WO2020184177A1 - 樹脂改質剤の製造方法、樹脂改質剤及び複合材料 - Google Patents

樹脂改質剤の製造方法、樹脂改質剤及び複合材料 Download PDF

Info

Publication number
WO2020184177A1
WO2020184177A1 PCT/JP2020/007662 JP2020007662W WO2020184177A1 WO 2020184177 A1 WO2020184177 A1 WO 2020184177A1 JP 2020007662 W JP2020007662 W JP 2020007662W WO 2020184177 A1 WO2020184177 A1 WO 2020184177A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin modifier
cellulose
resin
cellulose nanofibers
unsaturated monomer
Prior art date
Application number
PCT/JP2020/007662
Other languages
English (en)
French (fr)
Inventor
神谷 大介
後藤 彰宏
駿 中野
詩路士 松木
秀次 藤澤
継之 齋藤
涼 齋藤
Original Assignee
東亞合成株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社, 国立大学法人東京大学 filed Critical 東亞合成株式会社
Priority to KR1020217031976A priority Critical patent/KR20210137113A/ko
Priority to US17/438,211 priority patent/US11891501B2/en
Priority to JP2021504902A priority patent/JP7343865B2/ja
Priority to CN202080020104.2A priority patent/CN113544158B/zh
Publication of WO2020184177A1 publication Critical patent/WO2020184177A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/18Pulping cellulose-containing materials with halogens or halogen-generating compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a method for producing a resin modifier, a resin modifier and a composite material.
  • a resin material containing a reinforcing material to increase its strength has been widely used.
  • the reinforcing material carbon fiber, glass fiber and the like are generally used. However, both of them have a problem that they are not suitable for thermal recycling because they are hard to burn materials. It also has the problem that carbon fiber is expensive and glass fiber is heavy.
  • Plant fibers are used by loosening plant-derived fibers rather than artificially synthesizing them. Since the plant fiber hardly remains as ash during combustion, problems such as ash treatment in the incinerator and landfill treatment do not occur. For this reason, in recent years, research on the use of plant fibers as reinforcing materials for resins has been promoted, and in particular, the use of cellulose nanofibers obtained by defibrating plant fibers to the nano level has been studied.
  • cellulose nanofibers have many hydrophilic functional groups, they have low affinity with resin, and it has been pointed out that problems such as not being able to obtain a sufficient reinforcing effect even if they are kneaded with resin as they are.
  • an emulsion containing cellulose nanofibers, resin particles and a liquid medium is prepared, and the liquid medium is dried to obtain resin particles in which cellulose nanofibers are present on the surface.
  • the bonding strength of the cellulose nanofibers to the resin particles is not sufficient, and even if the cellulose nanofibers are kneaded with the resin, the cellulose nanofibers may not be uniformly dispersed in the resin and the modification effect may not be sufficiently exhibited.
  • Means for solving the above problems include the following embodiments.
  • Production of a resin modifier comprising a step of polymerizing an ethylenically unsaturated monomer in the presence of cellulose nanofibers, wherein the cellulose nanofibers are in a state of being reacted with an amine or a quaternary ammonium salt compound.
  • Method. ⁇ 2> The method for producing a resin modifier according to ⁇ 1>, wherein the resin modifier is in the form of particles.
  • ⁇ 3> The method for producing a resin modifier according to ⁇ 1> or ⁇ 2>, wherein the polymerization method is emulsion polymerization or suspension polymerization.
  • ⁇ 4> The method for producing a resin modifier according to any one of ⁇ 1> to ⁇ 3>, wherein the polymerization is carried out without using an emulsifier.
  • ⁇ 5> The resin according to any one of ⁇ 1> to ⁇ 4>, wherein the proportion of the ethylenically unsaturated monomer having a functional group among the ethylenically unsaturated monomers is 5 mol% or less.
  • Method for producing modifier ⁇ 6> The cellulose nanofibers obtained by defibrating cellulose oxide obtained by using a cellulose-based raw material as an oxidizing agent with hypochlorous acid having an effective chlorine concentration of 14% by mass to 43% by mass or a salt thereof.
  • ⁇ 7> Any of ⁇ 1> to ⁇ 5>, wherein the cellulose nanofibers obtained by defibrating a polyvalent carboxylic acid-modified cellulose obtained by reacting a cellulosic raw material with a polyvalent carboxylic acid are used.
  • ⁇ 8> The method for producing a resin modifier according to ⁇ 7>, wherein the polyvalent carboxylic acid contains at least one selected from the group consisting of a dicarboxylic acid, a tricarboxylic acid, a tetracarboxylic acid and a hexacarboxylic acid.
  • ⁇ 9> The method for producing a resin modifier according to ⁇ 7> or ⁇ 8>, wherein the polyvalent carboxylic acid contains citric acid.
  • ⁇ 10> The method for producing a resin modifier according to any one of ⁇ 1> to ⁇ 9>, wherein the oxidized cellulose is obtained without using a compound having a piperidine skeleton.
  • the cellulose nanofibers were obtained by defibrating cellulose oxide obtained by using a cellulose-based raw material as an oxidizing agent with hypochlorous acid having an effective chlorine concentration of 14% by mass to 43% by mass or a salt thereof.
  • ⁇ 13> The resin modification according to ⁇ 11>, wherein the cellulose nanofibers are obtained by defibrating a polyvalent carboxylic acid-modified cellulose obtained by reacting a cellulosic raw material with a polyvalent carboxylic acid.
  • Agent ⁇ 14>
  • the ratio of the structural unit having a functional group in the structural unit constituting the polymer of the ethylenically unsaturated monomer is 5 mol% or less.
  • Resin modifier A composite material containing the resin modifier according to any one of ⁇ 11> to ⁇ 17> and a resin.
  • a method for producing a resin modifier having an excellent resin modifying effect and a composite material containing the resin modifier and the resin modifier.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • (meth) acrylic means at least one of acrylic and methacrylic
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • the method for producing a resin modifier of the present invention includes a step of polymerizing an ethylenically unsaturated monomer in the presence of cellulose nanofibers, in which the cellulose nanofibers are reacted with an amine or a quaternary ammonium salt compound. Is.
  • the resin modifier produced by the above method is excellent in the resin modifying effect. The reason is not always clear, but it is presumed as follows.
  • the resin modifier produced by the above method is a state in which cellulose nanofibers are reacted with an amine or a quaternary ammonium salt compound. Therefore, it is considered that the cellulose nanofibers contained in the resin modifier and the resin to be modified have a high affinity and an excellent modification effect is exhibited.
  • a resin modifier is produced by polymerizing an ethylenically unsaturated monomer in the presence of cellulose nanofibers. Therefore, it is considered that at least a part of the cellulose nanofibers is complexed with the polymer of the ethylenically unsaturated monomer (for example, it has entered the inside of the polymer particles). As a result, it is considered that the cellulose nanofibers are well dispersed in the resin to be modified and an excellent modification effect is exhibited.
  • the timing of reacting the cellulose nanofibers with the amine or quaternary ammonium salt compound is not particularly limited.
  • the ethylenically unsaturated monomer may be polymerized in the presence of cellulose nanofibers previously reacted with an amine or a quaternary ammonium salt compound, and the ethylenically unsaturated monomer may be polymerized in the presence of cellulose nanofibers.
  • the cellulose nanofibers may be reacted with the amine or quaternary ammonium salt compound, and the cellulose nanofibers may be reacted with the amine or quaternary ammonium salt while the ethylenically unsaturated monomer is polymerized in the presence of the cellulose nanofibers. It may be reacted with a compound.
  • cellulose nanofibers previously reacted with an amine or quaternary ammonium salt compound When cellulose nanofibers previously reacted with an amine or quaternary ammonium salt compound are used, emulsification and dispersion with the ethylenically unsaturated monomer in the presence of the cellulose nanofibers becomes easy, and the polymerization is stable. It may be advantageous in terms of doing so.
  • the cellulose nanofibers are reacted with an amine or quaternary ammonium salt compound after polymerizing the ethylenically unsaturated monomer in the presence of the cellulose nanofibers, the excess amine or quaternary ammonium salt compound is removed. It may be advantageous in terms of ease.
  • the resin modifier produced by the method of the present invention is preferably in the form of particles.
  • the particle size is not particularly limited. For example, it may be in the range of 0.01 ⁇ m to 100 ⁇ m. In some embodiments, the particle size of the resin modifier may be less than 0.1 ⁇ m. The particle size of the resin modifier is measured by the method described in Examples.
  • the cellulose nanofibers used in the method of the present invention are not particularly limited as long as they are materials obtained from cellulosic raw materials.
  • the cellulosic raw material is not particularly limited as long as it is a material mainly composed of cellulose, and examples thereof include pulp, natural cellulose, regenerated cellulose, and fine cellulose depolymerized by mechanically treating the cellulosic raw material.
  • As the cellulosic raw material a commercially available product such as crystalline cellulose made from pulp can be used as it is.
  • the cellulosic raw material may be subjected to a chemical treatment such as an alkali treatment in order to facilitate the penetration of the oxidizing agent used in the method described later.
  • the fiber length of the cellulose nanofibers is not particularly limited, but is preferably 10 nm to 5000 nm, and more preferably 50 nm to 2000 nm. More preferably, it is 100 nm to 700 nm.
  • the fiber diameter of the cellulose nanofibers is not particularly limited, but is preferably 1 nm to 100 nm, and more preferably 3 nm to 10 nm.
  • the method for obtaining cellulose nanofibers from a cellulosic raw material is not particularly limited.
  • a cellulosic raw material is used as an oxidizing agent in the presence of a compound having a piperidine skeleton such as 2,2,6,6-tetramethyl-1-piperidin-N-oxyradical (hereinafter referred to as TEMPO) as a catalyst.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidin-N-oxyradical
  • a method of oxidizing treatment with a certain sodium hypochlorite is known.
  • the cellulose nanofibers are produced without using a compound having a piperidine skeleton.
  • a method for producing cellulose nanofibers without using a compound having a piperidine skeleton (1) cellulosic based on hypochlorous acid having an effective chlorine concentration of 14% by mass to 43% by mass or a salt thereof as an oxidizing agent.
  • the effective chlorine concentration in hypochlorous acid or a salt thereof used as an oxidizing agent is 14% by mass to 43% by mass, preferably 16% by mass to 43% by mass, and 18% by mass. It is more preferably mass% to 43% by mass. Hypochlorous acid or a salt thereof having an effective chlorine concentration of 43% by mass or less does not easily undergo autolysis and is easy to handle.
  • hypochlorous acid is a weak acid that exists as an aqueous solution
  • hypochlorite can exist as a solid with water of crystallization, but it is a deliquescent and extremely unstable substance, and is generally used as an aqueous solution. handle.
  • sodium hypochlorite which is a hypochlorite
  • the amount of effective chlorine in the solution is measured instead of the concentration of sodium hypochlorite.
  • the specific effective chlorine concentration is measured by precisely weighing the sample, adding water, potassium iodide, and acetic acid, leaving it to stand, and titrating the liberated iodine with a sodium thiosulfate solution using an aqueous starch solution as an indicator.
  • hypochlorous acid or a salt thereof in the present invention examples include hypochlorous acid water, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, ammonium hypochlorite and the like. Of these, sodium hypochlorite is preferable from the viewpoint of ease of handling.
  • a method for producing cellulose nanofibers when sodium hypochlorite is used as an oxidizing agent as hypochlorous acid or a salt thereof will be described.
  • a method of adjusting the effective chlorine concentration of the sodium hypochlorite aqueous solution to 14% by mass to 43% by mass a method of concentrating the sodium hypochlorite aqueous solution having an effective chlorine concentration lower than 14% by mass, and an effective chlorine concentration of about
  • a method of adjusting the sodium hypochlorite pentahydrate crystal which is 43% by mass as it is or by diluting it with water.
  • the amount of the sodium hypochlorite aqueous solution used can be selected within the range in which the oxidation reaction is promoted.
  • the method for mixing the cellulosic raw material and the aqueous sodium hypochlorite solution is not particularly limited, but it is preferable to add the cellulosic raw material to the aqueous sodium hypochlorite solution and mix them from the viewpoint of ease of operation.
  • the reaction temperature in the oxidation reaction is preferably 15 ° C. to 40 ° C., more preferably 20 ° C. to 35 ° C.
  • An alkaline agent such as sodium hydroxide or an acid such as hydrochloric acid may be added to adjust the pH.
  • the reaction time of the oxidation reaction can be set according to the degree of progress of oxidation, but for example, the reaction is preferably about 15 minutes to 6 hours.
  • the primary hydroxyl group in the cellulosic raw material is oxidized and changed to a carboxyl group to generate oxidized cellulose.
  • the amount of carboxyl groups in cellulose oxide is not particularly limited, but when the cellulose oxide is defibrated to produce cellulose nanofibers in the next step, the amount of carboxyl groups per 1 g of cellulose oxide is 0.1 mmol / g to 3.0 mmol. It is preferably / g, and more preferably 0.2 mmol / g to 1.0 mmol / g. Further, the oxidation reaction may be carried out in two steps.
  • cellulose nanofibers are produced by defibrating and nanonizing the cellulose oxide obtained in the above step.
  • the method for defibrating the oxidized cellulose is not particularly limited. For example, it may be carried out by stirring with a stirrer or the like in a solvent. From the viewpoint of shortening the defibration time, mechanical defibration may be performed.
  • the method of mechanical defibration is not particularly limited.
  • screw type mixer paddle mixer, discharge type mixer, turbine type mixer, homomixer under high speed rotation, high pressure homogenizer, ultrahigh pressure homogenizer, double cylindrical homogenizer, ultrasonic homogenizer, water flow counter-collision type disperser, beater.
  • a disc type refiner a conical type refiner, a double disc type refiner, a grinder, a single-screw or multi-screw kneader, or the like, or a combination of two or more of these devices may be used.
  • the defibration of cellulose oxide is preferably carried out in a solvent.
  • the solvent used for the defibration treatment is not particularly limited.
  • the solvent include water and an organic solvent
  • examples of the organic solvent include an alcohol solvent, an ether solvent, a ketone solvent, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile and the like. It is preferable to use water as the solvent because it facilitates the defibration of cellulose oxide and is environmentally friendly and easy to handle.
  • acetonitrile is preferably used because of its ease of removal and ease of defibration of cellulose. Only one type of solvent may be used, or two or more types may be used in combination.
  • the polyvalent carboxylic acid used in the method (2) is added by dehydration condensation with the hydroxyl group of cellulose constituting the cellulosic raw material under a temperature condition of 100 ° C. to 200 ° C., and is added under this temperature condition. Anything that does not easily undergo thermal decomposition or dehydration condensation can be used.
  • polyvalent carboxylic acid examples include compounds having two or more carboxyl groups (dicarboxylic acid, tricarboxylic acid, tetracarboxylic acid, hexacarboxylic acid, etc.), and even if only one type is used, two or more types are used. May be used in combination.
  • the type of polyvalent carboxylic acid to be used can be appropriately selected according to the purpose of use of the cellulose nanofibers produced.
  • dicarboxylic acid include oxalic acid, malic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, malonic acid, succinic acid, phthalic acid, tartaric acid, itaconic acid, and citraconic acid.
  • the tricarboxylic acid examples include citric acid, aconitic acid, trimellitic acid, and nitrilotriacetic acid.
  • Specific examples of the tetracarboxylic acid include ethylenetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, naphthalenetetracarboxylic acid, and benzene-1,2,4,5-tetracarboxylic acid.
  • Specific examples of the hexacarboxylic acid include mellitic acid, 1,2,3,4,5,6-cyclohexanehexacarboxylic acid.
  • the polyvalent carboxylic acid may be an aliphatic carboxylic acid or an aromatic carboxylic acid.
  • An aliphatic carboxylic acid is preferable from the viewpoint of excellent reactivity and compatibility between the polyvalent carboxylic acid-modified cellulose and the resin, and the reactivity is particularly excellent, and from the viewpoint that many carboxyl groups can be introduced.
  • Citric acid is more preferred.
  • the method for reacting the polyvalent carboxylic acid with the cellulosic raw material is not particularly limited.
  • the polyvalent carboxylic acid may be added to the cellulosic raw material in the state of anhydride or hydrate, or may be added to the cellulosic raw material in the state of an aqueous solution.
  • the reaction is preferably carried out under temperature conditions of 100 ° C. to 200 ° C.
  • a catalyst such as scroll or sodium phosphinate may be used.
  • the amount of the polyvalent carboxylic acid to be reacted with the cellulosic raw material is preferably 1 to 50 times, more preferably 1 to 10 times, that of the cellulosic raw material, on a mass basis.
  • the cellulosic raw material contains lignin, it is preferable that the amount of lignin contained in the polyvalent carboxylic acid-modified cellulose is small.
  • the amount of the polyvalent carboxylic acid is 1 times or more that of the cellulosic raw material, lignin is easily solubilized, and lignin can be efficiently separated. Therefore, the amount of lignin in the cellulose is reduced and the defibration treatment can be efficiently performed.
  • Cellulose nanofibers can be obtained by defibrating the polyvalent carboxylic acid-modified cellulose obtained by reacting a cellulosic raw material with a polyvalent carboxylic acid.
  • the method for defibrating the polyvalent carboxylic acid-modified cellulose is not particularly limited. For example, it may be carried out by the same method as the above-mentioned method for defibrating the oxidized cellulose.
  • cellulose nanofibers reacted with an amine or a quaternary ammonium salt compound are used.
  • the amine or quaternary ammonium salt compound reacts with the carboxyl group on the surface of the cellulose nanofibers, the hydrophobicity of the cellulose nanofibers is improved, and the affinity for the ethylene unsaturated monomer and the resin is improved.
  • the cellulose nanofibers reacted with the amine or quaternary ammonium salt compound function as a dispersant in the step of polymerizing the ethylene unsaturated monomer.
  • the use of an emulsifier in the step of polymerizing the ethylene unsaturated monomer can be omitted. Not using an emulsifier is advantageous in terms of workability because foaming does not occur when the obtained resin modifier is dried.
  • the amine to be reacted with the cellulose nanofibers is not particularly limited, and may be any of primary, secondary and tertiary.
  • the number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon thereof) The number) is not particularly limited, and may be selected from 1 to 100 carbon atoms.
  • an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to the cellulose nanofibers, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
  • the quaternary ammonium salt compound to be reacted with cellulose nanofibers is not particularly limited.
  • the quaternary ammonium salt compound includes a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary ammonium bromide such as tetrabutylammonium bromide.
  • Quaternary ammonium iodide such as tetrabutylammonium iodide can be considered.
  • the type of the ethylenically unsaturated monomer used in the method of the present invention is not particularly limited, and can be selected according to desired particle characteristics, the type of resin to be modified, and the like.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • alkyl (meth) acrylate examples include those having an alkyl portion having 1 to 10 carbon atoms.
  • the alkyl moiety may be linear, branched or cyclic, and may be unsubstituted or having a substituent.
  • the ethylenically unsaturated monomer may have a functional group such as a carboxyl group, a hydroxyl group, an epoxy group, an amino group, an amide group and a cyano group. Having these functional groups enhances the affinity for cellulose nanofibers.
  • the ratio of the ethylenically unsaturated monomer having these functional groups is 5 mol of the whole ethylenically unsaturated monomer. % Or less, more preferably 3 mol% or less, and even more preferably 1 mol% or less.
  • the weight average molecular weight of the polymer of the ethylenically unsaturated monomer is not particularly limited. For example, it may be 50 to 3 million. When the weight average molecular weight of the particle polymer is 5000 or more, the decrease in the strength of the resin is suppressed, and when the weight average molecular weight of the particles is 3 million or less, the particles tend to melt in the resin and a sufficient modification effect can be obtained. It is in.
  • the weight average molecular weight of the polymer of the ethylenically unsaturated monomer is measured by the method described in Examples.
  • the ratio of the structural unit having a functional group in the structural unit constituting the polymer of the ethylenically unsaturated monomer is preferably 5 mol% or less. It is more preferably mol% or less, and even more preferably 1 mol% or less.
  • the method of polymerizing the ethylenically unsaturated monomer in the presence of cellulose nanofibers is not particularly limited. From the viewpoint of obtaining a particulate resin modifier, emulsion polymerization, suspension polymerization or pickering emulsion polymerization is preferable.
  • the cellulose nanofibers and the ethylenically unsaturated monomer are dispersed in a solvent such as water and polymerized.
  • a solvent such as water and polymerized.
  • An example is a method of heating with an initiator added.
  • the polymerization initiator used for the polymerization of the ethylenically unsaturated monomer a general polymerization initiator such as persulfate, organic peroxide, or azo compound can be used, but the polymerization reaction rate and productivity Persulfate is preferable in terms of excellent water resistance, and ammonium persulfate is more preferable in that the obtained resin is excellent in water resistance.
  • persulfate examples include ammonium persulfate, potassium persulfate, sodium persulfate and the like.
  • Organic peroxides include t-butyl hydroperoxide, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-i-propylperoxydicarbonato, and di-2-ethylhexylperoxydicarbonato.
  • T-butylperoxyvibalato 2,2-bis (4,5-di-t-butylperoxycyclohexyl) propane, 2,2-bis (4,5-di-t-amylperoxycyclohexyl) propane, 2, 2-bis (4,5-di-t-octylperoxycyclohexyl) propane, 2,2-bis (4,5-di- ⁇ -cumylperoxycyclohexyl) propane, 2,2-bis (4,5-di) Examples thereof include -t-butylperoxycyclohexyl) butane and 2,2-bis (4,5-di-t-octylperoxycyclohexyl) butane.
  • azo compound examples include 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'-azobis-i-butylnitrile, and 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile. And so on.
  • persulfate or peroxide may be used as a redox-based polymerization initiator in combination with sodium hydrogen sulfite or sodium ascorbate as a reducing agent.
  • the temperature during the polymerization reaction is not particularly limited. For example, it is preferably in the range of 30 ° C. to 180 ° C., and more preferably in the range of 50 ° C. to 150 ° C.
  • the ratio of the cellulose nanofibers to the ethylenically unsaturated monomer when polymerizing the ethylenically unsaturated monomer in the presence of the cellulose nanofibers is not particularly limited.
  • the amount of the ethylenically unsaturated monomer with respect to 100 parts by mass of the cellulose nanofibers may be 5 parts by mass to 1000 parts by mass, or 10 parts by mass to 100 parts by mass.
  • the solvent used in the polymerization reaction of the ethylenically unsaturated monomer may or may not be removed. Further, the resin modifier obtained by the above method may be used by dispersing the solvent used in the polymerization reaction in another solvent after removing the solvent.
  • the resin modifier obtained by the above method may be used as it is or may be molded into a desired shape (powder, bead, pellet, etc.).
  • the resin modifier of the present invention contains cellulose nanofibers reacted with an amine or a quaternary ammonium salt compound, and a polymer of an ethylenically unsaturated monomer.
  • the resin modifier has an excellent resin modifying effect. The reason is not always clear, but it is presumed as follows.
  • the resin modifier includes a cellulose nanofiber reacted with an amine or a quaternary ammonium salt compound. Therefore, it is considered that the cellulose nanofibers have a high affinity with the resin and an excellent modification effect is exhibited. Further, the resin modifier contains a polymer of an ethylenically unsaturated monomer. Therefore, it is considered that at least a part of the cellulose nanofibers is complexed with the polymer of the ethylenically unsaturated monomer (for example, it has entered the inside of the polymer particles). As a result, it is considered that the cellulose nanofibers are well dispersed in the resin to be modified and an excellent modification effect is exhibited.
  • the resin modifier is preferably in the form of particles.
  • the particle size is not particularly limited. For example, it may be in the range of 0.01 ⁇ m to 100 ⁇ m. In some embodiments, the particle size of the resin modifier may be less than 0.1 ⁇ m.
  • the details and preferred embodiments of the resin modifier and each component contained therein may be the same as the details and preferred embodiments of the resin modifier produced by the above-described method for producing a resin modifier and the corresponding components. Good.
  • the content of the compound having a piperidine skeleton such as TEMPO in the resin modifier is small.
  • it is preferably 0.01 ppm or less, and more preferably substantially not contained.
  • the ethylenically unsaturated monomer used as a raw material for the polymer of the ethylenically unsaturated monomer is not particularly limited and may be selected from the above-mentioned ones.
  • the polymer of the ethylenically unsaturated monomer may be a homopolymer formed from one kind of monomer or a copolymer formed from two or more kinds of monomers.
  • the weight average molecular weight of the polymer of the ethylenically unsaturated monomer is not particularly limited. For example, it may be 50 to 3 million or 10,000 to 1.5 million.
  • the weight average molecular weight of the particles is 5000 or more, the decrease in the strength of the resin due to the addition of the resin modifier tends to be suppressed, and when the weight average molecular weight of the particles is 3 million or less, the resin modifier is contained in the resin. It tends to melt easily and a sufficient modification effect can be obtained.
  • the ratio of the polymer of cellulose nanofibers and ethylenically unsaturated monomers in the resin modifier is not particularly limited.
  • the amount of the polymer of the ethylenically unsaturated monomer with respect to 100 parts by mass of the cellulose nanofibers may be 5 parts by mass to 150 parts by mass or 10 parts by mass to 100 parts by mass.
  • the method of modifying the resin using the resin modifier is not particularly limited.
  • the resin modifier may be added in a state where the resin to be modified is melted or softened.
  • the amount of the resin modifier added is not particularly limited.
  • the amount added to 100 parts by mass of the resin may be 0.1 parts by mass to 10 parts by mass.
  • the composite material of the present invention is a composite material containing the above-mentioned resin modifier and a resin.
  • the type of resin contained in the composite material is not particularly limited, and examples thereof include moldable resins such as thermoplastic resins and thermoplastic elastomers.
  • the thermoplastic resin include ABS (acrylonitrile-butadiene-styrene) resin, acrylic resin, polyolefin, polyester, polyurethane, polystyrene, polyamide, polyvinyl chloride, polycarbonate and the like.
  • the thermoplastic elastomer include olefin-based elastomers, styrene-based elastomers, polyamide-based elastomers, polyester-based elastomers, and polyurethane-based elastomers.
  • the resin contained in the composite material preferably contains the same components as the components contained in the resin modifier, or segments or functional groups having a good affinity with the resin modifier.
  • the same component as the component contained in the resin modifier or a segment having a good affinity has a polymer alloy structure because effects such as shock absorption are imparted. If the affinity between the resin modifier and the resin to be mixed is poor, the dispersibility of the obtained composite material may be deteriorated, the appearance of the composite material may be deteriorated, and the breaking stress and breaking elongation may be lowered.
  • the amount of the resin modifier contained in the composite material is not particularly limited.
  • the amount of the resin modifier may be 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin.
  • a solution having an effective chlorine concentration of 14% by mass was prepared by mixing Na pentachlorous acid pentahydrate crystals (500 g) having an effective chlorine concentration of 43% by mass and pure water (1035.7 g). This solution was heated to 30 ° C., and 35 g of pulp (Theoras FD-101, Asahi Kasei Chemicals Co., Ltd., average particle size 50 ⁇ m, carboxyl group amount 0.03 mmol / g) was added while stirring with a stirrer, and further 30 ° C. After stirring with a stirrer for 30 minutes while maintaining the above, 100 g of pure water was added.
  • oxidized cellulose was defibrated with an ultrasonic homogenizer for 10 minutes to prepare a dispersion containing 1.3% by mass of cellulose nanofiber A.
  • ⁇ Preparation of cellulose nanofiber B> A dispersion containing cellulose nanofibers B was prepared in the same manner as cellulose nanofibers A except that the effective chlorine concentration of the solution was 30% by mass.
  • ⁇ Preparation of cellulose nanofiber C> A dispersion containing cellulose nanofibers C was prepared in the same manner as cellulose nanofibers A except that the effective chlorine concentration of the solution was 43% by mass.
  • Citric acid anhydride (10 g) was dissolved in pure water (20 g) to prepare an aqueous citric acid solution. While stirring this liquid with a stirrer, softwood kraft pulp (1 g) was added, and the mixture was stirred at 25 ° C. for 1 hour. It was heated in an oven at 105 ° C. for 8 hours under air to remove water. The obtained dried product was pulverized in a mortar and classified by a 500 ⁇ m sieve. The obtained subsieving portion was heated in an oven at 130 ° C. for 8 hours under air. The obtained heated product was dispersed in pure water, and then suction filtered through a 0.1 ⁇ m PTFE membrane filter.
  • citric acid-modified cellulose H type was added to a 0.1 M-sodium hydroxide aqueous solution (150 g), stirred at 25 ° C. for 40 minutes, suction-filtered with a 0.1 ⁇ m PTFE membrane filter, then washed with pure water, and citric acid is added.
  • An acid-modified cellulose Na type was obtained.
  • Citric acid denaturation Citric acid denaturation by adding pure water so that the concentration of Na type cellulose is 1% by mass and defibrating with an ultrasonic homogenizer "UP-400S" manufactured by Heelscher under the conditions of CYCLE 0.5 and AMPLITUDE 50. A dispersion containing cellulose nanofibers was prepared.
  • Tables 1 and 2 show the physical properties of the produced cellulose nanofibers (CNF).
  • the residual amount of TEMPO of the cellulose nanofiber E was measured and found to be 1 ppm. No TEMPO residue was detected in the cellulose nanofibers A to D.
  • the residual amount of TEMPO was evaluated by ESR (electron spin resonance method, for example, e-scan: manufactured by Bruker Biospin).
  • Example 1 0.52 g of 0.5 M hydrochloric acid was added to 36.9 g of the dispersion liquid containing the cellulose nanofiber A and stirred to precipitate the cellulose nanofiber A.
  • 0.034 g of monododecylamine (containing 5 g of ethanol, the same applies hereinafter) and 4.13 g of pure water are added thereto, and the mixture is stirred, filtered, and filtered while being washed with 10 g of pure water to obtain cellulose nanofiber A. It was reacted with amine.
  • Example 2 In the same manner as in Example 1 except that the polymerization initiator was changed from ammonium persulfate to 2,2'-azobis (2,4-dimethylvaleronitrile), the polymer of cellulose nanofibers and ethylene unsaturated monomer was used. A particulate resin modifier containing the above was obtained. Table 3 shows the blending amounts of the materials.
  • Example 3 A particulate resin modifier containing a cellulose nanofiber and a polymer of an ethylene unsaturated monomer was obtained in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber E.
  • Table 3 shows the blending amounts of the materials.
  • Example 4 A polymer of cellulose nanofibers and ethylene unsaturated monomer in the same manner as in Example 1 except that cellulose nanofibers A were changed to cellulose nanofibers B and styrene was changed to isobutyl methacrylate (IBMA). A particulate resin modifier containing and was obtained. Table 3 shows the blending amounts of the materials.
  • Example 5 A particulate resin modifier containing a cellulose nanofiber and a polymer of an ethylene unsaturated monomer was obtained in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber C.
  • Table 3 shows the blending amounts of the materials.
  • Example 6 A polymer of cellulose nanofibers and ethylene unsaturated monomer in the same manner as in Example 1 except that the amine was changed from monododecylamine to tridodecylamine and the styrene was changed to isobutyl methacrylate (IBMA). A particulate resin modifier containing and was obtained. Table 3 shows the blending amounts of the materials.
  • Example 7 Conducted except that cellulose nanofiber A was changed to cellulose nanofiber B, amine was changed from monododecylamine to tetrabutylammonium hydroxide (TBAH), and styrene was changed to isobutyl methacrylate (IBMA).
  • TBAH tetrabutylammonium hydroxide
  • IBMA isobutyl methacrylate
  • Example 8 Same as Example 1 except that cellulose nanofiber A was changed to cellulose nanofiber E, styrene was changed to isobutyl methacrylate (IBMA), and sodium dodecylbenzene sulfonate (DBSS) was used as an emulsifier. Then, a particulate resin modifier containing cellulose nanofibers and a polymer of ethylene unsaturated monomer was obtained. Table 3 shows the blending amounts of the materials.
  • Example 9 0.68 g of 0.5 M hydrochloric acid was added to 36.9 g of the dispersion liquid containing the cellulose nanofiber B and stirred to precipitate the cellulose nanofiber B. 0.014 g of n-propylamine and 4.13 g of pure water were added thereto, and the mixture was stirred, filtered, and filtered while being washed with 10 g of pure water in this order to react the cellulose nanofiber B with the amine. Table 3 shows the blending amounts of the materials.
  • Example 10 Cellulose nanofibers and a polymer of ethylene unsaturated monomer were prepared in the same manner as in Example 4 except that the amount of IMBA was changed and dodecyl mercaptan (DM) was used as a chain transfer agent during the polymerization. A particulate resin modifier containing the mixture was obtained. Table 3 shows the blending amounts of the materials.
  • Example 11 A particulate resin modifier containing a polymer of cellulose nanofibers and an ethylene unsaturated monomer was obtained in the same manner as in Example 4 except that the amount of IMBA was changed. Table 3 shows the blending amounts of the materials.
  • Example 12 A particulate resin modifier containing a polymer of cellulose nanofibers and an ethylene unsaturated monomer was obtained in the same manner as in Example 1 except that the blending amount of styrene used as the monomer was changed. Table 3 shows the blending amounts of the materials.
  • Example 13 In Example 13, unlike Examples 1 to 12, the ethylene unsaturated monomer was polymerized in the presence of the cellulose nanofibers, and then the cellulose nanofibers were reacted with the amine. After adding 3.1 g of pure water to the cellulose nanofiber A, 0.48 g of styrene (St) as an ethylene unsaturated monomer and 0.13 g of 1% by mass ammonium persulfate (APS) as a polymerization initiator were added. .. After dispersing this with ultrasonic waves, it was made into a nitrogen atmosphere and heated at 70 ° C. for 4 hours with stirring for polymerization.
  • St styrene
  • APS ammonium persulfate
  • Example 14 A particulate resin modifier containing a cellulose nanofiber and a polymer of an ethylene unsaturated monomer was obtained in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber F.
  • the blending amount of the material is shown in Table 5.
  • Example 15 A polymer of cellulose nanofibers and ethylene unsaturated monomer in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber F and the blending amount of the styrene used as the monomer was changed. A particulate resin modifier containing and was obtained. The blending amount of the material is shown in Table 5.
  • Example 16 A polymer of cellulose nanofibers and ethylene unsaturated monomer in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber F and the blending amount of the styrene used as the monomer was changed. A particulate resin modifier containing and was obtained. The blending amount of the material is shown in Table 5.
  • Example 17 Cellulose nanofibers and ethylene unsaturated in the same manner as in Example 1 except that the cellulose nanofiber A was changed to the cellulose nanofiber F and the amine was changed from monododecylamine to tetrabutylammonium hydroxide (TBAH). A particulate resin modifier containing a monomeric polymer was obtained. The blending amount of the material is shown in Table 5.
  • Example 18 The weight of the cellulose nanofibers and the ethylene unsaturated monomer is the same as in Example 1 except that the cellulose nanofibers A are changed to the cellulose nanofibers F and the styrene is changed to isobutyl methacrylate (IBMA). A particulate resin modifier containing a coalescence was obtained. The blending amount of the material is shown in Table 5.
  • Example 3 Same as in Example 3 except that the cellulose nanofibers were not reacted with amine, the styrene was changed to isobutyl methacrylate (IBMA), and sodium dodecylbenzenesulfonate (DBSS) was used as an emulsifier. , A particulate resin modifier containing a polymer of cellulose nanofibers and an ethylene unsaturated monomer was obtained. The blending amount of the material is shown in Table 5.
  • the particle size of the resin modifier is measured using a laser diffraction type particle size distribution meter (for example, Microtrac MT3000II, manufactured by Microtrac Bell). Specifically, after adjusting the resin modifier containing cellulose nanofibers and a polymer of ethylene unsaturated monomer to an appropriate concentration with ion-exchanged water, the median diameter is measured from the particle size distribution, and this is measured as particles. The diameter. The refractive index of all particles is 1.5. The results are shown in Table 6.
  • the weight average molecular weight of the polymer of the ethylenically unsaturated monomer is measured by GPC (gel permeation chromatography, for example, HLC-8220, manufactured by Tosoh). Specifically, an appropriate solvent is added to a resin modifier containing a polymer of cellulose nanofibers and an ethylene unsaturated monomer to dissolve the polymer. Then, the mixture is filtered using a 0.45 ⁇ m filter, and the obtained liquid is measured in terms of polystyrene. The results are shown in Table 6.
  • ABS resin manufactured by Techno-UMG Co., Ltd., product number ABS130
  • ABS resin manufactured by Techno-UMG Co., Ltd., product number ABS130
  • the resin modifier and the ABS resin pellets were mixed in a cup and then heat-kneaded using a plast mill.
  • the kneading temperature was 160 ° C. and the kneading time was 9 minutes. Then, it was pressurized at 180 ° C. for 2 minutes using a pressurizer to form a flat plate of the kneaded product.
  • the pressure was 10 MPa for the first minute and 15 MPa for the next minute.
  • a test piece having the shape of a No. 3 dumbbell (thickness 1 mm) specified in JIS K 6251: 2010 was prepared.
  • a test piece was prepared using ABS resin to which no resin modifier was added.
  • breaking stress A tensile stress test (tensile speed 5 mm / min) specified in JIS K 6251: 2010 was performed using the test piece, and breaking stress (MPa) and breaking elongation (mm) were measured.
  • breaking stress when the measured value of the test piece of ABS resin to which no resin modifier is added is 1.05 or more, it is more than ⁇ and less than 1.05. The case where it became ⁇ was evaluated as ⁇ , and the case where it became 1 or less was evaluated as ⁇ .
  • the results are shown in Table 6.
  • the elongation at break when the measured value of the test piece of ABS resin to which no resin modifier is added is 1, the measured value is 0.8 or more, and it exceeds ⁇ , 0.6 and 0.8. When it was less than, it was evaluated as ⁇ , and when it was less than 0.6, it was evaluated as ⁇ . The results are shown in Table 6.
  • ABS As shown in Table 6, ABS to which the resin modifier of the example obtained by polymerizing an ethylenically unsaturated monomer in the presence of cellulose nanofibers reacted with an amine or a quaternary ammonium salt compound was added. Good evaluation results were obtained for both the breaking stress and the breaking elongation of the resin. Furthermore, among the composite materials in which the resin modifier used for the evaluation and the moldable resin are mixed, the one obtained by reacting the cellulose nanofibers with the quaternary ammonium salt compound has less coloring than in other examples. Was visually confirmed.
  • ABS resin to which the resin modifiers of Comparative Examples 1 and 3 obtained without reacting the cellulose nanofibers with the amine or the quaternary ammonium salt compound was added had a significantly reduced elongation at break.
  • the resin modifiers of Comparative Examples 4 and 5 in which the ethylenically unsaturated monomer was not polymerized in the presence of cellulose nanofibers were inferior in dispersibility in ABS resin, and both breaking stress and breaking elongation were significantly reduced. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる工程を含み、前記セルロースナノファイバーはアミン又は四級アンモニウム塩化合物と反応させた状態である、樹脂改質剤の製造方法。

Description

樹脂改質剤の製造方法、樹脂改質剤及び複合材料
 本発明は、樹脂改質剤の製造方法、樹脂改質剤及び複合材料に関する。
 近年、軽量かつ強度に優れる材料として、補強材を配合して強度を高めた樹脂材料が広く用いられている。補強材としては、炭素繊維やガラス繊維等が一般に使用されている。しかしながら、どちらも燃え難い材料であるためサーマルリサイクルに不向きであるとの問題を有している。また、炭素繊維については価格が高い、ガラス繊維については重いとの問題も有している。
 そこで近年、植物繊維を樹脂の補強材として使用する研究が進められている。植物繊維は、人工的に合成するのではなく、植物由来の繊維をほぐして使用される。植物繊維は、燃焼の際に灰分として殆ど残らないため、焼却炉内の灰分の処理や、埋立て処理等の問題が生じない。このため近年、植物繊維を樹脂の補強材として利用する研究が進められており、特に植物繊維をナノレベルにまで解繊したセルロースナノファイバーの利用が研究されている。
 セルロースナノファイバーは親水性の官能基を多数有するため樹脂との親和性が低く、そのまま樹脂と混練しても十分な補強効果が得られない等の問題が指摘されている。
 これらの問題を解決するための方策として、セルロースナノファイバーを樹脂に直接混合するのではなく、樹脂粒子の表面にセルロースナノファイバーが存在する状態で樹脂に混合する方法が提案されている(例えば、特許文献1参照)。
特開2013-014741号公報
 特許文献1に記載された発明では、セルロースナノファイバー、樹脂粒子及び液媒体を含むエマルションを調製し、液媒体を乾燥させてセルロースナノファイバーが表面に存在する樹脂粒子を得ているが、この手法ではセルロースナノファイバーの樹脂粒子に対する結合強度が充分でなく、樹脂と混練しても樹脂中にセルロースナノファイバーが均一に分散できずに改質効果が充分に発揮されないおそれがある。
 本発明は上記事情に鑑み、樹脂の改質効果に優れる樹脂改質剤の製造方法、樹脂改質剤及び樹脂改質剤を含む複合材料を提供することを課題とする。
 上記課題を解決するための手段には、下記の実施態様が含まれる。
<1>セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる工程を含み、前記セルロースナノファイバーはアミン又は四級アンモニウム塩化合物と反応させた状態である、樹脂改質剤の製造方法。
<2>前記樹脂改質剤は粒子状である、<1>に記載の樹脂改質剤の製造方法。
<3>前記重合の方法は乳化重合又は懸濁重合である、<1>又は<2>に記載の樹脂改質剤の製造方法。
<4>前記重合は乳化剤を使用しないで行われる、<1>~<3>のいずれか1項に記載の樹脂改質剤の製造方法。
<5>前記エチレン性不飽和単量体のうち官能基を有するエチレン性不飽和単量体の割合が5モル%以下である、<1>~<4>のいずれか1項に記載の樹脂改質剤の製造方法。
<6>前記セルロースナノファイバーとして、セルロース系原料を有効塩素濃度が14質量%~43質量%の次亜塩素酸又はその塩を酸化剤として用いて得られる酸化セルロースを解繊して得られるものを使用する、<1>~<5>のいずれか1項に記載の樹脂改質剤の製造方法。
<7>前記セルロースナノファイバーとして、セルロース系原料を多価カルボン酸と反応させて得られる多価カルボン酸変性セルロースを解繊して得られるものを使用する、<1>~<5>のいずれか1項に記載の樹脂改質剤の製造方法。
<8>前記多価カルボン酸が、ジカルボン酸、トリカルボン酸、テトラカルボン酸及びヘキサカルボン酸からなる群から選択される少なくとも1種を含む、<7>に記載の樹脂改質剤の製造方法。
<9>前記多価カルボン酸がクエン酸を含む、<7>又は<8>に記載の樹脂改質剤の製造方法。
<10>前記酸化セルロースはピペリジン骨格を有する化合物を使用しないで得られる、<1>~<9>のいずれか1項に記載の樹脂改質剤の製造方法。
<11>アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーと、エチレン性不飽和単量体の重合体とを含む、樹脂改質剤。
<12>前記セルロースナノファイバーは、セルロース系原料を有効塩素濃度が14質量%~43質量%の次亜塩素酸又はその塩を酸化剤として用いて得られる酸化セルロースを解繊して得られたものである、<11>に記載の樹脂改質剤。
<13>前記セルロースナノファイバーは、セルロース系原料を多価カルボン酸と反応させて得られる多価カルボン酸変性セルロースを解繊して得られたものである、<11>に記載の樹脂改質剤。
<14>粒子状である、<11>~<13>のいずれか1項に記載の樹脂改質剤。
<15>前記エチレン性不飽和単量体の重合体を構成する構造単位中の官能基を有する構造単位の割合が5モル%以下である、<11>~<14>のいずれか1項に記載の樹脂改質剤。
<16>前記エチレン性不飽和単量体の重合体の重量平均分子量は5000~300万である、<11>~<15>のいずれか1項に記載の樹脂改質剤。
<17>前記セルロースナノファイバー100質量部に対する前記エチレン性不飽和単量体の重合体の量は5質量部~1000質量部である、<11>~<16>のいずれか1項に記載の樹脂改質剤。
<18><11>~<17>のいずれか1項に記載の樹脂改質剤と、樹脂とを含む複合材料。
<19>前記樹脂は、前記樹脂改質剤に含まれる成分と同一の成分、又は前記樹脂改質剤と親和性の良いセグメント若しくは官能基を含む、<18>に記載の複合材料。
 本発明によれば、樹脂の改質効果に優れる樹脂改質剤の製造方法、樹脂改質剤及び樹脂改質剤を含む複合材料が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
<樹脂改質剤の製造方法>
 本発明の樹脂改質剤の製造方法は、セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる工程を含み、前記セルロースナノファイバーはアミン又は四級アンモニウム塩化合物と反応させた状態である。
 上記方法により製造される樹脂改質剤は、樹脂の改質効果に優れている。その理由は必ずしも明らかではないが、下記のように推測される。
 上記方法で製造される樹脂改質剤は、セルロースナノファイバーがアミン又は四級アンモニウム塩化合物と反応させた状態である。このため、樹脂改質材に含まれるセルロースナノファイバーと改質対象の樹脂との親和性が高く、優れた改質効果が発揮されると考えられる。
 さらに上記方法では、セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させて樹脂改質剤を製造する。このため、セルロースナノファイバーの少なくとも一部がエチレン性不飽和単量体の重合体と複合化している(例えば、重合体の粒子の内部に入り込んでいる)と考えられる。その結果、改質対象の樹脂中にセルロースナノファイバーが良好に分散し、優れた改質効果が発揮されると考えられる。
 本発明の方法において、セルロースナノファイバーをアミン又は四級アンモニウム塩化合物と反応させる時期(タイミング)は特に制限されない。例えば、あらかじめアミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させてもよく、セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させた後にセルロースナノファイバーをアミン又は四級アンモニウム塩化合物と反応させてもよく、セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合中にセルロースナノファイバーをアミン又は四級アンモニウム塩化合物と反応させてもよい。
 あらかじめアミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーを用いた場合には、セルロースナノファイバーの存在下でのエチレン性不飽和単量体との乳化や分散が容易になり、重合が安定する点で有利な場合がある。セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させた後にセルロースナノファイバーをアミン又は四級アンモニウム塩化合物と反応させた場合には、余剰なアミン又は四級アンモニウム塩化合物を除去し易い点で有利な場合がある。
 樹脂への分散性の観点からは、本発明の方法で製造される樹脂改質剤は粒子状であることが好ましい。樹脂改質剤が粒子状である場合の粒子径は、特に制限されない。例えば、0.01μm~100μmの範囲であってもよい。ある実施態様では、樹脂改質剤の粒子径は0.1μm未満であってもよい。樹脂改質剤の粒子径は、実施例に記載した方法で測定される。
(セルロースナノファイバー)
 本発明の方法で使用するセルロースナノファイバーは、セルロース系原料から得られる材料であれば特に制限されない。セルロース系原料は、セルロースを主体とした材料であれば特に限定はなく、例えば、パルプ、天然セルロース、再生セルロース、セルロース原料を機械的処理することで解重合した微細セルロース等が挙げられる。なお、セルロース系原料として、パルプを原料とする結晶セルロースなどの市販品をそのまま使用することができる。セルロース系原料は、後述する方法で使用する酸化剤を浸透しやすくするためにアルカリ処理等の化学処理を行ってもよい。
 セルロースナノファイバーの繊維長は特に制限されないが、好ましくは10nm~5000nmであり、より好ましくは50nm~2000nmである。さらに好ましくは100nm~700nmである。
 セルロースナノファイバーの繊維長が5000nm以下であると、樹脂と混合した際の粘度が高くなりすぎず均一に混合しやすい。繊維長が10nm以上であると、複合材料の補強効果が充分に得られる。
 セルロースナノファイバーの繊維径は特に制限されないが、好ましくは1nm~100nmであり、より好ましくは3nm~10nmである。
 セルロース系原料からセルロースナノファイバーを得る方法は、特に制限されない。例えば、セルロース系原料を、触媒としての2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOという)等のピペリジン骨格を有する化合物の存在下に、酸化剤である次亜塩素酸ナトリウムで酸化処理する方法が知られている。 
 環境又は人体に対する影響を低減する観点からは、セルロースナノファイバーはピペリジン骨格を有する化合物を使用しないで製造されることが好ましい。
 ピペリジン骨格を有する化合物を使用しないでセルロースナノファイバーを製造する方法としては、(1)有効塩素濃度が14質量%~43質量%である次亜塩素酸又はその塩を酸化剤として用いてセルロース系原料を酸化させて酸化セルロースを得た後、これを解繊してセルロースナノファイバーを製造する方法、及び(2)セルロース系原料を多価カルボン酸と反応させて多価カルボン酸変性セルロースを得た後、これを解繊してセルロースナノファイバーを製造する方法が挙げられる。
 (1)の方法において、酸化剤として使用する次亜塩素酸又はその塩中の有効塩素濃度は、14質量%~43質量%であり、16質量%~43質量%であることが好ましく、18質量%~43質量%であることがさらに好ましい。
 有効塩素濃度が43質量%以下の次亜塩素酸又はその塩は、自己分解が進行しにくく、取り扱いが容易である。
 次亜塩素酸又はその塩における有効塩素濃度はよく知られた概念であり、以下のように定義される。次亜塩素酸は水溶液として存在する弱酸であり、次亜塩素酸塩は結晶水をもった固体として存在することは出来るが、潮解性をもち、非常に不安定な物質であり、一般に水溶液として取り扱う。例えば、次亜塩素酸塩である次亜塩素酸ナトリウムは溶液中にしか存在しないため、次亜塩素酸ナトリウムの濃度ではなく、溶液中の有効塩素量を測定する。
 次亜塩素酸ナトリウムの分解により生成する2価の酸素原子の酸化力が1価の塩素の2原子当量に相当するため、次亜塩素酸ナトリウム(NaClO)の結合塩素原子は、非結合塩素(Cl)の2原子と同じ酸化力を持っている。したがって、有効塩素=2×(NaClO 中の塩素)となる。
 具体的な有効塩素濃度の測定は、試料を精秤し、水、ヨウ化カリウム、酢酸を加えて放置し、遊離したヨウ素についてデンプン水溶液を指示薬としてチオ硫酸ナトリウム溶液で滴定することで行われる。
 本発明における次亜塩素酸又はその塩としては、次亜塩素酸水、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、次亜塩素酸アンモニウム等が挙げられる。これらの中でも、取り扱いやすさの点から、次亜塩素酸ナトリウムが好ましい。
 以下、次亜塩素酸又はその塩として次亜塩素酸ナトリウムを酸化剤として用いた場合のセルロースナノファイバーを製造する方法について説明する。
 次亜塩素酸ナトリウム水溶液の有効塩素濃度を14質量%~43質量%に調整する方法としては、有効塩素濃度が14質量%より低い次亜塩素酸ナトリウム水溶液を濃縮する方法、有効塩素濃度が約43質量%である次亜塩素酸ナトリウム5水和物結晶をそのまま、又は水で希釈して調整する方法等がある。これらの中でも、次亜塩素酸ナトリウム5水和物を用いて、酸化剤としての有効塩素濃度に調整することが、自己分解が少ない(すなわち、有効塩素濃度の低下が少ない)ために好ましい。 
 次亜塩素酸ナトリウム水溶液の使用量は、酸化反応が促進する範囲で選択できる。
 セルロース系原料と次亜塩素酸ナトリウム水溶液の混合方法は特に限定はないが、操作の容易さの面から、次亜塩素酸ナトリウム水溶液にセルロース系原料を加えて混合させることが好ましい。 
 酸化反応における反応温度は15℃~40℃であることが好ましく、20℃~35℃であることがさらに好ましい。酸化反応を効率よく進めるために、反応系のpHを7~14に維持することが好ましく、10~14に維持することがさらに好ましい。pHを調整するために、水酸化ナトリウムなどのアルカリ剤、塩酸等の酸を添加してもよい。
 酸化反応の反応時間は、酸化の進行の程度に従って設定することができるが、例えば、15分~6時間程度反応させることが好ましい。 
 酸化反応では、セルロース系原料中の1級水酸基が酸化されてカルボキシル基に変化し、酸化セルロースが生成する。酸化セルロース中のカルボキシル基量は特に限定されないが、次工程で酸化セルロースを解繊してセルロースナノファイバーを製造するに際し、酸化セルロース1g当たりのカルボキシル基量が、0.1mmol/g~3.0mmol/gであることが好ましく、0.2mmol/g~1.0mmol/gであることがさらに好ましい。また、前記酸化反応は、2段階に分けて実施してもよい。 
 酸化セルロース中のカルボキシル基量は、次の方法で測定することができる。
 酸化セルロースの0.5質量%スラリーに純水を加えて60mlに調製し、0.1M塩酸水溶液を加えて、pHを2.5に調整する。その後、0.05Nの水酸化ナトリウム水溶液を滴下して、pHが11になるまで電気伝導度を測定し、電気伝導度の変化が穏やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下記式を用いて算出する。
 カルボキシル基量(mmol/g酸化セルロース)=a(ml)×0.05/酸化セルロース質量(g) 
 次いで、上記工程で得られた酸化セルロースを解繊してナノ化することでセルロースナノファイバーを製造する。
 酸化セルロースを解繊する方法は、特に制限されない。例えば、溶媒中でスターラーなどを用いた撹拌により行ってもよい。解繊時間の短縮の観点からは、機械的解繊を行ってもよい。
 機械的解繊の方法は、特に限定されない。例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、二重円筒型ホモジナイザー、超音波ホモジナイザー、水流対抗衝突型分散機、ビーター、ディスク型リファイナー、コニカル型リファイナー、ダブルディスク型リファイナー、グラインダー、一軸又は多軸混錬機などの公知の装置を用いて行ってもよく、これらの装置を2種以上組み合せて行ってもよい。
 酸化セルロースの解繊は、溶媒中で行うことが好ましい。解繊処理に使用する溶媒としては、特に制限されない。溶媒としては水及び有機溶剤が挙げられ、有機溶剤としてはアルコール溶媒、エーテル溶媒、ケトン溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等が挙げられる。
 酸化セルロースの解繊が容易となること、環境に優しく取り扱いが容易であることから、溶媒としては水を用いることが好ましい。
 有機溶剤を用いる場合は、除去の容易さとセルロースの解繊し易さからアセトニトリルが好ましく用いられる。溶媒は1種のみを使用しても2種以上を併用してもよい。 
 (2)の方法において、使用される多価カルボン酸としては、100℃~200℃の温度条件下においてセルロース系原料を構成するセルロースの水酸基と脱水縮合して付加され、かつ、この温度条件下において容易に熱分解したり脱水縮合しないものであればどのようなものでも使用できる。
 使用可能な多価カルボン酸としては、2個以上のカルボキシル基を有する化合物(ジカルボン酸、トリカルボン酸、テトラカルボン酸、ヘキサカルボン酸等)が挙げられ、1種のみを用いても、2種以上を組み合わせて用いてもよい。使用する多価カルボン酸の種類は、生産されるセルロースナノファイバーの使用目的等に応じて適宜選択できる。
 ジカルボン酸として具体的には、シュウ酸、リンゴ酸、アジピン酸、アゼライン酸、セバシン酸、マレイン酸、マロン酸、コハク酸、フタル酸、酒石酸、イタコン酸、シトラコン酸などが挙げられる。
 トリカルボン酸として具体的には、クエン酸、アコニット酸、トリメリット酸、ニトリロ三酢酸などが挙げられる。
 テトラカルボン酸として具体的には、エチレンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、ナフタレンテトラカルボン酸、ベンゼン-1,2,4,5-テトラカルボン酸などが挙げられる。
 ヘキサカルボン酸として具体的には、メリト酸、1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸などが挙げられる。
 多価カルボン酸は脂肪族カルボン酸であっても芳香族カルボン酸であってもよい。反応性に優れる点、及び、多価カルボン酸変性セルロースと樹脂との相溶性の観点からは脂肪族カルボン酸が好ましく、反応性に特に優れる点、及び、多くのカルボキシル基を導入できる観点からはクエン酸がより好ましい。
 多価カルボン酸をセルロース系原料と反応させる方法は特に制限されない。例えば、多価カルボン酸を無水物又は水和物の状態でセルロース系原料に添加してもよく、水溶液の状態でセルロース系原料に添加してもよい。反応は、100℃~200℃の温度条件下で行うことが好ましい。
 多価カルボン酸をセルロース系原料と反応させる際には、スクロール、ホスフィン酸ナトリウム等の触媒を用いてもよい。
 セルロース系原料と反応させる多価カルボン酸の量は、質量基準で、セルロース系原料の1倍~50倍であることが好ましく、1倍~10倍であることがより好ましい。
 セルロース系原料にはリグニンが含まれているが、多価カルボン酸変性セルロースに含まれるリグニンは少ないことが好ましい。多価カルボン酸の量がセルロース系原料の1倍以上であると、リグニンが可溶化されやすくなり、リグニンを効率よく分離することができる。このため、セルロース中のリグニン量が低減して解繊処理を効率よく行うことができる。
 セルロース系原料に多価カルボン酸を反応させて得られる多価カルボン酸変性セルロースを解繊することで、セルロースナノファイバーが得られる。
 多価カルボン酸変性セルロースを解繊する方法は特に制限されない。例えば、上記の酸化セルロースを解繊する方法と同様の方法により行ってもよい。
 本発明の方法では、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーを使用する。アミン又は四級アンモニウム塩化合物がセルロースナノファイバーの表面のカルボキシル基と反応することで、セルロースナノファイバーの疎水性が向上し、エチレン不飽和単量体及び樹脂に対する親和性が向上する。
 さらに、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーは、エチレン不飽和単量体を重合させる工程において分散剤として機能する。これにより、エチレン不飽和単量体を重合させる工程での乳化剤の使用を省略することが出来る。乳化剤を使用しないことは、得られた樹脂改質剤の乾燥時に起泡が生じず作業性の面で有利である。
 セルロースナノファイバーと反応させるアミンは特に制限されず、1級、2級及び3級のいずれであってもよい。アミン又は四級アンモニウム塩化合物の窒素原子に結合している炭化水素基又は芳香族基の炭素数(窒素原子に炭化水素基又は芳香族基が2つ以上結合している場合は、その合計炭素数)は特に制限されず、炭素数1~100の間から選択してもよい。
 アミンとしては、エチレンオキサイド/プロピレンオキサイド(EO/PO)共重合部等のポリアルキレンオキサイド構造を有するものを用いてもよい。
 セルロースナノファイバーに充分な疎水性を付与する観点からは、炭素数は3以上であることが好ましく、5以上であることがより好ましい。
 セルロースナノファイバーと反応させる四級アンモニウム塩化合物は特に制限されない。四級アンモニウム塩化合物として具体的には、テトラブチルアンモニウム水酸化物等の四級アンモニウム水酸化物、テトラブチルアンモニウム塩化物等の四級アンモニウム塩化物、テトラブチルアンモニウム臭化物等の四級アンモニウム臭化物、テトラブチルアンモニウムヨウ化物等の四級アンモニウムヨウ化物などが考えられる。
(エチレン性不飽和単量体)
 本発明の方法で使用するエチレン性不飽和単量体の種類は特に制限されず、所望の粒子特性、改質対象の樹脂の種類等に応じて選択できる。エチレン性不飽和単量体は、1種のみを用いても2種以上を組み合わせてもよい。
 エチレン性不飽和単量体として具体的には、(メタ)アクリル酸、アルキル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート、(メタ)アクリロニトリル、ハロゲン化ビニル、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル等が挙げられる。これらの中でも、アルキル(メタ)アクリレート及びスチレンからなる群より選択される少なくとも一種が好ましい。
 アルキル(メタ)アクリレートとしては、アルキル部分の炭素数が1~10のものが挙げられる。アルキル部分は直鎖状、分岐状、環状のいずれであってもよく、無置換であっても置換基を有していてもよい。
 エチレン性不飽和単量体はカルボキシル基、水酸基、エポキシ基、アミノ基、アミド基、シアノ基等の官能基を有していてもよい。これらの官能基を有することでセルロースナノファイバーに対する親和性が高められる。一方、乳化や分散が困難になり重合が不安定になるのを避ける観点からは、これらの官能基を有するエチレン性不飽和単量体の割合は、エチレン性不飽和単量体全体の5モル%以下であることが好ましく、3モル%以下であることがより好ましく、1モル%以下であることがさらに好ましい。
 エチレン性不飽和単量体の重合体の重量平均分子量は、特に制限されない。例えば、5000~300万であってもよい。粒子重合体の重量平均分子量が5000以上であると樹脂の強度低下が抑制され、粒子の重量平均分子量が300万以下であると粒子が樹脂中で溶融しやすく充分な改質効果が得られる傾向にある。
 エチレン性不飽和単量体の重合体の重量平均分子量は、実施例に記載した方法で測定される。
 改質対象の樹脂に対する親和性の観点からは、エチレン性不飽和単量体の重合体を構成する構造単位中の官能基を有する構造単位の割合が5モル%以下であることが好ましく、3モル%以下であることがより好ましく、1モル%以下であることがさらに好ましい。
 セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる方法は、特に制限されない。粒子状の樹脂改質剤を得る観点からは、乳化重合、懸濁重合又はピッカリングエマルション重合が好ましい。
 セルロースナノファイバーの存在下でエチレン性不飽和単量体を乳化重合又は懸濁重合により重合させる方法としては、水等の溶媒中にセルロースナノファイバーとエチレン性不飽和単量体を分散させ、重合開始剤を添加した状態で加熱する方法が挙げられる。
 エチレン性不飽和単量体の重合に用いる重合開始剤としては、過硫酸塩、有機過酸化物、アゾ化合物等の一般的な重合開始剤を使用することができるが、重合反応率及び生産性に優れる点で過硫酸塩が好ましく、得られた樹脂が耐水性に優れる点で過硫酸アンモニウムがより好ましい。
 過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムなどが挙げられる。
 有機過酸化物としては、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、カプロイルペルオキシド、ジ-i-プロピルペルオキシジカルボナト、ジ-2-エチルヘキシルペルオキシジカルボナト、t-ブチルペルオキシビバラト、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-アミルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-オクチルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-α-クミルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)ブタン、2,2-ビス(4,4-ジ-t-オクチルペルオキシシクロヘキシル)ブタン等が挙げられる。
 アゾ化合物としては、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-i-ブチルニトリル、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。
 上記の過硫酸塩や過酸化物は、還元剤である亜硫酸水素ナトリウムやアスコルビン酸ナトリウムと組み合わせて、レドックス系重合開始剤としてもよい。
 重合反応時の温度は、特に制限されない。例えば、30℃~180℃の範囲であることが好ましく、50℃~150℃の範囲であることがより好ましい。
 セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる際のセルロースナノファイバーとエチレン性不飽和単量体の割合は、特に制限されない。例えば、セルロースナノファイバー100質量部に対するエチレン性不飽和単量体の量を5質量部~1000質量部としてもよく、10質量部~100質量部としてもよい。
 エチレン性不飽和単量体の重合反応に使用した溶媒は除去してもよく、除去しなくてもよい。また、上記方法で得られた樹脂改質剤は重合反応に使用した溶媒を除去した後に別の溶媒に分散させて用いてもよい。
 上記方法で得られた樹脂改質剤は、そのままの状態で用いても、所望の形状(粉末状、ビーズ状、ペレット状等)に成形してもよい。
<樹脂改質剤>
 本発明の樹脂改質剤は、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーと、エチレン性不飽和単量体の重合体と、を含む。
 上記樹脂改質剤は、樹脂の改質効果に優れている。その理由は必ずしも明らかではないが、下記のように推測される。
 上記樹脂改質剤は、セルロースナノファイバーとしてアミン又は四級アンモニウム塩化合物と反応させたものを含む。このため、セルロースナノファイバーと樹脂との親和性が高く、優れた改質効果が発揮されると考えられる。
 さらに上記樹脂改質剤は、エチレン性不飽和単量体の重合体を含む。このため、セルロースナノファイバーの少なくとも一部がエチレン性不飽和単量体の重合体と複合化している(例えば、重合体の粒子の内部に入り込んでいる)と考えられる。その結果、改質対象の樹脂中にセルロースナノファイバーが良好に分散し、優れた改質効果が発揮されると考えられる。
 樹脂への分散性の観点からは、樹脂改質剤は粒子状であることが好ましい。樹脂改質剤が粒子状である場合の粒子径は、特に制限されない。例えば、0.01μm~100μmの範囲であってもよい。ある実施態様では、樹脂改質剤の粒子径は0.1μm未満であってもよい。
 樹脂改質剤及びこれに含まれる各成分の詳細及び好ましい態様は、上述した樹脂改質剤の製造方法で製造される樹脂改質剤及び対応する成分の詳細及び好ましい態様と同様であってもよい。
 環境又は人体に対する影響を低減する観点からは、樹脂改質剤中のTEMPO等のピペリジン骨格を有する化合物の含有率は小さいほど好ましい。例えば、0.01ppm以下であることが好ましく、実質的に含まれないことがより好ましい。
 エチレン性不飽和単量体の重合体の原料となるエチレン性不飽和単量体は、特に制限されず、上述したものから選択してもよい。エチレン性不飽和単量体の重合体は、1種の単量体から形成される単独重合体であっても2種以上の単量体から形成される共重合体であってもよい。
 エチレン性不飽和単量体の重合体の重量平均分子量は、特に制限されない。例えば、5000~300万であってもよく、10000~150万であってもよい。粒子の重量平均分子量が5000以上であると樹脂改質剤の添加による樹脂の強度低下が抑制される傾向にあり、粒子の重量平均分子量が300万以下であると樹脂改質剤が樹脂中で溶融しやすく充分な改質効果が得られる傾向にある。
 樹脂改質剤におけるセルロースナノファイバーとエチレン性不飽和単量体の重合体の割合は、特に制限されない。例えば、セルロースナノファイバー100質量部に対するエチレン性不飽和単量体の重合体の量を5質量部~150質量部としてもよく、10質量部~100質量部としてもよい。
 樹脂改質剤を用いて樹脂を改質する方法は、特に制限されない。例えば、改質対象の樹脂を溶融又は軟化させた状態で樹脂改質剤を添加してもよい。樹脂改質剤の添加量は特に制限されない。例えば、樹脂100質量部に対する添加量を0.1質量部~10質量部としてもよい。
<複合材料>
 本発明の複合材料は、上述した樹脂改質剤と、樹脂とを含む複合材料である。
 複合材料に含まれる樹脂の種類は特に制限されず、熱可塑性樹脂、熱可塑性エラストマー等の成形可能な樹脂が挙げられる。
 熱可塑性樹脂としては、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、アクリル樹脂、ポリオレフィン、ポリエステル、ポリウレタン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート等が挙げられる。
 熱可塑性エラストマーとしては、オレフィン系エラストマー、スチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー等が挙げられる。
 複合材料に含まれる樹脂は、樹脂改質剤に含まれる成分と同一の成分、又は樹脂改質剤と親和性の良いセグメント若しくは官能基を含むことが好ましい。特に、樹脂改質剤に含まれる成分と同一の成分または親和性の良いセグメントがポリマーアロイ構造となっていると、衝撃吸収性などの効果が付与されることから好ましい。樹脂改質剤と混合される樹脂との親和性が悪いと得られた複合材料の分散性が低下して複合材料の外観が悪化したり、破断応力や破断伸びが低下する場合がある。
 複合材料に含まれる樹脂改質剤の量は、特に制限されない。例えば、樹脂100質量部に対する樹脂改質剤の量を0.1質量部~10質量部としてもよい。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<セルロースナノファイバーAの作製>
 有効塩素濃度が43質量%である次亜塩素酸Na5水和物結晶(500g)と純水(1035.7g)とを混合して、有効塩素濃度が14質量%である溶液を調製した。この溶液を30℃に加温し、スターラーで撹拌しながら、パルプ(セオラスFD-101、旭化成ケミカルズ株式会社、平均粒子径50μm、カルボキシル基量0.03mmol/g)35gを添加し、さらに30℃に維持しながら30分間スターラーで撹拌した後、純水100gを添加した。次いで0.1μmPTFEメンブランフィルターにより吸引濾過し、酸化セルロースを得た。得られた酸化セルロースを超音波ホモジナイザーにて10分間解繊処理し、1.3質量%のセルロースナノファイバーAを含む分散液を調製した。
<セルロースナノファイバーBの作製>
 溶液の有効塩素濃度を30質量%とした以外はセルロースナノファイバーAと同様にして、セルロースナノファイバーBを含む分散液を調製した。
<セルロースナノファイバーCの作製>
 溶液の有効塩素濃度を43質量%とした以外はセルロースナノファイバーAと同様にして、セルロースナノファイバーCを含む分散液を調製した。
<セルロースナノファイバーDの作製>
 溶液の有効塩素濃度を12質量%とした以外はセルロースナノファイバーAと同様にして濾過したところ、濾過上物のカルボキシル基量が0.07mmol/gであり酸化が進んでいなかったため、解繊処理を行わなかった。
<セルロースナノファイバーEの作製>
 パルプ(セオラスFD-101)35gを純水2800gに添加し、撹拌した。これにTEMPOを0.44g、臭化ナトリウムを4.4g、次亜塩素酸ナトリウムを10g(有効塩素濃度12質量%)それぞれ添加した。0.5M水酸化ナトリウムでpHを10.5に維持しながら酸化反応を実施し、酸化反応に伴うpH低下がほぼ停止した時点で反応終了とした。得られた酸化セルロースを純水で洗浄後、酸化セルロースの含有率が1質量%となるように純水を加えて超音波ホモジナイザーで解繊処理し、1.3質量%のセルロースナノファイバーEを含む分散液を調製した。
<セルロースナノファイバーFの作製>
 クエン酸無水物(10g)を純水(20g)で溶解し、クエン酸水溶液を調製した。この液をスターラーで撹拌しながら、針葉樹クラフトパルプ(1g)を加え、25℃で1時間撹拌した。それをオーブンにて空気下で105℃、8時間加熱して水分を除去した。得られた乾燥物を乳鉢で粉砕し、500μm篩で分級した。得られた篩下分をオーブンにて空気下で130℃、8時間加熱した。得られた加熱物を純水に分散した後、0.1μmPTFEメンブランフィルターにより吸引ろ過した。次いで純水で洗浄して、クエン酸変性セルロースH型を得た。得られたクエン酸変性セルロースH型を0.1M-水酸化ナトリウム水溶液(150g)に加え、25℃で40分間撹拌し、0.1μmPTFEメンブランフィルターにより吸引ろ過し、次いで純水で洗浄し、クエン酸変性セルロースNa型を得た。クエン酸変性セルロースNa型の濃度が1質量%になるように純水を加え、ヒールッシャー製超音波ホモジナイザー「UP-400S」にてCYCLE0.5、AMPLITUDE50の条件で解繊することで、クエン酸変性セルロースナノファイバーを含む分散液を調製した。
 作製したセルロースナノファイバー(CNF)の物性を表1及び表2に示す。セルロースナノファイバーEのTEMPO残存量を測定したところ、1ppmであった。セルロースナノファイバーA~Dでは、TEMPO残存は検出されなかった。なお、TEMPO残存量はESR(電子スピン共鳴法、例えば、e-scan:Bruker Biospin製)により評価した。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
<実施例1>
 セルロースナノファイバーAを含む分散液36.9gに0.5M塩酸0.52gを添加して撹拌し、セルロースナノファイバーAを沈殿させた。ここにモノドデシルアミン0.034g(エタノール5gを含む、以下同様)と純水4.13gを加えて撹拌、濾過、純水10gで洗浄しながら濾過をこの順に実施して、セルロースナノファイバーAをアミンと反応させた。
 アミンと反応させたセルロースナノファイバーAの含有率が1.2質量%となるように純水を加え、エチレン不飽和単量体としてスチレン(St)、重合開始剤として過硫酸アンモニウム(APS)を加えた。これを超音波で分散した後に窒素雰囲気とし、撹拌しながら70℃で4時間加熱して重合させた。その後、加熱しながら真空乾燥して、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例2>
 重合開始剤を過硫酸アンモニウムから2,2’-アゾビス(2,4-ジメチルバレロニトリル)に変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例3>
 セルロースナノファイバーAをセルロースナノファイバーEに変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例4>
 セルロースナノファイバーAをセルロースナノファイバーBに変更したことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例5>
 セルロースナノファイバーAをセルロースナノファイバーCに変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例6>
 アミンをモノドデシルアミンからトリドデシルアミンに変更したことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例7>
 セルロースナノファイバーAをセルロースナノファイバーBに変更したことと、アミンをモノドデシルアミンからテトラブチルアンモニウムヒドロキシド(TBAH)に変更したことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例8>
 セルロースナノファイバーAをセルロースナノファイバーEに変更したことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したことと、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(DBSS)を使用したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例9>
 セルロースナノファイバーBを含む分散液36.9gに0.5M塩酸0.68gを添加して撹拌し、セルロースナノファイバーBを沈殿させた。ここにn-プロピルアミン0.014gと純水4.13gを加えて撹拌、濾過、純水10gで洗浄しながら濾過をこの順に実施して、セルロースナノファイバーBをアミンと反応させた。材料の配合量を表3に示す。
 アミンと反応させたセルロースナノファイバーBの含有率が1.2質量%となるように純水を加え、エチレン不飽和単量体としてスチレン(St)、重合開始剤として過硫酸アンモニウム(APS)を加えた。これを超音波で分散した後に窒素雰囲気とし、撹拌しながら70℃で4時間加熱して重合させた。その後、加熱しながら真空乾燥して、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例10>
 IMBAの量を変更したことと重合の際に連鎖移動剤としてドデシルメルカプタン(DM)を使用したこと以外は実施例4と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例11>
 IMBAの量を変更したこと以外は実施例4と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例12>
 単量体として用いるスチレンの配合量を変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表3に示す。
<実施例13>
 実施例13では実施例1~12と異なり、セルロースナノファイバーの存在下でエチレン不飽和単量体を重合させた後に、セルロースナノファイバーをアミンと反応させた。
 セルロースナノファイバーAに3.1gの純水を加えた後、エチレン不飽和単量体としてスチレン(St)0.48g、重合開始剤として1質量%の過硫酸アンモニウム(APS)0.13gを加えた。これを超音波で分散した後に窒素雰囲気とし、撹拌しながら70℃で4時間加熱して重合させた。
 この分散液に0.5M塩酸0.52gを添加して撹拌した。ここにモノドデシルアミン0.034g(エタノール5gを含む)を加えて撹拌、濾過、純水10gで洗浄しながらの濾過をこの順番で実施して、セルロースナノファイバーAをアミンと反応させた。その後、加熱しながら真空乾燥して、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表4に示す。
<実施例14>
 セルロースナノファイバーAをセルロースナノファイバーFに変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<実施例15>
 セルロースナノファイバーAをセルロースナノファイバーFに変更したことと単量体として用いるスチレンの配合量を変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<実施例16>
 セルロースナノファイバーAをセルロースナノファイバーFに変更したことと単量体として用いるスチレンの配合量を変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<実施例17>
 セルロースナノファイバーAをセルロースナノファイバーFに変更したことと、アミンをモノドデシルアミンからテトラブチルアンモニウムヒドロキシド(TBAH)に変更したこと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<実施例18>
 セルロースナノファイバーAをセルロースナノファイバーFに変更したことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したことと以外は実施例1と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<比較例1>
 セルロースナノファイバーをアミンと反応させなかったこと以外は実施例3と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<比較例2>
 セルロースナノファイバーをアミンと反応させなかったことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したこと以外は実施例3と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<比較例3>
 セルロースナノファイバーをアミンと反応させなかったことと、スチレンをメタクリル酸イソブチル(IBMA)に変更したことと、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(DBSS)を使用したこと以外は実施例3と同様にして、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む粒子状の樹脂改質剤を得た。材料の配合量を表5に示す。
<比較例4>
 セルロースナノファイバーBを含む分散液36.9gに0.5M塩酸0.68gを添加して撹拌し、セルロースナノファイバーBを沈殿させた。ここにモノドデシルアミン0.044gと純水4.13gを加えて撹拌、濾過、純水10gで洗浄しながら濾過をこの順に実施して、セルロースナノファイバーBをアミンと反応させた。その後、エチレン性不飽和単量体の重合は行わずに樹脂改質剤とした。材料の配合量を表5に示す。
<比較例5>
 セルロースナノファイバーBをそのまま樹脂改質剤とした。
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
<顕微鏡観察>
 実施例で得られた樹脂改質剤を電子顕微鏡で観察したところ、セルロースナノファイバーの少なくとも一部がエチレン不飽和単量体の重合体に入り込んでいる状態の粒子状であった。
<粒子径の測定>
 樹脂改質剤の粒子径は、レーザー回折式粒度分布計(たとえば、マイクロトラックMT3000II、マイクロトラック・ベル製)を用いて測定する。具体的には、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む樹脂改質剤をイオン交換水で適当な濃度に調整した後、粒度分布からメディアン径を測定し、これを粒子径とする。粒子の屈折率はすべて1.5とする。結果を表6に示す。
<重量平均分子量(Mw)の測定>
 エチレン性不飽和単量体の重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー、例えば、HLC-8220、東ソー製)を用いて測定する。具体的には、セルロースナノファイバーとエチレン不飽和単量体の重合体とを含む樹脂改質剤に適切な溶媒を加えて重合体を溶解させる。その後、0.45μmのフィルターを用いてろ過し、得られた液に対しポリスチレン換算により測定を行う。結果を表6に示す。
<評価>
 実施例及び比較例で得た樹脂改質剤を、成形可能な樹脂であるABS樹脂(テクノUMG株式会社製、品番ABS130)に全体の1質量%(セルロースナノファイバー換算)となる量で添加した。具体的には、樹脂改質剤とABS樹脂のペレットとをカップ内で混合した後、プラストミルを用いて加熱混練した。混練温度は160℃とし、混練時間は9分間とした。その後、加圧機を用いて180℃で2分間加圧し、混練物を平板状とした。圧力は最初の1分を10MPa、次の1分を15MPaとした。得られた平板状の混練物を用いてJIS K 6251:2010に規定する3号ダンベル(厚さ1mm)形状の試験片を作製した。同様に、樹脂改質剤を添加していないABS樹脂を用いて試験片を作製した。
(分散性の評価)
 試験片を目視で観察し、樹脂改質剤の分散不良による斑点、凹凸、筋などが観察されない場合を○、明らかに観察される場合を×とした。結果を表6に示す。
(破断応力の評価)
 試験片を用いてJIS K 6251:2010に規定する引張応力試験(引張速度5mm/分)を行い、破断応力(MPa)と破断伸び(mm)を測定した。
 破断応力については、樹脂改質剤を添加していないABS樹脂の試験片の測定値を1としたときの測定値が1.05以上となった場合を〇、1を超え1.05未満となった場合を△、1以下となった場合を×として評価した。結果を表6に示す。
 破断伸びについては、樹脂改質剤を添加していないABS樹脂の試験片の測定値を1としたときの測定値が0.8以上となった場合を〇、0.6を超え0.8未満となった場合を△、0.6以下となった場合を×として評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させて得られた実施例の樹脂改質剤を添加したABS樹脂は、破断応力及び破断伸びのいずれも良好な評価結果が得られた。
 さらに、評価に用いた樹脂改質剤と成形可能な樹脂とが混合された複合材料において、セルロースナノファイバーを四級アンモニウム塩化合物と反応させたものは他の実施例に比べて着色が少ないことが目視で確認された。
 セルロースナノファイバーをアミン又は四級アンモニウム塩化合物と反応させないで得られた比較例1、3の樹脂改質剤を添加したABS樹脂は、破断伸びが著しく低下した。
 セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させていない比較例4、5の樹脂改質剤は、ABS樹脂への分散性に劣り、破断応力と破断伸びがいずれも著しく低下した。
 エチレン性不飽和単量体としてIBMAを使用し、乳化剤を使用しなかった比較例2はIBMAの凝集が生じて樹脂改質剤が得られなかったため、ABS樹脂を用いた評価を行うことができなかった。
 IBMAを分散させるために乳化剤を使用した比較例3は、重合反応は進んだが粒子を乾燥する際に起泡が生じた。これに対し、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーを用いた実施例4では、セルロースナノファイバーが分散剤として機能することで、乳化剤を使用しなくてもIBMAが凝集せずに樹脂改質剤を得ることができた。

Claims (19)

  1.  セルロースナノファイバーの存在下でエチレン性不飽和単量体を重合させる工程を含み、前記セルロースナノファイバーはアミン又は四級アンモニウム塩化合物と反応させた状態である、樹脂改質剤の製造方法。
  2.  前記樹脂改質剤は粒子状である、請求項1に記載の樹脂改質剤の製造方法。
  3.  前記重合の方法は乳化重合又は懸濁重合である、請求項1又は請求項2に記載の樹脂改質剤の製造方法。
  4.  前記重合は乳化剤を使用しないで行われる、請求項1~請求項3のいずれか1項に記載の樹脂改質剤の製造方法。
  5.  前記エチレン性不飽和単量体のうち官能基を有するエチレン性不飽和単量体の割合が5モル%以下である、請求項1~請求項4のいずれか1項に記載の樹脂改質剤の製造方法。
  6.  前記セルロースナノファイバーとして、セルロース系原料を有効塩素濃度が14質量%~43質量%の次亜塩素酸又はその塩を酸化剤として用いて得られる酸化セルロースを解繊して得られるものを使用する、請求項1~請求項5のいずれか1項に記載の樹脂改質剤の製造方法。
  7.  前記セルロースナノファイバーとして、セルロース系原料を多価カルボン酸と反応させて得られる多価カルボン酸変性セルロースを解繊して得られるものを使用する、請求項1~請求項5のいずれか1項に記載の樹脂改質剤の製造方法。
  8.  前記多価カルボン酸が、ジカルボン酸、トリカルボン酸、テトラカルボン酸及びヘキサカルボン酸からなる群から選択される少なくとも1種を含む、請求項7に記載の樹脂改質剤の製造方法。
  9.  前記多価カルボン酸がクエン酸を含む、請求項7又は請求項8に記載の樹脂改質剤の製造方法。
  10.  前記酸化セルロースはピペリジン骨格を有する化合物を使用しないで得られる、請求項1~請求項9のいずれか1項に記載の樹脂改質剤の製造方法。
  11.  アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーと、エチレン性不飽和単量体の重合体とを含む、樹脂改質剤。
  12.  前記セルロースナノファイバーは、セルロース系原料を有効塩素濃度が14質量%~43質量%の次亜塩素酸又はその塩を酸化剤として用いて得られる酸化セルロースを解繊して得られたものである、請求項11に記載の樹脂改質剤。
  13.  前記セルロースナノファイバーは、セルロース系原料を多価カルボン酸と反応させて得られる多価カルボン酸変性セルロースを解繊して得られたものである、請求項11に記載の樹脂改質剤。
  14.  粒子状である、請求項11~請求項13のいずれか1項に記載の樹脂改質剤。
  15.  前記エチレン性不飽和単量体の重合体を構成する構造単位中の官能基を有する構造単位の割合が5モル%以下である、請求項11~請求項14のいずれか1項に記載の樹脂改質剤。
  16.  前記エチレン性不飽和単量体の重合体の重量平均分子量は5000~300万である、請求項11~請求項15のいずれか1項に記載の樹脂改質剤。
  17.  前記セルロースナノファイバー100質量部に対する前記エチレン性不飽和単量体の重合体の量は5質量部~1000質量部である、請求項11~請求項16のいずれか1項に記載の樹脂改質剤。
  18.  請求項11~請求項17のいずれか1項に記載の樹脂改質剤と、樹脂とを含む複合材料。
  19.  前記樹脂は、前記樹脂改質剤に含まれる成分と同一の成分、又は前記樹脂改質剤と親和性の良いセグメント若しくは官能基を含む、請求項18に記載の複合材料。
PCT/JP2020/007662 2019-03-12 2020-02-26 樹脂改質剤の製造方法、樹脂改質剤及び複合材料 WO2020184177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217031976A KR20210137113A (ko) 2019-03-12 2020-02-26 수지 개질제의 제조 방법, 수지 개질제 및 복합재료
US17/438,211 US11891501B2 (en) 2019-03-12 2020-02-26 Method of producing resin modifier, resin modifier, and composite material
JP2021504902A JP7343865B2 (ja) 2019-03-12 2020-02-26 樹脂改質剤の製造方法、樹脂改質剤及び複合材料
CN202080020104.2A CN113544158B (zh) 2019-03-12 2020-02-26 树脂改性剂的制造方法、树脂改性剂及复合材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-044803 2019-03-12
JP2019044803 2019-03-12
JP2019213680 2019-11-26
JP2019-213680 2019-11-26

Publications (1)

Publication Number Publication Date
WO2020184177A1 true WO2020184177A1 (ja) 2020-09-17

Family

ID=72426600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007662 WO2020184177A1 (ja) 2019-03-12 2020-02-26 樹脂改質剤の製造方法、樹脂改質剤及び複合材料

Country Status (5)

Country Link
US (1) US11891501B2 (ja)
JP (1) JP7343865B2 (ja)
KR (1) KR20210137113A (ja)
CN (1) CN113544158B (ja)
WO (1) WO2020184177A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661925A (zh) * 2020-12-14 2021-04-16 安徽艾米伦特建材科技有限公司 一种保温夹芯板用阻燃聚氨酯发泡保温材料及其制备方法
WO2022009980A1 (ja) * 2020-07-09 2022-01-13 東亞合成株式会社 ナノセルロース及びその分散液
WO2022059705A1 (ja) * 2020-09-16 2022-03-24 東亞合成株式会社 樹脂組成物、樹脂組成物の製造方法、及び樹脂
WO2022118792A1 (ja) * 2020-12-01 2022-06-09 東亞合成株式会社 塩化ビニル樹脂組成物及びその製造方法、並びに成形体
WO2022138759A1 (ja) * 2020-12-24 2022-06-30 東亞合成株式会社 酸化セルロース及びナノセルロースの製造方法
WO2022186241A1 (ja) * 2021-03-02 2022-09-09 東亞合成株式会社 不織布用バインダー組成物、及び不織布
WO2022224800A1 (ja) * 2021-04-19 2022-10-27 東亞合成株式会社 水性インク組成物及びその製造方法並びに記録方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227536A (ja) * 2012-03-26 2013-11-07 Mitsubishi Chemicals Corp 繊維樹脂複合材料
JP2015000935A (ja) * 2013-06-14 2015-01-05 花王株式会社 セルロースナノファイバーを含む樹脂組成物の製造方法
JP2015007196A (ja) * 2013-06-25 2015-01-15 花王株式会社 樹脂組成物
JP2017052888A (ja) * 2015-09-10 2017-03-16 星光Pmc株式会社 セルロース微小繊維分散液、セルロース微小繊維分散液の製造方法及び繊維複合樹脂
JP2018044098A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 コーティング剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923370B2 (ja) 2011-06-07 2016-05-24 花王株式会社 樹脂改質用添加剤及びその製造方法
JP6612038B2 (ja) * 2015-02-23 2019-11-27 日本製紙株式会社 複合体の製造方法
CN105111378B (zh) * 2015-09-29 2018-01-09 赵迎辉 一种阳离子聚合物接枝改性纳米结晶纤维素及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227536A (ja) * 2012-03-26 2013-11-07 Mitsubishi Chemicals Corp 繊維樹脂複合材料
JP2015000935A (ja) * 2013-06-14 2015-01-05 花王株式会社 セルロースナノファイバーを含む樹脂組成物の製造方法
JP2015007196A (ja) * 2013-06-25 2015-01-15 花王株式会社 樹脂組成物
JP2017052888A (ja) * 2015-09-10 2017-03-16 星光Pmc株式会社 セルロース微小繊維分散液、セルロース微小繊維分散液の製造方法及び繊維複合樹脂
JP2018044098A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 コーティング剤

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009980A1 (ja) * 2020-07-09 2022-01-13 東亞合成株式会社 ナノセルロース及びその分散液
WO2022059705A1 (ja) * 2020-09-16 2022-03-24 東亞合成株式会社 樹脂組成物、樹脂組成物の製造方法、及び樹脂
WO2022118792A1 (ja) * 2020-12-01 2022-06-09 東亞合成株式会社 塩化ビニル樹脂組成物及びその製造方法、並びに成形体
CN112661925A (zh) * 2020-12-14 2021-04-16 安徽艾米伦特建材科技有限公司 一种保温夹芯板用阻燃聚氨酯发泡保温材料及其制备方法
CN112661925B (zh) * 2020-12-14 2022-03-25 安徽艾米伦特建材科技有限公司 一种保温夹芯板用阻燃聚氨酯发泡保温材料及其制备方法
WO2022138759A1 (ja) * 2020-12-24 2022-06-30 東亞合成株式会社 酸化セルロース及びナノセルロースの製造方法
WO2022186241A1 (ja) * 2021-03-02 2022-09-09 東亞合成株式会社 不織布用バインダー組成物、及び不織布
WO2022224800A1 (ja) * 2021-04-19 2022-10-27 東亞合成株式会社 水性インク組成物及びその製造方法並びに記録方法

Also Published As

Publication number Publication date
JP7343865B2 (ja) 2023-09-13
KR20210137113A (ko) 2021-11-17
US11891501B2 (en) 2024-02-06
JPWO2020184177A1 (ja) 2020-09-17
CN113544158A (zh) 2021-10-22
CN113544158B (zh) 2023-12-22
US20220186015A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020184177A1 (ja) 樹脂改質剤の製造方法、樹脂改質剤及び複合材料
Hilburg et al. A universal route towards thermoplastic lignin composites with improved mechanical properties
JP5188765B2 (ja) 繊維強化複合材料およびその製造方法
JP5825653B1 (ja) 易分散性セルロース組成物の製造方法、及びセルロース用の水系の分散処理剤の製造方法
Wang et al. Novel process for generating cationic lignin based flocculant
US11713360B2 (en) Method for producing cellulose nanofibers
JP5834847B2 (ja) セルロースの微細化方法、セルロースナノファイバー、マスタバッチ組成物及び樹脂組成物
JP6317538B2 (ja) 優れた耐衝撃性を有する熱可塑性組成物
JP6129470B2 (ja) 新規なコア−シェル粒子の多段ポリマー粉末と、その製造方法と、それを含む組成物
JP2012126903A (ja) コア−シェル耐衝撃性改良剤と、加水分解性に優れた耐衝撃性に優れた熱可塑性組成物の製造方法
JP5916842B2 (ja) 植物繊維含有樹脂組成物の製造方法および成形物の粉砕物の製造方法
WO2018207848A1 (ja) ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法
WO2022059705A1 (ja) 樹脂組成物、樹脂組成物の製造方法、及び樹脂
JP2013018851A (ja) セルロース繊維、セルロース繊維含有重合体、樹脂組成物及び成形体。
JP5441441B2 (ja) グラフト変性澱粉の水性組成物及びこれを用いた硬化性組成物
JP2022041528A (ja) 表面修飾セルロースナノファイバーを含む樹脂改質剤
WO2022118888A1 (ja) 樹脂組成物、樹脂組成物の製造方法、及び樹脂
WO2022118792A1 (ja) 塩化ビニル樹脂組成物及びその製造方法、並びに成形体
JPWO2015040884A1 (ja) 変性セルロースナノファイバーの製造方法
JP6954884B2 (ja) セルロース分散樹脂組成物、その製造方法、及びセルロース樹脂複合材
CN100408604C (zh) 偏二氯乙烯系树脂的制造方法
Dhar et al. Poly (methyl methacrylate) modified Starch: their preparations, properties and applications
JP2019085569A (ja) セルロース分散用ブロック共重合体の製造方法、樹脂組成物の製造方法及び成形体の製造方法
WO2022070691A1 (ja) セルロース複合樹脂
Alkhalifa Copolymerization of pretreated kraft lignin and acrylic acid to produce flocculants for suspension and solution systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031976

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20770791

Country of ref document: EP

Kind code of ref document: A1