows.
  • the refrigerant radiated by the vehicle interior condenser 8 and liquefied is decompressed through the outlet side liquid refrigerant pipe 22B and the second pressure reducing means 26 with an on-off valve function (in this case, the second on-off valve 25 is open), and the vehicle is decompressed. It is supplied to the outdoor evaporator 27.
  • This gas-liquid two-phase refrigerant is heat-exchanged with the outside air ventilated by the vehicle-outdoor fan 24 in the vehicle-outdoor evaporator 27, absorbs heat from the outside air and evaporates, and then passes through the check valve 28 and the accumulator 21 to the compressor 15. Inhaled and recompressed.
  • the heat pump heating is performed by the heating heat pump cycle 33.
  • the existing cooling refrigeration cycle 23 is used, the vehicle interior condenser 8 for heating is connected to the discharge pipe 22A via the switching means 16, and the second decompression means 26 with an on-off valve function is connected.
  • the vehicle outdoor evaporator 27 for heating via (the second on-off valve 25 and the second decompression means 26), a part of the circuit portion and the equipment are shared to form the heating heat pump cycle 33. be able to.
  • the solenoid valve of the first decompression means 19 with an on-off valve function is closed.
  • the above operation is controlled by the control device 40 shown in FIG.
  • the control device 40 is connected to the vehicle control device 41, which is a higher-level control device on the vehicle side, and is configured to input information from the vehicle side.
  • the control device 40 includes a control panel 42, and controls the operation of the vehicle air conditioning system 1 based on the detection signal from the sensor group described later and the input information from the vehicle control device 41 and the control panel 42. ..
  • a detection signal from a sensor group such as the outside air temperature sensor 44 and the pressure sensor 49 installed in the discharge pipe 22A is input to the control device 40.
  • the control device 40 Based on the detection signal from the above-mentioned sensor group and the input information from the control panel 42 and the vehicle control device 41, the control device 40 performs necessary calculations, processes, and the like according to a preset program, and the notification unit 55 and the like. It is responsible for controlling the operation of the vehicle air conditioning system 1 such as controlling the vehicle.
  • the control device 40 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable non-temporary storage medium, and the like.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • Typical examples of the highly flammable refrigerant include R290 (propane) and R600a (isobutane).
  • R290 (propane) is used as the refrigerant.
  • Propane has an explosive range near room temperature. Propane explodes (or burns) when its proportion to air is in the range of 2.1% to 9.5%. The lower limit (2.1%) of this ratio is called the lower limit of explosion, and the upper limit (9.5%) is called the upper limit of explosion. The range between the lower limit of explosion and the upper limit of explosion of 2.1% to 9.5% is called the explosion range. The explosive range of isobutane is 1.8% to 8.4%.
  • the control device 40 uses the detection signals from the outside air temperature sensor 44 conventionally installed in the vehicle air conditioning system 1 and the pressure sensor 49 installed in the discharge pipe 22A to generate a highly flammable refrigerant. Leakage shall be detected.
  • FIG. 5 is a flowchart showing one aspect of determination in the vehicle air conditioning system according to some embodiments.
  • the control device 40 acquires the outside air temperature detected by the outside air temperature sensor 44 and the pressure (discharge pressure) of the refrigerant detected by the pressure sensor 49 (S501).
  • FIG. 6 is a Moriel chart showing one aspect of propane. As shown in the Moriel chart of FIG. 6, for example, when the outside air temperature is 40 ° C., the saturation pressure of propane is 1320 kPa.
  • step S503 it is determined whether or not the value obtained by adding the safety factor to the propane pressure detected by the pressure sensor 49 is lower than the propane saturation pressure calculated in step S502 (S503). If it is determined that the value obtained by adding the safety factor to the propane pressure is lower than the saturation pressure of propane, the process proceeds to step S504. On the other hand, when it is determined that the value obtained by adding the safety factor to the pressure of propane is equal to or higher than the saturation pressure of propane, the process returns to step S501, and the outside air temperature and pressure are detected again.
  • the air-conditioning system when the air-conditioning system is not operated, that is, when the compressor 15 is not operated and the refrigerant is normally filled and the refrigerant does not leak, the gas-liquid two-phase state. It has become.
  • the pressure In the case of gas-liquid two-phase and the presence of a liquid level, the pressure is constant with respect to the outside air temperature as shown in the Moriel chart of FIG.
  • the liquid level drops when the refrigerant leaks, but the saturation pressure does not change. Therefore, it is difficult to accurately detect the amount of refrigerant leaked from the outside air temperature and pressure. Further, even when the compressor 15 is in operation, the pressure in the system is not constant, so that it is similarly difficult to accurately detect the amount of leakage.
  • step S503 when the value obtained by adding the safety factor to the pressure of propane is lower than the saturation pressure of propane, it means that the refrigerant leaks by a certain amount or more and the pressure of the refrigerant is lowered. Therefore, it is necessary to determine whether or not the leak is approaching the explosion limit.
  • the control device 40 calculates the refrigerant density (S504).
  • the refrigerant density is calculated from the Moriel chart of FIG. 6 based on the outside air temperature and pressure. For example, when the outside air temperature is 15.65 ° C. and the pressure is 101.3 kPa, the refrigerant density of propane is 1.8954 [kg / m3]. As shown in the Moriel chart of FIG. 6, as the pressure decreases, so does the refrigerant density.
  • the refrigerant density calculated in step S504 is below a predetermined threshold value (S505).
  • the predetermined threshold value is a value (allowable density) indicating an allowable value of the refrigerant density based on the explosion limit.
  • the allowable density is expressed by the following formula (1). [Number 1] (Refrigerant filling amount-explosion limit x atmospheric weight in the vehicle interior) / (total volume in the refrigerating cycle 23 for cooling and the heat pump cycle 33 for heating) ... (1)
  • the amount of refrigerant filled is the amount of refrigerant [kg] filled during the manufacture of the vehicle air conditioning system 1
  • the explosion limit is the concentration of the lower limit of explosion of the refrigerant (propane) [2.1%]
  • the vehicle interior is calculated by multiplying the volume of the vehicle interior where the vehicle air-conditioning system 1 is mounted when all windows and doors are closed by the standard atmospheric density (standard atmospheric density).
  • the weight of the atmosphere [kg], the total volume in the refrigerating cycle 23 for cooling and the heat pump cycle 33 for heating are the compressor 15 filled with the refrigerant, each heat exchanger (vehicle interior evaporator 7, vehicle interior condenser 8).
  • the allowable density may be obtained by adding a safety factor to the value calculated by the equation (1).
  • step S505 If it is determined in step S505 that the refrigerant density is lower than the allowable density, the process proceeds to step S506. On the other hand, if it is determined in step S505 that the refrigerant density is equal to or higher than the allowable density, the process proceeds to step S508.
  • step S505 If it is determined in step S505 that the refrigerant density is lower than the permissible density, the control device 40 determines that the refrigerant leaks by a certain amount or more in the vehicle air conditioning system 1 and that there is a possibility of explosion (S506). .. In this case, since the refrigerant leaks by a certain amount or more and the amount is approaching the explosion limit, measures are taken to avoid the explosion (S507). For example, the control device 40 controls the notification unit 55 to notify the warning. In this case, the notification unit 55 notifies the user of the vehicle or people in the vicinity of the vehicle that the leakage of the refrigerant is approaching the explosion limit and that there is a risk of explosion or that countermeasures are required.
  • One or more notifications such as notification of, display of characters on the display, lighting of the lamp, etc.
  • the notification unit 55 may notify the mobile terminal of the user of the vehicle via the network, or may make an emergency call via the mobile terminal.
  • the notification unit 55 may notify the car dealer, the maintenance shop, the vehicle manufacturer, and the like through the network. This makes it possible to inform the user of the vehicle and people in the vicinity of the vehicle of the possibility of an explosion and the need for countermeasures.
  • control device 40 may control the door of the vehicle so as not to be opened from the outside. As a result, it is possible to prevent the refrigerant leaked into the vehicle interior from being ignited and exploding due to sparks, static electricity, or the like caused by contact with metal or the like when opening the closed door of the vehicle.
  • the control device 40 may be controlled to perform forced ventilation of the vehicle.
  • the control device 40 controls the ventilation of the outside air by the fan 24 outside the vehicle interior and the switching by the damper 4 for switching the inside and outside air, and forcibly ventilates the refrigerant leaked into the vehicle interior from the refrigerant circuit to the outside of the vehicle. ..
  • the refrigerant leaked into the vehicle interior is discharged to the outside of the vehicle, and the ratio of the refrigerant in the vehicle interior is set to a value outside the explosion range, so that the explosion of the refrigerant can be avoided.
  • control device 40 may be controlled to prohibit the operation of the vehicle air conditioning system 1 or the operation of the vehicle. As a result, it is possible to prevent ignition caused by the start-up of the vehicle air-conditioning system 1 and the start-up of the vehicle engine, and to avoid the explosion of the refrigerant.
  • the control device 40 determines that the refrigerant is leaking in a certain amount or more in the vehicle air conditioning system 1 (S508). In this case, since the refrigerant is leaking in a certain amount or more, a warning is notified (S509).
  • the notification unit 55 notifies the user of the vehicle and people in the vicinity of the vehicle that the refrigerant is leaking and that there is a risk of explosion or that countermeasures are required, and notifies the display of a voice or alarm sound. One or more notifications such as character display and lamp lighting are performed. Further, the notification unit 55 may notify the mobile terminal of the user of the vehicle via the network, or may make a notification via the mobile terminal. In addition, the notification unit 55 may notify the car dealer, the maintenance shop, the vehicle manufacturer, and the like through the network.
  • the vehicle air-conditioning system and the vehicle air-conditioning system control method have the following effects.
  • a refrigerant having a high flammability and an explosion range near room temperature leaks from the vehicle air conditioning system 1, and when the composition of the refrigerant with respect to the space reaches the explosion limit, it may explode due to ignition.
  • the refrigerant density of the highly flammable refrigerant is detected, and it is determined whether or not the refrigerant density is below a predetermined threshold value, so that it is possible to detect whether or not the amount of refrigerant leakage is approaching the explosion limit. Can be done. Therefore, even when a highly flammable refrigerant is used in the vehicle air conditioning system 1, safety against explosion can be ensured.
  • the refrigerant density is calculated based on the outside air temperature and pressure, it is not necessary to newly install sensors for measuring the leakage of the refrigerant, and the cost can be suppressed accordingly. There is no need to secure a place to install the sensors. Whether the refrigerant density is below a predetermined threshold based on the amount of refrigerant filled, the total volume in the cooling refrigeration cycle 23 and the heating heat pump cycle 33, the volume in the vehicle interior, the standard density of the atmosphere, and the explosion limit of the refrigerant. From determining whether or not, it is possible to determine whether or not the refrigerant density is approaching a value based on the explosion limit in the vehicle air conditioning system 1 that can uniquely determine the volume of the space in which the system is installed.
  • Vehicle air conditioning system HVAC unit 3 Heat pump cycle 23 Cooling refrigeration cycle (cooling refrigerant circuit) 33 Heat pump cycle for heating (refrigerant circuit for heating) 40 Control device 44 Outside air temperature sensor 49 Pressure sensor 55 Notification unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

別途センサを必要とせず可燃性冷媒の漏洩を検知可能な、車両用空調システムおよび車両用空調システムの制御方法を提供することを目的とする。冷房用冷凍サイクル(23)と、暖房用ヒートポンプサイクル(33)と、強燃性を有し、かつ、常温付近にて爆発範囲を有し、冷房用冷凍サイクル(23)及び暖房用ヒートポンプサイクル(33)を流れる冷媒と、外気温を検知する外気温度センサ(44)と、冷媒の圧力を検知する圧力センサ(49)と、外気温と圧力とに基づき冷媒の密度である冷媒密度を算出し、冷媒密度が、冷媒の封入量、冷房用冷凍サイクル(23)内と暖房用ヒートポンプサイクル(33)内の総容積、車両室内の容積、大気の標準密度及び冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定する制御装置と、を備える。

Description

車両用空調システムおよび車両用空調システムの制御方法
 本開示は、車両用空調システムおよび車両用空調システムの制御方法に関するものである。
 地球温暖化対策として、車両用空調システムにおける冷媒に、地球温暖化係数(GWP、Global warming potential)の低い二酸化炭素やプロパンなどを用いることが検討されている。しかし、プロパン等の冷媒は可燃性を有している。可燃性の冷媒が漏れ、引火すると、燃焼や爆発の虞がある。
 そこで、車両用空調システムに可燃性の冷媒を用いる場合には、冷媒の漏洩を検知することが検討されている。
 例えば、特許文献1には、ケーシング内にリークした可燃性冷媒量を検知する可燃性冷媒検知センサが設けられ、冷媒リーク量を検知することが開示されている。
特開2005-178428号公報
 しかしながら、上記特許文献1に開示された発明では、可燃性冷媒検知センサを別途設ける必要があるため、コスト及び設置スペースを必要とするという問題があった。
 本開示は、このような事情に鑑みてなされたものであって、別途センサを必要とせず可燃性冷媒の漏洩を検知可能な、車両用空調システムおよび車両用空調システムの制御方法を提供することを目的とする。
 上記課題を解決するために、本開示の車両用空調システムおよび車両用空調システムの制御方法は以下の手段を採用する。
 本開示の幾つかの実施形態における一態様に係る車両用空調システムは、圧縮機、切替え手段、車室外凝縮器、第1減圧手段、HVACユニット内に設けられている車室内蒸発器がこの順に接続されている冷房用冷媒回路と、前記圧縮機、前記切替え手段、車室内凝縮器、第2減圧手段、車室外蒸発器がこの順に接続されている暖房用冷媒回路と、強燃性を有し、かつ、常温付近にて爆発範囲を有し、前記冷房用冷媒回路及び前記暖房用冷媒回路を流れる冷媒と、外気温を検知する外気温度センサと、前記冷媒の圧力を検知する圧力センサと、前記外気温と前記圧力とに基づき前記冷媒の密度である冷媒密度を算出し、前記冷媒密度が、前記冷媒の封入量、前記冷房用冷媒回路内と前記暖房用冷媒回路内の総容積、車両室内の容積、大気の標準密度及び前記冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定する制御装置と、を備える。
 強燃性を有し、かつ常温付近にて爆発範囲を有する冷媒は、車両用空調システムから漏れ出し、冷媒の空間に対する組成(空気に対する割合)が爆発限界に到達すると着火により爆発する虞がある。
 本態様では、強燃性を有する冷媒の冷媒密度を検知し、冷媒密度が爆発限界に基づく所定の閾値を下回るか否かを判定することから、冷媒の漏洩量が爆発限界に近付いているかどうかを検知することができる。そのため、強燃性を有する冷媒を車両用空調システムに用いた場合であっても、爆発に対する安全性を確保することができる。
 外気温および圧力に基づき冷媒密度を算出することから、冷媒の漏洩を計測するためのセンサ類を新たに設置する必要が無く、その分のコストを抑えることができる。センサ類を設置するための場所の確保も必要ない。
 冷媒密度が、冷媒の封入量、冷房用冷媒回路内と暖房用冷媒回路内の総容積、車両室内の容積、大気の標準密度及び冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定することから、システムが設置された空間の容積を一意に決定できる車両用空調システムにおいて冷媒密度が爆発限界に基づく値に近付いているか否かを判断することができる。
 強燃性とは、ISO817(冷媒の呼称と安全等級)にて区分された冷媒の燃焼性等級のうちCLASS3で表される燃焼性の高い等級である。代表的な冷媒としては、R290(プロパン)、R600a(イソブタン)などが挙げられる。
 爆発範囲とは、爆発下限と爆発上限との間の範囲である。通常爆発範囲は常温常圧での可燃性物質の濃度で表される。例えばプロパンの爆発範囲は、爆発下限が2.1%、爆発上限が9.5%である。
 爆発限界とは、前述の爆発下限または爆発上限を示し、本態様の場合は主に爆発下限を示す。
 上記態様では、前記制御装置は、前記冷媒密度が前記所定の閾値を下回ると判定されると警告を報知する報知部を備えるとしてもよい。
 本態様によれば、冷媒密度が所定の閾値を下回ると判定されると警告を報知するため、車両のユーザや車両近傍にいる人々に冷媒の漏洩が爆発限界に近付いており爆発の虞があることや、対処が必要であることを知らせることができる。
 報知部は、音声やアラーム音、視覚表示を含むいずれの報知装置であってもよい。報知部は、ネットワークを通じてユーザの携帯端末に通知を行ってもよいし、該携帯端末を経由して緊急通報を行ってもよい。報知部は、ネットワークを通じてカーディーラー、整備工場及び車両メーカー等に通知を行ってもよい。
 上記態様では、前記制御装置は、前記冷媒密度が所定の閾値を下回ると判定されると前記車両のドアを外部側から開放不可とするとしてもよい。
 本態様によれば、冷媒密度が所定の閾値を下回ると判定されると車両のドアを外部側から開放不可とするため、閉じたドアを開放する際の金属などの接触に起因する火花(スパーク)や静電気等によって車両室内に漏洩した冷媒に着火し爆発することを未然に防ぐことができる。
 本開示の幾つかの実施形態における一態様に係る車両用空調システムの制御方法は、圧縮機、切替え手段、車室外凝縮器、第1減圧手段、HVACユニット内に設けられている車室内蒸発器がこの順に接続されている冷房用冷媒回路と、前記圧縮機、前記切替え手段、車室内凝縮器、第2減圧手段、車室外蒸発器がこの順に接続されている暖房用冷媒回路と、強燃性を有し、かつ、常温付近にて爆発範囲を有し、前記冷房用冷媒回路及び前記暖房用冷媒回路を流れる冷媒と、外気温を検知する外気温度センサと、前記冷媒の圧力を検知する圧力センサと、を有する車両用空調システムの制御方法であって、前記外気温と前記圧力とに基づき前記冷媒の密度である冷媒密度を算出する工程と、前記冷媒密度が、前記冷媒の封入量、前記冷房用冷媒回路内と前記暖房用冷媒回路内の総容積、車両室内の容積、大気の標準密度及び前記冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定する工程と、を備える。
 本開示によれば、冷媒の圧力と温度とから、強燃性の冷媒の冷媒密度を算出し、冷媒密度が所定の閾値を下回るかどうかを判定するので、別途漏洩量センサ等を設置することなく漏洩した冷媒が爆発限界に近付いているか否かを判定することができる。
幾つかの実施形態に係る車両空調システムの一態様を示す冷媒回路図である。 幾つかの実施形態に係る車両空調システムの冷房時の冷媒流れを示す冷媒回路図である。 幾つかの実施形態に係る車両空調システムの暖房時の冷媒流れを示す冷媒回路図である。 幾つかの実施形態に係る車両空調システムの制御装置のブロック図である。 幾つかの実施形態に係る車両空調システムにおける判定の一態様を示すフローチャートである。 プロパンの一態様を示すモリエルチャートである。
 以下に、本開示の幾つかの実施形態に係る車両用空調システムおよび車両用空調システムの制御方法の各実施形態について、図面を参照して説明する。
 図1には、本開示の幾つかの実施形態に係る車両用空調システムおよび車両用空調システムの制御方法の一態様の冷媒回路図が示されている。
 本実施形態に係る車両用空調システム1は、HVACユニット(Heating Ventilation and Air Conditioning Unit)2と、冷暖房が可能なヒートポンプサイクル3とを備えている。
 HVACユニット2は、内外気切替えダンパ4により車室内からの内気または外気を切替え導入し、下流側に圧送するブロア5と、ブロア5に連なる空気流路6中に上流側から下流側にかけて順次配設されている車室内蒸発器7および車室内凝縮器8を備えている。このHVACユニット2は、車室側のインストルメントパネル内に設置され、車室内蒸発器7および車室内凝縮器8を介して温調された空気を、車室内に向けて開口されている複数のデフ吹出し口9、フェイス吹出し口10、フット吹出し口11のいずれかから、吹出しモード切替えダンパ12,13,14により選択的に切替えられる吹出しモードに従って車室内に吹出し、車室内を設定温度に空調するものである。
 冷暖房可能なヒートポンプサイクル3は、図2に示されるように、冷媒を圧縮する圧縮機15と、冷媒の流れ方向を切替える切替え手段(三方切替え弁)16と、車室外凝縮器17と、レシーバ18と、開閉弁機能付き第1減圧手段(電磁弁付き温度式自動膨張弁)(第1減圧手段)19と、車室内蒸発器7と、逆止弁20と、アキュームレータ21とを順次冷媒配管22により接続して構成される閉サイクルの冷房用冷凍サイクル(冷房用冷媒回路)23を備えている。車室外凝縮器17には、外気を通風する車室外ファン24が付設されている。なお、切替え手段16は、2個の電磁弁を組み合わせた構成により代替してもよい。
 図1に示されるように、冷暖房用のヒートポンプサイクル3には、上記冷房用冷凍サイクル23に対して、圧縮機15からの吐出配管(吐出回路)22Aに切替え手段16を介してHVACユニット2内に設けられている車室内凝縮器8が接続され、その冷媒出口が車室外凝縮器17の出口側液冷媒配管22Bに接続されている。また、車室外凝縮器17の出口側液冷媒配管22Bには、第2開閉弁(電磁弁)25および第2減圧手段(膨張弁)26(以下、両者を総称して開閉弁機能付き第2減圧手段26とも云う。)を介して車室外蒸発器27が接続され、その冷媒出口が逆止弁28を介してアキュームレータ21に接続されている。
 これにより、図3に示されるように、圧縮機15と、切替え手段16と、車室内凝縮器8と、出口側液冷媒配管22Bと、開閉弁機能付き第2減圧手段26(第2開閉弁25および第2減圧手段26)と、車室外蒸発器27と、逆止弁28と、アキュームレータ21とがこの順に冷媒配管22を介して接続される閉サイクルの暖房用ヒートポンプサイクル(暖房用冷媒回路)33が構成可能とされている。
 次に、車両用空調システム1の運転時の冷媒流れを、図2及び図3を用いて説明する。なお、各図において、運転時の冷媒流れが太線で表示されている。
[冷房運転]
 冷房運転時、圧縮機15で圧縮された冷媒は、図2に示されるように、吐出配管22Aから切替え手段16を介して車室外凝縮器17に循環され、車室外ファン24により通風される外気と熱交換されて凝縮される。この液冷媒は、レシーバ18内に貯留された後、出口側液冷媒配管22B、開閉弁機能付き第1減圧手段19を経て減圧され、HVACユニット2内の車室内蒸発器7に供給される。
 車室内蒸発器7に供給された冷媒は、ここでブロア5から送風されてくる内気または外気と熱交換されて蒸発され、逆止弁20、アキュームレータ21を経て圧縮機15に吸入されることにより再圧縮される。以下、同様のサイクルが繰り返される。車室内蒸発器7で冷媒と熱交換されることにより冷却された内気または外気は、吹出しモード切替えダンパ12、13及び14により切替えられる吹出しモードに応じて、デフ吹出し口9、フェイス吹出し口10、フット吹出し口11のいずれかから車室内に吹出され、車室内の冷房に供される。
 なお、この冷房運転時、開閉弁機能付き第2減圧手段26の第2開閉弁25は、閉とされている。
[暖房運転]
 暖房運転時、図3に示されるように、圧縮機15で圧縮された冷媒は、吐出配管22Aから切替え手段16を介して車室内凝縮器8に導入され、ここで、ブロア5から送風されてくる内気または外気と熱交換されて放熱される。これによって加熱された空気は、吹出しモードに応じて、デフ吹出し口9、フェイス吹出し口10およびフット吹出し口11のいずれかから車室内に吹出され、車室内の暖房に供されることになる。なお、通常の暖房運転は、窓の曇りを防止するため、外気導入モードで行われる。
 車室内凝縮器8で放熱され、凝縮液化された冷媒は、出口側液冷媒配管22B、開閉弁機能付き第2減圧手段26(この場合、第2開閉弁25は開)を経て減圧され、車室外蒸発器27に供給される。この気液二相冷媒は、車室外蒸発器27で車室外ファン24により通風される外気と熱交換され、外気から吸熱して蒸発された後、逆止弁28、アキュームレータ21を経て圧縮機15に吸入され、再圧縮される。以下、同様のサイクルが繰り返される。この暖房用ヒートポンプサイクル33によってヒートポンプ暖房が行なわれる。
 このように、既存の冷房用冷凍サイクル23を利用し、その吐出配管22Aに対して切替え手段16を介して暖房用の車室内凝縮器8を接続するとともに、開閉弁機能付き第2減圧手段26(第2開閉弁25と第2減圧手段26)を介して暖房用の車室外蒸発器27を接続することによって、一部の回路部分および機器類を共用化して暖房用ヒートポンプサイクル33を構成することができる。
 なお、この暖房運転時、開閉弁機能付き第1減圧手段19の電磁弁は、閉とされている。
 以上の運転は、図4に示されている制御装置40により制御される。この制御装置40は、車両側の上位制御装置である車両制御装置41に接続され、車両側からの情報が入力される構成とされる。制御装置40は、コントロールパネル42を備えており、後述するセンサ群からの検出信号と、車両制御装置41およびコントロールパネル42からの入力情報とに基づいて、車両用空調システム1の運転制御を行う。
 制御装置40には、外気温度センサ44、吐出配管22Aに設置されている圧力センサ49等のセンサ群からの検出信号が入力される。
 制御装置40は、前述のセンサ群からの検出信号と、コントロールパネル42および車両制御装置41からの入力情報に基づき、予め設定されているプログラムに従って所要の演算、処理等を行い、報知部55等を制御するなど、車両用空調システム1の運転を制御する機能を担うものである。
 制御装置40は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な非一時的な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 車両用空調システム1において可燃性冷媒、特にISO817(冷媒の呼称と安全等級)にて区分された冷媒の燃焼性等級のうちCLASS3で表される燃焼性の高い等級である強燃性とされる冷媒が用いられる場合、安全性に対する対策として漏洩を検知する必要がある。
 強燃性の冷媒としては、代表例としてR290(プロパン)、R600a(イソブタン)などが挙げられる。本実施形態では、R290(プロパン)が冷媒として用いられるものとする。
 プロパンは、常温付近にて爆発範囲を有する。プロパンは、空気に対する割合が2.1%~9.5%の範囲であるときに爆発(または燃焼)する。この割合の下限(2.1%)を爆発下限、上限(9.5%)を爆発上限という。また2.1%~9.5%の爆発下限と爆発上限との間の範囲を爆発範囲という。
 イソブタンの爆発範囲は、1.8%~8.4%である。
 強燃性を有し、かつ、常温付近にて爆発範囲を有する冷媒が車両室内に漏洩すると、その漏洩量により車両室内の冷媒の割合が爆発範囲となる場合がある。その場合、何らかの着火により爆発を起こす虞がある。よって、車両室内の冷媒の割合が爆発範囲に入る前に、冷媒の割合が爆発範囲に近付いているか否かを判定するものとする。
 本実施形態では、制御装置40は、車両用空調システム1に従来より設置されている外気温度センサ44、吐出配管22Aに設置されている圧力センサ49からの検出信号を用いて強燃性冷媒の漏洩を検知するものとする。
 以下に、本実施形態の制御装置40による車両用空調システム1の制御を、図5に示すフローチャートを参照して説明する。
 図5は、幾つかの実施形態に係る車両用空調システムにおける判定の一態様を示すフローチャートである。
 判定の制御がスタートすると、制御装置40は外気温度センサ44により検知される外気温、及び圧力センサ49により検知される冷媒の圧力(吐出圧力)を取得する(S501)。
 次に、制御装置40は、取得された外気温から、冷媒の飽和圧力を算出する(S502)。
 図6は、プロパンの一態様を示すモリエルチャートである。図6のモリエルチャートに示されるように、例えば外気温が40℃の場合のプロパンの飽和圧力は、1320kPaである。
 次に、圧力センサ49が検知したプロパンの圧力に安全係数を加えた値が、ステップS502で算出されたプロパンの飽和圧力を下回るか否かを判定する(S503)。
 プロパンの圧力に安全係数を加えた値がプロパンの飽和圧力を下回ると判定された場合は、ステップS504へ遷移する。一方、プロパンの圧力に安全係数を加えた値がプロパンの飽和圧力以上であると判定された場合は、ステップS501へ戻り、再度外気温および圧力が検知される。
 車両用空調システム1において、空調システムが運転されていないとき、すなわち圧縮機15が運転されておらず、かつ、正規に冷媒が封入されて冷媒が漏洩していない状態では気液二相の状態となっている。気液二相であり液面が存在する場合は、図6のモリエルチャートに示されるように外気温に対して圧力は一定である。液面が存在する場合は、冷媒が漏洩すると液面が低下するが飽和圧力は変化しない。よって、外気温と圧力から冷媒の漏洩量を正確に検知することは困難である。また、圧縮機15が運転されている場合もシステム中の圧力が一定にならないため同様に漏洩量を正確に検知することは困難である。
 一方、圧縮機15が運転されていない場合に冷媒が一定量以上漏洩し液層が無くなると、飽和状態ではなくなり、図6のモリエルチャートに示されるように冷媒の圧力は外気温に対して等温線に沿って低下する。
 すなわち、ステップS503において、プロパンの圧力に安全係数を加えた値がプロパンの飽和圧力を下回る場合は、冷媒が一定量以上漏洩し、冷媒の圧力が低下していることを示す。よって、その漏洩が爆発限界に近付いているか否かの判定を行う必要がある。
 プロパンの圧力に安全係数を加えた値がプロパンの飽和圧力を下回ると判定された場合、制御装置40は冷媒密度を算出する(S504)。
 冷媒密度は、外気温および圧力に基づき図6のモリエルチャートから算出される。例えば、外気温が15.65℃、圧力が101.3kPaの場合のプロパンの冷媒密度は、1.8954[kg/m3]である。
 図6のモリエルチャートに示されるように、圧力が下がると、冷媒密度も低下する。
 次に、ステップS504で算出された冷媒密度が、所定の閾値を下回るか否かを判定する(S505)。
 所定の閾値は、爆発限界に基づく冷媒密度の許容値を示す値(許容密度)であるとする。冷媒密度が許容密度を下回ると、爆発限界に近付いていることを示す。
 許容密度は、以下の式(1)で表される。
[数1]
(冷媒封入量-爆発限界×車両室内の大気重量)/(冷房用冷凍サイクル23内と暖房用ヒートポンプサイクル33内の総容積)・・・(1)
 (1)式において、冷媒封入量は、車両用空調システム1製造時に封入された冷媒の量[kg]、爆発限界は、冷媒(プロパン)の爆発下限の濃度[2.1%]、車両室内の大気重量は、全ての窓やドアなどを閉じた場合の車両用空調システム1が載置された車両室内部の容積に標準状態の大気の密度(大気の標準密度)をかけた車両室内の大気の重量[kg]、冷房用冷凍サイクル23内と暖房用ヒートポンプサイクル33内の総容積は、冷媒が充填される圧縮機15、各熱交換器(車室内蒸発器7、車室内凝縮器8、車室外凝縮器17及び車室外蒸発器27)、各冷媒配管などの冷房用冷凍サイクル23内と暖房用ヒートポンプサイクル33内の総容積[m3]である。
 爆発限界に近付いていることを判定するため、許容密度は、式(1)で算出された値に安全係数を加えるとしてもよい。
 ステップS505において、冷媒密度が許容密度を下回ると判定された場合は、ステップS506へ遷移する。
 一方、ステップS505において、冷媒密度が許容密度以上であると判定された場合は、ステップS508へ遷移する。
 ステップS505において、冷媒密度が許容密度を下回ると判定されると、制御装置40は、車両用空調システム1において冷媒が一定量以上漏洩し、かつ、爆発の可能性があると判定する(S506)。
 この場合、冷媒が一定量以上漏洩し、さらにその量が爆発限界に近付いているため、爆発を回避する対応をとる(S507)。
 例えば、制御装置40は、報知部55が警告を報知するよう制御する。この場合、報知部55は、車両のユーザや車両近傍にいる人々に対し冷媒の漏洩が爆発限界に近付いており爆発の虞があることや対処が必要であることを知らせるため、音声やアラーム音の報知、ディスプレイへの文字表示、ランプの点灯などのいずれかまたは複数の報知を行う。また報知部55は、ネットワークを通じて車両のユーザの携帯端末に通知を行ってもよいし、該携帯端末を経由して緊急通報を行ってもよい。また、報知部55は、ネットワークを通じてカーディーラー、整備工場及び車両メーカー等に通知を行ってもよい。
 これにより、車両のユーザや車両近傍にいる人々に対し、爆発の可能性や、対処が必要であることを知らせることができる。
 別の爆発回避対応として、制御装置40は、車両のドアを外部側から開放不可とするように制御してもよい。
 これにより、車両の閉じたドアを開放する際の金属などの接触に起因する火花(スパーク)や静電気等によって、車両室内に漏洩した冷媒に着火し爆発することを未然に防ぐことができる。
 別の爆発回避対応として、制御装置40は、車両の強制換気を行うように制御してもよい。この場合、制御装置40は、車室外ファン24による外気の通風や、内外気切替えダンパ4による切替えを行うよう制御し、冷媒回路から車両室内に漏洩した冷媒を車両の外へ強制的に換気する。
 これにより、車両室内に漏洩した冷媒を車両の外へ排出し、車両室内の冷媒の割合を爆発範囲外の値とするため、冷媒の爆発を回避することができる。
 別の爆発回避対応として、制御装置40は、車両用空調システム1の運転や車両の運転を禁止するよう制御してもよい。
 これにより、車両用空調システム1の起動や車両のエンジン起動に伴う発火を防ぎ、冷媒の爆発を回避することができる。
 一方、ステップS505において、冷媒密度が許容密度以上であると判定されると、制御装置40は、車両用空調システム1において冷媒が一定量以上漏洩していると判定する(S508)。
 この場合、冷媒が一定量以上漏洩しているため、警告を報知する(S509)。報知部55は、車両のユーザや車両近傍にいる人々に対し、冷媒が漏洩しておりこのままでは爆発の虞があることや対処が必要であることを知らせる音声やアラーム音の報知、ディスプレイへの文字表示、ランプの点灯などのいずれかまたは複数の報知を行う。また報知部55は、ネットワークを通じて車両のユーザの携帯端末に通知を行ってもよいし、該携帯端末を経由して通報を行ってもよい。また、報知部55は、ネットワークを通じてカーディーラー、整備工場及び車両メーカー等に通知を行ってもよい。
 以上、説明してきたように、本実施形態に係る車両用空調システムおよび車両用空調システムの制御方法によれば、以下の作用効果を奏する。
 強燃性を有し、かつ常温付近にて爆発範囲を有する冷媒は、車両用空調システム1から漏れ出し、冷媒の空間に対する組成が爆発限界に到達すると、着火により爆発する虞がある。
 本態様では、強燃性を有する冷媒の冷媒密度を検知し、冷媒密度が所定の閾値を下回るか否かを判定することから、冷媒の漏洩量が爆発限界に近付いているかどうかを検知することができる。そのため、強燃性を有する冷媒を車両用空調システム1に用いた場合であっても、爆発に対する安全性を確保することができる。
 また、外気温および圧力に基づき冷媒密度を算出することから、冷媒の漏洩を計測するためのセンサ類を新たに設置する必要が無く、その分のコストを抑えることができる。センサ類を設置するための場所の確保も必要ない。
 また、冷媒密度が、冷媒の封入量、冷房用冷凍サイクル23内と暖房用ヒートポンプサイクル33内の総容積、車両室内の容積、大気の標準密度及び冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定することから、システムが設置された空間の容積を一意に決定できる車両用空調システム1において冷媒密度が爆発限界に基づく値に近付いているか否かを判断することができる。
1 車両用空調システム
2 HVACユニット
3 ヒートポンプサイクル
23 冷房用冷凍サイクル(冷房用冷媒回路)
33 暖房用ヒートポンプサイクル(暖房用冷媒回路)
40 制御装置
44 外気温度センサ
49 圧力センサ
55 報知部

Claims (4)

  1.  圧縮機、切替え手段、車室外凝縮器、第1減圧手段、HVACユニット内に設けられている車室内蒸発器がこの順に接続されている冷房用冷媒回路と、
     前記圧縮機、前記切替え手段、車室内凝縮器、第2減圧手段、車室外蒸発器がこの順に接続されている暖房用冷媒回路と、
     強燃性を有し、かつ、常温付近にて爆発範囲を有し、前記冷房用冷媒回路及び前記暖房用冷媒回路を流れる冷媒と、
     外気温を検知する外気温度センサと、
     前記冷媒の圧力を検知する圧力センサと、
     前記外気温と前記圧力とに基づき前記冷媒の密度である冷媒密度を算出し、前記冷媒密度が、前記冷媒の封入量、前記冷房用冷媒回路内と前記暖房用冷媒回路内の総容積、車両室内の容積、大気の標準密度及び前記冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定する制御装置と、を備える車両用空調システム。
  2.  前記制御装置は、前記冷媒密度が前記所定の閾値を下回ると判定されると警告を報知する報知部を備える請求項1に記載の車両用空調システム。
  3.  前記制御装置は、前記冷媒密度が前記所定の閾値を下回ると判定されると車両のドアを外部側から開放不可とする請求項1に記載の車両用空調システム。
  4.  圧縮機、切替え手段、車室外凝縮器、第1減圧手段、HVACユニット内に設けられている車室内蒸発器がこの順に接続されている冷房用冷媒回路と、
     前記圧縮機、前記切替え手段、車室内凝縮器、第2減圧手段、車室外蒸発器がこの順に接続されている暖房用冷媒回路と、
     強燃性を有し、かつ、常温付近にて爆発範囲を有し、前記冷房用冷媒回路及び前記暖房用冷媒回路を流れる冷媒と、
     外気温を検知する外気温度センサと、
     前記冷媒の圧力を検知する圧力センサと、を有する車両用空調システムの制御方法であって、
     前記外気温と前記圧力とに基づき前記冷媒の密度である冷媒密度を算出する工程と、
     前記冷媒密度が、前記冷媒の封入量、前記冷房用冷媒回路内と前記暖房用冷媒回路内の総容積、車両室内の容積、大気の標準密度及び前記冷媒の爆発限界に基づく所定の閾値を下回るか否かを判定する工程と、
    を備える車両用空調システムの制御方法。
PCT/JP2020/005246 2019-03-15 2020-02-12 車両用空調システムおよび車両用空調システムの制御方法 WO2020189099A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/438,638 US11940164B2 (en) 2019-03-15 2020-02-12 Vehicle air conditioning system and control method of vehicle air conditioning system
CN202080020766.XA CN113574334B (zh) 2019-03-15 2020-02-12 车辆用空调系统及车辆用空调系统的控制方法
DE112020001248.4T DE112020001248T5 (de) 2019-03-15 2020-02-12 Fahrzeugklimatisierungssystem und Steuerungsverfahren von Fahrzeugklimatisierungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-048502 2019-03-15
JP2019048502A JP6746742B1 (ja) 2019-03-15 2019-03-15 車両用空調システムおよび車両用空調システムの制御方法

Publications (1)

Publication Number Publication Date
WO2020189099A1 true WO2020189099A1 (ja) 2020-09-24

Family

ID=72146203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005246 WO2020189099A1 (ja) 2019-03-15 2020-02-12 車両用空調システムおよび車両用空調システムの制御方法

Country Status (5)

Country Link
US (1) US11940164B2 (ja)
JP (1) JP6746742B1 (ja)
CN (1) CN113574334B (ja)
DE (1) DE112020001248T5 (ja)
WO (1) WO2020189099A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4163135A1 (de) * 2021-10-08 2023-04-12 Siemens Mobility GmbH Klimaanlage für ein fahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230245548A1 (en) * 2022-01-31 2023-08-03 Thermo King Llc Methods and systems for monitoring a potential hazard at an unoccupied transport unit and issuing a notification in response to detecting the hazard

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012830A (ja) * 1999-06-29 2001-01-19 Denso Corp 冷凍サイクル装置
JP2005016897A (ja) * 2003-06-27 2005-01-20 Sanden Corp 冷凍システム及び車両用空調装置
JP2010030418A (ja) * 2008-07-29 2010-02-12 Toyota Motor Corp 車両用空調システム
JP2014088093A (ja) * 2012-10-30 2014-05-15 Mitsubishi Heavy Ind Ltd 車両用空調装置およびその運転方法
WO2015004967A1 (ja) * 2013-07-11 2015-01-15 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システムおよびその除霜方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854904U (ja) 1981-10-12 1983-04-14 三菱重工業株式会社 自動車用空調機
JPS5854905U (ja) 1981-10-13 1983-04-14 三菱重工業株式会社 自動車用空調機
JP2000251137A (ja) * 1999-02-26 2000-09-14 Matsushita Refrig Co Ltd 自動販売機の冷却装置
JP3523584B2 (ja) * 2000-10-12 2004-04-26 株式会社 日立インダストリイズ ヒートポンプシステム
JP3951711B2 (ja) 2001-04-03 2007-08-01 株式会社デンソー 蒸気圧縮式冷凍サイクル
JP4141671B2 (ja) * 2001-09-27 2008-08-27 株式会社東芝 冷蔵庫
JP2003287324A (ja) * 2002-03-28 2003-10-10 Matsushita Refrig Co Ltd 可燃性ガスを用いる機器のガス封入量設定方法とこの方法でガス封入量を規定した冷凍システム
KR100432224B1 (ko) * 2002-05-01 2004-05-20 삼성전자주식회사 공기 조화기의 냉매 누설 검출 방법
JP3931739B2 (ja) * 2002-06-12 2007-06-20 株式会社デンソー 冷凍サイクル装置
JP2005178428A (ja) 2003-12-16 2005-07-07 Calsonic Kansei Corp 車両用空調装置
JP4758705B2 (ja) * 2005-08-05 2011-08-31 サンデン株式会社 車両用空調装置
KR100783025B1 (ko) * 2006-03-30 2007-12-07 주식회사 메타켐 차량용 공조시스템의 가스 안전장치 및 그 제어방법
JP2009139012A (ja) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp 冷凍空調装置
JP2011255831A (ja) * 2010-06-11 2011-12-22 Sanden Corp 車両用空調装置及び車両用空調装置の冷媒漏出診断方法
CN102679506A (zh) * 2011-03-11 2012-09-19 上海日立电器有限公司 一种可燃性制冷剂空调系统的泄漏应对装置
EP2562491B1 (en) * 2011-08-24 2019-05-01 Mahle International GmbH Filling system for transferring refrigerant to a refrigeration system and method of operating a filling system
JP6302809B2 (ja) 2014-09-25 2018-03-28 東芝キヤリア株式会社 冷凍サイクル装置
JP6238876B2 (ja) * 2014-11-21 2017-11-29 三菱電機株式会社 冷凍サイクル装置
EP3396277B1 (en) * 2015-12-21 2019-11-27 Mitsubishi Electric Corporation Refrigeration cycle device
JP2017156019A (ja) * 2016-03-02 2017-09-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN106705384A (zh) * 2017-02-09 2017-05-24 美的集团股份有限公司 冷媒泄漏的提醒方法及装置和空调器
CN109028456B (zh) * 2018-08-30 2021-04-30 海信(山东)空调有限公司 一种制冷剂的泄漏检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012830A (ja) * 1999-06-29 2001-01-19 Denso Corp 冷凍サイクル装置
JP2005016897A (ja) * 2003-06-27 2005-01-20 Sanden Corp 冷凍システム及び車両用空調装置
JP2010030418A (ja) * 2008-07-29 2010-02-12 Toyota Motor Corp 車両用空調システム
JP2014088093A (ja) * 2012-10-30 2014-05-15 Mitsubishi Heavy Ind Ltd 車両用空調装置およびその運転方法
WO2015004967A1 (ja) * 2013-07-11 2015-01-15 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システムおよびその除霜方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4163135A1 (de) * 2021-10-08 2023-04-12 Siemens Mobility GmbH Klimaanlage für ein fahrzeug

Also Published As

Publication number Publication date
US20220221177A1 (en) 2022-07-14
DE112020001248T5 (de) 2021-12-09
JP6746742B1 (ja) 2020-08-26
CN113574334B (zh) 2022-11-11
US11940164B2 (en) 2024-03-26
JP2020147233A (ja) 2020-09-17
CN113574334A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
DK3255360T3 (en) Air-conditioning system and method of leak detection in an air-conditioning system
US7814757B2 (en) Operating algorithm for refrigerant safety system
WO2020189099A1 (ja) 車両用空調システムおよび車両用空調システムの制御方法
JP6079061B2 (ja) 冷凍装置
JP2008164265A (ja) 空気調和機及びその冷媒量判定方法
US6912860B2 (en) Method of operating a directed relief valve in an air conditioning system
US20180321121A1 (en) Sensor array for refrigerant detection
CN113994151A (zh) 制冷剂循环装置
EP3517856B1 (en) Method and apparatus for refrigerant detector calibration confirmation
CN212457182U (zh) 空调机
CN113412401A (zh) 制冷剂循环装置
JPWO2017002214A1 (ja) 冷凍サイクルシステム
JP2000130896A (ja) 安全装置を備えた空調装置
US20220333806A1 (en) Dual temperature sensor arrangement to detect refrigerant leak
WO2018186105A1 (ja) 冷媒漏れ検知装置、冷凍サイクル装置
JP2009532250A (ja) 車両用空調システムのガス安全装置及びその制御方法
JPH10338023A (ja) 車両用冷却装置
JPH1035266A (ja) 自動車用空調装置
JP2020143800A (ja) 冷媒サイクル装置
Colbourne et al. Development of R290 transport refrigeration system
JP2000006801A (ja) 鉄道車両用空調装置
WO2019171840A1 (ja) 冷媒量推定装置、冷凍サイクル装置
EP3936788A1 (en) Refrigerant cycle system and method
WO2024105738A1 (ja) 空気調和機
US11674726B2 (en) Systems and methods for transport climate control circuit management and isolation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20773992

Country of ref document: EP

Kind code of ref document: A1