WO2020184059A1 - SiC複合基板及び半導体デバイス - Google Patents

SiC複合基板及び半導体デバイス Download PDF

Info

Publication number
WO2020184059A1
WO2020184059A1 PCT/JP2020/005741 JP2020005741W WO2020184059A1 WO 2020184059 A1 WO2020184059 A1 WO 2020184059A1 JP 2020005741 W JP2020005741 W JP 2020005741W WO 2020184059 A1 WO2020184059 A1 WO 2020184059A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
layer
biaxially oriented
single crystal
pores
Prior art date
Application number
PCT/JP2020/005741
Other languages
English (en)
French (fr)
Inventor
里紗 宮風
潔 松島
吉川 潤
守道 渡邊
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021505610A priority Critical patent/JP7212139B2/ja
Publication of WO2020184059A1 publication Critical patent/WO2020184059A1/ja
Priority to US17/303,967 priority patent/US12080551B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide

Definitions

  • the present invention relates to a SiC composite substrate and a semiconductor device.
  • SiC Silicon carbide
  • Representative dislocations present in the SiC single crystal is the basal plane dislocations, threading screw dislocations, include threading edge dislocation, the total dislocation density of the current commercially available SiC single crystal substrate is approximately 10 3 ⁇ 10 4 cm It is said to be -2 (for example, Patent Document 1). Therefore, in contrast to Si, in which dislocation-free crystals are industrially realized, SiC is a single crystal material in which an element must be manufactured from a region having a constant dislocation density. It is also known that these dislocations have different effects on device performance.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a biaxially oriented SiC layer having a remarkably low defect density.
  • the SiC composite substrate of the present invention is SiC single crystal layer and At least one layer or more is provided on the SiC single crystal, the SiC is oriented in both the c-axis direction and the a-axis direction, has pores, and the density of defects reaching the surface is 1.0 ⁇ 10 1 / cm 2
  • the following biaxially oriented SiC layer and It is equipped with.
  • the biaxially oriented SiC layer of this SiC composite substrate is useful in the manufacture of semiconductor devices and electronic devices because the defect density is extremely low.
  • the present inventors reduce the density of defects (micropipes, penetrating spiral dislocations, basal plane dislocations, etc.) reaching the surface of the biaxially oriented SiC layer due to the presence of pores in the biaxially oriented SiC layer. I found that. The reason is not clear, but the following mechanism can be considered. That is, thermal stress due to the temperature distribution in the SiC crystal is known as one of the causes of defects. It is considered that the presence of the pores relaxed the thermal stress when forming the biaxially oriented SiC layer and suppressed the formation of new dislocations. Alternatively, it is considered that pair annihilation between defects is likely to occur by relaxing the thermal stress in the biaxially oriented SiC layer.
  • the second cause of defects is considered to be the presence of dislocations in the underlying SiC single crystal and the dislocations propagating to the biaxially oriented SiC layer that grows on the substrate.
  • the third cause of defects is that high-concentration impurity doping is performed in the biaxially oriented SiC layer, but there is a lattice mismatch between the underlying SiC single crystal and the biaxially oriented SiC layer. Conceivable.
  • the presence of pores in the biaxially oriented SiC layer can alleviate the stress of lattice mismatch and reduce the defect density.
  • FIG. 3 is a manufacturing process diagram of the SiC composite substrate 10.
  • FIG. 1 is a vertical sectional view of the SiC composite substrate 10 (cross-sectional view when the SiC composite substrate 10 is cut on a surface including the central axis of the SiC composite substrate 10),
  • FIG. 2 is a partially enlarged view of FIG. 1
  • FIG. 3 is a partially enlarged view of SiC. It is a manufacturing process diagram of the composite substrate 10.
  • the SiC composite substrate 10 of the present embodiment includes a SiC single crystal layer 20 and a biaxially oriented SiC layer 30.
  • the SiC single crystal layer 20 is a layer made of a SiC single crystal and has a crystal growth surface.
  • the polytype, off-angle, and polarity of the SiC single crystal are not particularly limited, but the polytype is preferably 4H or 6H, and the off-angle is 0.1 to 12 ° from the [0001] axis of the single crystal SiC. It is preferable that the polarity is Si surface. More preferably, the polytype is 4H, the off angle is 1 to 5 ° from the [0001] axis of single crystal SiC, and the polarity is the Si plane.
  • the biaxially oriented SiC layer 30 is provided on the crystal growth plane of the SiC single crystal 20, and the SiC is oriented in both the c-axis direction and the a-axis direction.
  • the biaxially oriented SiC layer 30 may be a SiC single crystal, a SiC polycrystal, or a mosaic crystal as long as it is oriented in the biaxial directions of the c-axis and the a-axis. Good.
  • a mosaic crystal is a group of crystals that do not have clear grain boundaries but have slightly different orientations of crystals on one or both of the c-axis and the a-axis.
  • the method for evaluating the orientation is not particularly limited, but for example, a known analysis method such as an EBSD (Electron Backscatter Diffraction Patterns) method or an X-ray pole figure can be used.
  • EBSD Electro Backscatter Diffraction Patterns
  • X-ray pole figure a known analysis method such as an EBSD (Electron Backscatter Diffraction Patterns) method or an X-ray pole figure.
  • the EBSD method the inverse pole map mapping of the surface (plate surface) of the biaxially oriented SiC layer 30 or the cross section orthogonal to the plate surface is measured.
  • the obtained reverse pole map mapping (A) it is oriented in a specific direction (first axis) in the approximate normal direction of the plate surface, and (B) it is orthogonal to the first axis and is approximately inward to the plate surface.
  • the orientation is oriented in two axes, the normal normal direction and the substantially plate surface direction. In other words, when the above four conditions are satisfied, it is determined that the orientation is in the two axes of the c-axis and the a-axis.
  • the direction in the plate surface may be oriented in a specific direction (for example, the a-axis) orthogonal to the c-axis.
  • the biaxially oriented SiC layer 30 may be oriented in two axes, a substantially normal direction and a substantially in-plane direction, but it is preferable that the substantially normal direction is oriented in the c-axis.
  • the smaller the inclination angle distribution in the substantially normal direction and / or the substantially in-plane direction of the plate the smaller the mosaic property of the biaxially oriented SiC layer 30, and the closer to zero, the closer to a single crystal.
  • the inclination angle distribution is preferably small in both the substantially normal direction and the substantially plate surface direction, for example, ⁇ 5 ° or less, and more preferably ⁇ 3 ° or less.
  • the biaxially oriented SiC layer 30 has pores 32 and defects 34.
  • the presence of these plurality of pores 32 contributes to a significant reduction in defects 34 in the alignment layer.
  • the mechanism is not clear, it is conceivable that the thermal stress is relaxed by the pores 32, the stress is relaxed by the collision between the pores 32 and the defect 34, and the stress is relaxed by the lattice mismatch.
  • the pores 32 exist in a state where they are not opened on the surface 30b of the biaxially oriented SiC layer 30. That is, although the biaxially oriented SiC layer 30 contains pores 32 inside, there are no pores 32 opened on the surface 30b. If the pores 32 opened on the surface 30b are present, it becomes difficult to form an epitaxial film or the like on the biaxially oriented SiC layer 30.
  • the number of pores 32 in the biaxially oriented SiC layer 30 is based on the number of pores Nd in the deep region including the contact surface 30a between the biaxially oriented SiC layer 30 and the SiC single crystal layer 20. It is preferable that the number of pores Ns in the surface layer region including the surface 30b opposite to 30a is small. By doing so, the penetration defect reaching the surface 30b can be effectively reduced. The reason is not clear, but it is presumed that such a pore distribution facilitates relaxation of thermal stress and the like.
  • the surface layer region and the deep layer region need only be determined relative to each other from the viewpoint of depth and pore distribution, and need not be uniformly determined by the depth as an absolute value. For example, the surface layer region has two axes.
  • the region is 50% deep from the surface with respect to the thickness of the oriented SiC layer 30, and the deep region is a region 50% deep below the region.
  • the surface layer region is a region from the surface 30b of the biaxially oriented SiC layer 30 to a depth of 25 ⁇ m
  • the deep layer region is a region having a depth of 25 to 50 ⁇ m. is there.
  • the number of pores Nd in the deep layer region and the number of pores Ns in the surface layer region are the pores per unit area of the cross section when observing the plane (cross section) orthogonal to the surface (plate surface) 30b of the biaxially oriented SiC layer 30. It can be defined by the frequency of numbers, ie pieces / cm 2 .
  • the number of pores Nd in the deep layer region is not particularly limited, but if it is too large, the biaxially oriented SiC layer 30 is liable to crack when processing such as cutting or surface polishing is performed. Therefore, from the viewpoint of ease of processing, the number of pores Nd preferably 1 ⁇ 10 8 / cm 2 or less, 1 ⁇ 10 7 / cm 2 or less being more preferred. On the other hand, if the number of pores Nd is too small, it becomes difficult to reduce the density of the defects 34. Therefore, from the viewpoint of defect reduction, the number of pores Nd is preferably 1 ⁇ 10 2 / cm 2 or more, more preferably 1 ⁇ 10 3 / cm 2 or more, and more preferably 1 ⁇ 10 5 / cm 2 or more.
  • the number of pores Ns in the surface layer region of the biaxially oriented SiC layer 30 is not particularly limited, but if it is too large, the biaxially oriented SiC layer 30 is liable to crack when processing such as cutting or surface polishing is performed. Therefore, from the viewpoint of ease of processing, the number of pores Ns preferably 1 ⁇ 10 8 / cm 2 or less, 1 ⁇ 10 7 / cm 2 or less being more preferred. On the other hand, if the number of pores Ns is too small, it becomes difficult to reduce the density of the defects 34.
  • the number of pores Nd is preferably 1 ⁇ 10 2 / cm 2 or more, more preferably 1 ⁇ 10 3 / cm 2 or more, and more preferably 1 ⁇ 10 4 / cm 2 or more.
  • 1 ⁇ 10 5 pieces / cm 2 or more is more preferable.
  • the Nd / Ns ratio is preferably 1 to 10, more preferably 1 to 9, and particularly preferably 4 to 9. By doing so, the penetration defects reaching the surface 30b can be efficiently reduced.
  • the defect density reaching the surface 30b of the biaxially oriented SiC layer 30 is 1 ⁇ 10 1 / cm 2 or less.
  • the defect density is measured by etch pit evaluation using known KOH melt etching.
  • defects are meant to include penetrating helical dislocations (TSDs), basal plane dislocations (BPDs), and micropipes (MPs).
  • TSDs penetrating helical dislocations
  • BPDs basal plane dislocations
  • MPs micropipes
  • Penetration means that the dislocation line is substantially parallel to the [0001] axis of the hexagonal system.
  • Basis means that the dislocation line is in the base hexagonal system (0001) plane.
  • a micropipe is a hollow core TSD with a Burgers vector greater than 3c.
  • c is a lattice constant.
  • the biaxially oriented SiC layer 30 and the SiC single crystal layer 20 are preferably layers having a low resistivity, and are typically 20 m ⁇ cm or less.
  • the low-resistance biaxially oriented SiC layer 30 and the SiC single crystal layer 20 a layer made of nitrogen-doped n-type SiC is preferable.
  • the SiC composite substrate 10 provided with the SiC single crystal layer 20 and the biaxially oriented SiC layer 30 having such conductivity has conductivity in the thickness direction and is used as a substrate for a vertical device (for example, a power device). Can be done.
  • the biaxially oriented SiC layer 30 or the SiC single crystal layer 20 may be used as p-type SiC.
  • the biaxially oriented SiC layer 30 and the SiC single crystal layer 20 are doped with Al, B or the like. It is preferable to have.
  • the biaxially oriented SiC layer 30 is preferably a layer having a high resistivity, and is typically 1 ⁇ 10 7 ⁇ cm or more.
  • the highly resistant biaxially oriented SiC layer 30 does not contain a doping element. Further, such a high resistance can be obtained even when both the n-type dopant and the p-type dopant are contained.
  • the SiC composite substrate 10 provided with the biaxially oriented SiC layer 30 imparted with such insulating properties has insulating properties, and is a power for high frequency in which a GaN, AlGaN layer, etc. is formed on a horizontal device (for example, a SiC composite substrate). It can be used as a base substrate for devices).
  • the biaxially oriented SiC layer 30 is formed on the SiC single crystal layer 20 . Specifically, it includes (a) a step of forming the orientation precursor layer 40, (b) a heat treatment step, and (c) a grinding step.
  • the orientation precursor layer 40 becomes a biaxially oriented SiC layer 30 by the heat treatment described later, and may contain a component such as a dopant.
  • these steps will be described in order with reference to FIG.
  • the alignment precursor layer 40 is formed on the crystal growth surface of the SiC single crystal layer 20.
  • the SiC single crystal layer 20 it is preferable to use a 4H or 6H polytype.
  • the crystal growth plane of the SiC single crystal layer 20 a Si plane having an off angle of 0.1 to 12 ° from the SiC [0001] axis is preferable. The off angle is more preferably 1 to 5 °.
  • the method for forming the alignment precursor layer 40 is not particularly limited as long as the biaxially oriented SiC layer 30 having pores 32 is formed after the heat treatment, and a known method can be adopted.
  • the pores 32 may be formed in the alignment precursor layer 40, the alignment precursor layer 40 may be dense, or the pores 32 may be formed when the biaxially oriented SiC layer 30 is formed. However, from the viewpoint of controlling the formation state of the pores 32, it is preferable that the pores 32 are formed in the alignment precursor layer 40.
  • Examples of the method for forming the alignment precursor layer 40 include a solid phase deposition method such as an AD (aerosol deposition) method and an HPPD (supersonic plasma particle deposition) method, a sputtering method, a vapor deposition method, a sublimation method, and various CVD methods.
  • Examples thereof include a vapor phase deposition method such as a chemical vapor deposition method and a liquid phase deposition method such as a solution growth method, and a method of directly forming an orientation precursor layer on a SiC single crystal substrate can be used.
  • As the CVD method for example, a thermal CVD method, a plasma CVD method, a mist CVD method, an MO (organic metal) CVD method and the like can be used.
  • orientation precursor layer 40 a method of using a polycrystalline material prepared in advance by a sublimation method, various CVD methods, sintering, or the like and placing it on the SiC single crystal layer 20 can also be used. In this case as well, it is preferable that the polycrystal contains pores.
  • a method may be used in which a molded product of the orientation precursor layer 40 is prepared in advance and the molded product is placed on the SiC single crystal layer 20.
  • Such an orientation precursor layer 40 may be a tape molded product produced by tape molding, or a green compact produced by pressure molding such as a uniaxial press.
  • orientation precursor layers 40 may contain components that control the electrical characteristics of the biaxially oriented SiC layer 30.
  • nitrogen may be contained in the oriented precursor layer 40.
  • B and Al may be contained in the orientation precursor layer 40.
  • nitrogen and both B and / or Al may be contained.
  • the SiC single crystal layer 20 is covered without going through the heat treatment step described later.
  • Occupational growth may occur in the area, and a biaxially oriented SiC layer 30 may be formed.
  • the alignment precursor layer 40 is in a state of not being oriented at the time of formation, that is, an amorphous or non-oriented polycrystal, and it is preferable to orient the SiC single crystal as a seed in the subsequent heat treatment step. By doing so, it is possible to effectively reduce the crystal defects that reach the surface 30b of the biaxially oriented SiC layer 30.
  • a method of forming the orientation precursor layer 40 directly on the SiC single crystal layer 20 by an aerosol deposition (AD) method or various CVD methods or a sublimation method, various CVD methods, or a method separately prepared by sintering is used to obtain a polycrystalline material separately prepared by SiC.
  • the method of placing it on the single crystal layer 20 is preferable.
  • the AD method is particularly preferable because it does not require a high vacuum process and the film formation rate is relatively high.
  • the method using a polycrystal prepared in advance as the orientation precursor layer 40 in order to improve the adhesion between the polycrystal and the SiC single crystal layer 20, the surface of the polycrystal is sufficiently smoothed. is necessary. Therefore, from the viewpoint of cost, the method of directly forming the orientation precursor layer 40 is preferable. Further, a method of placing the molded product prepared in advance on the SiC single crystal layer 20 is also preferable as a simple method, but since the alignment precursor layer 40 is composed of powder, a process of sintering in a heat treatment step described later. Needs.
  • the AD method is a technology in which fine particles and fine particle raw materials are mixed with a gas to form an aerosol, and this aerosol is jetted at high speed from a nozzle to collide with a substrate to form a film, and has a feature that a film can be formed at room temperature.
  • FIG. 4 shows an example of a film forming apparatus (aerosol deposition (AD) apparatus) used in such an AD method.
  • the film forming apparatus 50 shown in FIG. 4 is configured as an apparatus used in the AD method of injecting raw material powder onto a substrate in an atmosphere having a pressure lower than atmospheric pressure.
  • the film forming apparatus 50 comprises an aerosol generation unit 52 that generates an aerosol of a raw material powder containing a raw material component, and a film forming unit 60 that injects the raw material powder onto a SiC single crystal layer 20 to form a film containing the raw material component.
  • the aerosol generation unit 52 includes an aerosol generation chamber 53 that stores raw material powder and receives a carrier gas supply from a gas cylinder (not shown) to generate an aerosol, and a raw material supply pipe 54 that supplies the generated aerosol to the film forming unit 60.
  • the aerosol generation chamber 53 and the aerosol in the aerosol are provided with a vibration exciter 55 that vibrates at a frequency of 10 to 100 Hz.
  • the film forming section 60 includes a film forming chamber 62 that injects aerosol into the SiC single crystal layer 20, a substrate holder 64 that is arranged inside the film forming chamber 62 and fixes the SiC single crystal layer 20, and a substrate holder 64. It is provided with an XY stage 63 that moves in the axis-Y axis direction. Further, the film forming section 60 includes an injection nozzle 66 in which a slit 67 is formed at the tip thereof to inject aerosol into the SiC single crystal layer 20, and a vacuum pump 68 for reducing the pressure in the film forming chamber 62. The injection nozzle 66 is attached to the tip of the raw material supply pipe 54.
  • the AD method causes pores in the film depending on the film forming conditions, or the film becomes a green compact. For example, it is easily affected by the collision speed of the raw material powder with the substrate, the particle size of the raw material powder, the aggregated state of the raw material powder in the aerosol, the injection amount per unit time, and the like.
  • the collision speed of the raw material powder with the substrate is affected by the differential pressure between the film forming chamber 62 and the injection nozzle 66, the opening area of the injection nozzle, and the like. Therefore, in order to control the number of pores in the orientation precursor layer 40, it is necessary to appropriately control these factors.
  • the raw material gas is not particularly limited, but the source of Si is silicon tetrachloride (SiCl 4 ) gas or silane (SiH 4 ) gas, and the source of C is methane (CH 4 ) gas or propane (C). 3 H 8 ) Gas or the like can be used.
  • the film formation temperature is preferably 1000 to 2200 ° C, more preferably 1100 to 2000 ° C, and even more preferably 1200 to 1900 ° C.
  • the orientation precursor layer 40 is in a non-oriented state at the time of its production, that is, it is an amorphous or non-oriented polycrystal, and the SiC single crystal may be used as a seed crystal to cause crystal rearrangement during the heat treatment step. preferable.
  • the film formation temperature, Si source, gas flow rate of C source and their ratio, film formation pressure, etc. have an effect. It has been known.
  • the film forming temperature is preferably low, preferably less than 1700 ° C., further preferably 1500 ° C. or lower, and particularly preferably 1400 ° C. or lower.
  • the thermal CVD method is known as a method for forming a dense film regardless of whether it is an epitaxial film or a polycrystalline film.
  • pores can be formed in the film by controlling the gas flow rate ratio of the Si source and the C source and the film forming pressure.
  • Si aggregates are formed in the film and evaporate during film formation or heat treatment in a subsequent step to form pores 32.
  • Si / C ratio pores 32 are also formed in the biaxially oriented SiC layer 30. Therefore, in order to form the polycrystalline or amorphous orientation precursor layer 40 containing the pores 32 by using the thermal CVD method, factors such as the film formation temperature, the Si / C ratio, and the total pressure are appropriately set. Need to control.
  • the raw material powder of the orientation precursor can be molded and prepared.
  • the orientation precursor layer 40 is a press molded body.
  • the press-molded product can be produced by press-molding the raw material powder of the orientation precursor based on a known method.
  • the raw material powder is placed in a mold, preferably 100 to 400 kgf / cm 2 , more preferably 150. It may be produced by pressing at a pressure of about 300 kgf / cm 2 .
  • the molding method is not particularly limited, and in addition to press molding, tape molding, extrusion molding, casting molding, doctor blade method, and any combination thereof can be used.
  • additives such as a binder, a plasticizer, a dispersant, and a dispersion medium are appropriately added to the raw material powder to form a slurry, and the slurry is passed through a narrow slit-shaped discharge port to form a sheet. It is preferable to discharge and mold.
  • the thickness of the molded product formed into a sheet is not limited, but is preferably 5 to 500 ⁇ m from the viewpoint of handling. Further, when a thick orientation precursor layer is required, a large number of these sheet molded products may be stacked and used as a desired thickness. In these molded bodies, the portion near the SiC single crystal layer 20 becomes the biaxially oriented SiC layer 30 by the subsequent heat treatment on the SiC single crystal layer 20.
  • the biaxially oriented SiC layer 30 is formed after the molded product is sintered and undergoes a step of being integrated with the SiC single crystal layer 20 as a polycrystal. If the molded product does not undergo a sintered state, epitaxial growth using a SiC single crystal as a seed may not occur sufficiently. Therefore, the molded product may contain additives such as a sintering aid in addition to the SiC raw material. However, it is also necessary to form pores 32 in the biaxially oriented SiC layer 30, and it is necessary to select additives and heat treatment conditions that make them compatible.
  • the biaxially oriented SiC layer 30 is generated by heat-treating the laminated body in which the alignment precursor layer 40 is laminated or placed on the SiC single crystal layer 20.
  • the heat treatment method is not particularly limited as long as epitaxial growth using the SiC single crystal layer 20 as a seed occurs, and the heat treatment method can be carried out in a known heat treatment furnace such as a tube furnace or a hot plate. Further, in addition to these heat treatments under normal pressure (pressless), pressure heat treatments such as hot press and HIP, and combinations of normal pressure heat treatments and pressure heat treatments can also be used.
  • the heat treatment atmosphere can be selected from vacuum, nitrogen, and an inert gas atmosphere.
  • the heat treatment temperature is preferably 1700 to 2700 ° C.
  • the temperature is preferably 1700 ° C. or higher, more preferably 1850 ° C. or higher, still more preferably 2000 ° C. or higher, and particularly preferably 2200 ° C. or higher.
  • the temperature is preferably 2700 ° C. or lower, more preferably 2500 ° C. or lower.
  • the heat treatment temperature and holding time are related to the thickness of the biaxially oriented SiC layer 30 generated by epitaxial growth and can be appropriately adjusted.
  • the surface pressure is preferably 50 kgf / cm 2 or more, more preferably 100 kgf / cm 2 or more, particularly preferably preferably 200 kgf / cm 2 or more, there is no particular upper limit.
  • the firing temperature is not particularly limited as long as sintering and epitaxial growth occur. 1700 ° C. or higher is preferable, 1800 ° C. or higher is more preferable, 2000 ° C. or higher is further preferable, and 2200 ° C. or higher is particularly preferable.
  • the atmosphere at the time of firing can be selected from vacuum, nitrogen, an inert gas atmosphere, or a mixed gas of nitrogen and an inert gas.
  • the SiC powder as a raw material may be either ⁇ -SiC or ⁇ -SiC.
  • the SiC powder is preferably composed of SiC particles having an average particle size of 0.01 to 5 ⁇ m.
  • the average particle size refers to the average value obtained by observing the powder with a scanning electron microscope and measuring the maximum diameter in the constant direction for 100 primary particles.
  • the crystals in the alignment precursor layer 40 grow while being oriented from the crystal growth plane of the SiC single crystal layer 20 to the c-axis and the a-axis, so that the orientation precursor layer 40 gradually grows from the crystal growth plane. It changes to the biaxially oriented SiC layer 30.
  • the generated biaxially oriented SiC layer 30 has a defect density of 1 ⁇ 10 1 / cm 2 or less. The reason why the defect density is remarkably low is considered as follows. First, the thermal stress in the biaxially oriented SiC layer 30 is considered to contribute to the occurrence of dislocations.
  • the alignment precursor layer 40 Since the alignment precursor layer 40 has pores, it is considered that the thermal stress when forming the biaxially oriented SiC layer 30 is relaxed and dislocations due to the thermal stress can be suppressed. Secondly, the defects in the SiC single crystal layer 20 also propagate to the biaxially oriented SiC layer 30, but the propagated defects 34 collide with the pores 32 in the orientation precursor layer 40 and disappear, or 2 It is considered that the number of defects 34 is reduced due to the occurrence of pair annihilation between defects due to the small thermal stress in the axially oriented SiC layer 30.
  • the off angle is 0.1 ° or more, preferably 1 ° or more, more preferably 3 ° or more, still more preferably 5 ° or more, and particularly preferably 7 ° or more.
  • the off angle is 12 ° or less, preferably 9 ° or less, more preferably 7 ° or less, still more preferably 5 ° or less.
  • the biaxially oriented SiC layer 30 of the SiC composite substrate 10 of the present embodiment described above is useful in the manufacture of semiconductor devices and electronic devices because the defect density is extremely low.
  • the number of pores 32 in the biaxially oriented SiC layer 30 is opposite to the number of pores Nd in the deep region including the contact surface 30a between the biaxially oriented SiC layer 30 and the SiC single crystal layer 20.
  • the number of pores Ns in the surface layer region including the side surface 30b is small, the penetration defect can be effectively reduced.
  • a semiconductor device can be obtained by providing a functional layer for a semiconductor device on the biaxially oriented SiC layer 30.
  • the semiconductor device include MOSFETs, IGBTs, LEDs, and the like.
  • the orientation precursor layer 40 is laminated on the biaxially oriented SiC layer 30 of the SiC composite substrate 10, and heat treatment, annealing, and grinding are performed in this order to obtain a second layer on the biaxially oriented SiC layer 30.
  • the biaxially oriented SiC layer 30 can be provided.
  • the AD film formation conditions were as follows. First, the carrier gas was N 2, and a film was formed using a ceramic nozzle having slits having a long side of 5 mm and a short side of 0.4 mm.
  • the scanning conditions of the nozzle are 0.5 mm / s, movement of 55 mm perpendicular to the long side of the slit and in the forward direction, movement of 5 mm in the direction of the long side of the slit, and vertical and return to the long side of the slit. Scans are performed to move 55 mm in the direction, move 5 mm in the long side direction of the slit and in the direction opposite to the initial position, and when the slit moves 55 mm from the initial position in the long side direction, scan in the opposite direction.
  • the cycle of returning to the initial position was set as one cycle, and this was repeated for 100 cycles.
  • the set pressure of the transport gas was adjusted to 0.06 MPa
  • the flow rate was adjusted to 6 L / min
  • the pressure in the chamber was adjusted to 100 Pa or less.
  • the thickness of the AD film thus formed was about 10 ⁇ m, and this film was designated as AD film 1.
  • the nozzle was replaced with a ceramic nozzle having a slit with a long side of 5 mm and a short side of 0.3 mm, and the number of cycles was set to 500, and the same conditions as those of the AD film 1 were applied to the AD film 1.
  • the AD film 2 was produced.
  • the AD film 2 thus formed had a thickness of about 50 ⁇ m, and a total of about 60 ⁇ m of AD films 1 and 2 was obtained. Further, although both the AD film 1 and the AD film 2 contained pores, the number of pores per unit area was smaller in the AD film 2 than in the AD film 1.
  • both the biaxially oriented SiC layer 30 and the SiC single crystal layer 20 have the same crystal orientation, it was difficult to distinguish them by the channeling contrast, but the thickness of the region (crystal orientation portion) where the crystal orientations are aligned makes the SiC single crystal.
  • the thickness of the layer 20 (0.35 mm) was subtracted to obtain the thickness of the biaxially oriented SiC layer 30.
  • the thickness of the polycrystalline portion was about 30 ⁇ m, and the thickness of the biaxially oriented SiC layer was about 30 ⁇ m.
  • Biaxial orientation Crystal orientation of SiC layer 30 1.
  • the SiC composite substrate 10 produced in 1 was cut so as to pass through the central portion of the substrate in a direction orthogonal to the plate surface.
  • the cross section of the cut sample was smoothed by lapping with diamond abrasive grains, and mirror-finished by chemical mechanical polishing (CMP) using colloidal silica.
  • CMP chemical mechanical polishing
  • the inverse pole map mapping of the cross section of the biaxially oriented SiC layer 30 was measured by the EBSD (Electron Backscatter Diffraction Patterns) method.
  • the biaxially oriented SiC layer 30 is oriented in the same direction as the SiC single crystal layer 20 in both the surface normal direction and the plate surface direction. Further, the inclination angle distribution was ⁇ 0.5 ° or less in both the substantially normal direction and the substantially plate surface direction, and it was confirmed that the SiC layer 30 was biaxially oriented.
  • the number of pores Ns contained in the surface layer region (region having a thickness of about 10 ⁇ m from the surface of the biaxially oriented SiC layer) was evaluated.
  • the number of pores having a pore diameter of 0.3 ⁇ m or more was taken as pores, and the number of pores was visually counted from the photographed secondary electron image and evaluated as the number of pores per 1 cm 2 unit cross section. The results were as shown in Table 1.
  • the AD film 1 is made of a ceramic nozzle having a slit of 5 mm on the long side ⁇ 0.3 mm on the short side
  • the AD film 2 is made of ceramics having a slit of 5 mm on the long side ⁇ 0.2 mm on the short side.
  • the SiC composite substrate 10 was manufactured and evaluated in the same manner as in Experimental Example 1 except that the nozzle was used in the above. As a result, the formation of the biaxially oriented SiC layer 30 having the same thickness as that of Experimental Example 1 was confirmed.
  • the results of the pore number and defect density evaluation are as shown in Table 1.
  • the AD film 1 is made of a ceramic nozzle having a slit of 5 mm long side ⁇ 0.1 mm short side
  • the AD film 2 is made of ceramics having a slit of 5 mm long side ⁇ 0.15 mm short side.
  • the SiC composite substrate 10 was prepared and evaluated in the same manner as in Experimental Example 1 except that the nozzle was used in the above. As a result, the formation of the biaxially oriented SiC layer 30 having the same thickness as that of Experimental Example 1 was confirmed.
  • the results of the pore number and defect density evaluation are as shown in Table 1.
  • the AD film 1 is made of a ceramic nozzle having a slit of 5 mm on the long side ⁇ 0.3 mm on the short side
  • the AD film 2 is made of ceramics having a slit of 5 mm on the long side ⁇ 0.4 mm on the short side.
  • the SiC composite substrate 10 was prepared and evaluated in the same manner as in Experimental Example 1 except that the nozzle was used in the above. As a result, the formation of the biaxially oriented SiC layer 30 having the same thickness as that of Experimental Example 1 was confirmed.
  • the results of the pore number and defect density evaluation are as shown in Table 1.
  • the present invention can be used, for example, in semiconductor devices and electronic devices.
  • SiC composite substrate 20 SiC single crystal layer, 30 biaxially oriented SiC layer, 30a contact surface, 30b surface opposite to the contact surface, 32 pores, 34 defects, 40 alignment precursor layer, 50 film forming apparatus, 52 Aerosol generation unit, 53 aerosol generation chamber, 54 raw material supply pipe, 55 vibrator, 60 film formation section, 62 film formation chamber, 63 Y stage, 64 substrate holder, 66 injection nozzle, 67 slit, 68 vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

SiC複合基板10は、SiC単結晶層20と、2軸配向SiC層30とを備える。2軸配向SiC層30は、SiC単結晶20上に少なくとも1層以上設けられ、SiCがc軸方向及びa軸方向の両方に配向し、気孔32を有し、欠陥密度が1.0×101/cm2以下である。

Description

SiC複合基板及び半導体デバイス
 本発明は、SiC複合基板及び半導体デバイスに関する。
 炭化珪素(SiC)は大電圧・大電力を低損失で制御できるワイドバンドギャップ材料として注目を集めている。SiC単結晶中に存在する代表的な転位には、基底面転位、貫通らせん転位、貫通刃状転位などがあり、現在市販のSiC単結晶基板の全転位密度は、およそ103~104cm-2に上ると言われている(例えば特許文献1)。したがって、無転位結晶が工業的にも実現されているSiとは対照的に、SiCは一定の転位密度を有する領域から素子を作製せざるを得ない単結晶材料である。また、これらの転位は、素子性能への影響がそれぞれ異なることが分かっている。
特許第6197722号公報(段落0004)
 しかしながら、本発明者の知る限り、全転位密度が著しく少ないSiC単結晶基板については、未だ開発されていない。
 本発明はこのような課題を解決するためになされたものであり、欠陥密度が著しく少ない2軸配向SiC層を提供することを主目的とする。
 本発明のSiC複合基板は、
 SiC単結晶層と、
 前記SiC単結晶上に少なくとも1層以上設けられ、SiCがc軸方向及びa軸方向の両方に配向し、気孔を有し、表面に到達する欠陥の密度が1.0×101/cm2以下の2軸配向SiC層と、
 を備えたものである。
 このSiC複合基板の2軸配向SiC層は、欠陥密度が著しく少ないため、半導体デバイスや電子デバイスの製作において有用である。
 本発明者らは、2軸配向SiC層に気孔が存在することで、その2軸配向SiC層の表面に到達する欠陥(マイクロパイプ、貫通らせん転位、基底面転位など)の密度が低減されることを見出した。その理由は定かではないが、以下のようなメカニズムが考えられる。すなわち、欠陥が生じる原因の1つとして、SiC結晶内の温度分布による熱応力が知られている。気孔が存在することで、2軸配向SiC層を形成する際に熱応力が緩和され、新たな転位の生成を抑制できたと考えられる。あるいは、2軸配向SiC層内の熱応力が緩和されることで欠陥同士の対消滅が生じやすくなると考えられる。欠陥が生じる2つ目の原因として、下地となるSiC単結晶中に転位が存在し、その転位が下地の上に成長する2軸配向SiC層に伝搬することが考えられる。このとき、2軸配向SiC層に気孔が存在すると、SiC単結晶層から伝搬する欠陥は気孔と衝突して消滅すると考えられる。欠陥が生じる3つ目の原因として、2軸配向SiC層内に高濃度の不純物ドーピングを行うことが前提になるが、下地となるSiC単結晶と2軸配向SiC層との間の格子ミスマッチが考えられる。このとき、2軸配向SiC層中に気孔が存在することで、格子ミスマッチの応力を緩和して欠陥密度が低減できると考えられる。
SiC複合基板10の縦断面図。 図1の部分拡大図。 SiC複合基板10の製造工程図。 AD成膜装置50の概念図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はSiC複合基板10の縦断面図(SiC複合基板10の中心軸を含む面でSiC複合基板10を切断したときの断面図)、図2は図1の部分拡大図、図3はSiC複合基板10の製造工程図である。
 本実施形態のSiC複合基板10は、SiC単結晶層20と、2軸配向SiC層30とを備えている。
 SiC単結晶層20は、SiC単結晶からなる層であり、結晶成長面を有する。SiC単結晶のポリタイプ、オフ角、極性は特に限定されるものではないが、ポリタイプは4H又は6Hが好ましく、オフ角は単結晶SiCの[0001]軸から0.1~12°であることが好ましく、極性はSi面であることが好ましい。ポリタイプは4H、オフ角は単結晶SiCの[0001]軸から1~5°、極性はSi面であることがより好ましい。
 2軸配向SiC層30は、SiC単結晶20の結晶成長面上に設けられ、SiCがc軸方向及びa軸方向の両方に配向している。2軸配向SiC層30は、c軸及びa軸の2軸方向に配向している限り、SiC単結晶であってもよいし、SiC多結晶であってもよいし、モザイク結晶であってもよい。モザイク結晶とは、明瞭な粒界は有しないが、結晶の配向方位がc軸及びa軸の一方又は両方がわずかに異なる結晶の集まりになっているものをいう。配向の評価方法は、特に限定されるものではないが、例えばEBSD(Electron Back Scatter Diffraction Patterns)法やX線極点図などの公知の分析手法を用いることができる。例えば、EBSD法を用いる場合、2軸配向SiC層30の表面(板面)又は板面と直交する断面の逆極点図マッピングを測定する。得られた逆極点図マッピングにおいて、(A)板面の略法線方向に特定方位(第1軸)に配向していること、(B)第1軸に直交する、略板面内方向の特定方位(第2軸)に配向していること、(C)第1軸からの傾斜角度が±10°以内に分布していること、(D)第2軸からの傾斜角度が±10°以内に分布していること、という4つの条件を満たすときに略法線方向と略板面方向の2軸に配向していると定義できる。言い換えると、上記4つの条件を満たしている場合に、c軸及びa軸の2軸に配向していると判断する。例えば板面の略法線方向がc軸に配向している場合、略板面内方向がc軸と直交する特定方位(例えばa軸)に配向していればよい。2軸配向SiC層30は、略法線方向と略板面内方向の2軸に配向していればよいが、略法線方向がc軸に配向していることが好ましい。略法線方向及び/又は略板面内方向の傾斜角度分布は小さい方が2軸配向SiC層30のモザイク性が小さくなり、ゼロに近づくほど単結晶に近くなる。このため、2軸配向SiC層30の結晶性の観点では、傾斜角度分布は略法線方向、略板面方向共に小さいほうが好ましく、例えば±5°以下が好ましく、±3°以下がさらに好ましい。
 2軸配向SiC層30は、気孔32と欠陥34とを有する。これら複数の気孔32の存在が、配向層における欠陥34の顕著な低減に寄与する。そのメカニズムは定かではないが、気孔32による熱応力の緩和、気孔32と欠陥34の衝突による消滅、格子ミスマッチの応力緩和などが考えられる。
 気孔32は、2軸配向SiC層30の表面30bに開口していない状態で存在することが好ましい。すなわち、2軸配向SiC層30は、内部に気孔32を含有するものの、表面30bに開口した状態の気孔32は存在しない。表面30bに開口した気孔32が存在すると2軸配向SiC層30上にエピタキシャル膜などを成膜するのが困難になる。
 2軸配向SiC層30中の気孔32の数は、図2に示すように、2軸配向SiC層30とSiC単結晶層20との接触面30aを含む深層領域における気孔数Ndよりその接触面30aとは反対側の面30bを含む表層領域における気孔数Nsが少ないことが好ましい。こうすることで表面30bに到達する貫通欠陥を効果的に減少させることができる。その理由は定かではないが、このような気孔分布となることで熱応力などの緩和が進みやすくなるものと推定される。表層領域と深層領域は、深さ及び気孔分布の観点から相対的に決定されればよく絶対値としての深さで画一的に決定される必要は無いが、例えば、表層領域は、2軸配向SiC層30の厚みに対し、表面から50%の深さの領域であり、深層領域はその下の50%の深さの領域である。例えば、2軸配向SiC層30の厚みが50μmの場合、表層領域は、2軸配向SiC層30の表面30bから深さ25μmまでの領域であり、深層領域は、深さ25~50μmの領域である。また、深層領域における気孔数Nd及び表層領域における気孔数Nsは、2軸配向SiC層30の表面(板面)30bと直交する面(断面)を観察したときに、断面の単位面積当たりの気孔数の頻度、すなわち、個/cm2で定義することができる。
 深層領域における気孔数Ndは、特に限定するものではないが、多すぎると切断や表面研磨など、加工を加える際に2軸配向SiC層30が割れやすくなる。このため、加工のしやすさの観点では、気孔数Ndは1×108個/cm2以下が好ましく、1×107個/cm2 以下がより好ましい。一方、気孔数Ndの数が少なすぎると、欠陥34の密度を低くするのが困難になる。そのため、欠陥低減の観点では気孔数Ndの数は、1×102個/cm2以上が好ましく、1×103個/cm2以上がより好ましく、1×105個/cm2以上がより好ましく、1×106個/cm2以上が更に好ましい。また、2軸配向SiC層30中の表層領域における気孔数Nsは特に限定はないが、多すぎると切断や表面研磨など、加工を加える際に2軸配向SiC層30が割れやすくなる。このため、加工のしやすさの観点では、気孔数Nsは1×108個/cm2以下が好ましく、1×107個/cm2 以下がより好ましい。一方、気孔数Nsの数が少なすぎると、欠陥34の密度を低くするのが困難になる。そのため、欠陥低減の観点では気孔数Ndの数は、1×102個/cm2以上が好ましく、1×103個/cm2以上がより好ましく、1×104個/cm2以上がより好ましく、1×105個/cm2以上が更に好ましい。また、Nd/Ns比は1~10が好ましく、1~9が更に好ましく、4~9が特に好ましい。このようにすることで、表面30bに到達する貫通欠陥を効率的に減少させることができる。
 2軸配向SiC層30の表面30bに到達する欠陥密度は1×101/cm2以下である。欠陥密度は、公知のKOH融液エッチングを用いたエッチピット評価によって測定される。本明細書では、欠陥とは、貫通らせん転位(TSD)や基底面転位(BPD)、マイクロパイプ(MP)を含むものとする。貫通とは、転位線が六方晶系の[0001]軸に略平行であることを意味する。基底とは、転位線が基底六方晶系(0001)面内にあることを意味する。マイクロパイプとは、3cを超えるバーガースベクトルを備えた中空コアTSDである。ここで、cは格子定数である。
 SiC複合基板10に厚み方向の導電性を付与する観点では、2軸配向SiC層30及びSiC単結晶層20は、抵抗率が低い層であることが好ましく、典型的には20mΩcm以下である。低抵抗な2軸配向SiC層30及びSiC単結晶層20としては、窒素ドープされたn型SiCからなる層が好ましい。このような導電性を有するSiC単結晶層20及び2軸配向SiC層30を備えたSiC複合基板10は、厚み方向に導電性を有し、縦型デバイス(例えばパワーデバイス)の基板として用いることができる。また、用途によっては2軸配向SiC層30やSiC単結晶層20をp型SiCとしてもよく、この場合は、2軸配向SiC層30及びSiC単結晶層20にAl、Bなどがドープされていることが好ましい。
 SiC複合基板10に厚み方向の絶縁性を付与する観点では2軸配向SiC層30は抵抗率が高い層であることが好ましく、典型的には1×107Ωcm以上である。例えば、高抵抗な2軸配向SiC層30としては、ドーピング元素が含まれていないものである。また、n型ドーパントとp型ドーパントが共に含まれる場合においてもこのような高抵抗を得ることができる。このような絶縁性を付与した2軸配向SiC層30を備えたSiC複合基板10は、絶縁性を有し、横型デバイス(例えばSiC複合基板上にGaN、AlGaN層などを成膜した高周波用パワーデバイス)の下地基板として用いることができる。
 次に、SiC複合基板10の製造方法について説明する。ここでは、SiC単結晶層20上に2軸配向SiC層30を作製する場合について説明する。具体的には、(a)配向前駆体層40の形成工程、(b)熱処理工程、(c)研削工程、を含む。配向前駆体層40は、後述の熱処理により2軸配向SiC層30となるものであり、ドーパントなどの成分を含んでいてもよい。以下、これらの工程を図3を用いて順に説明する。
(a)配向前駆体層40の形成工程(図3(a)参照)
 配向前駆体層40の形成工程では、SiC単結晶層20の結晶成長面に配向前駆体層40を形成する。SiC単結晶層20としては、4H又は6Hポリタイプを用いることが好ましい。また、SiC単結晶層20の結晶成長面としては、SiC[0001]軸から0.1~12°のオフ角を有するSi面が好ましい。オフ角は1~5°であることがより好ましい。
 配向前駆体層40の形成方法は熱処理後に気孔32を有する2軸配向SiC層30が形成される限り特に限定されず、公知の手法が採用可能である。配向前駆体層40中に気孔32が形成されていてもよいし、配向前駆体層40は緻密質であっても、2軸配向SiC層30の形成時に気孔32を生じるものでもよい。しかし、気孔32の形成状態を制御する観点では、配向前駆体層40中に気孔32が形成されている方が好ましい。配向前駆体層40の形成方法は、例えば、AD(エアロゾルデポジション)法、HPPD(超音速プラズマ粒子堆積法)法などの固相成膜法、スパッタリング法、蒸着法、昇華法、各種CVD(化学気相成長)法などの気相成膜法、溶液成長法などの液相成膜法が挙げられ、配向前駆体層を直接SiC単結晶基板上に形成する手法が使用可能である。CVD法としては、例えば熱CVD法、プラズマCVD法、ミストCVD法、MO(有機金属)CVD法などを用いることができる。また、配向前駆体層40として、予め昇華法や各種CVD法、焼結などで作製した多結晶体を使用し、SiC単結晶層20上に載置する方法も用いることができる。この場合も多結晶体中に気孔を内包している方が好ましい。あるいは、配向前駆体層40の成形体を予め作製し、この成形体をSiC単結晶層20上に載置する手法であってもよい。このような配向前駆体層40は、テープ成形により作製されたテープ成形体でもよいし、一軸プレス等の加圧成形により作製された圧粉体でもよい。
 これらの配向前駆体層40には、2軸配向SiC層30の電気特性を制御する成分を含んでいてもよい。例えば、n型の2軸配向SiC層30を形成する場合、配向前駆体層40中に窒素を含有してもよい。p型の2軸配向SiC層30を形成する場合、配向前駆体層40中にB、Alを含有してもよい。また、2軸配向SiC層30に絶縁性を付与するため、窒素と、B及び/又はAlをいずれも含有してもよい。
 なお、SiC単結晶層20上に直接配向前駆体層40を形成する手法において、各種CVD法や昇華法、溶液成長法などを用いる場合、後述する熱処理工程を経ることなくSiC単結晶層20上にエピタキシャル成長を生じ、2軸配向SiC層30が成膜される場合がある。しかし、配向前駆体層40は、形成時には配向していない状態、即ち非晶質や無配向の多結晶であり、後段の熱処理工程でSiC単結晶を種として配向させることが好ましい。このようにすることで、2軸配向SiC層30の表面30bに到達する結晶欠陥を効果的に低減することができる。この理由は定かではないが、一旦成膜された固相の配向前駆体層がSiC単結晶を種として結晶構造の再配列を生じることも結晶欠陥の消滅に効果があるのではないかと考えている。従って、各種CVD法や昇華法、溶液成長法などを用いる場合は、配向前駆体層40の形成工程においてエピタキシャル成長が生じない条件を選択することが好ましい。
 しかしながら、エアロゾルデポジション(AD)法、各種CVD法でSiC単結晶層20上に直接配向前駆体層40を形成する手法又は昇華法、各種CVD法、焼結で別途作製した多結晶体をSiC単結晶層20上に載置する手法が好ましい。これらの方法を用いることで配向前駆体層40を比較的短時間で形成することが可能となる。AD法は高真空のプロセスを必要とせず、成膜速度も相対的に速いため、特に好ましい。配向前駆体層40として、予め作製した多結晶体を用いる手法では、多結晶体とSiC単結晶層20の密着性を高めるため、多結晶体の表面を十分に平滑にしておくなどの工夫が必要である。このため、コスト的な観点では配向前駆体層40を直接形成する手法が好ましい。また、予め作製した成形体をSiC単結晶層20上に載置する手法も簡易な手法として好ましいが、配向前駆体層40が粉末で構成されているため、後述する熱処理工程において焼結させるプロセスを必要とする。いずれの手法も公知の条件を用いることができるが、以下ではAD法又は熱CVD法によりSiC単結晶層20上に直接配向前駆体層40を形成する方法及び予め作製した成形体をSiC単結晶層20上に載置する手法について述べる。
 AD法は、微粒子や微粒子原料をガスと混合してエアロゾル化し、このエアロゾルをノズルから高速噴射して基板に衝突させ、被膜を形成する技術であり、常温で被膜を形成できるという特徴を有している。このようなAD法で用いられる成膜装置(エアロゾルデポジション(AD)装置)の一例を図4に示す。図4に示される成膜装置50は、大気圧より低い気圧の雰囲気下で原料粉末を基板上に噴射するAD法に用いられる装置として構成されている。この成膜装置50は、原料成分を含む原料粉末のエアロゾルを生成するエアロゾル生成部52と、原料粉末をSiC単結晶層20に噴射して原料成分を含む膜を形成する成膜部60とを備えている。エアロゾル生成部52は、原料粉末を収容し図示しないガスボンベからのキャリアガスの供給を受けてエアロゾルを生成するエアロゾル生成室53と、生成したエアロゾルを成膜部60へ供給する原料供給管54と、エアロゾル生成室53及びその中のエアロゾルに10~100Hzの振動数で振動が付与する加振器55とを備えている。成膜部60は、SiC単結晶層20にエアロゾルを噴射する成膜チャンバ62と、成膜チャンバ62の内部に配設されSiC単結晶層20を固定する基板ホルダ64と、基板ホルダ64をX軸-Y軸方向に移動するX-Yステージ63とを備えている。また、成膜部60は、先端にスリット67が形成されエアロゾルをSiC単結晶層20へ噴射する噴射ノズル66と、成膜チャンバ62を減圧する真空ポンプ68とを備えている。噴射ノズル66は、原料供給管54の先端に取り付けられている。
 AD法は、成膜条件によって膜中に気孔を生じる場合や、膜が圧粉体となることが知られている。例えば、原料粉末の基板への衝突速度や原料粉末の粒径、エアロゾル中の原料粉末の凝集状態、単位時間当たりの噴射量などに影響を受けやすい。原料粉末の基板への衝突速度に関しては、成膜チャンバ62と噴射ノズル66内の差圧や、噴射ノズルの開口面積などに影響を受ける。このため、配向前駆体層40中の気孔数を制御するには、これらのファクターを適切に制御することが必要である。
 熱CVD法では、成膜装置は市販のものなど公知のものを利用することができる。原料ガスは特に限定されるものではないが、Siの供給源としては四塩化ケイ素(SiCl4)ガスやシラン(SiH4)ガス、Cの供給源としてはメタン(CH4)ガスやプロパン(C38)ガス等を用いることができる。成膜温度は1000~2200℃が好ましく、1100~2000℃がさらに好ましく、1200~1900℃が好ましい。
 熱CVD法を用いてSiC単結晶層20上に成膜する場合、SiC単結晶層20上にエピタキシャル成長を生じ、2軸配向SiC層30を形成する場合があることが知られている。しかし、配向前駆体層40は、その作製時には配向していない状態、即ち非晶質や無配向の多結晶であり、熱処理工程時にSiC単結晶を種結晶として結晶の再配列を生じさせることが好ましい。熱CVD法を用いてSiC単結晶上に非晶質や多結晶の層を形成するには、成膜温度やSi源、C源のガス流量及びそれらの比率、成膜圧力などが影響することが知られている。成膜温度の影響は大きく、非晶質又は多結晶層を形成する観点では成膜温度は低い方が好ましく、1700℃未満が好ましく、1500℃以下がさらに好ましく、1400℃以下が特に好ましい。しかし、成膜温度が低すぎると成膜レート自体も低下するため、成膜レートの観点では成膜温度は高い方が好ましい。また、熱CVD法はエピタキシャル膜、多結晶膜にかかわらず、緻密膜を形成する方法として知られている。しかし、Si源、C源のガス流量比や成膜圧力を制御することで膜中に気孔を形成することができる。例えば、Si源、C源の比率Si/C比を高くすることで膜中にSiの凝集体が形成され、成膜中や後工程の熱処理時に蒸発して気孔32が形成される。一方、Si/C比を低くすることでも2軸配向SiC層30中に気孔32が形成される。したがって、熱CVD法を用いて、気孔32を含有し、多結晶又は非晶質の配向前駆体層40を形成するには、成膜温度やSi/C比、全圧などのファクターを適切に制御する必要がある。
 配向前駆体層40を予め作製した成形体を用いる場合、配向前駆体の原料粉末を成形して作製することができる。例えば、プレス成形を用いる場合、配向前駆体層40は、プレス成形体である。プレス成形体は、配向前駆体の原料粉末を公知の手法に基づきプレス成形することで作製可能であり、例えば、原料粉末を金型に入れ、好ましくは100~400kgf/cm2、より好ましくは150~300kgf/cm2の圧力でプレスすることにより作製すればよい。また、成形方法に特に限定はなく、プレス成形の他、テープ成形、押出し成形、鋳込み成形、ドクターブレード法及びこれらの任意の組合せを用いることができる。例えば、テープ成形を用いる場合、原料粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、シート状に吐出及び成形するのが好ましい。シート状に成形した成形体の厚さに限定はないが、ハンドリングの観点では5~500μmであるのが好ましい。また、厚い配向前駆体層が必要な場合はこのシート成形体を多数枚積み重ねて、所望の厚さとして使用すればよい。これらの成形体はその後のSiC単結晶層20上での熱処理によりSiC単結晶層20近くの部分が、2軸配向SiC層30となるものである。このような手法では、後述する熱処理工程において成形体を焼結させる必要がある。成形体が焼結し、多結晶体としてSiC単結晶層20と一体となる工程を経たのちに、2軸配向SiC層30を形成することが好ましい。成形体が焼結した状態を経ない場合、SiC単結晶を種としたエピタキシャル成長が十分に生じない場合がある。このため、成形体はSiC原料の他に、焼結助剤等の添加物を含んでいてもよい。但し、2軸配向SiC層30内に気孔32が形成することも必要であり、それらを両立する添加物や熱処理条件を選択することが必要である。
(b)熱処理工程(図3(b)参照)
 熱処理工程では、SiC単結晶層20上に配向前駆体層40が積層又は載置された積層体を熱処理することにより2軸配向SiC層30を生成させる。熱処理方法は、SiC単結晶層20を種としたエピタキシャル成長が生じるかぎり特に限定されず、管状炉やホットプレートなど、公知の熱処理炉で実施することができる。また、これらの常圧(プレスレス)での熱処理だけでなく、ホットプレスやHIPなどの加圧熱処理や、常圧熱処理と加圧熱処理の組み合わせも用いることができる。熱処理の雰囲気は真空、窒素、不活性ガス雰囲気から選択することができる。熱処理温度は、好ましくは1700~2700℃である。温度を高くすることで、SiC単結晶層20を種結晶として配向前駆体層40がc軸及びa軸に配向しながら成長しやすくなる。したがって、温度は、好ましくは1700℃以上、より好ましくは1850℃以上、さらに好ましくは2000℃以上、特に好ましくは2200℃以上である。一方、温度が過度に高いと、SiCの一部が昇華により失われたり、SiCが塑性変形して反り等の不具合が生じたりする可能性がある。したがって、温度は、好ましくは2700℃以下、より好ましくは2500℃以下である。熱処理温度や保持時間はエピタキシャル成長で生じる2軸配向SiC層30の厚みと関係しており、適宜調整できる。
 但し、配向前駆体層40に予め作製した成形体を用いる場合、熱処理中に焼結させる必要があり、高温での常圧焼成やホットプレスやHIP又はそれらの組み合わせが好適である。例えば、ホットプレスを用いる場合、面圧は50kgf/cm2以上が好ましく、より好ましくは100kgf/cm2以上、特に好ましくは200kgf/cm2以上が好ましく、特に上限はない。また、焼成温度も焼結とエピタキシャル成長が生じる限り、特に限定はない。1700℃以上が好ましく、1800℃以上がさらに好ましく、2000℃以上がさらに好ましく、2200℃以上が特に好ましい。焼成時の雰囲気は真空、窒素、不活性ガス雰囲気又は窒素と不活性ガスの混合ガスから選択することができる。原料となるSiC粉末は、α-SiC、β-SiCのいずれでもよい。SiC粉末は、好ましくは0.01~5μmの平均粒径を有するSiC粒子で構成される。なお、平均粒径は走査型電子顕微鏡にて粉末を観察し、1次粒子100個分の定方向最大径を計測した平均値を指す。
 熱処理工程では、配向前駆体層40内の結晶はSiC単結晶層20の結晶成長面からc軸及びa軸に配向しながら成長していくため、配向前駆体層40は、結晶成長面から徐々に2軸配向SiC層30に変わっていく。生成した2軸配向SiC層30は、欠陥密度が1×101/cm2以下のものになる。このように欠陥密度が著しく低くなる理由は、以下のように考えられる。第1に、2軸配向SiC層30内の熱応力は転位が生じる一因となると考えられる。配向前駆体層40には気孔が存在するため、2軸配向SiC層30を形成する際の熱応力が緩和され、熱応力に起因する転位を抑制することができると考えられる。第2に、2軸配向SiC層30にはSiC単結晶層20内の欠陥も伝搬するが、伝搬してきた欠陥34は、配向前駆体層40内の気孔32に衝突して消滅するか、2軸配向SiC層30内の熱応力が小さいことで欠陥同士の対消滅などが生じることで、欠陥34の数が減少すると考えられる。
 SiC単結晶層20の結晶成長面として上述したオフ角を有するSi面を用いた場合には、それによっても2軸配向SiC層30内の欠陥が効果的に抑制される。そのメカニズムの詳細は明確ではないが、種結晶であるSiC単結晶層20の結晶成長面上で初期に島状に結晶成長層が生じ、その後に面内方向(例えばa軸方向)に結晶成長層の成長が進むと推定される。したがって、この面内方向の結晶成長に伴い、貫通欠陥も面内方向に屈曲し、厚み方向には欠陥が伝播しないと考えられる。また、種結晶の結晶成長面がオフ角を有していると、欠陥が抑制され、ポリタイプが制御されるとともに、厚肉に2軸配向SiC層30を成長させることができる。したがって、オフ角は0.1°以上、好ましくは1°以上、より好ましくは3°以上、さらに好ましくは5°以上、特に好ましくは7°以上である。一方、オフ角が大きすぎると、結晶成長挙動が異なるものに変化してしまい、欠陥34が厚み方向に伝播する恐れがある。したがって、欠陥抑制の観点から、オフ角は12°以下、好ましくは9°以下、より好ましくは7°以下、さらに好ましくは5°以下である。
(c)研削工程(図3(c)参照)
 研削工程では、アニール工程後に2軸配向SiC層30上に残った配向前駆体層40を研削除去して、2軸配向SiC層30の表面を露出させ、露出した表面をダイヤモンド砥粒を用いて研磨加工し、更にCMP(化学機械研磨)仕上げを行う。こうすることにより、SiC複合基板10を得る。
 以上説明した本実施形態のSiC複合基板10の2軸配向SiC層30は、欠陥密度が著しく少ないため、半導体デバイスや電子デバイスの製作において有用である。
 また、2軸配向SiC層30中の気孔32の数は、2軸配向SiC層30とSiC単結晶層20との接触面30aを含む深層領域における気孔数Ndよりもその接触面30aとは反対側の面30bを含む表層領域における気孔数Nsが少ない場合には、貫通欠陥を効果的に減少させることができる。
 更に、2軸配向SiC層30上に半導体デバイス用機能層を設けることにより半導体デバイスとすることができる。半導体デバイスとしては、例えば、MOSFETやIGBT,LEDなどが挙げられる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、SiC単結晶層20上に2軸配向SiC層30を1層のみ設けたが、2層以上設けてもよい。具体的には、SiC複合基板10の2軸配向SiC層30に配向前駆体層40を積層し、熱処理、アニール及び研削をこの順に行うことにより、2軸配向SiC層30の上に2層目の2軸配向SiC層30を設けることができる。
 以下に、本発明の実施例について説明する。以下の実験例1~4が本発明の実施例に相当する。なお、以下の実施例は本発明を何ら限定するものではない。
[実験例1]
1.SiC複合基板10の作製
(1)配向前駆体層40の作製
 原料粉体として市販の微細β-SiC粉末(体積基準D50:0.7μm)、基板として市販のSiC単結晶基板(n型4H-SiC、直径50.8mm(2インチ)、Si面、(0001)面、オフ角4°、厚み0.35mm、オリフラなし)を用いて図4に示すエアロゾルデポジション(AD)成膜装置によりSiC単結晶基板上にAD膜を形成した。
 AD成膜条件は以下のとおりとした。まずキャリアガスはN2とし、長辺5mm×短辺0.4mmのスリットが形成されたセラミックス製のノズルを用いて成膜した。ノズルのスキャン条件は、0.5mm/sのスキャン速度で、スリットの長辺に対して垂直且つ進む方向に55mm移動、スリットの長辺方向に5mm移動、スリットの長辺に対して垂直且つ戻る方向に55mm移動、スリットの長辺方向且つ初期位置とは反対方向に5mm移動、とのスキャンを行い、スリットの長辺方向に初期位置から55mm移動した時点で、それまでとは逆方向にスキャンを行い、初期位置まで戻るサイクルを1サイクルとし、これを100サイクル繰り返した。室温での1サイクルの成膜において、搬送ガスの設定圧力を0.06MPa、流量を6L/min、チャンバ内圧力を100Pa以下に調整した。このようにして形成したAD膜の厚みは約10μmであり、この膜をAD膜1とした。次に、長辺5mm×短辺0.3mmのスリットが形成されたセラミックス製のノズルに交換し、サイクル数を500サイクルとした他はAD膜1と同一の条件にて、AD膜1上にAD膜2を作製した。このようにして形成したAD膜2は厚み約50μmであり、AD膜1、2の合計で約60μmのAD膜を得た。また、AD膜1、AD膜2共に気孔を含むが、単位面積あたりの気孔数はAD膜1よりAD膜2の方が少なかった。
(2)配向前駆体層40の熱処理
 AD膜を形成したSiC基板をAD装置から取り出し、アルゴン雰囲気中で2400℃にて5時間アニールした。
(3)結晶成長厚みの測定
 (1)、(2)と同様の方法で別途作製した試料を準備し、板面と直交する方向で基板の中心部を通るように切断した。切断した試料に対してダイヤモンド砥粒を用いたラップ加工にて断面を平滑化し、コロイダルシリカを用いた化学機械研磨(CMP)により鏡面仕上げとした。得られた断面を走査型電子顕微鏡(日立ハイテクノロジーズ製、SU-5000)にて撮影した。研磨後の断面の反射電子像を観察すると、結晶方位の違いによるチャネリングコントラストにより多結晶部の厚みを見積もった。また、2軸配向SiC層30とSiC単結晶層20はいずれも結晶方位が揃っているためチャネリングコントラストでは区別が難しかったが、結晶方位が揃った領域(結晶配向部)の厚みからSiC単結晶層20の厚み(0.35mm)を差し引いて、2軸配向SiC層30の厚みとした。多結晶部の厚みは約30μm、2軸配向SiC層の厚みは約30μmであった。
(4)研削及び研磨
 (1)、(2)で作製した試料を金属の定盤に固定し、砥石を用いて#1200まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化した。その後、コロイダルシリカを用いた化学機械研磨(CMP)により鏡面仕上げとした。トータルの研削・研磨量は約40μmとなるように加工し、加工後の算術平均粗さRaは0.1nmとして、SiC複合基板10とした。トータルの加工量と(3)で観察した結果から、SiC複合基板10上に形成された2軸配向SiC層30の厚みは約20μmと計算された。
2.評価
(1)2軸配向SiC層30の結晶方位
 1.で作製したSiC複合基板10に対し、板面と直交する方向で基板の中心部を通るように切断した。切断した試料に対してダイヤモンド砥粒を用いたラップ加工にて断面を平滑化し、コロイダルシリカを用いた化学機械研磨(CMP)により鏡面仕上げとした。次に、EBSD(Electron Back Scatter Diffraction Patterns)法にて、2軸配向SiC層30の断面の逆極点図マッピングを測定した。具体的にはEBSD(オックスフォード・インストゥルメンツ社製Nordlys Nano)を取り付けた走査型電子顕微鏡(日立ハイテクノロジーズ社製、SU-5000)を用いて、2軸配向SiC層30断面の逆極点図方位マッピングを50μm×100μmの視野で以下の諸条件にて実施した。
<EBSD測定条件>
・加速電圧:15kv
・スポット強度:70
・ワーキングディスタンス:22.5mm
・ステップサイズ:0.5μm
・試料傾斜角:70°
・測定プログラム:Aztec(version3.3)
 断面の逆極点図方位マップより、2軸配向SiC層30は表面法線方向、板面方向共にSiC単結晶層20と同じ方位に配向していることが示された。また、その傾斜角度分布は略法線方向・略板面方向ともに±0.5°以下であり、2軸配向SiC層30であることが確認された。
(2)気孔数
 走査型電子顕微鏡(日立ハイテクノロジーズ製、SU-5000)を用いて、2軸配向SiC層30(厚さ約20μm)の断面試料の任意の領域に対し測定倍率500倍(1視野のサイズ:178μm×256μm)で二次電子像を25視野撮影し、2軸配向SiC層30中の深層領域(SiC単結晶層との界面から厚さ約10μmの領域)における気孔数Ndと、表層領域(2軸配向SiC層表面から厚さ約10μmの領域)に含まれる気孔数Nsを評価した。気孔径が0.3μm以上のものを気孔として、撮影した二次電子像から気孔数を目視で数え、単位断面積1cm2当たりの気孔数として評価した。結果は表1に示されるとおりであった。
(3)2軸配向SiC層30の欠陥密度
 本実験例で用いた市販のSiC単結晶基板(同ロットの基板)及び上記1で作製したSiC複合基板10を評価サンプルとした。ニッケル製のるつぼに、評価サンプルをKOH結晶と共に入れ、500℃で10分間、電気炉でエッチング処理を行った。エッチング処理後の評価サンプルを洗浄し、表面を光学顕微鏡にて観察し、ピットの数を数えた。具体的には、評価サンプル表面の任意の箇所の部位について、縦2.3mm×横3.6mmの視野を倍率50倍で100枚分撮影してピットの総数を数え、数えたピットの総数をトータル面積である8.05cm2で除することにより欠陥密度を算出した。その結果、市販のSiC単結晶基板及び本実験例の2軸配向SiC層30の欠陥密度は、それぞれ1.0×103/cm2、3.1×100/cm2であった。
[実験例2]
 上記1.(1)において、AD膜1を長辺5mm×短辺0.3mmのスリットが形成されたセラミックス製のノズル、AD膜2を長辺5mm×短辺0.2mmのスリットが形成されたセラミックス製のノズルとした以外は、実験例1と同様にして、SiC複合基板10の作製及び評価を行った。結果、実験例1と同じ厚さの2軸配向SiC層30の形成が確認された。気孔数、欠陥密度評価の結果は表1に示されるとおりであった。
[実験例3]
 上記1.(1)において、AD膜1を長辺5mm×短辺0.1mmのスリットが形成されたセラミックス製のノズル、AD膜2を長辺5mm×短辺0.15mmのスリットが形成されたセラミックス製のノズルとした以外は、以外は実験例1と同様にして、SiC複合基板10の作製及び評価を行った。結果、実験例1と同じ厚さの2軸配向SiC層30の形成が確認された。気孔数、欠陥密度評価の結果は表1に示されるとおりであった。
[実験例4]
 上記1.(1)において、AD膜1を長辺5mm×短辺0.3mmのスリットが形成されたセラミックス製のノズル、AD膜2を長辺5mm×短辺0.4mmのスリットが形成されたセラミックス製のノズルとした以外は、以外は実験例1と同様にして、SiC複合基板10の作製及び評価を行った。結果、実験例1と同じ厚さの2軸配向SiC層30の形成が確認された。気孔数、欠陥密度評価の結果は表1に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000001
 上述した実験例1~4は、全て本願の実施例に相当する。2軸配向SiC層30中に気孔32が存在することで、結果的に欠陥密度が低減できたものと思われる。また、深層領域における気孔数Ndが表層領域における気孔数Nsより大きくなる(言い換えると、Nd/Ns比が1より大きくなる)と、欠陥密度を更に低減できることができた。
 本出願は、2019年3月11日に出願された日本国特許出願第2019-43465号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えば半導体デバイスや電子デバイスに利用可能である。
10 SiC複合基板、20 SiC単結晶層、30 2軸配向SiC層、30a 接触面、30b 接触面とは反対側の面、32 気孔、34 欠陥、40 配向前駆体層、50 成膜装置、52 エアロゾル生成部、53 エアロゾル生成室、54 原料供給管、55 加振器、60 成膜部、62 成膜チャンバ、63 Yステージ、64 基板ホルダ、66 噴射ノズル、67 スリット、68 真空ポンプ。

Claims (3)

  1.  SiC単結晶層と、
     前記SiC単結晶上に少なくとも1層以上設けられ、SiCがc軸方向及びa軸方向の両方に配向し、気孔を有し、欠陥密度が1.0×101/cm2以下の2軸配向SiC層と、
     を備えたSiC複合基板。
  2.  前記2軸配向SiC層中の気孔数は、前記SiC単結晶層との接触面を含む深層領域における気孔数Ndよりも、その接触面とは反対側の面を含む表層領域における気孔数Nsの方が少ない、
     請求項1に記載のSiC複合基板。
  3.  請求項1又は2に記載のSiC複合基板と、
     前記2軸配向SiC層上に設けられる半導体デバイス用機能層と、
     を備えた半導体デバイス。
PCT/JP2020/005741 2019-03-11 2020-02-14 SiC複合基板及び半導体デバイス WO2020184059A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505610A JP7212139B2 (ja) 2019-03-11 2020-02-14 SiC複合基板及び半導体デバイス
US17/303,967 US12080551B2 (en) 2019-03-11 2021-06-11 SiC composite substrate including biaxially oreinted SiC layer and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-043465 2019-03-11
JP2019043465 2019-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/303,967 Continuation US12080551B2 (en) 2019-03-11 2021-06-11 SiC composite substrate including biaxially oreinted SiC layer and semiconductor device

Publications (1)

Publication Number Publication Date
WO2020184059A1 true WO2020184059A1 (ja) 2020-09-17

Family

ID=72426756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005741 WO2020184059A1 (ja) 2019-03-11 2020-02-14 SiC複合基板及び半導体デバイス

Country Status (3)

Country Link
US (1) US12080551B2 (ja)
JP (1) JP7212139B2 (ja)
WO (1) WO2020184059A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067736A1 (ja) * 2021-10-20 2023-04-27 日本碍子株式会社 SiC単結晶基板及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134231A1 (fr) * 2022-04-04 2023-10-06 Soitec Substrat pour un dispositif électronique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158697A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶及びその製造方法
JP2001158696A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶の製造方法
JP2006036609A (ja) * 2004-07-29 2006-02-09 Fuji Electric Holdings Co Ltd 炭化珪素半導体基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709403B2 (en) * 2003-10-09 2010-05-04 Panasonic Corporation Silicon carbide-oxide layered structure, production method thereof, and semiconductor device
US7173285B2 (en) * 2004-03-18 2007-02-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites
US8585821B2 (en) * 2007-07-26 2013-11-19 Ecotron Co., Ltd. SiC epitaxial substrate and method for producing the same
US8860040B2 (en) * 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US8940614B2 (en) * 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP6197722B2 (ja) 2014-03-26 2017-09-20 新日鐵住金株式会社 SiC板状体における転位の面内分布評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158697A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶及びその製造方法
JP2001158696A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶の製造方法
JP2006036609A (ja) * 2004-07-29 2006-02-09 Fuji Electric Holdings Co Ltd 炭化珪素半導体基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067736A1 (ja) * 2021-10-20 2023-04-27 日本碍子株式会社 SiC単結晶基板及びその製造方法
JP7339434B1 (ja) * 2021-10-20 2023-09-05 日本碍子株式会社 SiC単結晶基板及びその製造方法

Also Published As

Publication number Publication date
US12080551B2 (en) 2024-09-03
JP7212139B2 (ja) 2023-01-24
JPWO2020184059A1 (ja) 2021-10-28
US20210301422A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2021149598A1 (ja) 二軸配向SiC複合基板及び半導体デバイス用複合基板
JP7282214B2 (ja) 希土類含有SiC基板及びSiCエピタキシャル層の製法
JP7159450B2 (ja) 下地基板及びその製造方法
WO2020184059A1 (ja) SiC複合基板及び半導体デバイス
WO2021100564A1 (ja) SiC基板及びその製法
US20210384145A1 (en) SiC COMPOSITE SUBSTRATE AND COMPOSITE SUBSTRATE FOR SEMICONDUCTOR DEVICE
US20210355602A1 (en) Underlying substrate
JP7410009B2 (ja) 半導体膜
WO2022168372A1 (ja) 希土類含有SiC基板及びそれを用いたSiC複合基板
JP7177248B2 (ja) SiC複合基板及び半導体デバイス用複合基板
JP7439117B2 (ja) 下地基板及びその製造方法
JP7320070B2 (ja) 下地基板及びその製造方法
JP2022131919A (ja) SiC複合基板
JP7265624B2 (ja) 半導体膜
US12125883B2 (en) Biaxially oriented SiC composite substrate and semiconductor device composite substrate
WO2024202200A1 (ja) SiC基板及びSiC複合基板
WO2024042591A1 (ja) SiC基板及びSiC複合基板
WO2023062850A1 (ja) 希土類含有SiC基板及びSiC複合基板
WO2023068309A1 (ja) SiC基板及びSiC複合基板
JP7104266B1 (ja) 希土類含有SiC基板及びSiC複合基板
WO2024195374A1 (ja) 下地基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769636

Country of ref document: EP

Kind code of ref document: A1