WO2018207848A1 - ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法 - Google Patents

ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法 Download PDF

Info

Publication number
WO2018207848A1
WO2018207848A1 PCT/JP2018/018017 JP2018018017W WO2018207848A1 WO 2018207848 A1 WO2018207848 A1 WO 2018207848A1 JP 2018018017 W JP2018018017 W JP 2018018017W WO 2018207848 A1 WO2018207848 A1 WO 2018207848A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
cellulose
grafted
cellulose nanofiber
cnf
Prior art date
Application number
PCT/JP2018/018017
Other languages
English (en)
French (fr)
Inventor
門多 丈治
上利 泰幸
寛 平野
哲周 岡田
貴章 今井
Original Assignee
地方独立行政法人大阪産業技術研究所
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人大阪産業技術研究所, 大王製紙株式会社 filed Critical 地方独立行政法人大阪産業技術研究所
Priority to CA3063332A priority Critical patent/CA3063332A1/en
Priority to CN201880031367.6A priority patent/CN110730792A/zh
Priority to FIEP18798416.6T priority patent/FI3623408T3/fi
Priority to KR1020197035486A priority patent/KR20200007852A/ko
Priority to US16/612,552 priority patent/US11046787B2/en
Priority to EP18798416.6A priority patent/EP3623408B1/en
Publication of WO2018207848A1 publication Critical patent/WO2018207848A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a polylactic acid grafted cellulose nanofiber and a method for producing the same.
  • biodegradable polymers that are decomposed in the natural environment by the action of microorganisms existing in soil and water have attracted attention from the viewpoint of global environmental conservation, and various biodegradable polymers have been developed.
  • a typical example is polylactic acid.
  • Polylactic acid is expected to be a biodegradable polymer that is relatively inexpensive and can be melt-molded.
  • lactide the starting monomer for polylactic acid, has been produced at low cost by fermentation using microorganisms, and it has become possible to produce polylactic acid at a much lower cost.
  • the use as a general-purpose polymer has been studied.
  • polylactic acid has excellent properties among biodegradable polymers, but has properties of being rigid, relatively brittle and poor in flexibility compared to general-purpose polymers.
  • polylactic acid also has a property that the melting characteristics necessary for extrusion molding, blow molding, and foam molding are not sufficient.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a polylactic acid-grafted cellulose nanofiber suitable as a molding material and a method for producing the same.
  • the invention made to solve the above-mentioned problems includes grafted cellulose having a graft chain bonded to cellulose constituting cellulose nanofiber, wherein the graft chain is polylactic acid, and the cellulose O-- in the infrared absorption spectrum
  • the polylactic acid grafted cellulose nanofiber includes grafted cellulose in which the graft chain bonded to the cellulose is polylactic acid.
  • the ratio of the absorbance derived from C ⁇ O of the carbonyl group of the polylactic acid to the absorbance derived from OH of the hydroxyl group of the cellulose in the infrared absorption spectrum is 0.01 or more and 1000 or less.
  • performance suitable as a molding material can be obtained.
  • the polylactic acid grafted cellulose nanofiber can obtain suitable performance as a surface-modified organic additive, in addition to being used alone as a molding material.
  • “cellulose nanofiber” refers to fine cellulose fiber obtained by defibrating biomass such as pulp fiber, and generally includes cellulose fine fiber having a fiber width of nanosize (1 nm to 1000 nm). Cellulose fiber.
  • Another invention made in order to solve the above-mentioned problem is to provide lactide to cellulose constituting cellulose nanofibers in the presence of an organic polymerization catalyst comprising an amine and a salt obtained by reacting the amine and an acid. It is a manufacturing method of the polylactic acid grafted cellulose nanofiber provided with the process of graft polymerizing.
  • the method for producing the polylactic acid-grafted cellulose nanofiber uses an organic polymerization catalyst comprising an amine and a salt obtained by reacting the amine and acid as a graft polymerization catalyst.
  • an organic polymerization catalyst comprising an amine and a salt obtained by reacting the amine and acid as a graft polymerization catalyst.
  • organic polymerization catalyst 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate are preferable.
  • the organic polymerization catalyst By using 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate as the organic polymerization catalyst, the graft polymerization reaction of polylactic acid to cellulose can be further enhanced.
  • the method for producing the polylactic acid-grafted cellulose nanofiber it is preferable to repeat the graft polymerization step a plurality of times. Since the method for producing the polylactic acid-grafted cellulose nanofiber repeats the above graft polymerization step a plurality of times, the polylactic acid-grafted cellulose nanofiber can be efficiently advanced with respect to the cellulose nanofiber. The mass productivity is improved.
  • polylactic acid grafted cellulose nanofiber of the present invention According to the polylactic acid grafted cellulose nanofiber of the present invention and the production method thereof, a polylactic acid grafted cellulose nanofiber suitable as a molding material and a surface-modified organic additive can be obtained.
  • the polylactic acid-grafted cellulose nanofiber includes grafted cellulose having a graft chain bonded to cellulose constituting the cellulose nanofiber, and the graft chain is polylactic acid. Further, in the infrared absorption spectrum of the polylactic acid grafted cellulose nanofiber, the ratio of the absorbance derived from C ⁇ O of the carbonyl group of the polylactic acid to the absorbance derived from OH of the hydroxyl group of the cellulose is 0.01. It is 1000 or less.
  • Cellulose nanofibers are fibers containing fine fibers taken out by applying chemical and mechanical treatments to biomass such as pulp fibers containing cellulose.
  • a method for producing cellulose nanofiber there are a method of modifying cellulose itself and a method of not modifying cellulose.
  • modifying the cellulose itself there is a method in which a part of the cellulose hydroxyl group is modified to a carboxy group or a phosphate group. In these, the method which does not modify
  • a hydroxyl group is the starting point and a carboxy group is the ending point. Since the polylactic acid grafted cellulose nanofiber uses cellulose nanofiber as an initiator, the hydroxyl group of the cellulose nanofiber becomes a reaction starting point. Therefore, when a part of the cellulose hydroxyl group is modified with a carboxy group, a phosphate ester group or the like, the starting point of the graft polymerization reaction of polylactic acid is reduced, and therefore it is preferable to use cellulose nanofibers that are not chemically modified. Examples of the cellulose nanofibers that are not chemically modified include cellulose nanofibers refined by mechanical treatment.
  • the amount of hydroxyl group modification of the obtained cellulose nanofiber is preferably 0.5 mmol / g or less, more preferably 0.3 mmol / g or less, and further preferably 0.1 mmol / g or less.
  • Examples of the pulp fibers include broadleaf kraft pulp (LKP) such as hardwood bleached kraft pulp (LBKP), hardwood unbleached kraft pulp (LUKP), softwood bleached kraft pulp (NBKP), and softwood such as softwood unbleached kraft pulp (NUKP).
  • Chemical pulp such as kraft pulp (NKP); Stone Grand Pulp (SGP), Pressurized Stone Grand Pulp (PGW), Refiner Grand Pulp (RGP), Chemi Grand Pulp (CGP), Thermo Grand Pulp (TGP), Grand Pulp (GP), Thermo Mechanical Pulp (TMP), Examples include mechanical pulps such as chemithermomechanical pulp (CTMP) and bleached thermomechanical pulp (BTMP).
  • CTMP chemithermomechanical pulp
  • BTMP bleached thermomechanical pulp
  • it is preferable to use bleached chemical pulp (LBKP, NBKP) whose main component is cellulose having a large number of hydroxyl groups that serve as reaction starting points
  • the pretreatment is performed in order to reduce mechanical defibration energy in the subsequent refinement process.
  • the pretreatment is not particularly limited as long as it is a method that does not modify the functional group of cellulose of the cellulose nanofiber and can be reacted in an aqueous system.
  • the cellulose nanofiber is preferably produced by a method that does not modify the functional group of cellulose.
  • N-oxyl compounds such as 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) are used as catalysts in the chemical pretreatment of pulp fibers in the slurry.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • a production method that combines gentle chemical treatment that does not denature cellulose hydroxyl groups, such as hydrolysis using mineral acids (hydrochloric acid, sulfuric acid, phosphoric acid, etc.) or enzymes, and mechanical defibration is desirable.
  • gentle chemical treatment that does not denature cellulose hydroxyl groups, such as hydrolysis using mineral acids (hydrochloric acid, sulfuric acid, phosphoric acid, etc.) or enzymes
  • mechanical defibration is desirable.
  • the pretreatment can be performed by combining chemical pretreatment and mechanical pretreatment (defibration treatment) at the same time.
  • Cellulose nanofibers have one peak in a pseudo particle size distribution curve measured by a laser diffraction method in an aqueous dispersion state.
  • the particle size (mode) that becomes a peak in the pseudo particle size distribution curve is preferably 5 ⁇ m or more and 60 ⁇ m or less.
  • the “pseudo particle size distribution curve” means a curve indicating a volume-based particle size distribution measured using a particle size distribution measuring apparatus (for example, a laser diffraction / scattering type particle size distribution measuring instrument manufactured by Seishin Corporation).
  • the average fiber diameter of the cellulose nanofiber is preferably 4 nm or more and 1000 nm or less. By refining the fibers to the above average fiber width, it is considered that the number of fibers in the molten resin per weight increases and can contribute to an increase in the melt viscosity of the resin.
  • the average fiber diameter is measured by the following method. 100 ml of an aqueous dispersion of cellulose nanofibers having a solid content concentration of 0.01% by mass or more and 0.1% by mass or less is filtered through a membrane filter made of Teflon (registered trademark), and the solvent is replaced with t-butanol.
  • the lower limit of the crystallinity of the cellulose nanofiber is preferably 10%, more preferably 15%, and even more preferably 20%. If the degree of crystallinity is less than 10%, the strength of the fiber itself is lowered, so that the effect of improving the melt viscosity may be lowered.
  • the upper limit of the crystallinity of the cellulose nanofiber is not particularly limited, but is preferably 95% or less, and more preferably 90% or less. If the degree of crystallinity exceeds 95%, the proportion of strong hydrogen bonds in the molecule increases and the fiber itself becomes stiff, but it is thought that chemical modification of cellulose nanofibers becomes difficult.
  • the crystallinity can be arbitrarily adjusted by, for example, selection of pulp fibers, pretreatment, refinement treatment, and the like.
  • the crystallinity is a value measured by an X-ray diffraction method in accordance with “General Rules for X-ray Diffraction Analysis” of JIS-K0131 (1996).
  • a cellulose nanofiber has an amorphous part and a crystalline part, and a crystallinity degree means the ratio of the crystalline part in the whole cellulose nanofiber.
  • Pulp viscosity As a minimum of the pulp viscosity of a cellulose nanofiber, 0.1 cps is preferred and 0.5 cps is more preferred. If the pulp viscosity is less than 0.1 cps, the fiber state cannot be maintained during the polylactic acid polymerization reaction due to the low degree of polymerization of cellulose nanofibers, and the effect of improving melt viscosity may be reduced. There is. Moreover, as an upper limit of the pulp viscosity of a cellulose nanofiber, 50 cps is preferable and 40 cps is more preferable. When the pulp viscosity exceeds 50 cps, the degree of polymerization of the cellulose nanofiber itself increases, and the fiber becomes too long.
  • Pulp viscosity is measured according to JIS-P8215 (1998). In addition, it means that the polymerization degree of a cellulose is so high that a pulp viscosity is high.
  • the lower limit of the B-type viscosity of the dispersion when the solid content concentration of cellulose nanofibers in the solution is 1% by mass is preferably 1 cps, more preferably 3 cps, and even more preferably 5 cps. If the B-type viscosity of the dispersion is less than 1 cps, the fiber state may not be maintained during the polylactic acid polymerization reaction, and the effect of improving the melt viscosity may be reduced.
  • the upper limit of the B-type viscosity of the dispersion is preferably 7000 cps, more preferably 6000 cps, and even more preferably 5000 cps.
  • the B-type viscosity of the dispersion exceeds 7000 cps, enormous energy is required for pumping up the transfer of the aqueous dispersion, which may increase the manufacturing cost.
  • the B-type viscosity is measured with respect to an aqueous dispersion of cellulose nanofibers having a solid content concentration of 1% in accordance with “Method for measuring viscosity of liquid” in JIS-Z8803 (2011).
  • the B type viscosity is a resistance torque when the slurry is stirred, and the higher the viscosity, the more energy required for stirring.
  • the upper limit of the water retention of the cellulose nanofiber is preferably 600%, more preferably 580%, and still more preferably 560%. If the water retention exceeds 600%, the efficiency of solvent replacement and drying decreases, which may lead to an increase in production cost.
  • the water retention can be arbitrarily adjusted by, for example, selection of pulp fibers, pretreatment, and refinement. The water retention is determined by JAPAN TAPPI No. Measured according to 26: 2000.
  • polylactic acid examples include L-lactide polymers, D-lactide polymers, and random or block copolymers of L-lactide and D-lactide.
  • the absorbance ratio is determined by purifying polylactic acid-grafted cellulose nanofibers with a solvent that dissolves polylactic acid such as dichloromethane and tetrahydrofuran, completely removing ungrafted polylactic acid, and measuring the IR spectrum.
  • the upper limit of the absorbance ratio is 1000, more preferably 300. If the absorbance ratio exceeds 1000, the characteristics of cellulose tend to be difficult to see.
  • the polylactic acid grafted cellulose nanofiber is suitable as a biodegradable molding material and an additive for the molding material. Therefore, it can be processed into various molded articles by methods such as injection molding, extrusion molding, and blow molding, and can be used as an additive for resin materials such as polylactic acid.
  • the polylactic acid grafted cellulose nanofiber and the molding material to which the fiber is added include not only injection molded products such as containers but also compression molded products, extrusion molded products, blow molded products, etc., sheets, films It can be used as foaming material, fiber, etc. These molded articles can be used for applications such as electronic parts, building members, civil engineering members, agricultural materials, automobile parts, and daily necessities.
  • the polylactic acid grafted cellulose nanofiber can be used as a nucleating agent, a crystallization retarder, a foam improver, a film improver, etc. as an additive for improving the performance of various materials as well as organic fillers. .
  • the polylactic acid grafted cellulose nanofiber can be used as a biodegradable adhesive.
  • polylactic acid-grafted cellulose nanofibers are obtained by graft polymerization of lactide to cellulose constituting the cellulose nanofibers in the presence of an organic polymerization catalyst. More specifically, the method for producing the polylactic acid-grafted cellulose nanofiber includes the above cellulose having a hydroxyl group in the presence of an organic polymerization catalyst comprising an amine and a salt obtained by reacting the amine and an acid. And a step of graft polymerization of lactide.
  • lactide ring-opened at each hydroxyl group of cellulose constituting the cellulose nanofiber is polymerized by an ester bond to obtain polylactic acid as a graft chain.
  • the organic polymerization catalyst is composed of an amine and a salt obtained by reacting the amine and an acid, thereby grafting the polylactic acid onto the cellulose. Since the reaction proceeds like living polymerization, the polylactic acid-grafted cellulose nanofiber having a sharp molecular weight distribution of polylactic acid can be obtained.
  • amines in the organic polymerization catalyst examples include alkylamines such as methylamine, triethylamine, and ethylenediamine, aromatic amines such as aniline, heterocyclic amines such as pyrrolidine, imidazole, and pyridine, and amine derivatives such as ether amines and amino acids. Is mentioned. Among these, 4-dimethylaminopyridine is preferable from the viewpoint of further enhancing the graft polymerization reaction of polylactic acid to cellulose constituting cellulose nanofibers.
  • Examples of the acids in the organic polymerization catalyst include inorganic acids such as hydrochloric acid, sulfonic acids such as p-toluenesulfonic acid and trifluoromethanesulfonic acid, and carboxylic acids such as acetic acid.
  • inorganic acids such as hydrochloric acid
  • sulfonic acids such as p-toluenesulfonic acid and trifluoromethanesulfonic acid
  • carboxylic acids such as acetic acid.
  • p-toluenesulfonic acid and trifluoromethanesulfonic acid are preferable among the acids exemplified above because the catalytic activity increases when the acidity is high, and trifluoromethanesulfonic acid is more preferable.
  • Examples of salts obtained by reacting amines and acids in the organic polymerization catalyst include 4-dimethylaminopyridinium triflate, 4-dimethylaminopyridinium tosylate, 4-dimethylaminopyridinium chloride, and the like.
  • 4-dimethylaminopyridinium triflate is preferable from the viewpoint of further enhancing the graft polymerization reaction of polylactic acid to cellulose constituting cellulose nanofibers.
  • the method for producing the polylactic acid-grafted cellulose nanofiber further enhances the effect of improving the graft polymerization reaction of polylactic acid on the cellulose nanofiber by using 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate as the organic polymerization catalyst. be able to.
  • the polylactic acid grafted cellulose nanofiber can be synthesized, for example, according to the following scheme.
  • n and m are integers of 1 or more.
  • lactide L-lactide, D-lactide or a combination thereof can be used.
  • polymer format L-polylactic acid, D-polylactic acid, L-lactide, and D-lactide obtained when L-lactide and D-lactide are used alone are used.
  • the present invention can also be applied to a random copolymer in which the arrangement order of -lactide and D-lactide is random, and a block copolymer in which L-lactide and D-lactide are polymerized in a block form at an arbitrary ratio.
  • the graft polymerization step is preferably repeated a plurality of times in order to increase the grafting rate.
  • the graft polymerization reaction of polylactic acid on the cellulose nanofibers can be advanced efficiently, so that the mass productivity of polylactic acid-grafted cellulose nanofibers is further improved.
  • Polylactic acid grafted cellulose nanofibers having a molecular weight of 1000 or less can be produced efficiently. Further, if it is desired to improve the grafting rate, it can be repeated as many times as necessary.
  • ungrafted polylactic acid is also included. Although it is possible to use it in a state in which the above-mentioned non-grafted polylactic acid is contained, in order to exhibit the characteristics of polylactic acid-grafted cellulose nanofibers, the non-grafted polylactic acid is completely removed. In order to do so, it is preferable to provide a purification step.
  • the solvent in the purification step is not particularly limited as long as it dissolves polylactic acid, but it is preferable to use dichloromethane, tetrahydrofuran, or a combination thereof.
  • the method for producing the polylactic acid-grafted cellulose nanofiber it is possible to reliably produce polylactic acid-grafted cellulose nanofiber having biodegradability and suitable as a molding material and a surface-modified organic additive. .
  • Example 1 (1) Synthesis of 4-dimethylaminopyridinium triflate as a polymerization catalyst 1.22 g of 4-dimethylaminopyridine (manufactured by Tokyo Chemical Industry Co., Ltd., white powder) in a two-necked flask (capacity 100 ml) under a dry nitrogen atmosphere. Dissolved in 20 ml of tetrahydrofuran. Then, while cooling the two-necked flask in a 0 ° C. ice-cooled bath, 1.50 g of trifluoromethanesulfonic acid was added dropwise and stirred. Then, it returned to room temperature and continued stirring for 1 hour. The reaction mixture was collected by filtration with a glass filter, washed twice with 10 ml of tetrahydrofuran, and then dried under reduced pressure to quantitatively obtain 4-dimethylaminopyridinium triflate as a white powder.
  • 4-dimethylaminopyridinium triflate as
  • Example 2 A polylactic acid grafted CNF was obtained in the same manner as in Example 1 except that the amount of CNF used was changed to 41 mg. The ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 2.8. The glass transition temperature of the polylactic acid grafted CNF of Example 2 was 51.1 ° C.
  • Example 3 A polylactic acid grafted CNF was obtained in the same manner as in Example 1 except that the amount of CNF used was changed to 27 mg.
  • the ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 5.8.
  • the glass transition temperature of the polylactic acid grafted CNF of Example 3 was 51.6 ° C.
  • Example 4 A polylactic acid grafted CNF was obtained in the same manner as in Example 1 except that the amount of CNF used was changed to 14 mg.
  • the ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 7.1.
  • the glass transition temperature of the polylactic acid grafted CNF of Example 4 was 51.2 ° C.
  • Example 5 A polylactic acid grafted CNF was obtained in the same manner as in Example 1 except that the amount of CNF used was changed to 5 mg. The ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 3.3.
  • Table 1 shows the ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectra of Examples 1 to 5 and the glass transition temperature. Table 1 also shows the glass transition temperature of CNF alone as Reference Example 1.
  • Example 7 A polylactic acid grafted CNF was obtained in the same manner as in Example 6 except that 5 mg of the polylactic acid grafted CNF of Example 2 was used instead of 5 mg of the polylactic acid grafted CNF of Example 1.
  • the ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 8.8.
  • Example 8 A polylactic acid grafted CNF was obtained in the same manner as in Example 6 except that 5 mg of the polylactic acid grafted CNF obtained in Example 3 was used instead of 5 mg of the polylactic acid grafted CNF obtained in Example 1.
  • the ratio of the absorbance derived from C ⁇ O to the absorbance derived from OH in the IR spectrum of the obtained polylactic acid grafted CNF was 6.6.
  • One of the functions expected of the polylactic acid grafted CNF obtained in the present invention is a delay in crystallization of the resin or an accelerating effect.
  • adding polylactic acid grafted CNF as an additive to commercially available polylactic acid affects the crystallization temperature and heat of fusion of commercially available polylactic acid, which is expected to lead to improved molding performance of the mixed resin. . Therefore, the effect of addition of polylactic acid grafted CNF to commercial polylactic acid was investigated by determining the crystallization temperature and heat of fusion of Examples 9 to 11 below, in which polylactic acid grafted CNF was mixed with commercial polylactic acid. It was. The crystallization temperature and heat of fusion were determined by the DSC method.
  • the heat of fusion was calculated as the endothermic amount (J) per mass (g) of the polylactic acid component contained in the measurement sample.
  • J endothermic amount
  • g mass of the polylactic acid component contained in the measurement sample.
  • polylactic acid a pulverized product of polylactic acid manufactured by Osaka Gas Liquid Co., Ltd. was used.
  • Example 9 Commercial polylactic acid (4.98 mg) was mixed with the polylactic acid grafted CNF (0.1 mg) obtained in Example 3. From the results of DSC in Example 9, the crystallization temperature was 129 ° C. and the heat of fusion was 0.15 J / g.
  • Example 10 0.23 mg of polylactic acid grafted CNF obtained in Example 3 and 4.9 mg of commercially available polylactic acid were mixed. From the results of DSC in Example 10, the crystallization temperature was 130 ° C. and the heat of fusion was 0.20 J / g.
  • Example 11 0.98 mg of polylactic acid grafted CNF obtained in Example 3 and 4.93 mg of commercially available polylactic acid were mixed. From the results of DSC of Example 11, the crystallization temperature was 129 ° C. and the heat of fusion was 0.21 J / g.
  • Comparative Example 1 A commercially available polylactic acid alone was used as Comparative Example 1. From the result of DSC in Comparative Example 1, the crystallization temperature was 122 ° C. and the heat of fusion was 0.97 J / g.
  • Comparative Example 2 was prepared in the same manner as in Example 9 except that 0.3 mg of ungrafted CNF was used instead of polylactic acid-grafted CNF and mixed with 13.4 mg of commercially available polylactic acid. From the results of DSC in Comparative Example 2, the crystallization temperature was 121 ° C. and the heat of fusion was 2.26 J / g.
  • Examples 9 to 11 in which polylactic acid grafted CNF and commercially available polylactic acid were mixed were compared with Comparative Example 1 in which only commercially available polylactic acid was used and Comparative Example 2 in which non-grafted CNF was mixed with commercially available polylactic acid. It was also shown that the crystallization temperature was high and the heat of fusion was low.
  • the polylactic acid grafted cellulose nanofiber of the present invention can be suitably used as a biodegradable molding material and a surface-modified organic additive.

Abstract

成形材料として好適なポリ乳酸グラフト化セルロースナノファイバー及びその製造方法を提供する。本発明は、セルロースナノファイバーを構成するセルロースに結合するグラフト鎖を有するグラフト化セルロースを含み、グラフト鎖がポリ乳酸であり、赤外線吸収スペクトルにおけるセルロースのO-Hに由来する吸光度に対するポリ乳酸のC=Oに由来する吸光度の比が0.01以上1000以下であるポリ乳酸グラフト化セルロースナノファイバーである。また、本発明は、アミン類と、このアミン類及び酸類を反応させて得られる塩とからなる有機重合触媒の存在下で、セルロースナノファイバーを構成するセルロースにラクチドをグラフト重合させる工程を備えるポリ乳酸グラフト化セルロースナノファイバーの製造方法である。有機重合触媒としては、4-ジメチルアミノピリジン及び4-ジメチルアミノピリジニウムトリフラートが好ましい。

Description

ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法
 本発明は、ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法に関する。
 近年、地球環境保全の見地から、土中、水中に存在する微生物の作用により自然環境下で分解される生分解性ポリマーが注目され、様々な生分解性ポリマーが開発されている。その代表例として、ポリ乳酸がある。ポリ乳酸は、比較的コストが安く、溶融成形可能な生分解性ポリマーとして期待されている。また、最近ではポリ乳酸の出発モノマーであるラクチドが微生物を利用した発酵法により安価に製造されるようになり、より一層低コストでポリ乳酸を生産できるようになってきたため、生分解性ポリマーとしてだけでなく、汎用ポリマーとしての利用も検討されるようになってきている。
 一方、ポリ乳酸は、生分解性ポリマーの中では優れた特性を有しているものの、汎用ポリマーと比較すると剛直で比較的もろく、可撓性が乏しいという性質を有し、ポリ乳酸を原料とする成形品を製造する場合には柔軟材の添加が必要となる。また、耐熱性がまだ不十分であり、耐電子レンジ特性に少し欠けている。さらにポリ乳酸は、押出成形やブロー成形、発泡成形をする上で必要な溶融特性が十分でないという性質もある。
 これに対して、ポリ乳酸樹脂及び天然由来の有機充填材を特定の条件で溶融混練することにより、色調及び機械特性に優れる樹脂組成物を得る技術が開示されている(特開2005-35134号公報参照)。
特開2005-35134号公報
 しかしながら、上記従来技術のような天然由来の有機充填材は、表面が親水性である場合が多く、疎水性が多い成形樹脂内への分散性に劣る傾向がある。また、曲げ特性等の機械強度を向上させた場合、靭性や可撓性が低下するおそれがある。このため、成形材料としては、良好な強度及び可撓性を備えつつ、成形品を製造する上で充填材表面を疎水化することが必要不可欠であり、種々の表面疎水化処理の試みがなされている。さらに、単なる表面疎水化では、充填材表面と成形樹脂面との間にせん断力が生じたときにはほとんど効果がない。したがって、充分な機械物性を持つためには、有機充填材が充分長い有機分子鎖をもつなど、樹脂等の有機材料との強い相互作用が必要である。
 本発明は、以上のような事情に基づいてなされたものであり、成形材料として好適なポリ乳酸グラフト化セルロースナノファイバー及びその製造方法を提供することを目的とする。
 上記課題を解決するためになされた発明は、セルロースナノファイバーを構成するセルロースに結合するグラフト鎖を有するグラフト化セルロースを含み、上記グラフト鎖がポリ乳酸であり、赤外線吸収スペクトルにおける上記セルロースのO-Hに由来する吸光度に対する上記ポリ乳酸のC=Oに由来する吸光度の比が0.01以上1000以下であるポリ乳酸グラフト化セルロースナノファイバーである。
 当該ポリ乳酸グラフト化セルロースナノファイバーは、上記セルロースに結合するグラフト鎖がポリ乳酸であるグラフト化セルロースを含む。赤外線吸収スペクトルにおける上記セルロースが有する水酸基のO-Hに由来する吸光度に対する上記ポリ乳酸が有するカルボニル基のC=Oに由来する吸光度の比が0.01以上1000以下であるので、ポリ乳酸の生分解性及び剛直性に加えて、成形材料として好適な性能を得ることができる。また、ポリ乳酸グラフト化セルロースナノファイバーは、単独で成形材料として用いる以外にも、表面修飾された有機添加材としても好適な性能を得ることができる。ここで、「セルロースナノファイバー」とは、パルプ繊維等のバイオマスを解繊して得られる微細なセルロース繊維をいい、一般的に繊維幅がナノサイズ(1nm以上1000nm以下)のセルロース微細繊維を含むセルロース繊維をいう。
 上記課題を解決するためになされた別の発明は、アミン類と、このアミン類及び酸類を反応させて得られる塩とからなる有機重合触媒の存在下で、セルロースナノファイバーを構成するセルロースにラクチドをグラフト重合させる工程を備えるポリ乳酸グラフト化セルロースナノファイバーの製造方法である。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法は、グラフト重合触媒として、アミン類と、このアミン類及び酸類を反応させて得られる塩とからなる有機重合触媒を用いる。その結果、上記セルロースに対するポリ乳酸のグラフト重合反応がリビング重合的に進行するので、ポリ乳酸の分子量分布がシャープな当該ポリ乳酸グラフト化セルロースナノファイバーを得ることができる。
 上記有機重合触媒としては、4-ジメチルアミノピリジン及び4-ジメチルアミノピリジニウムトリフラートが好ましい。有機重合触媒として4-ジメチルアミノピリジン及び4-ジメチルアミノピリジニウムトリフラートを用いることにより、上記セルロースに対するポリ乳酸のグラフト重合反応をより高めることができる。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法は、上記グラフト重合工程を複数回繰り返すことが好ましい。当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法が、上記グラフト重合工程を複数回繰り返すことで、効率よくセルロースナノファイバーに対するポリ乳酸のグラフト重合反応を進めることができるので、ポリ乳酸グラフト化セルロースナノファイバーの量産性がより向上する。
 本発明のポリ乳酸グラフト化セルロースナノファイバー及びその製造方法によれば、成形材料及び表面修飾された有機添加材として好適なポリ乳酸グラフト化セルロースナノファイバーを得ることができる。
 以下、本発明の一実施形態に係るポリ乳酸グラフト化セルロースナノファイバー及びその製造方法について詳説する。
<ポリ乳酸グラフト化セルロースナノファイバー>
 当該ポリ乳酸グラフト化セルロースナノファイバーは、セルロースナノファイバーを構成するセルロースに結合するグラフト鎖を有するグラフト化セルロースを含み、上記グラフト鎖がポリ乳酸である。また、当該ポリ乳酸グラフト化セルロースナノファイバーの赤外線吸収スペクトルにおける上記セルロースが有する水酸基のO-Hに由来する吸光度に対する上記ポリ乳酸が有するカルボニル基のC=Oに由来する吸光度の比が0.01以上1000以下である。
[セルロースナノファイバー]
 セルロースナノファイバー(以下、CNFともいう。)は、セルロースを含むパルプ繊維等のバイオマスに対して、化学的、機械的処理を施すことで取り出した微細な繊維を含む繊維のことである。セルロースナノファイバーの製法は、セルロース自体を変性する方法と、変性しない方法が存在する。セルロース自体を変性する例としては、セルロース水酸基の一部がカルボキシ基やリン酸エステル基等に変性する方法等が存在する。これらの中では、セルロース自体を変性しない方法が好ましい。その理由としては、例えば以下のように推察することができる。ポリ乳酸重合反応は、水酸基が起点となり、カルボキシ基が終点となる。当該ポリ乳酸グラフト化セルロースナノファイバーは、セルロースナノファイバーを開始剤として用いるため、セルロースナノファイバーの水酸基が反応起点となる。従って、セルロース水酸基の一部がカルボキシ基やリン酸エステル基等に変性されている場合、ポリ乳酸のグラフト重合反応の起点が減少するため、化学変性していないセルロースナノファイバーを用いることが好ましい。化学変性していないセルロースナノファイバーとしては、例えば機械的処理によって微細化されたセルロースナノファイバーが挙げられる。得られるセルロースナノファイバーの水酸基変性量としては、0.5mmol/g以下とすることが好ましく、0.3mmol/g以下とすることがより好ましく、0.1mmol/g以下とすることがさらに好ましい。
 パルプ繊維としては、例えば
 広葉樹晒クラフトパルプ(LBKP)、広葉樹未晒クラフトパルプ(LUKP)等の広葉樹クラフトパルプ(LKP)、針葉樹晒クラフトパルプ(NBKP)、針葉樹未晒クラフトパルプ(NUKP)等の針葉樹クラフトパルプ(NKP)等の化学パルプ;
 ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、晒サーモメカニカルパルプ(BTMP)等の機械パルプを挙げることができる。
 これらの中でも、ポリ乳酸重合の反応開始点となる水酸基を多く持つセルロースが主成分である晒化学パルプ(LBKP、NBKP)を用いることが好ましい。
 スラリー中のパルプ繊維が機械的処理によって微細化する前に、水系で化学的又は機械的な前処理を行うことができる。上記前処理は、この後に行われる微細化工程における機械解繊のエネルギーを低減するために行われる。上記前処理は、セルロースナノファイバーのセルロースの官能基を改質しない方法で、かつ水系で反応可能な方法であれば特に限定されない。前述したように、セルロースナノファイバーは、セルロースの官能基を改質しない方法で製造することが好ましい。例えば上記スラリー中のパルプ繊維の化学的前処理における処理剤として、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)をはじめとしたN-オキシル化合物を触媒に用いてセルロースの1級水酸基を優先的に酸化する方法や、リン酸系薬品を用いて水酸基をリン酸エステル基で修飾する方法があるが、この方法では、機械解繊を施すと繊維径がシングルナノオーダー(数nm)まで一気に解繊されてしまい、所望の繊維サイズに応じて微細化処理を行うことが困難となるおそれがある。また、前述したように、反応起点となる水酸基が減少することで、ポリ乳酸の重合反応が進行しづらくなると考えられる。従って、例えば、鉱酸(塩酸、硫酸、リン酸等)や酵素等を用いた加水分解等のセルロース水酸基を変性しない穏やかな化学処理と機械解繊を組み合わせる製法が望ましい。化学的前処理や機械解繊の度合いを調整することで、所望の繊維サイズに応じて微細化処理を行うことができる。また、水系で前処理を行うことで溶媒回収や除去のコストが低減できる。上記前処理は、化学的前処理と同時に機械的前処理(解繊処理)を組み合わせて行うことができる。
 セルロースナノファイバーは、水分散状態でレーザー回折法により測定される擬似粒度分布曲線において1つのピークを有する。上記擬似粒度分布曲線におけるピークとなる粒径(最頻径)としては5μm以上60μm以下が好ましい。セルロースナノファイバーがこのような粒度分布を有する場合、十分に微細化された良好な性能を発揮することができる。なお、「擬似粒度分布曲線」とは、粒度分布測定装置(例えば株式会社セイシン企業のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布を示す曲線を意味する。
(平均繊維径)
 セルロースナノファイバーの平均繊維径は4nm以上1000nm以下が望ましい。上記の平均繊維幅まで繊維を微細化することにより、重量当りの溶融樹脂中での繊維本数が増加し、樹脂の溶融粘度増加に寄与できると考えられる。
 平均繊維径は下記の方法で測定する。
 固形分濃度が0.01質量%以上0.1質量%以下のセルロースナノファイバーの水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、t-ブタノールに溶媒置換する。次に、凍結乾燥し、オスミウム等の金属でコーティングして観察用試料とする。この試料について、構成する繊維の幅に応じて、3000倍、5000倍、10000倍又は30000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
(結晶化度)
 セルロースナノファイバーの結晶化度の下限としては、10%が好ましく、15%がより好ましく、20%がさらに好ましい。結晶化度が10%未満であると、繊維自体の強度が低下するため、溶融粘度の向上効果が低下するおそれがある。
 他方、セルロースナノファイバーの結晶化度の上限としては、特に限定はないが、95%以下が好ましく、90%以下がより好ましい。結晶化度が95%を超えると、分子内の強固な水素結合の割合が多くなり繊維自体は剛直となるが、セルロースナノファイバーの化学修飾がし難くなると考えられる。なお、結晶化度は、例えばパルプ繊維の選定、前処理、微細化処理等により任意に調整可能である。結晶化度は、JIS-K0131(1996)の「X線回折分析通則」に準拠して、X線回折法により測定した値である。なお、セルロースナノファイバーは、非晶質部分と結晶質部分とを有し、結晶化度は、セルロースナノファイバー全体における結晶質部分の割合を意味する。
(パルプ粘度)
 セルロースナノファイバーのパルプ粘度の下限としては、0.1cpsが好ましく、0.5cpsがより好ましい。パルプ粘度が0.1cps未満であると、セルロースナノファイバーの重合度が低いことに起因して、ポリ乳酸重合反応中に繊維状態を保っていられなくなることや、溶融粘度の向上効果が低下するおそれがある。
 また、セルロースナノファイバーのパルプ粘度の上限としては、50cpsが好ましく、40cpsがより好ましい。パルプ粘度が50cpsを超えると、セルロースナノファイバー自体の重合度が高くなり、繊維として長くなりすぎることから、ポリ乳酸重合反応に際してセルロースナノファイバーの凝集を十分に抑制できず、ポリ乳酸重合反応の進行が不均一になると考えられる。パルプ粘度は、JIS-P8215(1998)に準拠して測定する。なお、パルプ粘度が高いほどセルロースの重合度が高いことを意味する。
(B型粘度)
 溶液中のセルロースナノファイバーの固形分濃度を1質量%とした場合における分散液のB型粘度の下限としては、1cpsが好ましく、3cpsがより好ましく、5cpsがさらに好ましい。分散液のB型粘度が1cps未満であると、ポリ乳酸重合反応中に繊維状態を保っていられなくなることや、溶融粘度の向上効果が低下するおそれがある。
 一方、分散液のB型粘度の上限としては、7000cpsが好ましく、6000cpsがより好ましく、5000cpsがさらに好ましい。分散液のB型粘度が7000cpsを超えると、水分散体の移送の際のポンプアップに膨大なエネルギーが必要となり、製造コストが増加するおそれがある。上記B型粘度は、固形分濃度1%のセルロースナノファイバーの水分散液について、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定する。B型粘度はスラリーを攪拌させたときの抵抗トルクであり、高いほど撹拌に必要なエネルギーが多いことを意味する。
(保水度)
 セルロースナノファイバーの保水度の上限としては、600%が好ましく、580%がより好ましく、560%がさらに好ましい。保水度が600%を超えると、溶媒置換や乾燥の効率が低下するため、製造コストの増加につながるおそれがある。保水度は、例えば、パルプ繊維の選定、前処理、微細化処理により任意に調整可能である。保水度は、JAPAN TAPPI No.26:2000に準拠して測定する。
[ポリ乳酸]
 グラフト鎖となるポリ乳酸としては、L-ラクチドの重合体、D-ラクチドの重合体、又はL-ラクチドとD-ラクチドとのランダムやブロックなどの共重合体等が挙げられる。
(赤外線吸収スペクトルにおけるO-Hに由来する吸光度に対するC=Oに由来する吸光度の比)
 ポリ乳酸グラフト化セルロースナノファイバーは、ほとんどの溶媒に溶解せず、加熱しても溶融しないため、GPC法による分子量測定やNMR測定による構造解析が行えない。このため、赤外線吸収(以下、IRともいう。)スペクトルの測定によって、当該ポリ乳酸グラフト化セルロースナノファイバーのセルロースのO-Hに由来する吸光度に対するポリ乳酸のC=Oに由来する吸光度の比(以下、単に吸光度比ともいう。)を求め、グラフト化度の指標とした。上記吸光度比は、ポリ乳酸グラフト化セルロースナノファイバーをジクロロメタン及びテトラヒドロフラン等のポリ乳酸を溶解する溶剤により精製し、グラフト化していないポリ乳酸を完全に除去した上でIRスペクトルを測定して求める。当該ポリ乳酸グラフト化セルロースナノファイバーのIRスペクトルにおけるセルロースのO-Hに由来する吸光度に対するポリ乳酸のC=Oに由来する吸光度の比の下限値としては、0.01であり、0.05がより好ましい。上記吸光度比が0.01未満になると、ポリ乳酸としての特性が発現し難くなるため好ましくない。上記吸光度比の上限値としては、1000であり、300がより好ましい。上記吸光度比が1000を超えると、セルロースの特性が見られ難くなる傾向がある。
 当該ポリ乳酸グラフト化セルロースナノファイバーは、生分解性を有する成型材料や、成形材料の添加剤として好適である。従って、射出成形、押出成形、ブロー成形などの方法によって各種成形品に加工したり、ポリ乳酸などの樹脂材料の添加剤として利用することができる。
 また、当該ポリ乳酸グラフト化セルロースナノファイバーおよび当該ファイバーを添加した成形材料の用途としては、容器などの射出成形品だけでなく、圧縮成形品、押出成形品、ブロー成形品等として、シート、フィルム、発泡材、繊維等として利用できる。これらの成形品は、電子部品、建築部材、土木部材、農業資材、自動車部品、日用品等の用途に利用することができる。また、当該ポリ乳酸グラフト化セルロースナノファイバーは、有機充填材だけでなく各種材料の性能向上のための添加剤として、核剤、結晶化遅延剤、発泡材改良剤、フィルム改良剤等に利用できる。さらに、当該ポリ乳酸グラフト化セルロースナノファイバーは、生分解性の接着剤としても利用できる。
<ポリ乳酸グラフト化セルロースナノファイバーの製造方法>
 次に、当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法について説明する。当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法では、有機重合触媒の存在下で、セルロースナノファイバーを構成するセルロースにラクチドをグラフト重合してポリ乳酸グラフト化セルロースナノファイバーを得る。より詳細には、当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法は、アミン類と、このアミン類及び酸類を反応させて得られる塩とからなる有機重合触媒の存在下で、水酸基を有する上記セルロースにラクチドをグラフト重合させる工程を備える。上記グラフト重合工程では、上記有機重合触媒の存在下で、セルロースナノファイバーを構成するセルロースの各水酸基に開環したラクチドがエステル結合によって重合し、グラフト鎖としてポリ乳酸を得る。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法においては、上記有機重合触媒が、アミン類と、このアミン類及び酸類を反応させて得られる塩とからなることにより、上記セルロースに対するポリ乳酸のグラフト重合反応がリビング重合的に進行するので、ポリ乳酸の分子量分布がシャープな当該ポリ乳酸グラフト化セルロースナノファイバーを得ることができる。
 上記有機重合触媒におけるアミン類としては、例えばメチルアミン、トリエチルアミン、エチレンジアミン等のアルキルアミン、アニリン等の芳香族アミン、ピロリジン、イミダゾール、ピリジン等の複素環式アミン、エーテルアミン、アミノ酸等のアミン誘導体等が挙げられる。これらの中では、セルロースナノファイバーを構成するセルロースに対するポリ乳酸のグラフト重合反応をより高めることができる観点から、4-ジメチルアミノピリジンが好ましい。
 上記有機重合触媒における酸類としては、例えば塩酸等の無機酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸、酢酸等のカルボン酸などが挙げられる。酸類においては、酸性度が高いと触媒活性が高くなることから、上記例示した酸の中では、p-トルエンスルホン酸及びトリフルオロメタンスルホン酸が好ましく、これらの中ではトリフルオロメタンスルホン酸がより好ましい。
 上記有機重合触媒におけるアミン類及び酸類を反応させて得られる塩としては、例えば4-ジメチルアミノピリジニウムトリフラート、4-ジメチルアミノピリジニウムトシラート、4-ジメチルアミノピリジニウムクロライド等が挙げられる。これらの中では、セルロースナノファイバーを構成するセルロースに対するポリ乳酸のグラフト重合反応をより高めることができる観点から、4-ジメチルアミノピリジニウムトリフラートが好ましい。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法が、有機重合触媒として4-ジメチルアミノピリジン及び4-ジメチルアミノピリジニウムトリフラートを用いることで、セルロースナノファイバーに対するポリ乳酸のグラフト重合反応の向上効果をさらに高めることができる。
 当該ポリ乳酸グラフト化セルロースナノファイバーは、例えば下記のスキームに従い、合成することができる。
Figure JPOXMLDOC01-appb-C000001
 上記スキームにおいて、n及びmは、1以上の整数である。また、前述したように、ラクチドとしては、L-ラクチド、D-ラクチド又はこれらの組み合わせを用いることができる。重合体の形式としては、L-ラクチド、D-ラクチドを単独で用いた場合に得られるL-ポリ乳酸、D-ポリ乳酸、L-ラクチド、D-ラクチドを組み合わせて用いた場合に得られるL-ラクチド、D-ラクチドの配列順序がランダムなランダム共重合体、L-ラクチド、D-ラクチドが任意の比率でブロック状に重合したブロック共重合体にも適用できる。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法においては、グラフト化率を大きくする場合は上記グラフト重合工程を複数回繰り返すことが好ましい。上記グラフト重合工程を複数回繰り返すことで、効率よくセルロースナノファイバーに対するポリ乳酸のグラフト重合反応を進めることができるので、ポリ乳酸グラフト化セルロースナノファイバーの量産性がより向上する。例えば、上記グラフト重合工程を2回くり返すことで、当該ポリ乳酸グラフト化セルロースナノファイバーのIRスペクトルにおけるセルロースのO-H由来の吸光度に対するポリ乳酸のC=O由来の吸光度の比が0.01以上1000以下であるポリ乳酸グラフト化セルロースナノファイバーを効率よく製造することができる。さらにグラフト化率を向上したい場合には、必要回数繰り返すことも可能である。
 上記グラフト重合工程によりポリ乳酸グラフト化セルロースナノファイバーを得た後には、グラフト化されていないポリ乳酸も含まれている。上記グラフト化されていないポリ乳酸が含まれた状態で用いることも可能であるが、よりポリ乳酸グラフト化セルロースナノファイバーの特性を発揮させるためには、グラフト化されていないポリ乳酸を完全に除去するために精製工程を備えることが好ましい。精製工程における溶媒としては、ポリ乳酸が溶解するものであれば、特に限定されないが、ジクロロメタン、テトラヒドロフラン又はこれらの組み合わせを用いることが好ましい。
 当該ポリ乳酸グラフト化セルロースナノファイバーの製造方法によれば、生分解性を有するとともに、成形材料及び表面修飾された有機添加材として好適なポリ乳酸グラフト化セルロースナノファイバーを確実に製造することができる。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[IRスペクトルにおけるO-H由来の吸光度に対するC=O由来の吸光度の比]
 IRスペクトルにおけるセルロースのO-Hに由来する吸光度に対する上記ポリ乳酸のC=Oに由来する吸光度の比を求めた。IRスペクトルにおけるピーク強度は以下の条件下で行った。
(IR測定条件)
 装置:フーリエ変換赤外分光分析装置
    ニコレー製FT-IR6700およびSensIR Technologies製DURASCOPE
 分解能:4cm-1
 積算回数:32回
 測定方法:ATR法
 測定吸光度:O-H由来ピーク:3680cm-1~3000cm-1付近
       C=O由来ピーク:1890cm-1~1520cm-1付近
[示差走査熱量測定(DSC)]
 ガラス転移温度、結晶化温度、融解熱量の測定方法は、DSC法により以下の条件下で行った。なお、後述の表3に記載するデータは、下記温度プログラム(1回の測定において、下記(1)、(2)、(3)の順番で昇温及び降温を実施)のうち、(3)の過程で得られた結果を記載したものである。
 装置:日立ハイテクノロジーズ製 EXSTAR DSC6200
 窒素流量:40ml/min.
 昇温及び冷却条件:(1)、(2)、(3)の順に連続的に昇温及び降温を実施した。
          昇温及び降温速度は10℃/min.とした。
          (1)10℃~200℃
          (2)200℃~10℃
          (3)10℃~200℃
 標準物質:アルミナ粉末
 試料容器:オープンアルミパン
 試料質量:約5mg
<1段階グラフト重合>
[実施例1]
(1)重合触媒である4-ジメチルアミノピリジニウムトリフラートの合成
 2つ口フラスコ(容量100ml)中で乾燥窒素不雰囲気下、4-ジメチルアミノピリジン(東京化成工業社製、白色粉末)1.22gをテトラヒドロフラン20mlに溶解した。そして、2つ口フラスコを0℃氷冷バス中で冷却しながら、トリフルオロメタンスルホン酸1.50gを滴下すると共に撹拌した。その後、室温に戻して1時間撹拌を続けた。反応混合物をガラスフィルターでろ取し、テトラヒドロフラン10mlで2回洗浄後、減圧乾燥して定量的に白色粉末である4-ジメチルアミノピリジニウムトリフラートを得た。
(2)乾燥セルロースナノファイバーの調製
 原料パルプ(LBKP:固形分2質量%)に対し、製紙用叩解機により前処理を施した後に、高圧ホモジナイザーを用いて、レーザー回折を用いた粒度分布測定の擬似粒度分布において1つのピークを有する段階まで微細化処理を行い(最頻径30μm)、固形分2質量%のセルロースナノファイバー(以下、CNFという。)の水分散体を作製した。上記CNF水分散体を遠心分離機にかけた後、上澄み液を除去し、ここに溶剤を添加し、均一化した後に再度遠心分離して濃縮する。この操作を数回繰り返した後に凍結乾燥して溶剤を除去することで白色粉末のCNFを調製した。
(3)CNFへのポリ乳酸のグラフト化
 2つ口フラスコ(容量50ml)中で乾燥窒素雰囲気下において、白色粉末のCNF54mg、白色粉末の4-ジメチルアミノピリジン(東京化成工業社製)6.1mg(0.05mmol)、上記で合成した4-ジメチルアミノピリジニウムトリフラート13.6mg(0.05mmol)、無色透明棒状結晶のL-ラクチド720mg(5mmol)を加えた。そして、2つロフラスコを100℃のオイルバス中で1時間加熱し、無色透明固体を得た。
(4)ポリ乳酸グラフト化CNFの精製
 得られた無色透明固体を、10mlのジクロロメタンに溶解させ、不溶物をガラスフィルターでろ取した。このろ取物にテトラヒドロフラン20mLを加え、遠心分離機(コクサン製H-200、5000rpm、15分)にかけた後に上澄みを除去し、再度テトラヒドロフラン20mLを加えて同様の操作で遠心分離機にかけた後上澄みを除去することで、グラフト化していないポリ乳酸を除去し、ポリ乳酸グラフト化CNF52mgを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、0.8であった。
[実施例2]
 CNFの使用量を41mgに変更した以外は、実施例1と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、2.8であった。実施例2のポリ乳酸グラフト化CNFのガラス転移温度は51.1℃であった。
[実施例3]
 CNFの使用量を27mgに変更した以外は、実施例1と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、5.8であった。実施例3のポリ乳酸グラフト化CNFのガラス転移温度は51.6℃であった。
[実施例4]
 CNFの使用量を14mgに変更した以外は、実施例1と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、7.1であった。実施例4のポリ乳酸グラフト化CNFのガラス転移温度は51.2℃であった。
[実施例5]
 CNFの使用量を5mgに変更した以外は、実施例1と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、3.3であった。
 表1に、実施例1~実施例5のIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比及びガラス転移温度を示す。また、CNF単体を参考例1としてガラス転移温度を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000002
<2段階グラフト重合>
[実施例6]
(1)ポリ乳酸グラフト化CNFへの2段階目のポリ乳酸のグラフト化
 2つロフラスコ(容量50ml)中で乾燥窒素雰囲気下、実施例1のポリ乳酸グラフト化CNF5mg、白色粉末の4-ジメチルアミノピリジン(東京化成工業社製)6.1mg(0.05mmol)、4-ジメチルアミノピリジニウムトリフラート13.6mg(0.05mmol)、無色透明棒状結晶のラクチド720mg(5mmol)を加えた。そして、2つロフラスコを100℃のオイルバス中で1時間加熱し、無色透明固体を得た。
(2)2段階目のグラフト重合後のポリ乳酸グラフト化CNFの精製
 得られた無色透明固体を、10mlのジクロロメタンに溶解させ、不溶物をガラスフィルターでろ取した。このろ取物にテトラヒドロフラン20mLを加え遠心分離機(コクサン製H-200、5000rpm、15分)にかけた後、上澄みを除去し、再度テトラヒドロフラン20mLを加えて同様の操作で遠心分離機にかけた後、上澄みを除去することで、グラフト化していないポリ乳酸を完全に除去した、目的のポリ乳酸グラフト化CNFを得た(27mg)。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、11.2であった。
[実施例7]
 実施例1のポリ乳酸グラフト化CNF5mgに代えて実施例2のポリ乳酸グラフト化CNF5mgを用いる以外は、実施例6と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、8.8であった。
[実施例8]
 実施例1で得られたポリ乳酸グラフト化CNF5mgに代えて、実施例3で得られたポリ乳酸グラフト化CNF5mgを用いる以外は、実施例6と同様にして、ポリ乳酸グラフト化CNFを得た。得られたポリ乳酸グラフト化CNFにおけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比は、6.6であった。
 表2にポリ乳酸グラフト化CNFへの2段階目のグラフト化後におけるIRスペクトルのO-Hに由来する吸光度に対するC=Oに由来する吸光度の比を示す。
Figure JPOXMLDOC01-appb-T000003
<結晶化遅延効果試験>
 本発明で得られるポリ乳酸グラフト化CNFに期待される機能の一つとして、樹脂の結晶化遅延、または促進効果が挙げられる。一例として、ポリ乳酸グラフト化CNFを添加剤として市販のポリ乳酸に添加することで、市販ポリ乳酸の結晶化温度や融解熱に影響し、それが混合樹脂の成形性能向上に繋がると期待される。そこで、ポリ乳酸グラフト化CNFを市販ポリ乳酸に混合した下記の実施例9~実施例11の結晶化温度、融解熱を求めることにより、市販ポリ乳酸に対するポリ乳酸グラフト化CNFの添加による効果を調べた。結晶化温度、融解熱は、DSC法により求めた。融解熱は、測定試料中に含まれるポリ乳酸成分の質量(g)当たりの吸熱量(J)として算出した。なお、市販ポリ乳酸としては、大阪ガスリキッド株式会社製のポリ乳酸粉砕品を用いた。
[実施例9]
 実施例3で得られたポリ乳酸グラフト化CNF0.1mgに市販ポリ乳酸4.98mgを混合した。実施例9のDSCの結果から、結晶化温度が129℃、融解熱が0.15J/gであった。
[実施例10]
 実施例3で得られたポリ乳酸グラフト化CNF0.23mgと市販ポリ乳酸4.9mgを混合した。実施例10のDSCの結果から、結晶化温度が130℃、融解熱が0.20J/gであった。
[実施例11]
 実施例3で得られたポリ乳酸グラフト化CNF0.98mgと市販ポリ乳酸4.93mgを混合した。実施例11のDSCの結果から、結晶化温度が129℃、融解熱が0.21J/gであった。
[比較例1]
 市販ポリ乳酸のみのものを比較例1とした。比較例1のDSCの結果から、結晶化温度が122℃、融解熱が0.97J/gであった。
[比較例2]
 ポリ乳酸グラフト化CNFの代わりにグラフト化していないCNF0.3mgを用い、市販ポリ乳酸13.4mgと混合した以外は実施例9と同様にしたものを比較例2とした。比較例2のDSCの結果から、結晶化温度が121℃、融解熱が2.26J/gであった。
Figure JPOXMLDOC01-appb-T000004
 上記表1の実施例1~実施例5のIRスペクトルにおけるO-Hに由来する吸光度に対するC=Oに由来する吸光度の比に示されるように、セルロースナノファイバーに対するポリ乳酸のグラフト重合を種々のグラフト化率で行うことができることが示された。また、表2の実施例6~実施例8に示されるように、グラフト重合工程を2回繰り返すことにより、O-Hに由来する吸光度に対するC=Oに由来する吸光度の比が顕著に増加しており、効率よくポリ乳酸のグラフト化率を大きく向上できることがわかる。
 また、ポリ乳酸グラフト化CNFと市販ポリ乳酸を混合した実施例9~実施例11は、市販ポリ乳酸のみの比較例1及びグラフト化していないCNFと市販ポリ乳酸との混合物である比較例2よりも結晶化温度が高く、融解熱が低くなることが示された。
 本発明のポリ乳酸グラフト化セルロースナノファイバーは、生分解性を有する成形材料及び表面修飾された有機添加材として好適に用いることができる。

Claims (4)

  1.  セルロースナノファイバーを構成するセルロースに結合するグラフト鎖を有するグラフト化セルロースを含み、
     上記グラフト鎖がポリ乳酸であり、
     赤外線吸収スペクトルにおける上記セルロースのO-Hに由来する吸光度に対する上記ポリ乳酸のC=Oに由来する吸光度の比が0.01以上1000以下であるポリ乳酸グラフト化セルロースナノファイバー。
  2.  アミン類と、このアミン類及び酸類を反応させて得られる塩とからなる有機重合触媒の存在下で、セルロースナノファイバーを構成するセルロースにラクチドをグラフト重合させる工程を備えるポリ乳酸グラフト化セルロースナノファイバーの製造方法。
  3.  上記有機重合触媒が、4-ジメチルアミノピリジン及び4-ジメチルアミノピリジニウムトリフラートである請求項2に記載のポリ乳酸グラフト化セルロースナノファイバーの製造方法。
  4.  上記グラフト重合工程を複数回繰り返す請求項2又は請求項3に記載のポリ乳酸グラフト化セルロースナノファイバーの製造方法。
PCT/JP2018/018017 2017-05-12 2018-05-09 ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法 WO2018207848A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3063332A CA3063332A1 (en) 2017-05-12 2018-05-09 Polylactide-grafted cellulose nanofiber and production method thereof or
CN201880031367.6A CN110730792A (zh) 2017-05-12 2018-05-09 聚乳酸接枝纤维素纳米纤维及其制造方法
FIEP18798416.6T FI3623408T3 (fi) 2017-05-12 2018-05-09 Polylaktidilla oksastettu selluloosananokuitu sekä sen valmistusmenetelmä
KR1020197035486A KR20200007852A (ko) 2017-05-12 2018-05-09 폴리락트산 그라프트화 셀룰로오스 나노파이버 및 그 제조 방법
US16/612,552 US11046787B2 (en) 2017-05-12 2018-05-09 Polylactide-grafted cellulose nanofiber and production method thereof
EP18798416.6A EP3623408B1 (en) 2017-05-12 2018-05-09 Poly(lactic acid)-grafted cellulose nanofiber and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017095975A JP6969737B2 (ja) 2017-05-12 2017-05-12 ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法
JP2017-095975 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207848A1 true WO2018207848A1 (ja) 2018-11-15

Family

ID=64104732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018017 WO2018207848A1 (ja) 2017-05-12 2018-05-09 ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法

Country Status (8)

Country Link
US (1) US11046787B2 (ja)
EP (1) EP3623408B1 (ja)
JP (1) JP6969737B2 (ja)
KR (1) KR20200007852A (ja)
CN (1) CN110730792A (ja)
CA (1) CA3063332A1 (ja)
FI (1) FI3623408T3 (ja)
WO (1) WO2018207848A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563518A (zh) * 2021-06-25 2021-10-29 武汉理工大学 一种氟化纤维素纳米晶润滑脂稠化剂的制备方法
WO2022070692A1 (ja) * 2020-09-30 2022-04-07 大王製紙株式会社 ポリ乳酸複合樹脂
WO2022070691A1 (ja) * 2020-09-30 2022-04-07 大王製紙株式会社 セルロース複合樹脂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969737B2 (ja) * 2017-05-12 2021-11-24 地方独立行政法人大阪産業技術研究所 ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法
CN112280104A (zh) * 2020-10-30 2021-01-29 界首市天路包装材料有限公司 环保可降解包装壳的加工工艺
US11869668B2 (en) 2021-05-28 2024-01-09 Tempus Labs, Inc. Artificial intelligence based cardiac event predictor systems and methods
JP7461920B2 (ja) 2021-11-29 2024-04-04 大王製紙株式会社 セルロース粒子及びセルロース粒子分散液
CN115141378B (zh) * 2022-06-28 2024-01-19 南京塑净新材料科技有限公司 一种表面乙酰化纳米纤维素晶体接枝聚乳酸专用高效成核剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240066A (ja) * 1986-04-10 1987-10-20 田畑 米穂 医療用管状器官および製造方法
JP2004359840A (ja) * 2003-04-10 2004-12-24 Toray Ind Inc 樹脂組成物、その成形品および分散助剤
JP2005035134A (ja) 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
WO2006001076A1 (ja) * 2004-06-25 2006-01-05 Agri Future Joetsu Co.,Ltd. 熱可塑性セルロース系組成物、その製造方法及びその成形品
JP2007536426A (ja) * 2004-05-05 2007-12-13 フイルメニツヒ ソシエテ アノニム 生分解性グラフトコポリマー
WO2008143322A1 (ja) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation セルロース誘導体、セルロース誘導体-ポリ乳酸グラフト共重合体及びその製造方法、並びに、ポリ乳酸系樹脂組成物
JP2011252102A (ja) * 2010-06-03 2011-12-15 Konishi Co Ltd ポリ乳酸系接着剤及びその製造方法
JP2013519736A (ja) * 2010-02-11 2013-05-30 エフピーイノベイションズ ナノ結晶性セルロース(ncc)とポリ乳酸(pla)とのナノ複合体バイオマテリアル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101168616B (zh) * 2007-09-29 2010-07-21 武汉理工大学 一种聚多糖纳米粒子接枝聚酯改性聚乳酸材料的制备方法
CN101735325B (zh) * 2009-12-11 2011-10-05 吉林中粮生化科技有限公司 纳米纤维素与脂肪族聚酯接枝共聚物的制备方法
US20110319509A1 (en) * 2010-03-23 2011-12-29 Polynew, Inc. Polymer composites incorporating stereocomplexation
FI20115007A0 (fi) * 2011-01-05 2011-01-05 Teknologian Tutkimuskeskus Vtt Oy In-situ-polymeroitu NFC-g-PCL muovien lujitteena
CN105504235B (zh) * 2014-09-26 2018-05-25 中国科学院大连化学物理研究所 一种利用纤维素生产纤维素接枝聚乳酸共聚物的方法
ES2928853T3 (es) * 2015-11-26 2022-11-23 Organofuel Sweden Ab Proceso respetuoso con el medio ambiente para la preparación de nanocelulosa y derivados de la misma
JP6969737B2 (ja) * 2017-05-12 2021-11-24 地方独立行政法人大阪産業技術研究所 ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240066A (ja) * 1986-04-10 1987-10-20 田畑 米穂 医療用管状器官および製造方法
JP2004359840A (ja) * 2003-04-10 2004-12-24 Toray Ind Inc 樹脂組成物、その成形品および分散助剤
JP2005035134A (ja) 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2007536426A (ja) * 2004-05-05 2007-12-13 フイルメニツヒ ソシエテ アノニム 生分解性グラフトコポリマー
WO2006001076A1 (ja) * 2004-06-25 2006-01-05 Agri Future Joetsu Co.,Ltd. 熱可塑性セルロース系組成物、その製造方法及びその成形品
WO2008143322A1 (ja) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation セルロース誘導体、セルロース誘導体-ポリ乳酸グラフト共重合体及びその製造方法、並びに、ポリ乳酸系樹脂組成物
JP2013519736A (ja) * 2010-02-11 2013-05-30 エフピーイノベイションズ ナノ結晶性セルロース(ncc)とポリ乳酸(pla)とのナノ複合体バイオマテリアル
JP2011252102A (ja) * 2010-06-03 2011-12-15 Konishi Co Ltd ポリ乳酸系接着剤及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623408A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070692A1 (ja) * 2020-09-30 2022-04-07 大王製紙株式会社 ポリ乳酸複合樹脂
WO2022070691A1 (ja) * 2020-09-30 2022-04-07 大王製紙株式会社 セルロース複合樹脂
JP2022057495A (ja) * 2020-09-30 2022-04-11 大王製紙株式会社 セルロース複合樹脂
JP2022057496A (ja) * 2020-09-30 2022-04-11 大王製紙株式会社 ポリ乳酸複合樹脂
JP7190710B2 (ja) 2020-09-30 2022-12-16 大王製紙株式会社 ポリ乳酸複合樹脂
JP7248988B2 (ja) 2020-09-30 2023-03-30 大王製紙株式会社 セルロース複合樹脂
CN113563518A (zh) * 2021-06-25 2021-10-29 武汉理工大学 一种氟化纤维素纳米晶润滑脂稠化剂的制备方法
CN113563518B (zh) * 2021-06-25 2022-06-03 武汉理工大学 一种氟化纤维素纳米晶润滑脂稠化剂的制备方法

Also Published As

Publication number Publication date
KR20200007852A (ko) 2020-01-22
US11046787B2 (en) 2021-06-29
EP3623408A4 (en) 2020-12-09
CA3063332A1 (en) 2019-12-05
FI3623408T3 (fi) 2024-03-21
CN110730792A (zh) 2020-01-24
EP3623408B1 (en) 2024-02-07
JP6969737B2 (ja) 2021-11-24
EP3623408A1 (en) 2020-03-18
JP2018193430A (ja) 2018-12-06
US20200123275A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2018207848A1 (ja) ポリ乳酸グラフト化セルロースナノファイバー及びその製造方法
Zhou et al. Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls
Maharana et al. Synthesis and characterization of poly (lactic acid) based graft copolymers
Nagalakshmaiah et al. Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene
Li et al. Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films
Yetiş et al. Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid
Gan et al. Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites
Kumar et al. Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite
Peltzer et al. Surface modification of cellulose nanocrystals by grafting with poly (lactic acid)
Navarro et al. Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils
Olsen et al. Polymer grafting inside wood cellulose fibers by improved hydroxyl accessibility from fiber swelling
Wang et al. Green functionalization of cellulose nanocrystals for application in reinforced poly (methyl methacrylate) nanocomposites
Zhu et al. Surface chemistry of nanocellulose
Tian et al. Graft polymerization of ε-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology
KR101946042B1 (ko) Pla 복합소재 및 이의 제조 방법
Han et al. Technology and mechanism of enhanced compatibilization of polylactic acid-grafted glycidyl methacrylate
Luo et al. Preparation, characterization and application of maleic anhydride-modified polylactic acid macromonomer based on direct melt polymerization
Chen et al. Rapid synthesis of polymer-grafted cellulose nanofiber nanocomposite via surface-initiated Cu (0)-mediated reversible deactivation radical polymerization
Mano et al. P (CL-b-LLA) diblock copolymers grafting onto cellulosic nanocrystals
Lamm et al. Aqueous-Based Polyimine Functionalization of Cellulose Nanofibrils for Effective Drying and Polymer Composite Reinforcement
Koo et al. Rheological properties of lignocellulosic nanomaterial aqueous suspensions as influenced by water-soluble biopolymer additives
Zhang et al. Preparation of starch-g-PMMA, starch-g-P (MMA/BMA) and starch-g-P (MMA/MA) nanoparticles and their reinforcing effect on natural rubber by latex blending: a comparative study
Punia et al. Nanocellulose as reinforcement materials for polymer matrix composites
Ali et al. Modification of cellulose nanocrystals with 2-carboxyethyl acrylate in the presence of epoxy resin for enhancing its adhesive properties
Layek et al. Reduced graphene oxide integrated poly (ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3063332

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035486

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018798416

Country of ref document: EP

Effective date: 20191212