WO2018186105A1 - 冷媒漏れ検知装置、冷凍サイクル装置 - Google Patents

冷媒漏れ検知装置、冷凍サイクル装置 Download PDF

Info

Publication number
WO2018186105A1
WO2018186105A1 PCT/JP2018/009190 JP2018009190W WO2018186105A1 WO 2018186105 A1 WO2018186105 A1 WO 2018186105A1 JP 2018009190 W JP2018009190 W JP 2018009190W WO 2018186105 A1 WO2018186105 A1 WO 2018186105A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
leakage
gradient
state
abnormal
Prior art date
Application number
PCT/JP2018/009190
Other languages
English (en)
French (fr)
Inventor
麿 緑川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880015744.7A priority Critical patent/CN110382979B/zh
Priority to DE112018001918.7T priority patent/DE112018001918T5/de
Publication of WO2018186105A1 publication Critical patent/WO2018186105A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a refrigerant leak detection device and a vapor compression refrigeration cycle apparatus including the refrigerant leak detection device.
  • Vapor compression type refrigeration cycle devices suffer from problems such as a reduction in cooling capacity if the refrigerant charging amount in the circulation circuit through which the refrigerant circulates is insufficient. Further, if the amount of refrigerant charged in the circulation circuit is excessive, problems such as stagnation of liquid refrigerant in the condenser and suction of liquid refrigerant into the compressor occur. Accordingly, various methods for charging an appropriate amount of refrigerant to the refrigerant circuit in the refrigeration cycle apparatus have been proposed (see, for example, Patent Document 1).
  • a semi-hermetic or open type compressor is adopted for the convenience of maintenance, or a circulation circuit is used to absorb vibration during movement of the moving body. It is necessary to adopt rubber piping for some parts.
  • this type of refrigeration cycle apparatus a small amount of refrigerant leakage (so-called slow leakage) from a part of the compressor or piping is unavoidable.
  • Patent Document 1 in the configuration capable of calculating the refrigerant amount in the circulation circuit, the current refrigerant amount and the appropriate refrigerant amount can be compared. It becomes possible to determine whether or not.
  • This disclosure is intended to provide a refrigerant leak detection device and a refrigeration cycle apparatus that can determine whether or not the refrigerant leak is an abnormal leak.
  • the refrigerant leak detection device is mounted on the moving body (1) and applied to the vapor compression refrigeration cycle device (20) having a refrigerant circulation circuit (200). It is targeted.
  • the refrigerant leak detection device A refrigerant amount calculation unit (30a) that calculates a refrigerant amount in the circulation circuit based on a physical quantity including the temperature and pressure of the refrigerant circulating in the circulation circuit; A gradient calculating unit (30b) that calculates a refrigerant leakage gradient indicating a refrigerant leakage amount per unit period based on the refrigerant amount calculated by the refrigerant amount calculating unit; An abnormality determination unit (30c) that compares the refrigerant leakage gradient calculated by the gradient calculation unit with a predicted leakage gradient assumed in advance to determine whether or not the refrigerant leakage state in the circulation circuit is an abnormal leakage state; Is provided.
  • the refrigerant leakage state in the circulation circuit is an abnormal leakage state by calculating the refrigerant leakage gradient, which is the refrigerant leakage amount per unit period, and comparing the refrigerant leakage gradient with the predicted leakage gradient. Can be determined.
  • the refrigeration cycle apparatus is intended for one mounted on the moving body (1).
  • the refrigeration cycle apparatus includes a circulation circuit (200) through which the refrigerant circulates and a refrigerant leakage detection device (30) that detects leakage of the refrigerant from the circulation circuit.
  • the refrigerant leak detection device A refrigerant amount calculation unit (30a) that calculates a refrigerant amount in the circulation circuit based on a physical quantity including the temperature and pressure of the refrigerant circulating in the circulation circuit; A gradient calculating unit (30b) that calculates a refrigerant leakage gradient indicating a refrigerant leakage amount per unit period based on the refrigerant amount calculated by the refrigerant amount calculating unit; An abnormality determination unit (30c) that compares the refrigerant leakage gradient calculated by the gradient calculation unit with a predicted leakage gradient assumed in advance and determines whether or not the leakage state of the refrigerant from the circulation circuit is an abnormal leakage state; , It is comprised including.
  • the abnormal leakage state can be grasped by the refrigerant leakage detection device, there is an advantage that it is easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle device.
  • FIG. 1 In the present embodiment, an example in which the refrigeration cycle apparatus 20 of the present disclosure is mounted on an automobile 1 that is a moving body will be described.
  • the automobile 1 of this embodiment is equipped with an engine 10 that functions as a driving source for traveling and a driving source for the refrigeration cycle apparatus 20.
  • the refrigeration cycle apparatus 20 is applied to a vehicle air conditioner that air-conditions the interior space of the automobile 1.
  • the refrigeration cycle apparatus 20 functions to cool the air blown into the vehicle interior space until it reaches a desired temperature.
  • the refrigeration cycle apparatus 20 is configured as a vapor compression refrigeration cycle including a circulation circuit 200 in which a refrigerant circulates, a compressor 21, a radiator 22, a decompression device 23, and an evaporator 24.
  • the refrigeration cycle apparatus 20 employs R134a, which is an HFC refrigerant, as the refrigerant. Note that oil that lubricates the compressor 21 (that is, refrigeration oil) is mixed in the refrigerant. Part of the oil circulates in the circulation circuit 200 together with the refrigerant.
  • the compressor 21 is a device that compresses and discharges the sucked refrigerant.
  • the compressor 21 includes a reciprocating compression mechanism. Note that the compressor 21 may include a rotary compression mechanism.
  • the compressor 21 of the present embodiment is configured to be driven by a rotational driving force output from the external engine 10.
  • the compressor 21 of this embodiment is configured as an open type compressor.
  • the compressor 21 of the present embodiment has a power transmission mechanism 213 such as a pulley and a belt such that a shaft 212 that protrudes outside through the housing 211 is rotated by a driving force from the engine 10.
  • a power transmission mechanism 213 such as a pulley and a belt
  • the compressor 21 of the present embodiment is provided with an electromagnetic clutch 214 that turns on / off transmission of the rotational driving force from the engine 10.
  • the compressor 21 of the present embodiment is configured to stop its operation when the electromagnetic clutch 214 is turned off.
  • a portion where the shaft 212 passes through the housing 211 is sealed by a seal member 215 such as a mechanical seal or a lip seal.
  • the seal member 215 is made of a polymer material containing a resin. The polymer material has gas permeability. For this reason, in the compressor 21, the refrigerant inside the housing 211 may gradually permeate outside through the seal member 215.
  • the heat radiator 22 exchanges heat of the high-temperature and high-pressure refrigerant discharged from the compressor 21 with the outside air introduced from the outdoor blower 221 or the outside air introduced by the ram pressure during travel of the automobile 1. It is a heat exchanger that dissipates heat.
  • the radiator 22 of the present embodiment is disposed in a front portion of the engine room where outside air is introduced by the ram pressure when the automobile 1 is traveling. The refrigerant flowing into the radiator 22 is condensed by heat exchange with the outside air. Note that the outside air passes through the radiator 22 as indicated by a broken line arrow AFo in FIG.
  • the decompression device 23 is an expansion valve that decompresses and expands the refrigerant that has passed through the radiator 22.
  • a temperature type expansion valve configured so that the temperature on the outlet side of the evaporator 24 can be adjusted to a predetermined temperature is employed.
  • the evaporator 24 is a heat exchanger that evaporates the low-temperature and low-pressure refrigerant decompressed by the decompression device 23 by heat exchange with the blown air supplied from the indoor blower 241 that blows air into the vehicle interior space. .
  • the blown air supplied from the indoor blower 241 passes through the evaporator 24 as indicated by a broken line arrow AFc in FIG.
  • the blown air supplied from the indoor blower 241 is cooled to a desired temperature by the latent heat of vaporization of the refrigerant, and then blown out into the vehicle interior.
  • the circulation circuit 200 is a closed circuit configured by sequentially connecting the compressor 21, the radiator 22, the decompression device 23, and the evaporator 24 through a plurality of pipes 201 to 204.
  • the circulation circuit 200 includes a first high-pressure pipe 201 that connects the refrigerant discharge side of the compressor 21 and the refrigerant inlet side of the radiator 22, the refrigerant outlet side of the radiator 22, and the refrigerant inlet side of the decompression device 23.
  • the second high-pressure pipe 202 is connected.
  • the circulation circuit 200 connects the first low-pressure pipe 203 connecting the refrigerant outlet side of the decompression device 23 and the refrigerant inlet side of the evaporator 24, and connects the refrigerant outlet side of the evaporator 24 and the refrigerant suction side of the compressor 21.
  • the second low-pressure pipe 204 is configured.
  • the high-pressure pipes 201 and 202 and the low-pressure pipes 203 and 204 are basically composed of metal pipes.
  • the first high-pressure pipe 201 is a first polymer pipe partially containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibration of the engine 10 or the compressor 21.
  • 201a is a first polymer pipe partially containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibration of the engine 10 or the compressor 21.
  • the second low-pressure pipe 204 is a second polymer partly containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibrations of the engine 10 and the compressor 21. It is comprised by the piping 204a.
  • each polymer pipe 201a, 204a has higher gas permeability than a part constituted by a metal pipe, the refrigerant flowing inside may gradually permeate to the outside.
  • the high-pressure refrigerant compressed by the compressor 21 flows through the first polymer pipe 201a, the refrigerant tends to easily leak to the outside.
  • the refrigeration cycle apparatus 20 of the present embodiment includes a refrigerant leakage detection device 30 that detects refrigerant leakage.
  • the 3 includes a known microcomputer having a storage unit 31 such as a processor, a ROM, and a RAM, and a peripheral circuit thereof.
  • coolant leak detection apparatus 30 is comprised with a non-transitional material storage medium.
  • the refrigerant leakage detection device 30 includes an outside air temperature sensor 301 that detects the outside air temperature on its input side, an air conditioning control device 40 that controls the refrigeration cycle device 20, an engine control device 50 that controls the engine 10, and the like. Is connected.
  • the refrigerant leak detection device 30 is connected to the air conditioning control device 40 and the engine control device 50 so that the air conditioning control information of the air conditioning control device 40 and the travel control information of the engine control device 50 can be acquired. .
  • the air conditioning control device 40 is connected to various sensors for detecting the temperature and pressure of the refrigerant flowing through the circulation circuit 200 on the input side. Specifically, a high-pressure side pressure sensor 41 and a high-pressure side temperature sensor 42 that detect the pressure and temperature of the high-pressure refrigerant that has flowed out of the radiator 22 are connected to the air conditioning control device 40. The air conditioning control device 40 is connected to a low-pressure side pressure sensor 43 and a low-pressure side temperature sensor 44 that detect the pressure and temperature of the low-pressure refrigerant that has flowed out of the evaporator 24.
  • the refrigerant leak detection device 30 of the present embodiment can acquire information detected by the high pressure side pressure sensor 41, the high pressure side temperature sensor 42, the low pressure side pressure sensor 43, and the low pressure side temperature sensor 44 from the air conditioning control device 40 as air conditioning control information. It has become.
  • the engine control device 50 is connected to its input side with a rotation speed sensor 51 that detects the rotation speed of the engine 10, a vehicle speed sensor 52 that detects the traveling speed of the automobile 1, and the like.
  • the refrigerant leak detection device 30 of the present embodiment can acquire information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 from the engine control device 50 as engine control information.
  • the refrigeration cycle apparatus 20 has a configuration in which the compressor 21 is driven by the rotational driving force output from the engine 10. For this reason, the rotation speed of the engine 10 is a factor that greatly affects the operation of the compressor 21 of the refrigeration cycle apparatus 20.
  • the refrigeration cycle apparatus 20 is configured such that the heat radiator 22 is introduced to the outside air by the ram pressure when the automobile 1 is traveling. For this reason, the traveling speed of the automobile 1 is a factor that affects the heat radiation amount of the radiator 22 in the refrigeration cycle apparatus 20.
  • the information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 is a state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the automobile 1.
  • information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 corresponds to a moving body state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the moving body.
  • the refrigerant leak detection device 30 is connected to the electromagnetic clutch 214 of the compressor 21 and a notification device 60 that notifies the user of the abnormality on the output side.
  • the notification device 60 has a display panel that visually displays various abnormality information of the refrigeration cycle device 20.
  • the notification device 60 displays information indicating abnormal leakage on the display panel when an abnormal signal indicating abnormal refrigerant leakage is input from the refrigerant leakage detection device 30.
  • the notification device 60 is not limited to a configuration that visually notifies abnormality information, and may be configured to notify the abnormality information audibly.
  • the refrigerant leak detection device 30 of the present embodiment is connected to a wireless communication device 70 mounted on the automobile 1.
  • the wireless communication device 70 is configured to be able to communicate with the external server 90 via the base station 80 and the Internet 85.
  • the refrigerant leak detection device 30 of the present embodiment is configured to be able to output various information stored in the storage unit 31 to the external server 90 via the wireless communication device 70.
  • the external server 90 functions as an external data storage device.
  • the refrigerant leak detection device 30 configured as described above performs arithmetic processing on various signals input from the input side according to a program stored in the storage unit 31 in advance, and based on the result of the arithmetic processing, etc. Control various devices to be controlled connected to.
  • the refrigerant leak detection device 30 calculates the refrigerant amount in the circulation circuit 200 from the input information, calculates the refrigerant leak gradient from the refrigerant amount, and further circulates based on the refrigerant leak gradient. It is determined whether or not the refrigerant leak from the circuit 200 is an abnormal leak.
  • the refrigerant leak detection device 30 of the present embodiment uses a variety of control target devices connected to the output side when the refrigerant leak state becomes an abnormal leak state, and takes a predetermined countermeasure against the abnormal leak state. Execute.
  • the refrigerant leak detection device 30 uses the wireless communication device 70, the Internet 85, and the like to transmit various information used when determining whether the refrigerant leak is an abnormal leak or the like to the external server 90. Output to.
  • the refrigerant leak detection device 30 includes a processing execution unit configured by hardware and software for executing various arithmetic processes, a control unit configured by hardware and software for controlling various devices to be controlled, and the like. It has been aggregated.
  • the refrigerant leak detection device 30 includes a refrigerant amount calculation unit 30a that calculates the refrigerant amount in the circulation circuit 200, and a gradient calculation unit 30b that calculates a refrigerant leak gradient from the refrigerant amount calculated by the refrigerant amount calculation unit 30a. Yes.
  • the refrigerant leakage gradient indicates the amount of refrigerant leakage per unit period.
  • the refrigerant leak detection device 30 performs an abnormality determination unit 30c for determining whether or not the refrigerant leakage state from the circulation circuit 200 is an abnormal leakage state, and performs a predetermined measure when the abnormal leakage state occurs.
  • the countermeasure execution unit 30d is integrated.
  • the refrigerant leak detection device 30 outputs various information used when determining whether or not the refrigerant leak is an abnormal leak to the external server 90 using the wireless communication device 70 or the like. Are aggregated.
  • the air conditioning control device 40 turns on the electromagnetic clutch 214 to operate the compressor 21.
  • the refrigerant discharged from the compressor 21 (that is, the point A1 in FIG. 4) flows into the radiator 22 and is radiated by heat exchange with the outside air in the radiator 22. (That is, point A1 ⁇ point A2 in FIG. 4).
  • the refrigerant that has flowed out of the radiator 22 flows into the decompression device 23 and is decompressed and expanded until it reaches a predetermined pressure in the decompression device 23 (that is, point A2 ⁇ A3 in FIG. 4). ).
  • the refrigerant that has flowed out of the decompression device 23 flows into the evaporator 24, and in the evaporator 24, absorbs heat from the air blown into the passenger compartment and evaporates (that is, point A3 in FIG. 4). A4 points). Thereby, the air blown into the passenger compartment is cooled. Then, the refrigerant flowing out of the evaporator 24 (that is, point A4 in FIG. 4) flows to the refrigerant suction side of the compressor 21 and is compressed again by the compressor 21 (that is, point A4 in FIG. 4). ⁇ A1 point).
  • the pressure of the low-pressure refrigerant sucked into the compressor 21 decreases as shown by the broken line in FIG.
  • the superheat degree SH of the refrigerant on the side increases (that is, point A4 ⁇ point B4 in FIG. 4).
  • the pressure decrease amount ⁇ PL of the low pressure refrigerant and the refrigerant superheat degree SH increase amount ⁇ SH tend to increase as the refrigerant amount in the circulation circuit 200 decreases.
  • the pressure decrease amount ⁇ PH of the high-pressure refrigerant tends to increase as the refrigerant amount in the circulation circuit 200 decreases.
  • the amount of decrease ⁇ SC of the refrigerant supercooling degree SC tends to increase as the amount of refrigerant in the circulation circuit 200 decreases.
  • the refrigeration cycle apparatus 20 employs a refrigerant-permeable pipe in a part of the circulation circuit 200 and employs an open-type compressor 21. A slow leak is inevitable. That is, in the refrigeration cycle apparatus 20 of the present embodiment, as shown by the solid line in FIG. 5, the refrigerant amount Ca in the circulation circuit 200 decreases with time.
  • the refrigerant amount Ca of the circulation circuit 200 is assumed.
  • the allowable lower limit value Cath is reached sooner than that. That is, when the refrigerant leakage state in the circulation circuit 200 becomes an abnormal leakage state, the refrigerant shortage in the circulation circuit 200 occurs.
  • the refrigerant leakage amount Csf per unit period (for example, one day) when the refrigerant leakage state becomes an abnormal leakage state is the case where the refrigerant leakage state becomes a normal leakage state such as a slow leakage. It becomes larger than the leakage amount Css of the refrigerant.
  • the refrigerant leak detection device 30 of the present embodiment calculates a refrigerant leak gradient that is the amount of refrigerant leak per unit period, and compares the refrigerant leak gradient with the predicted leak gradient to thereby circulate the circuit. It is configured to determine whether or not the refrigerant leakage state is an abnormal leakage state.
  • the refrigerant leakage detection device 30 executes a control process for detecting refrigerant leakage when the refrigeration cycle apparatus 20 is operating.
  • a control process executed by the refrigerant leak detection device 30 will be described with reference to a flowchart shown in FIG.
  • Each control step of the control process shown in FIG. 6 constitutes a function realization unit that realizes various functions executed by the refrigerant leak detection device 30.
  • the refrigerant leak detection device 30 acquires various signals from the outside temperature sensor 301, the air conditioning control device 40, the engine control device 50, and the like connected to the input side in step S100. And the refrigerant
  • the refrigerant leak detection device 30 calculates the refrigerant amount Ca in the circulation circuit 200 based on physical quantities such as the temperature and pressure of the refrigerant in the circulation circuit 200.
  • the refrigerant leak detection device 30 substitutes the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24 into predetermined calculation formulas.
  • the refrigerant amount Ca is calculated.
  • the refrigerant amount Ca is an objective variable, and the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24 are described.
  • a regression equation obtained by regression analysis as a variable can be adopted.
  • the refrigerant amount Ca also has a strong correlation with the degree of supercooling SC on the refrigerant outlet side of the radiator 22 and the degree of superheating SH on the refrigerant outlet side of the evaporator 24. For this reason, it is desirable to employ a regression equation in which the degree of supercooling SC and the degree of superheating SH are added as explanatory variables as the calculation formula for the refrigerant amount Ca.
  • the degree of supercooling SC on the refrigerant outlet side of the radiator 22 can be calculated from the vapor pressure curve of the refrigerant and the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator 22.
  • the superheat degree SH on the refrigerant outlet side of the evaporator 24 can be calculated from the vapor pressure curve of the refrigerant and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24.
  • the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24 vary with the outside air temperature, the traveling speed of the automobile 1, the rotational speed of the engine 10, and the like. It depends on.
  • the refrigerant leak detection device 30 is based on the ambient temperature, which is environmental information around the refrigeration cycle device 20, the running speed of the vehicle 1 indicating the operating state of the vehicle 1, and the state quantity including the rotational speed of the engine 10. It is desirable that the refrigerant amount Ca be calculated. According to this, the calculation accuracy of the refrigerant amount Ca in the refrigerant leak detection device 30 can be improved.
  • the refrigerant leakage detection device 30 calculates a refrigerant leakage gradient Cs indicating the refrigerant leakage amount per unit period (for example, one day) based on the refrigerant amount Ca calculated in step S110. Specifically, the refrigerant leakage detection device 30 calculates a value obtained by subtracting the refrigerant amount Ca calculated this time from the refrigerant amount Ca calculated on the previous day as the refrigerant leakage gradient Cs.
  • the refrigerant leak detection device 30 is, for example, the refrigerant calculated this time from the average value of the refrigerant amount Ca calculated on the previous day or the maximum value of the refrigerant amount Ca.
  • a value obtained by subtracting the amount Ca may be calculated as the refrigerant leakage gradient Cs.
  • the refrigerant leak detection device 30 subtracts the current refrigerant amount Ca from the previous refrigerant amount Ca, for example, and calculates the previous refrigerant amount Ca by subtracting the subtracted value. Then, a value obtained by dividing the number of days by the elapsed days may be calculated as the refrigerant leakage gradient Cs.
  • the refrigerant leak detection device 30 outputs the data calculated in this control process to the external server 90 using the wireless communication device 70 or the like in step S130.
  • the refrigerant leak detection device 30 is configured to associate the refrigerant amount Ca calculated in step S110 and the refrigerant leak gradient Cs calculated in step S120 with the physical quantity used for calculating the refrigerant amount Ca. 70 and the like are output to the external server 90.
  • the refrigerant leak detection device 30 determines whether or not the refrigerant leak gradient Cs calculated in step S120 is equal to or less than an expected leak gradient Csth assumed in advance.
  • the expected leakage gradient Csth is a refrigerant leakage gradient when normal refrigerant leakage such as slow leakage occurs, and has a preset value.
  • the refrigerant leakage detection device 30 sets the refrigerant leakage state to a normal leakage state in step S150.
  • coolant leak detection apparatus 30 determines whether the refrigerant
  • the allowable lower limit value Cath is a preset reference refrigerant amount, and is set to, for example, a refrigerant amount that starts to affect the operation (for example, cooling capacity) of the refrigeration cycle apparatus 20.
  • step S160 when the refrigerant amount Ca exceeds the preset allowable lower limit value Cath, it is considered that there is no problem due to refrigerant leakage, so the refrigerant leakage detection device 30 exits this control processing. .
  • the refrigerant leak detection device 30 operates in step S170 to limit the operation of the refrigeration cycle apparatus 20 in operation restriction processing. Execute. In this operation restriction process, the electromagnetic clutch 214 is turned off and the operation of the refrigeration cycle apparatus 20 is stopped. According to this, various malfunctions that occur in the refrigeration cycle apparatus 20 due to a lack of refrigerant can be suppressed.
  • the refrigerant leakage detection device 30 sets the refrigerant leakage state to an abnormal leakage state in step S180.
  • coolant leak detection apparatus 30 performs the alerting
  • the refrigerant leakage detection device 30 outputs an abnormal signal indicating that the refrigerant leakage state is an abnormal leakage state to the notification device 60.
  • this notification process in addition to being in an abnormal leakage state, it is desirable to notify the user of information that alerts the investigation of the leakage location of the refrigerant to the user.
  • the refrigerant leakage detection device 30 described above calculates the refrigerant leakage gradient Cs, which is the refrigerant leakage amount per unit period, and compares the refrigerant leakage gradient Cs with the expected leakage gradient Csth, whereby the refrigerant leakage in the circulation circuit 200 is calculated. It is determined whether the leakage state is an abnormal leakage state.
  • the refrigerant leak detection device 30 determines that the refrigerant leak gradient Cs is abnormal when the refrigerant leak gradient Cs is greater than the expected leak gradient Csth, and normal leaks when the refrigerant leak gradient Cs is equal to or less than the expected leak gradient Csth. It is the structure which determines with it being in a state. According to this, since the refrigerant leakage state can be divided into a normal leakage state and an abnormal leakage state, it becomes easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle apparatus 20.
  • coolant leak detection apparatus 30 becomes a structure which performs the alerting
  • the abnormal leakage state is notified to the user, it is possible to alert the user to the countermeasure for the refrigerant leakage before the abnormal operation of the refrigeration cycle apparatus 20 occurs.
  • the refrigerant leakage detection device 30 outputs the refrigerant amount Ca and the refrigerant leakage gradient Cs to the external server 90 using the wireless communication device 70 or the like in a state where the refrigerant amount Ca and the refrigerant leakage gradient Cs are associated with the physical quantity used for calculating the refrigerant amount Ca. It has become. According to this, with respect to the external server 90 constituting the data storage device in a state where the refrigerant amount Ca and the refrigerant leakage gradient Cs calculated by the refrigerant leak detection device 30 are associated with the physical quantity used for calculating the refrigerant amount Ca. Can be accumulated. According to this, for example, the data stored in the external server 90 can be effectively used for grasping the tendency of the refrigerant amount Ca in the refrigeration cycle apparatus 20 mounted on the automobile 1.
  • the refrigerant leak detection device 30 of the present embodiment executes a control process shown in FIG. 7 instead of the control process shown in FIG. Of the steps shown in FIG. 7, steps denoted by the same reference numerals as those shown in FIG. 6 have the same processing contents unless otherwise specified.
  • the refrigerant leakage detection device 30 determines the allowable lower limit in which the refrigerant amount Ca is set in advance in step S200. It is determined whether or not the value Cath is exceeded.
  • the allowable lower limit value Cath is a preset reference refrigerant amount, and is set to, for example, a refrigerant amount that starts to affect the operation (for example, cooling capacity) of the refrigeration cycle apparatus 20.
  • the refrigerant leak detection device 30 sets the abnormal leakage state to the initial abnormal state in step S210.
  • This initial abnormal state indicates an abnormal leakage state before the abnormal operation of the refrigeration cycle apparatus 20 occurs.
  • coolant leak detection apparatus 30 performs the alerting
  • the refrigerant leakage detection device 30 sets the abnormal leakage state to the terminal abnormal state in step S230.
  • This terminal abnormal state indicates an abnormal leakage state in which an abnormal operation of the refrigeration cycle apparatus 20 occurs.
  • coolant leak detection apparatus 30 performs the operation
  • the electromagnetic clutch 214 is turned off and the operation of the refrigeration cycle apparatus 20 is stopped.
  • the refrigerant leak detection device 30 described above can divide the abnormal leakage state into an initial abnormal state before an abnormality occurs in the operation of the refrigeration cycle apparatus 20 and an end abnormal state where an abnormality occurs in the operation of the refrigeration cycle apparatus 20. .
  • coolant leak detection apparatus 30 becomes a structure which alert
  • coolant leak detection apparatus 30 becomes a structure which restrict
  • the refrigerant leak detection device 30 is configured to calculate the refrigerant amount Ca using a calculation formula obtained by a method other than regression analysis or a control map that defines the relationship between the refrigerant amount Ca and the refrigerant temperature and pressure. May be.
  • the refrigerant leak detection device 30 may be configured to execute an operation restriction process for restricting the operation of the refrigeration cycle apparatus 20 when the refrigerant leakage state becomes an abnormal leakage state.
  • the operation restriction process is, for example, a degeneration process that turns off the electromagnetic clutch 214 when the pressure of the high-pressure refrigerant exceeds a predetermined reference pressure and turns on the electromagnetic clutch 214 when the pressure of the high-pressure refrigerant is equal to or lower than the reference pressure. May be. According to this, since the operation of the refrigeration cycle apparatus 20 can be continued in a state where the load of the refrigeration cycle apparatus 20 is low, the occurrence of various problems of the refrigeration cycle apparatus 20 is suppressed while the air conditioning in the passenger compartment is continued. It becomes possible.
  • the refrigerant leakage detection device 30 may be configured to output the refrigerant amount Ca, the refrigerant leakage gradient Cs, and the like to the external server 90 after determining whether or not the refrigerant leakage state is an abnormal leakage state.
  • the refrigerant leakage detection device 30 may store the refrigerant amount Ca, the refrigerant leakage gradient Cs, and the like in the storage unit 31 and do not output them to the external server 90.
  • the compressor 21 driven by the rotational driving force output from the external engine 10 is exemplified, but the present invention is not limited to this.
  • the compressor 21 may be configured to be driven by a rotational driving force output from an external electric motor.
  • the refrigeration cycle apparatus 20 may be mounted on a moving body such as a railway vehicle or a trailer, for example.
  • R134a which is an HFC-based refrigerant
  • the present invention is not limited to this.
  • R1234yf having a low global warming potential GWP may be employed.
  • the refrigerant leak detection device is configured so that the refrigerant amount in the circulation circuit is based on a physical quantity including the temperature and pressure of the refrigerant circulating in the circulation circuit. Is calculated.
  • the refrigerant leakage detection device calculates a refrigerant leakage gradient indicating the amount of refrigerant leakage per unit period based on the calculated refrigerant amount, compares the refrigerant leakage gradient with a predicted leakage gradient assumed in advance, and It is determined whether the refrigerant leakage state is an abnormal leakage state.
  • the abnormality determination unit determines that the leakage state is an abnormal leakage state when the refrigerant leakage gradient calculated by the gradient calculation unit is larger than the expected leakage gradient. It has a configuration.
  • the refrigerant leak detection device is configured such that the abnormality determination unit determines that the leakage state is a normal leakage state when the refrigerant leakage gradient calculated by the gradient calculation unit is equal to or less than the expected leakage gradient. According to this, since the refrigerant leakage state can be divided into a normal leakage state and an abnormal leakage state, it becomes easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle apparatus.
  • the refrigerant leakage detection device includes a countermeasure execution unit that executes a predetermined countermeasure against an abnormal leakage state. Then, when the abnormality determination unit determines that the leakage state is an abnormal leakage state, the countermeasure execution unit executes a notification process of notifying the user of at least the abnormal leakage state by the notification device. As described above, in the configuration in which the abnormal leakage state is notified to the user, it is possible to alert the user to take measures for the refrigerant leakage before the abnormal operation of the refrigeration cycle apparatus occurs.
  • the abnormality determination unit has a reference refrigerant amount whose refrigerant leak gradient calculated by the gradient calculation unit is larger than an expected leak gradient and whose refrigerant amount is predetermined. When it exceeds, the abnormal leakage state is determined to be the initial abnormal state.
  • the abnormal leakage state is in the final stage. It is the structure which determines with it being in an abnormal state. According to this, the abnormal leakage state can be divided into an initial abnormal state before an abnormality occurs in the operation of the refrigeration cycle apparatus and an end abnormal state where an abnormality occurs in the operation of the refrigeration cycle apparatus.
  • the refrigerant leakage detection device includes a countermeasure execution unit that executes a predetermined countermeasure against an abnormal leakage state.
  • the countermeasure execution unit executes a notification process for notifying the user of the abnormal leakage state by the notification device when the abnormality determination unit determines that the abnormal leakage state is the initial abnormal state. Then, when the abnormality determination unit determines that the abnormal leakage state is the terminal abnormal state, an operation restriction process for restricting the operation of the refrigeration cycle apparatus is executed.
  • the configuration that notifies the user of the initial abnormal state alerts the implementation of countermeasures for refrigerant leakage before the abnormal operation of the refrigeration cycle apparatus occurs. It becomes possible.
  • the configuration that restricts the operation of the refrigeration cycle apparatus can suppress various problems that occur in the refrigeration cycle apparatus due to insufficient refrigerant.
  • the physical quantity includes a moving body state quantity that is relevant to the operation of the refrigeration cycle apparatus among the operating states of the moving body. According to this, it is possible to improve the calculation accuracy of the refrigerant amount in the refrigerant amount calculation unit.
  • the refrigerant leakage detection device outputs the refrigerant amount calculated by the refrigerant amount calculation unit and the refrigerant leakage gradient calculated by the gradient calculation unit to the external data storage device in a state associated with the physical quantity.
  • An output unit is provided.
  • the refrigerant amount and the refrigerant leakage gradient amount calculated by the refrigerant leak detection device can be stored in the external data storage device in a state associated with the physical quantity used for calculating the refrigerant amount. According to this, for example, the data stored in the external data storage device can be effectively used for grasping the tendency of the refrigerant amount to change in the refrigeration cycle device mounted on the moving body.
  • the refrigerant leak detection device is configured such that the refrigeration cycle device includes a compressor, a radiator, a decompression device, and an evaporator. Then, the refrigerant amount calculation unit calculates the refrigerant amount based on at least the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator.
  • the refrigerant quantity calculation unit can accurately calculate the refrigerant quantity.
  • the refrigeration cycle apparatus includes a circulation circuit in which the refrigerant circulates, a refrigerant leak detection device that detects leakage of the refrigerant from the circulation circuit, Is provided. Then, the refrigerant leakage detection device calculates a refrigerant leakage gradient indicating the refrigerant leakage amount per unit period, compares the refrigerant leakage gradient with a predicted leakage gradient assumed in advance, and the refrigerant leakage state in the circulation circuit is determined. It is determined whether or not there is an abnormal leakage state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷媒漏れ検知装置(30)は、循環回路(200)を循環する冷媒の温度、圧力を含む物理量に基づいて、循環回路内の冷媒量(Ca)を算出する冷媒量算出部(30a)を備える。また、冷媒漏れ検知装置は、冷媒量算出部で算出された冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配(Cs)を算出する勾配算出部(30b)を備える。さらに、冷媒漏れ検知装置は、勾配算出部で算出された冷媒漏れ勾配を予め想定される予想漏れ勾配(Csth)と比較して、循環回路における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部(30c)を備える。

Description

冷媒漏れ検知装置、冷凍サイクル装置 関連出願への相互参照
 本出願は、2017年4月5日に出願された日本出願番号2017-75521号に基づくものであって、ここにその記載内容を援用する。
 本開示は、冷媒漏れ検知装置、および当該冷媒漏れ検知装置を備える蒸気圧縮式の冷凍サイクル装置に関する。
 蒸気圧縮式の冷凍サイクル装置は、冷媒が循環する循環回路における冷媒の充填量が不足していると、冷却能力の低下等の不具合が生ずる。また、循環回路における冷媒の充填量が過剰となっていると、凝縮器における液冷媒の滞留や、圧縮機に液冷媒が吸入される等の不具合が生ずる。そこで、冷凍サイクル装置における冷媒の循環回路に対して、適正な量の冷媒を充填する方法が種々提案されている(例えば、特許文献1参照)。
特開2008-232579号公報
 ところで、家屋やビル等の空調に利用される冷凍サイクル装置では、気密性の高い密閉型の圧縮機が採用され、各種配管が溶接によって接合されており、実質的に冷媒漏れが生じない構成となっている。
 一方、車両等の移動体に搭載される冷凍サイクル装置では、メンテナンスの都合上、半密閉型または開放型の圧縮機を採用したり、移動体の移動時の振動を吸収するために循環回路の一部にゴム製の配管を採用したりする必要がある。この種の冷凍サイクル装置では、圧縮機や配管の一部からの微量の冷媒漏れ(いわゆる、スローリーク)が避けられない。
 このため、移動体に搭載される冷凍サイクル装置では、設計時に、製品耐用年数やメンテナンスの期間内における冷媒の漏れ量を考慮し、予め冷媒の漏れ量を見込んだ量の冷媒を充填するのが一般的である。
 ところが、予め冷媒の漏れ量を見込んだ量の冷媒を充填したとしても、実際の冷媒の漏れ量が、予め想定される量よりも大きくなる異常漏れが生ずると、循環回路における冷媒不足が生じてしまう。
 ここで、特許文献1の如く、循環回路内の冷媒量を算出可能な構成では、現状の冷媒量と適正な冷媒量とを比較することができるので、冷媒が不足した冷媒不足状態であるか否かを判定可能となる。
 しかしながら、冷媒不足状態を検知できたとしても、冷媒漏れが、スローリーク等の通常想定される冷媒漏れに起因するものなのか、異常漏れに起因するものなのかを特定することができない。
 本開示は、冷媒漏れが異常漏れであるか否かを判定可能な冷媒漏れ検知装置および冷凍サイクル装置を提供することを目的とする。
 本開示の1つの観点によれば、冷媒漏れ検知装置は、移動体(1)に搭載され、冷媒の循環回路(200)を有する蒸気圧縮式の冷凍サイクル装置(20)に適用されるものを対象としている。
 冷媒漏れ検知装置は、
 循環回路を循環する冷媒の温度、圧力を含む物理量に基づいて、循環回路内の冷媒量を算出する冷媒量算出部(30a)と、
 冷媒量算出部で算出された冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出する勾配算出部(30b)と、
 勾配算出部で算出された冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、循環回路における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部(30c)と、
 を備える。
 冷媒漏れ状態が異常漏れ状態となる場合、単位期間当たりの冷媒の漏れ量が大きくなる。このため、単位期間当たりの冷媒の漏れ量である冷媒漏れ勾配を算出し、当該冷媒漏れ勾配と予測漏れ勾配と比較することで、循環回路における冷媒の漏れ状態が、異常漏れ状態である否かを判定することができる。
 ここで、冷凍サイクル装置における冷却能力の低下等の不具合は、異常漏れ状態が所定期間継続された後に生ずる。このため、異常漏れ状態を把握可能な構成では、冷凍サイクル装置における冷却能力の低下等の不具合を予防し易くなるといった利点がある。
 本開示の別の観点によれば、冷凍サイクル装置は、移動体(1)に搭載されるものを対象としている。冷凍サイクル装置は、冷媒が循環する循環回路(200)と、循環回路からの冷媒の漏れを検知する冷媒漏れ検知装置(30)と、を備える。
 冷媒漏れ検知装置は、
 循環回路を循環する冷媒の温度、圧力を含む物理量に基づいて、循環回路内の冷媒量を算出する冷媒量算出部(30a)と、
 冷媒量算出部で算出された冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出する勾配算出部(30b)と、
 勾配算出部で算出された冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、循環回路からの冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部(30c)と、
 を含んで構成される。
 これによると、冷媒漏れ検知装置によって異常漏れ状態を把握することができるので、冷凍サイクル装置における冷却能力の低下等の不具合を予防し易くなるといった利点がある。
第1実施形態の冷凍サイクル装置が搭載された車両を示す模式図である。 第1実施形態の冷凍サイクル装置の概略構成を示す模式図である。 第1実施形態の冷媒漏れ検知装置の概略構成を示すブロック図である。 冷凍サイクル装置における冷媒の状態を示すモリエル線図である。 循環回路における冷媒量の経時的な変化を説明するための説明図である。 第1実施形態の冷媒漏れ検知装置が実行する制御処理の流れを示すフローチャートである。 第2実施形態の冷媒漏れ検知装置が実行する制御処理の流れを示すフローチャートである。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図6を参照して説明する。図1に示すように、本実施形態では、本開示の冷凍サイクル装置20が、移動体である自動車1に搭載された例について説明する。本実施形態の自動車1には、走行用の駆動源および冷凍サイクル装置20の駆動源として機能するエンジン10が搭載されている。
 冷凍サイクル装置20は、自動車1の車室内空間を空調する車両用空調装置に適用されている。冷凍サイクル装置20は、車室内空間に吹き出す空気を所望の温度となるまで冷却する機能を果たす。
 図2に示すように、冷凍サイクル装置20は、冷媒が循環する循環回路200、圧縮機21、放熱器22、減圧機器23、蒸発器24を含む蒸気圧縮式の冷凍サイクルとして構成されている。
 冷凍サイクル装置20は、冷媒として、HFC系冷媒であるR134aが採用されている。なお、冷媒には、圧縮機21を潤滑するオイル(すなわち、冷凍機油)が混入されている。オイルの一部は、冷媒と共に循環回路200を循環する。
 圧縮機21は、吸入した冷媒を圧縮して吐出する機器である。圧縮機21は、往復動式の圧縮機構を含んで構成されている。なお、圧縮機21は、回転式の圧縮機構を含む構成となっていてもよい。
 本実施形態の圧縮機21は、外部のエンジン10から出力される回転駆動力によって駆動される構成となっている。本実施形態の圧縮機21は、開放型の圧縮機として構成されている。具体的には、本実施形態の圧縮機21は、ハウジング211を貫通して外部に突き出たシャフト212が、エンジン10からの駆動力によって回転するように、プーリおよびベルト等の動力伝達機構213を介してエンジン10の出力軸10aに連結されている。
 さらに、本実施形態の圧縮機21には、エンジン10からの回転駆動力の伝達をオン・オフする電磁クラッチ214が設けられている。本実施形態の圧縮機21は、電磁クラッチ214がオフされることで、その作動が停止される構成となっている。
 ここで、本実施形態の圧縮機21は、シャフト212がハウジング211を貫通する部位が、メカニカルシールやリップシール等のシール部材215によってシールされている。シール部材215は、樹脂を含む高分子材料で構成されている。なお、高分子材料は、ガス透過性を有している。このため、圧縮機21では、ハウジング211内部の冷媒がシール部材215を介して徐々に外部に透過することがある。
 続いて、放熱器22は、圧縮機21から吐出された高温高圧の冷媒を、室外送風機221から導入される外気、または、自動車1の走行時のラム圧によって導入される外気との熱交換によって放熱させる熱交換器である。本実施形態の放熱器22は、エンジンルームのうち、自動車1の走行時のラム圧によって外気が導入される前方部分に配置されている。放熱器22に流入した冷媒は、外気との熱交換によって凝縮する。なお、外気は、図2の破線矢印AFoで示すように、放熱器22を通過する。
 続いて、減圧機器23は、放熱器22を通過した冷媒を減圧膨張させる膨張弁である。減圧機器23としては、例えば、蒸発器24の出口側の温度を所定温度に調整可能に構成された温度式膨張弁が採用されている。
 続いて、蒸発器24は、減圧機器23で減圧された低温低圧の冷媒を、車室内空間へ空気を送風する室内送風機241から供給される送風空気との熱交換によって蒸発させる熱交換器である。室内送風機241から供給される送風空気は、図2の破線矢印AFcで示すように、蒸発器24を通過する。室内送風機241から供給される送風空気は、蒸発器24を通過する際に、冷媒の蒸発潜熱によって所望の温度となるまで冷却された後、車室内へ吹き出される。
 続いて、循環回路200は、圧縮機21、放熱器22、減圧機器23、蒸発器24を複数の配管201~204により順次接続して構成される閉回路である。具体的には、循環回路200は、圧縮機21の冷媒吐出側と放熱器22の冷媒入口側とを接続する第1高圧配管201、放熱器22の冷媒出口側と減圧機器23の冷媒入口側とを接続する第2高圧配管202を含んで構成されている。また、循環回路200は、減圧機器23の冷媒出口側と蒸発器24の冷媒入口側とを接続する第1低圧配管203、蒸発器24の冷媒出口側と圧縮機21の冷媒吸入側とを接続する第2低圧配管204を含んで構成されている。
 各高圧配管201、202および各低圧配管203、204は、基本的に金属製の配管で構成されている。但し、第1高圧配管201は、エンジン10や圧縮機21の振動を吸収するために、その一部が可撓性に優れた高分子材料(例えば、ゴム、樹脂)を含む第1高分子配管201aで構成されている。同様に、第2低圧配管204は、エンジン10や圧縮機21の振動を吸収するために、その一部が可撓性に優れた高分子材料(例えば、ゴム、樹脂)を含む第2高分子配管204aで構成されている。
 各高分子配管201a、204aは、金属製の配管で構成された部位に比べて、ガス透過性が高いため、内部を流れる冷媒が徐々に外部に透過してしまうことがある。特に、第1高分子配管201aは、圧縮機21で圧縮された高圧の冷媒が流れることから、冷媒が外部に漏れ易い傾向がある。
 本実施形態の冷凍サイクル装置20では、圧縮機21のシール部材215や、各高分子配管201a、204a等からの冷媒のスローリークが避けられない。このため、冷凍サイクル装置20は、冷媒漏れを検知する冷媒漏れ検知装置30を備えている。
 図3に示す冷媒漏れ検知装置30は、プロセッサ、ROM、RAM等の記憶部31を有する周知のマイクロコンピュータ、およびその周辺回路を含んで構成されている。なお、冷媒漏れ検知装置30の記憶部31は、非遷移的実体的記憶媒体で構成される。
 図3に示すように、冷媒漏れ検知装置30は、その入力側に外気温度を検出する外気温度センサ301、冷凍サイクル装置20を制御する空調制御装置40、エンジン10を制御するエンジン制御装置50等が接続されている。
 冷媒漏れ検知装置30は、空調制御装置40が有する空調制御情報、およびエンジン制御装置50が有する走行制御情報が取得可能なように、空調制御装置40およびエンジン制御装置50に対して接続されている。
 空調制御装置40は、その入力側に循環回路200を流れる冷媒の温度、圧力を検出する各種センサが接続されている。具体的には、空調制御装置40には、放熱器22から流出した高圧冷媒の圧力および温度を検出する高圧側圧力センサ41および高圧側温度センサ42が接続されている。また、空調制御装置40は、蒸発器24から流出した低圧冷媒の圧力および温度を検出する低圧側圧力センサ43および低圧側温度センサ44が接続されている。
 本実施形態の冷媒漏れ検知装置30は、高圧側圧力センサ41、高圧側温度センサ42、低圧側圧力センサ43、低圧側温度センサ44が検出した情報を空調制御情報として空調制御装置40から取得可能となっている。
 エンジン制御装置50は、その入力側に、エンジン10の回転数を検出する回転数センサ51、自動車1の走行速度を検出する車速センサ52等が接続されている。本実施形態の冷媒漏れ検知装置30は、回転数センサ51および車速センサ52が検出した情報をエンジン制御情報としてエンジン制御装置50から取得可能となっている。
 ここで、冷凍サイクル装置20は、圧縮機21がエンジン10からの出力される回転駆動力によって駆動される構成となっている。このため、エンジン10の回転数は、冷凍サイクル装置20の圧縮機21に作動に大きく影響する因子となる。
 また、冷凍サイクル装置20は、放熱器22が自動車1の走行時のラム圧によって外気導入される構成となっている。このため、自動車1の走行速度は、冷凍サイクル装置20における放熱器22の放熱量に影響する因子となる。
 このように、回転数センサ51および車速センサ52で検出される情報は、自動車1の稼働状態のうち、冷凍サイクル装置20の作動に関連性を有する状態量となる。本実施形態では、回転数センサ51および車速センサ52で検出される情報が、移動体の稼働状態のうち、冷凍サイクル装置20の作動に関連性を有する移動体状態量に相当する。
 冷媒漏れ検知装置30は、その出力側に、圧縮機21の電磁クラッチ214、ユーザに対して異常を報知する報知装置60等が接続されている。報知装置60は、図示しないが、冷凍サイクル装置20の各種異常情報を視覚的に表示する表示パネルを有している。報知装置60は、冷媒漏れ検知装置30から冷媒の異常漏れを示す異常信号が入力された際に、表示パネルに異常漏れを示す情報を表示する。なお、報知装置60は、異常情報を視覚的に報知する構成に限らず、異常情報を聴覚的に報知する構成となっていてもよい。
 また、本実施形態の冷媒漏れ検知装置30は、自動車1に搭載された無線通信機70に接続されている。無線通信機70は、基地局80およびインターネット85を介して外部サーバ90と通信可能に構成されている。
 本実施形態の冷媒漏れ検知装置30は、無線通信機70を介して、記憶部31に記憶された各種情報等を外部サーバ90に出力可能に構成されている。本実施形態では、外部サーバ90が外部のデータ蓄積装置として機能する。
 このように構成された冷媒漏れ検知装置30は、入力側から入力された各種信号等を、予め記憶部31に記憶されたプログラムに従って演算処理し、当該演算処理の結果等に基づいて、出力側に接続された各種制御対象機器を制御する。
 具体的には、冷媒漏れ検知装置30は、入力された情報から循環回路200内の冷媒量を算出すると共に、当該冷媒量から冷媒漏れ勾配を算出し、さらに、当該冷媒漏れ勾配に基づいて循環回路200からの冷媒の漏れが異常漏れであるか否かを判定する。
 また、本実施形態の冷媒漏れ検知装置30は、冷媒の漏れ状態が異常漏れ状態となった際に、出力側に接続された各種制御対象機器を用いて、当該異常漏れ状態に対する所定の対策を実行する。
 さらに、本実施形態の冷媒漏れ検知装置30は、冷媒漏れが異常漏れであるか否かを判定する際に用いた各種情報等を、無線通信機70、インターネット85等を利用して外部サーバ90に出力する。
 ここで、冷媒漏れ検知装置30には、各種演算処理を実行するハードウェアおよびソフトフェアで構成される処理実行部、各種制御対象機器を制御するハードウェアおよびソフトフェアで構成される制御部等が集約されている。
 冷媒漏れ検知装置30には、循環回路200内の冷媒量を算出する冷媒量算出部30a、冷媒量算出部30aで算出された冷媒量から冷媒漏れ勾配を算出する勾配算出部30bが集約されている。なお、冷媒漏れ勾配は、単位期間当たりの冷媒の漏れ量を示している。
 また、冷媒漏れ検知装置30には、循環回路200からの冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部30c、異常漏れ状態となった際に所定の対策を実行する対策実行部30dが集約されている。
 さらに、冷媒漏れ検知装置30には、冷媒漏れが異常漏れであるか否かを判定する際に用いた各種情報等を、無線通信機70等を利用して外部サーバ90に出力する出力部30eが集約されている。
 次に、本実施形態の冷凍サイクル装置20の作動について、図4を参照して説明する。エンジン10が稼働した状態で車両用空調装置の運転が開始されると、空調制御装置40が、電磁クラッチ214をオンして圧縮機21を作動させる。
 これにより、図4の実線で示すように、圧縮機21から吐出された冷媒(すなわち、図4のA1点)は、放熱器22に流入し、放熱器22において外気との熱交換によって放熱される(すなわち、図4のA1点→A2点)。
 放熱器22から流出した冷媒(すなわち、図4のA2点)は、減圧機器23に流入し、減圧機器23において所定の圧力となるまで減圧膨張される(すなわち、図4のA2点→A3点)。
 減圧機器23から流出した冷媒(すなわち、図4のA3点)は、蒸発器24に流入し、蒸発器24において車室内への送風空気から吸熱して蒸発する(すなわち、図4のA3点→A4点)。これにより、車室内への送風空気が冷却される。そして、蒸発器24から流出した冷媒(すなわち、図4のA4点)は、圧縮機21の冷媒吸入側へと流れて、再び圧縮機21で圧縮される(すわなち、図4のA4点→A1点)。
 ここで、冷凍サイクル装置20では、循環回路200内の冷媒量が減少すると、図4の破線で示すように、圧縮機21に吸入される低圧冷媒の圧力が低下し、蒸発器24の冷媒出口側における冷媒の過熱度SHが大きくなる(すなわち、図4のA4点→B4点)。本発明者らの知見によれば、低圧冷媒の圧力の低下量ΔPLおよび冷媒の過熱度SHの増加量ΔSHは、循環回路200内の冷媒量が減少するにつれて大きくなる傾向がある。
 また、冷媒量の減少によって圧縮機21に吸入される冷媒の圧力が低下すると、圧縮機21から吐出される高圧冷媒の圧力が低下すると共に、放熱器22の冷媒出口側における冷媒の過冷却度SCが小さくなる(すなわち、図4のA2点→B2点)。本発明者らの知見によれば、高圧冷媒の圧力の低下量ΔPHは、循環回路200内の冷媒量が減少するにつれて大きくなる傾向がある。また、冷媒の過冷却度SCの減少量ΔSCは、循環回路200内の冷媒量が減少するにつれて大きくなる傾向がある。
 このように、冷凍サイクル装置20では、循環回路200における冷媒量と、循環回路200における冷媒の温度および圧力との間に強い相関性がある。
 次に、本実施形態の冷凍サイクル装置20における冷媒量の継時的な変化について図5を参照して説明する。前述したように、本実施形態の冷凍サイクル装置20は、循環回路200の一部に冷媒の透過性を有する配管が採用されると共に、開放型の圧縮機21が採用されているため、冷媒のスローリークが避けられない。すなわち、本実施形態の冷凍サイクル装置20では、図5の実線で示すように、循環回路200における冷媒量Caが経時的に減少する。
 ここで、図5の破線で示すように、循環回路200からの冷媒の漏れ量が、予め想定される冷媒漏れ量よりも大きくなる異常漏れが発生すると、循環回路200の冷媒量Caが想定されるよりも早く許容下限値Cathに達してしまう。すなわち、循環回路200における冷媒の漏れ状態が異常漏れ状態となると、循環回路200における冷媒不足が生じてしまう。
 これに対して、循環回路200内における現状の冷媒量Caを算出し、当該冷媒量Caを許容下限値Cathと比較することで、冷媒が不足した冷媒不足状態であるか否かを判定することができる。
 しかしながら、仮に冷媒不足状態を検知できたとしても、冷媒漏れが、スローリーク等の通常想定される冷媒漏れに起因するものなのか、異常漏れに起因するものなのかを切り分けることができない。
 図5で示すように、冷媒漏れ状態が異常漏れ状態となる場合の単位期間(例えば、1日)当たりの冷媒の漏れ量Csfは、冷媒漏れ状態がスローリーク等の正常漏れ状態となる場合の冷媒の漏れ量Cssに比べて大きくなる。
 これらを考慮して、本実施形態の冷媒漏れ検知装置30は、単位期間当たりの冷媒の漏れ量である冷媒漏れ勾配を算出し、当該冷媒漏れ勾配と予測漏れ勾配と比較することで、循環回路における冷媒の漏れ状態が異常漏れ状態である否かを判定する構成となっている。
 以下、本実施形態の冷媒漏れ検知装置30における具体的な冷媒の漏れ検知処理について説明する。冷媒漏れ検知装置30は、冷凍サイクル装置20が作動している際に、冷媒漏れを検知する制御処理を実行する。本実施形態では、冷媒漏れ検知装置30が実行する制御処理の概要について、図6に示すフローチャートを参照して説明する。図6に示す制御処理の各制御ステップは、冷媒漏れ検知装置30が実行する各種機能を実現する機能実現部を構成している。
 図6に示すように、冷媒漏れ検知装置30は、ステップS100で、入力側に接続された外気温度センサ301、空調制御装置40、エンジン制御装置50等から各種信号を取得する。そして、冷媒漏れ検知装置30は、ステップS110で、ステップS100において取得した各種信号に基づいて冷媒量Caを算出する。この際、冷媒漏れ検知装置30は、冷媒量Caを記憶部31に記憶する。
 前述したように、冷凍サイクル装置20では、循環回路200における冷媒量Caと、循環回路200における冷媒の温度および圧力との間に強い相関性がある。このため、冷媒漏れ検知装置30は、循環回路200における冷媒量Caを、循環回路200における冷媒の温度、圧力といった物理量に基づいて算出する。
 具体的には、冷媒漏れ検知装置30は、放熱器22の冷媒出口側の冷媒の温度および圧力、並びに、蒸発器24の冷媒出口側の冷媒の温度および圧力を所定の算出式に代入して、冷媒量Caを算出する。
 冷媒量Caの算出式としては、例えば、冷媒量Caを目的変数とし、放熱器22の冷媒出口側の冷媒の温度および圧力、並びに、蒸発器24の冷媒出口側の冷媒の温度および圧力を説明変数とする回帰分析によって得られた回帰式を採用することができる。
 ここで、前述したように、冷媒量Caは、放熱器22の冷媒出口側における過冷却度SC、および蒸発器24の冷媒出口側における過熱度SHとの間にも強い相関性を有する。このため、冷媒量Caの算出式は、過冷却度SCおよび過熱度SHが説明変数として追加された回帰式を採用することが望ましい。なお、放熱器22の冷媒出口側における過冷却度SCは、冷媒の蒸気圧曲線、放熱器22の冷媒出口側の冷媒の温度および圧力から算出することができる。また、蒸発器24の冷媒出口側における過熱度SHは、冷媒の蒸気圧曲線、蒸発器24の冷媒出口側の冷媒の温度および圧力から算出することができる。
 また、放熱器22の冷媒出口側の冷媒の温度および圧力、並びに、蒸発器24の冷媒出口側の冷媒の温度および圧力は、外気温度、自動車1の走行速度、エンジン10の回転数等の変動によって変化する。
 このため、冷媒量Caの算出式は、外気温度、自動車1の走行速度、エンジン10の回転数が説明変数として追加された回帰式を採用することが望ましい。すなわち、冷媒漏れ検知装置30は、冷凍サイクル装置20の周囲の環境情報である外気温度や、自動車1の稼働状態を示す自動車1の走行速度、エンジン10の回転数を含む状態量に基づいて、冷媒量Caを算出する構成となっていることが望ましい。これによると、冷媒漏れ検知装置30における冷媒量Caの算出精度の向上を図ることができる。
 続いて、冷媒漏れ検知装置30は、ステップS120で、ステップS110において算出した冷媒量Caに基づいて、単位期間(例えば、1日)当たりの冷媒の漏れ量を示す冷媒漏れ勾配Csを算出する。具体的には、冷媒漏れ検知装置30は、前日に算出した冷媒量Caから今回算出した冷媒量Caを減算した値を冷媒漏れ勾配Csとして算出する。
 ここで、前日に冷媒量Caを複数回算出している場合、冷媒漏れ検知装置30は、例えば、前日に算出した冷媒量Caの平均値、または、冷媒量Caの最大値から今回算出した冷媒量Caを減算した値を冷媒漏れ勾配Csとして算出する構成となっていてもよい。
 また、前日に冷媒量Caを算出していない場合、冷媒漏れ検知装置30は、例えば、前回の冷媒量Caから今回の冷媒量Caを減算し、その減算値を、前回冷媒量Caを算出してから経過日数で除算した値を冷媒漏れ勾配Csとして算出する構成となっていてもよい。
 続いて、冷媒漏れ検知装置30は、ステップS130で、本制御処理で算出したデータを、無線通信機70等を利用して外部サーバ90に出力する。具体的には、冷媒漏れ検知装置30は、ステップS110で算出した冷媒量CaおよびステップS120で算出した冷媒漏れ勾配Csを、冷媒量Caの算出に利用した物理量に関連付けた状態で、無線通信機70等を利用して外部サーバ90に出力する。
 続いて、冷媒漏れ検知装置30は、ステップS140で、ステップS120において算出した冷媒漏れ勾配Csが、予め想定される予想漏れ勾配Csth以下であるか否かを判定する。予想漏れ勾配Csthは、スローリーク等の通常の冷媒漏れが生ずる際の冷媒漏れ勾配であり、予め設定された値となっている。
 ステップS140の判定処理の結果、冷媒漏れ勾配Csが予想漏れ勾配Csth以下となる場合、冷媒漏れ検知装置30は、ステップS150で、冷媒の漏れ状態を正常漏れ状態に設定する。
 そして、冷媒漏れ検知装置30は、ステップS160で、冷媒量Caが予め設定された許容下限値Cathを上回っているか否かを判定する。許容下限値Cathは、予め設定された基準冷媒量であり、例えば、冷凍サイクル装置20の作動(例えば、冷却能力)に影響が生じ始める冷媒量に設定される。
 ステップS160の判定処理の結果、冷媒量Caが予め設定された許容下限値Cathを上回っている場合、冷媒漏れによる不具合が生じないと考えられるため、冷媒漏れ検知装置30は、本制御処理を抜ける。
 また、ステップS160の判定処理の結果、冷媒量Caが予め設定された許容下限値Cath以下となる場合、冷媒漏れ検知装置30は、ステップS170で、冷凍サイクル装置20の作動を制限する作動制限処理を実行する。この作動制限処理では、電磁クラッチ214をオフして、冷凍サイクル装置20の作動を停止させる。これによれば、冷媒不足によって冷凍サイクル装置20に生ずる各種不具合を抑制することができる。
 一方、ステップS140の判定処理の結果、冷媒漏れ勾配Csが予想漏れ勾配Csthよりも大きい場合、冷媒漏れ検知装置30は、ステップS180で、冷媒の漏れ状態を異常漏れ状態に設定する。
 そして、冷媒漏れ検知装置30は、ステップS190で、報知装置60によって冷媒の漏れ状態が異常漏れ状態となっている旨をユーザに対して報知する報知処理を実行する。具体的には、冷媒漏れ検知装置30は、報知装置60に対して冷媒の漏れ状態が異常漏れ状態となっていることを示す異常信号を出力する。この報知処理では、異常漏れ状態となっていることに加えて、冷媒の漏れ箇所の調査を注意喚起する情報を報知装置60によってユーザに報知することが望ましい。
 以上説明した冷媒漏れ検知装置30は、単位期間当たりの冷媒の漏れ量である冷媒漏れ勾配Csを算出し、当該冷媒漏れ勾配Csが予想漏れ勾配Csthと比較することで、循環回路200における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する。
 冷凍サイクル装置20における冷却能力の低下等の不具合は、異常漏れ状態が所定期間継続された後に生ずる。このため、異常漏れ状態を把握可能な構成では、冷凍サイクル装置20における冷却能力の低下等の不具合を予防し易くなるといった利点がある。
 具体的には、冷媒漏れ検知装置30は、冷媒漏れ勾配Csが予想漏れ勾配Csthよりも大きい場合に異常漏れ状態であると判定し、冷媒漏れ勾配Csが予想漏れ勾配Csth以下の場合に正常漏れ状態であると判定する構成となっている。これによると、冷媒の漏れ状態を、正常漏れ状態と異常漏れ状態とに切り分けることができるので、冷凍サイクル装置20における冷却能力の低下等の不具合を予防し易くなる。
 また、冷媒漏れ検知装置30は、異常漏れ状態に対する対策として、報知装置60によって冷媒の漏れ状態が異常漏れ状態となっている旨をユーザに対して報知する報知処理を実行する構成となっている。このように、異常漏れ状態をユーザに対して報知する構成では、冷凍サイクル装置20の異常な作動が生ずる前に、冷媒漏れ対策の実施をユーザに注意喚起することが可能となる。
 さらに、冷媒漏れ検知装置30は、冷媒量Caおよび冷媒漏れ勾配Csを、冷媒量Caの算出に利用した物理量に関連付けた状態で、無線通信機70等を利用して外部サーバ90に出力する構成となっている。これによれば、冷媒漏れ検知装置30で算出した冷媒量Ca、冷媒漏れ勾配Csを、冷媒量Caの算出に用いた物理量に関連付けた状態で、データ蓄積装置を構成する外部サーバ90に対して蓄積することができる。これによると、例えば、外部の外部サーバ90に蓄積されたデータを、自動車1に搭載された冷凍サイクル装置20における冷媒量Caが変化する傾向の把握等に有効活用することができる。
 (第2実施形態)
 次に、第2実施形態について、図7を参照して説明する。本実施形態では、冷媒漏れ検知装置30が実行する制御処理の内容が第1実施形態と相違している。その他の構成については、基本的に第1実施形態と同様である。このため、本実施形態では、主に第1実施形態と異なる部分について説明する。
 本実施形態の冷媒漏れ検知装置30は、図6で示した制御処理に代えて図7に示す制御処理を実行する。なお、図7に示す各ステップのうち、図6で示したステップと同じ符号が付されたステップは、特に言及しない限り、同じ処理内容となっている。
 図7に示すように、ステップS140の判定処理の結果、冷媒漏れ勾配Csが予想漏れ勾配Csthよりも大きい場合、冷媒漏れ検知装置30は、ステップS200で、冷媒量Caが予め設定された許容下限値Cathを上回っているか否かを判定する。許容下限値Cathは、予め設定された基準冷媒量であり、例えば、冷凍サイクル装置20の作動(例えば、冷却能力)に影響が生じ始める冷媒量に設定される。
 ステップS200の判定処理の結果、冷媒量Caが予め設定された許容下限値Cathを上回っている場合、冷媒漏れ検知装置30は、ステップS210で、異常漏れ状態を初期異常状態に設定する。この初期異常状態は、冷凍サイクル装置20の異常な作動が生ずる前の異常漏れ状態を示している。
 そして、冷媒漏れ検知装置30は、ステップS220で、報知装置60によって異常漏れ状態が初期異常状態となっている旨をユーザに対して報知する報知処理を実行する。具体的には、冷媒漏れ検知装置30は、報知装置60に対して異常漏れ状態が初期異常状態となっていることを示す異常信号を出力する。この報知処理では、初期異常漏れ状態となっていることに加えて、冷媒の漏れ箇所の調査を注意喚起する情報を報知装置60によってユーザに報知することが望ましい。
 一方、ステップS200の判定処理の結果、冷媒量Caが予め設定された許容下限値Cath以下となる場合、冷媒漏れ検知装置30は、ステップS230で、異常漏れ状態を末期異常状態に設定する。この末期異常状態は、冷凍サイクル装置20の異常な作動が生ずる異常漏れ状態を示している。
 そして、冷媒漏れ検知装置30は、ステップS240で、冷凍サイクル装置20の作動を制限する作動制限処理を実行する。この作動制限処理では、電磁クラッチ214をオフして、冷凍サイクル装置20の作動を停止させる。
 以上説明した冷媒漏れ検知装置30は、異常漏れ状態を、冷凍サイクル装置20の作動に異常が生ずる前の初期異常状態と冷凍サイクル装置20の作動に異常が生ずる末期異常状態とに切り分けることができる。
 そして、冷媒漏れ検知装置30は、異常漏れ状態が初期異常状態となる場合に初期異常状態である旨をユーザに対して報知する構成となっているので、冷凍サイクル装置20の異常な作動が生ずる前に、冷媒漏れ対策の実施を注意喚起することができる。
 また、冷媒漏れ検知装置30は、異常漏れ状態が末期異常状態となる場合に冷凍サイクル装置20の作動を制限する構成となっているので、冷媒不足によって冷凍サイクル装置20に生ずる各種不具合を抑制することができる。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の各実施形態では、冷媒量Caを回帰分析によって得られた回帰式を用いて算出する例について説明したが、これに限定されない。冷媒漏れ検知装置30は、冷媒量Caを回帰分析以外の手法によって得られた算出式や、冷媒量Caと冷媒の温度および圧力との関係を規定した制御マップを用いて算出する構成となっていてもよい。
 上述の第1実施形態では、冷媒の漏れ状態が異常漏れ状態となった際に、異常漏れ状態をユーザに対して報知する報知処理を実行する例について説明したが、これに限定されない。冷媒漏れ検知装置30は、例えば、冷媒の漏れ状態が異常漏れ状態となった際に、冷凍サイクル装置20の作動を制限する作動制限処理を実行する構成となっていてもよい。
 また、上述の各実施形態では、作動制限処理として、電磁クラッチ214をオフして冷凍サイクル装置20の作動を停止させる処理を実行する例について説明したが、これに限定されない。作動制限処理は、例えば、高圧冷媒の圧力が所定の基準圧力を上回った場合に電磁クラッチ214をオフし、高圧冷媒の圧力が基準圧力以下の場合に電磁クラッチ214をオンする縮退処理となっていてもよい。これによると、冷凍サイクル装置20の負荷が低い状態では、冷凍サイクル装置20の作動を継続させることができるので、車室内の空調を継続させつつ、冷凍サイクル装置20の各種不具合の発生を抑制することが可能となる。
 上述の各実施形態では、冷媒漏れ状態が異常漏れ状態であるか否かを判定する前の段階で、冷媒量Ca、冷媒漏れ勾配Cs等を外部サーバ90に出力する例について説明したが、これに限定されない。冷媒漏れ検知装置30は、冷媒漏れ状態が異常漏れ状態であるか否かを判定した後に、冷媒量Ca、冷媒漏れ勾配Cs等を外部サーバ90に出力する構成となっていてもよい。なお、上述の各実施形態の如く、冷媒量Ca、冷媒漏れ勾配Cs等を外部サーバ90に出力する構成となっていることが望ましいが、これに限定されない。冷媒漏れ検知装置30は、例えば、冷媒量Ca、冷媒漏れ勾配Cs等を記憶部31に記憶し、外部サーバ90に出力しない構成となっていてもよい。
 上述の各実施形態では、外部のエンジン10から出力される回転駆動力によって駆動される圧縮機21を例示したが、これに限定されない。圧縮機21は、例えば、外部の電動機から出力される回転駆動力によって駆動される構成となっていてもよい。
 上述の各実施形態では、冷凍サイクル装置20が、移動体である自動車1に搭載された例について説明したが、これに限定されない。冷凍サイクル装置20は、例えば、鉄道車両や、トレーラのような移動体に搭載されていてもよい。
 上述の各実施形態では、循環回路200に充填される冷媒として、HFC系冷媒であるR134aが採用された例について説明したが、これに限定されない。冷媒としては、例えば、地球温暖化係数GWPが低いR1234yfが採用されていてもよい。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、冷媒漏れ検知装置は、循環回路を循環する冷媒の温度、圧力を含む物理量に基づいて、循環回路内の冷媒量を算出する。冷媒漏れ検知装置は、算出した冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出し、当該冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、循環回路における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する。
 第2の観点によれば、冷媒漏れ検知装置は、異常判定部が、勾配算出部で算出された冷媒漏れ勾配が予想漏れ勾配よりも大きい場合に、漏れ状態が異常漏れ状態であると判定する構成となっている。そして、冷媒漏れ検知装置は、異常判定部が、勾配算出部で算出された冷媒漏れ勾配が予想漏れ勾配以下の場合に、漏れ状態が正常漏れ状態であると判定する構成となっている。これによると、冷媒の漏れ状態を、正常漏れ状態と異常漏れ状態とに切り分けることができるので、冷凍サイクル装置における冷却能力の低下等の不具合を予防し易くなる。
 第3の観点によれば、冷媒漏れ検知装置は、異常漏れ状態に対する所定の対策を実行する対策実行部を備える。そして、対策実行部は、異常判定部にて漏れ状態が異常漏れ状態と判定された場合に、少なくとも異常漏れ状態を報知装置によってユーザに報知する報知処理を実行する。このように、異常漏れ状態をユーザに対して報知する構成では、冷凍サイクル装置の異常な作動が生ずる前に、冷媒漏れ対策の実施をユーザに注意喚起することが可能となる。
 第4の観点によれば、冷媒漏れ検知装置は、異常判定部が、勾配算出部で算出された冷媒漏れ勾配が予想漏れ勾配よりも大きく、且つ、冷媒量が予め定められた基準冷媒量を上回っている場合に、異常漏れ状態が初期異常状態であると判定する構成となっている。また、冷媒漏れ検知装置は、異常判定部が、勾配算出部で算出された冷媒漏れ勾配が予想漏れ勾配よりも大きく、且つ、冷媒量が基準冷媒量以下となる場合に、異常漏れ状態が末期異常状態であると判定する構成となっている。これによると、異常漏れ状態を、冷凍サイクル装置の作動に異常が生ずる前の初期異常状態と冷凍サイクル装置の作動に異常が生ずる末期異常状態とに切り分けることができる。
 第5の観点によれば、冷媒漏れ検知装置は、異常漏れ状態に対する所定の対策を実行する対策実行部を備える。対策実行部は、異常判定部にて異常漏れ状態が初期異常状態と判定された場合に、異常漏れ状態を報知装置によってユーザに報知する報知処理を実行する。そして、異常判定部にて異常漏れ状態が末期異常状態と判定された場合に、冷凍サイクル装置の作動を制限する作動制限処理を実行する。
 このように、異常漏れ状態が初期異常状態となる場合に、初期異常状態をユーザに対して報知する構成では、冷凍サイクル装置の異常な作動が生ずる前に、冷媒漏れ対策の実施を注意喚起することが可能となる。また、異常漏れ状態が末期異常状態となる場合に、冷凍サイクル装置の作動を制限する構成では、冷媒不足によって冷凍サイクル装置に生ずる各種不具合を抑制することができる。
 第6の観点によれば、冷媒漏れ検知装置は、物理量に、移動体の稼働状態のうち、冷凍サイクル装置の作動に関連性を有する移動体状態量が含まれている。これによると、冷媒量算出部における冷媒量の算出精度の向上を図ることができる。
 第7の観点によれば、冷媒漏れ検知装置は、冷媒量算出部で算出された冷媒量、および勾配算出部で算出された冷媒漏れ勾配を物理量に関連付けた状態で外部のデータ蓄積装置に出力する出力部を備える。
 これによれば、冷媒漏れ検知装置で算出した冷媒量、冷媒漏れ勾配量を、冷媒量の算出に用いた物理量に関連付けた状態で、外部のデータ蓄積装置に対して蓄積することができる。これによると、例えば、外部のデータ蓄積装置に蓄積されたデータを、移動体に搭載された冷凍サイクル装置における冷媒量が変化する傾向の把握等に有効活用することができる。
 第8の観点によれば、冷媒漏れ検知装置は、冷凍サイクル装置が、圧縮機、放熱器、減圧機器、蒸発器を含んで構成されている。そして、冷媒量算出部は、少なくとも放熱器の冷媒出口側の冷媒の温度および圧力、蒸発器の冷媒出口側の冷媒の温度および圧力に基づいて冷媒量を算出する。
 このように、冷媒量に強い相関性を有する放熱器の冷媒出口側の冷媒の温度および圧力、蒸発器の冷媒出口側の冷媒の温度および圧力に基づいて冷媒量を算出する構成とすれば、冷媒量算出部にて精度よく冷媒量を算出することができる。
 上述の実施形態の一部または全部で示された第9の観点によれば、冷凍サイクル装置は、冷媒が循環する循環回路と、循環回路からの冷媒の漏れを検知する冷媒漏れ検知装置と、を備える。そして、冷媒漏れ検知装置は、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出し、当該冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、循環回路における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する。

Claims (9)

  1.  移動体(1)に搭載され、冷媒の循環回路(200)を有する蒸気圧縮式の冷凍サイクル装置(20)に適用される冷媒漏れ検知装置であって、
     前記循環回路を循環する冷媒の温度、圧力を含む物理量に基づいて、前記循環回路内の冷媒量を算出する冷媒量算出部(30a)と、
     前記冷媒量算出部で算出された冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出する勾配算出部(30b)と、
     前記勾配算出部で算出された前記冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、前記循環回路における冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部(30c)と、
     を備える冷媒漏れ検知装置。
  2.  前記異常判定部は、前記勾配算出部で算出された前記冷媒漏れ勾配が前記予想漏れ勾配よりも大きい場合に、前記漏れ状態が前記異常漏れ状態であると判定し、前記勾配算出部で算出された前記冷媒漏れ勾配が前記予想漏れ勾配以下の場合に、前記漏れ状態が正常漏れ状態であると判定する請求項1に記載の冷媒漏れ検知装置。
  3.  前記異常漏れ状態に対する所定の対策を実行する対策実行部(30d)を備え、
     前記対策実行部は、前記異常判定部にて前記漏れ状態が前記異常漏れ状態と判定された場合に、少なくとも前記異常漏れ状態を報知装置(60)によってユーザに報知する報知処理を実行する請求項1または2に記載の冷媒漏れ検知装置。
  4.  前記異常判定部は、
     前記勾配算出部で算出された前記冷媒漏れ勾配が前記予想漏れ勾配よりも大きく、且つ、前記冷媒量が予め定められた基準冷媒量を上回っている場合に、前記異常漏れ状態が初期異常状態であると判定し、
     前記勾配算出部で算出された前記冷媒漏れ勾配が前記予想漏れ勾配よりも大きく、且つ、前記冷媒量が前記基準冷媒量以下となる場合に、前記異常漏れ状態が末期異常状態であると判定する請求項1または2に記載の冷媒漏れ検知装置。
  5.  前記異常漏れ状態に対する所定の対策を実行する対策実行部(30d)を備え、
     前記対策実行部は、
     前記異常判定部にて前記異常漏れ状態が前記初期異常状態と判定された場合に、前記異常漏れ状態を報知装置(60)によってユーザに報知する報知処理を実行し、
     前記異常判定部にて前記異常漏れ状態が前記末期異常状態と判定された場合に、前記冷凍サイクル装置の作動を制限する作動制限処理を実行する請求項4に記載の冷媒漏れ検知装置。
  6.  前記物理量には、前記移動体の稼働状態のうち、前記冷凍サイクル装置の作動に関連性を有する移動体状態量が含まれている請求項1ないし5のいずれか1つに記載の冷媒漏れ検知装置。
  7.  前記冷媒量算出部で算出された前記冷媒量、および前記勾配算出部で算出された前記冷媒漏れ勾配を前記物理量に関連付けた状態で外部のデータ蓄積装置(90)に出力する出力部(30e)を備える請求項1ないし6のいずれか1つに記載の冷媒漏れ検知装置。
  8.  前記冷凍サイクル装置は、圧縮機(21)、放熱器(22)、減圧機器(23)、蒸発器(24)を含んで構成されており、
     前記冷媒量算出部は、少なくとも前記放熱器の冷媒出口側の冷媒の温度および圧力、前記蒸発器の冷媒出口側の冷媒の温度および圧力に基づいて前記冷媒量を算出する請求項1ないし7のいずれか1つに記載の冷媒漏れ検知装置。
  9.  移動体(1)に搭載される蒸気圧縮式の冷凍サイクル装置であって、
     冷媒が循環する循環回路(200)と、
     前記循環回路からの冷媒の漏れを検知する冷媒漏れ検知装置(30)と、を備え、
     前記冷媒漏れ検知装置は、
     前記循環回路を循環する冷媒の温度、圧力を含む物理量に基づいて、前記循環回路内の冷媒量を算出する冷媒量算出部(30a)と、
     前記冷媒量算出部で算出された冷媒量に基づいて、単位期間当たりの冷媒の漏れ量を示す冷媒漏れ勾配を算出する勾配算出部(30b)と、
     前記勾配算出部で算出された冷媒漏れ勾配を予め想定される予想漏れ勾配と比較して、前記循環回路からの冷媒の漏れ状態が異常漏れ状態であるか否かを判定する異常判定部(30c)と、
     を含んで構成される冷凍サイクル装置。
PCT/JP2018/009190 2017-04-05 2018-03-09 冷媒漏れ検知装置、冷凍サイクル装置 WO2018186105A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880015744.7A CN110382979B (zh) 2017-04-05 2018-03-09 制冷剂泄漏检测装置、制冷循环装置
DE112018001918.7T DE112018001918T5 (de) 2017-04-05 2018-03-09 Kältemittelleckageerfassungsvorrichtung und Kältemittelkreislaufvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075521A JP6699614B2 (ja) 2017-04-05 2017-04-05 冷媒漏れ検知装置、冷凍サイクル装置
JP2017-075521 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018186105A1 true WO2018186105A1 (ja) 2018-10-11

Family

ID=63712845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009190 WO2018186105A1 (ja) 2017-04-05 2018-03-09 冷媒漏れ検知装置、冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP6699614B2 (ja)
CN (1) CN110382979B (ja)
DE (1) DE112018001918T5 (ja)
WO (1) WO2018186105A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175174A1 (en) 2017-03-22 2018-09-27 Bridgestone Bandag, Llc Method and system for leak testing enclosures
JP7283947B2 (ja) * 2019-04-03 2023-05-30 三菱重工サーマルシステムズ株式会社 検出装置、コントローラ、検出システム、検出方法及びプログラム
DE102021133141A1 (de) * 2021-12-14 2023-06-15 Viessmann Climate Solutions Se Verfahren zum Überwachen einer Füllmenge eines Arbeitsmediums in einer Wärmepumpenanlage, Verfahren zum Steuern einer Wärmepumpenanlage und Wärmepumpenanlage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274894A (ja) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd ヒートポンプ
JP2002005548A (ja) * 2000-06-19 2002-01-09 Mitsubishi Electric Corp 可燃性冷媒使用の家電機器
JP2002039649A (ja) * 2000-07-24 2002-02-06 Funai Electric Co Ltd 空気調和機の運転警報装置
WO2008035418A1 (fr) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation SystÈme de rÉFRIGÉration/de climatisation de l'air ayant une fonction de dÉtection de fuite de rÉFRIGÉrant, rÉFRIGÉrateur/climatiseur d'air et procÉDÉ de dÉtection d'une fuite de rÉFRIGÉrant
JP2011255831A (ja) * 2010-06-11 2011-12-22 Sanden Corp 車両用空調装置及び車両用空調装置の冷媒漏出診断方法
DE102013220369A1 (de) * 2013-10-09 2015-04-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Begrenzung einer erhöhten Kältemittel-Konzentration im Fahrzeuginnenraum
US9435576B1 (en) * 2011-09-07 2016-09-06 Mainstream Engineering Corporation Cost-effective remote monitoring diagnostic and system health prediction system and method for vapor compression and heat pump units based on compressor discharge line temperature sampling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230648A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた冷凍機器の冷媒漏洩警報装置
JP3951711B2 (ja) * 2001-04-03 2007-08-01 株式会社デンソー 蒸気圧縮式冷凍サイクル
JP2003214734A (ja) * 2002-01-18 2003-07-30 Toshiba Corp 冷凍冷蔵庫の制御装置及び冷凍冷蔵庫の冷媒漏れ判定方法
JP4902866B2 (ja) 2007-03-23 2012-03-21 三菱電機株式会社 冷媒充填方法
JP4882978B2 (ja) * 2007-11-26 2012-02-22 株式会社デンソー 冷凍サイクル装置
JP5789755B2 (ja) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 冷凍装置
US10113763B2 (en) * 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6507950B2 (ja) * 2014-11-06 2019-05-08 株式会社デンソー 通信システム、1台以上のサーバ、および1台以上のサーバ用のプログラム
JP6817000B2 (ja) 2015-10-13 2021-01-20 日本住環境株式会社 通気装置及びそれを用いた壁体構造部の換気構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274894A (ja) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd ヒートポンプ
JP2002005548A (ja) * 2000-06-19 2002-01-09 Mitsubishi Electric Corp 可燃性冷媒使用の家電機器
JP2002039649A (ja) * 2000-07-24 2002-02-06 Funai Electric Co Ltd 空気調和機の運転警報装置
WO2008035418A1 (fr) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation SystÈme de rÉFRIGÉration/de climatisation de l'air ayant une fonction de dÉtection de fuite de rÉFRIGÉrant, rÉFRIGÉrateur/climatiseur d'air et procÉDÉ de dÉtection d'une fuite de rÉFRIGÉrant
JP2011255831A (ja) * 2010-06-11 2011-12-22 Sanden Corp 車両用空調装置及び車両用空調装置の冷媒漏出診断方法
US9435576B1 (en) * 2011-09-07 2016-09-06 Mainstream Engineering Corporation Cost-effective remote monitoring diagnostic and system health prediction system and method for vapor compression and heat pump units based on compressor discharge line temperature sampling
DE102013220369A1 (de) * 2013-10-09 2015-04-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Begrenzung einer erhöhten Kältemittel-Konzentration im Fahrzeuginnenraum

Also Published As

Publication number Publication date
DE112018001918T5 (de) 2019-12-19
CN110382979B (zh) 2021-06-25
JP2018179335A (ja) 2018-11-15
CN110382979A (zh) 2019-10-25
JP6699614B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
CN110382980B (zh) 制冷剂泄漏检测装置、制冷循环装置
CN114654969B (zh) 具有过热、过冷和制冷剂充注量控制的制冷系统
US6681582B2 (en) Vapor compression type refrigeration apparatus including leak detection and method for detecting refrigerant leaks
JP6157721B2 (ja) 冷凍装置、及び、冷凍装置の制御方法
CN109392304B (zh) 空调系统、空调方法以及控制装置
WO2018186105A1 (ja) 冷媒漏れ検知装置、冷凍サイクル装置
JP2002213847A (ja) 冷媒充填量を監視する方法
JP2011255831A (ja) 車両用空調装置及び車両用空調装置の冷媒漏出診断方法
JP6289403B2 (ja) 冷媒不足判定装置、これを備えた冷凍サイクル、及び冷凍サイクルの冷媒不足判定方法
JP2009192090A (ja) 冷凍サイクル装置
WO2018225419A1 (ja) 冷媒量推定装置、冷凍サイクル装置
US10451327B2 (en) Refrigeration cycle device
CN110709265A (zh) 制冷循环装置
EP3417219B1 (en) Compressor floodback protection system
EP1489369A1 (en) Unit for calculating refrigerant suction pressure of compressor in refrigeration cycle
WO2019171840A1 (ja) 冷媒量推定装置、冷凍サイクル装置
US20230364970A1 (en) Autofill overfill protection temperature sensing air conditioning coolant recharge
JP2017088137A (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
WO2018186106A1 (ja) 冷媒漏れ検知装置、冷凍サイクル装置
JP2009243784A (ja) 冷媒不足検出装置
JP7502714B2 (ja) 車両用空調装置
CN112292574B (zh) 检查系统、信息处理设备
JP2017150731A (ja) 冷凍サイクル装置
JP6717343B2 (ja) 監視システム
WO2019026587A1 (ja) 監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781808

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18781808

Country of ref document: EP

Kind code of ref document: A1