WO2020182111A1 - 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用 - Google Patents

一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用 Download PDF

Info

Publication number
WO2020182111A1
WO2020182111A1 PCT/CN2020/078518 CN2020078518W WO2020182111A1 WO 2020182111 A1 WO2020182111 A1 WO 2020182111A1 CN 2020078518 W CN2020078518 W CN 2020078518W WO 2020182111 A1 WO2020182111 A1 WO 2020182111A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
flame
phosphorus
nitrogen
hybrid material
Prior art date
Application number
PCT/CN2020/078518
Other languages
English (en)
French (fr)
Inventor
付少海
王冬
彭虹云
李敏
张丽平
田安丽
刘明明
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2020182111A1 publication Critical patent/WO2020182111A1/zh
Priority to US17/148,784 priority Critical patent/US20210130584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • C09K21/04Inorganic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/10Organic materials containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides

Definitions

  • the invention specifically relates to a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid flame retardant and its application, and belongs to the technical field of halogen-free flame retardant.
  • halogen-based flame-retardants or derivatives of halogen-based and other flame-retardants.
  • the combustion of such flame-retardants will release toxic and harmful gases and seriously endanger human health.
  • halogen-free flame retardants such as phosphorus, nitrogen, and silicon have been widely developed due to the advantages of environmental protection and excellent flame retardant efficiency.
  • flame retardants when added to the material matrix, such flame retardants exist in large amounts (> 20%), poor compatibility, poor durability, poor thermal stability, etc., have a greater impact on the mechanical properties of fibers and other matrix materials.
  • molybdenum disulfide As an emerging two-dimensional nano flame retardant material, molybdenum disulfide has relatively low thermal conductivity and high melting point (1185°C), which can effectively inhibit the penetration of external heat and oxygen and the release of toxic substances. Molybdenum atoms can also The catalytic substrate forms a large amount of carbon layer to reduce heat exchange. However, when molybdenum disulfide is used alone, the improvement of the flame retardant degree of the polymer is limited. The literature shows that the rational preparation of molybdenum disulfide and other flame retardant molecules into an ordered organic-inorganic hybrid structure can achieve excellent flame retardancy. Effects, such as: In 2016, Xiaming Feng et al.
  • the present invention designs a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid flame retardant, which effectively exerts organic and inorganic Synergistic flame retardant effect, and this flame retardant material can simultaneously improve the mechanical properties of the matrix.
  • the first object of the present invention is to provide a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • the components of the material are proportioned in parts by weight, including: 1 to 2 parts of molybdenum disulfide, 1 to 1.5 parts of zinc salt, 5 to 8 parts of nitrogen-containing compounds, and 5 to 10 parts of phosphorus-containing compounds.
  • the zinc salt includes one or more of zinc acetate, zinc chloride, and zinc nitrate.
  • the nitrogen-containing compound includes one or more of polyethyleneimine, melamine, p-phenylenediamine, ethylenediamine, and thiourea.
  • the phosphorus-containing compound includes phytic acid, 2-phosphonic acid butane-1,2,4-tricarboxylic acid, amino trimethylene phosphonic acid, ethylene diamine tetramethylene phosphonic acid One or more of.
  • the preparation method of the hybrid material includes: mixing the molybdenum disulfide nanosheets with zinc salt, nitrogen-containing compound, and phosphorus-containing compound in an aqueous solution according to the proportion of parts by weight, and the reaction is complete , That is, hybrid materials.
  • the temperature of the reaction is 10-60°C, and the time is 2-8 hours.
  • the second object of the present invention is to provide a flame-retardant polyacrylonitrile fiber, which comprises the above-mentioned hybrid material.
  • the third object of the present invention is to provide a method for preparing flame-retardant polyacrylonitrile fiber, the method is to add the above-mentioned phosphorus nitrogen zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material to the polyacrylonitrile spinning solution It can be obtained by wet spinning.
  • the added amount of the hybrid material is 1%-3% of the mass of the flame-retardant polyacrylonitrile fiber.
  • the fourth objective of the present invention is to apply the above-mentioned phosphorus, nitrogen, zinc, two-dimensional supramolecular coating molybdenum disulfide hybrid material or flame-retardant polyacrylonitrile fiber to the flame-retardant field.
  • the phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material of the present invention uses the cross-linking between Zn 2+ , nitrogen-containing compounds and phosphorus-containing molecules to self-assemble on the surface of molybdenum disulfide to form a phosphorus-nitrogen-zinc two-dimensional Supramolecular preparation is simple and environmentally friendly.
  • the hybrid material of the present invention effectively exerts an organic-inorganic synergistic flame-retardant effect, improves the flame-retardant efficiency of molybdenum disulfide, reduces the amount of flame-retardant added in the matrix, and requires less amount (2wt%)
  • a flame-retardant fiber with good flame-retardant effect is obtained, wherein the maximum heat release rate is not more than 100W/g, the residual carbon content is not less than 57%, and the limiting oxygen index is greater than 27 (flame-retardant grade), and at the same time, it will not affect the matrix.
  • the mechanical properties have an impact and have very good application prospects.
  • FIG. 1 is an SEM image of the two-dimensional phosphorus-nitrogen-zinc supramolecular coated molybdenum disulfide hybrid material obtained in Example 1;
  • Example 2 is a TEM image of the two-dimensional phosphorus-nitrogen-zinc-zinc-coated molybdenum disulfide hybrid material obtained in Example 1;
  • thermogravimetric (TG) graph of the polyacrylonitrile fiber and flame-retardant polyacrylonitrile fiber obtained in Example 1;
  • Example 4 is a graph of the heat release rate of the polyacrylonitrile fiber and flame-retardant polyacrylonitrile fiber obtained in Example 1;
  • Figure 5 is a graph showing the total heat release of the polyacrylonitrile fiber and flame-retardant polyacrylonitrile fiber obtained in Example 1;
  • Example 6 is a graph of limiting oxygen index of polyacrylonitrile fiber and flame-retardant polyacrylonitrile fiber obtained in Example 1.
  • a miniature calorimeter is used to measure the heat release rate and total heat release; a thermogravimetric analyzer is used to measure the thermogravimetric (TG) diagram; the limiting oxygen index instrument is used to measure the limiting oxygen index of the fabric made of flame-retardant fibers (GB 5454-1997, LOI ⁇ 22, flammable; 22 ⁇ LOI ⁇ 27, flammable; LOI>27, non-flammable); use XQ-2 single fiber strength tester to test the strength of flame-retardant polyacrylonitrile fiber.
  • Preparation of flame retardant Dissolve 0.5g of melamine and 0.1g of zinc acetate in 200mL of deionized water, then add 0.1g of molybdenum disulfide nanosheets to the solution and ultrasonically disperse for 2h, then slowly drop into the above dispersion after the tape is evenly dispersed Add 0.5g phytic acid and stir at 30°C for 4h. Finally, centrifugal cleaning with deionized water and vacuum drying at 60°C are used to obtain a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • Preparation of flame-retardant polyacrylonitrile fiber Weigh out 0.06g of phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material, ultrasonically disperse it in 15g N,N-dimethylformamide, and add 3g polyacrylonitrile The powder was dissolved at 80°C for 8 hours, and the resulting spinning solution was placed in a vacuum oven at 60°C for 2 hours for defoaming.
  • the obtained flame-retardant polyacrylonitrile fiber was subjected to thermogravimetric analysis, heat release rate, total heat release test, and limiting oxygen index test, as shown in Figure 3-6.
  • the specific performance results are shown in Table 1.
  • Preparation of flame retardant Dissolve 0.8g of melamine and 0.15g of zinc acetate in 200mL of deionized water, then add 0.2g of molybdenum disulfide nanosheets to the solution and ultrasonically disperse for 2h, then slowly drop into the above dispersion after the tape is evenly dispersed Add 1g of phytic acid and stir at 30°C for 4h. Finally, centrifugal cleaning with deionized water and vacuum drying at 60°C are used to obtain a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • Preparation of flame retardant Dissolve 0.5g of melamine and 0.1g of zinc acetate in 200mL of deionized water, then add 0.1g of molybdenum disulfide nanosheets to the solution and ultrasonically disperse for 2h, then slowly drop into the above dispersion after the tape is evenly dispersed Add 0.5g phytic acid and stir at 60°C for 4h. Finally, centrifugal cleaning with deionized water and vacuum drying at 60°C are used to obtain a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • Preparation of flame retardant Dissolve 0.5g polyethyleneimine and 0.1g zinc acetate in 200mL deionized water, then add 0.1g molybdenum disulfide nanosheets to the solution and ultrasonically disperse for 2h. After the belt is evenly dispersed, slowly disperse to the above 0.8g of phytic acid was added dropwise to the solution and stirred at 10°C for 8 hours. Finally, centrifugal cleaning with deionized water and vacuum drying at 60°C are used to obtain a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • Preparation of flame retardant Dissolve 0.5g polyethyleneimine and 0.1g zinc acetate in 200mL deionized water, then add 0.2g molybdenum disulfide nanosheets to the solution and ultrasonically disperse for 2h. After the belt is evenly dispersed, slowly disperse to the above 1g amino trimethylene phosphonic acid was added dropwise to the solution and stirred at 30°C for 4 hours. Finally, centrifugal cleaning with deionized water and vacuum drying at 60°C are used to obtain a phosphorus-nitrogen-zinc two-dimensional supramolecular coated molybdenum disulfide hybrid material.
  • Example 1 Refer to Example 1 to prepare the flame retardant material, and then refer to the preparation method of the flame retardant polyacrylonitrile fiber in Example 1, except that the amount of the flame retardant is replaced with 0.3 g, and other conditions remain unchanged, to prepare the flame retardant PAN fiber.
  • the specific performance parameters are shown in Table 1.
  • Example 2 With reference to Example 1, the mass ratio of the added amount of molybdenum disulfide, zinc acetate, melamine, and phytic acid was replaced with the amount ratio shown in Table 2 to prepare flame-retardant PAN fibers.
  • the specific performance parameters of the obtained flame-retardant PAN fiber are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用,属于无卤阻燃技术领域。本发明磷氮锌二维超分子包覆二硫化钼杂化材料的组分按照重量份数配比,包括:1~2份二硫化钼、1~1.5份锌盐、5~8份含氮化合物、5~10含磷化合物。本发明杂化材料作为阻燃剂,有效的发挥了有机无机协同阻燃作用,提高二硫化钼的阻燃效率,减少了基体中阻燃剂的添加量,且同时能够提高基体的力学性能,具有非常好的应用前景。

Description

一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用 技术领域
本发明具体涉及一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用,属于无卤阻燃技术领域。
背景技术
近年来,各类民用、装饰用和产业用纤维的应用领域快速扩大,成为日常生活和工业生产不可或缺的部分。然而,大多数纤维具有高易燃性,易被外部热源引燃,并在燃烧过程中释放大量的热量、烟气及有毒气,严重危及生命财产安全,据统计,我国平均每年的大小火灾都会给社会造成5亿元以上的损失,而由纤维制品的易燃而引发的严重火灾就占了一半以上。开发高性能、低用量的阻燃剂,是提高纤维制品的附加值与安全性,使其不易着火燃烧或能够减慢燃烧速度的一种有效方法。
传统阻燃剂大多为卤系阻燃剂或卤系与其它阻燃剂的衍生物,这类阻燃剂燃烧会释放有毒有害气体,严重危害人体健康。近年来,磷、氮、硅系等无卤阻燃剂因绿色环保、阻燃效率优良等优势而得到广泛发展,然而,当添加到材料基体中时,该类阻燃剂存在用量大(>20%)、相容性较差、耐久性不佳、热稳定性较差等问题,对纤维及其它基体材料力学性能影响较大。
二硫化钼作为一种新兴的二维纳米阻燃材料,具有相对较低的热导率和高熔点(1185℃),能有效抑制外部热量及氧气的渗透和有毒物质的释放,钼原子还能催化基体形成大量碳层以减少热交换。但是二硫化钼单独添加使用时,对聚合物阻燃程度的提高有限,文献表明,将二硫化钼与其它阻燃剂分子合理的制备成有序的有机无机杂化结构可以达到优异的阻燃效果,如:2016年Xiaming Feng等在《Journal of Hazardous Materials》第320卷252-264页发表通过自组装法制备三明治结构的三聚氰胺-氰尿酸超分子/二硫化钼(MCA/MoS 2)杂化材料,该阻燃材料能有效降低聚酰胺的火灾危害;Keqing Zhou在《Journal of Hazardous Materials》第344卷1078-1089页(2018年)报道了二硫化钼纳米片/二氧化硅杂化材料用于阻燃环氧树脂的研究,该材料能有效提高环氧树脂的阻燃性能。然而目前报道的方法二硫化钼类阻燃剂的添加量较大,阻燃效率较低,因此,开发一种用量少、效率高的阻燃剂是十分有意义的。
发明内容
为了减少基体中阻燃剂的添加量,提高二硫化钼的阻燃效率,本发明设计了一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂,有效的发挥了有机无机协同阻燃作用,且这种阻燃材料能同时提高基体的力学性能。
本发明的第一个目的是提供一种磷氮锌二维超分子包覆二硫化钼杂化材料,所述材料的组分按照重量份数配比,包括:1~2份二硫化钼、1~1.5份锌盐、5~8份含氮化合物、5~10含磷化合物。
本发明的一种实施方式中,所述锌盐包括乙酸锌、氯化锌、硝酸锌中的一种或多种。
本发明的一种实施方式中,所述含氮化合物包括聚乙烯亚胺、三聚氰胺、对苯二胺、乙二胺、硫脲中的一种或多种。
本发明的一种实施方式中,所述含磷化合物包括植酸、2-膦酸丁烷-1,2,4-三羧酸、氨基三亚甲基膦酸、乙二胺四甲叉膦酸中的一种或多种。
本发明的一种实施方式中,所述杂化材料的制备方法包括:按照重量份数配比,将二硫化钼纳米片与锌盐和含氮化合物、含磷化合物在水溶液中混合,反应完全,即得杂化材料。
本发明的一种实施方式中,所述反应的温度为10~60℃,时间为2~8小时。
本发明的第二个目的是提供一种阻燃聚丙烯腈纤维,所述阻燃聚丙烯腈纤维包含上述的杂化材料。
本发明的第三个目的是提供一种阻燃聚丙烯腈纤维的制备方法,所述方法是将上述磷氮锌二维超分子包覆二硫化钼杂化材料添加到聚丙烯腈纺丝液中,湿法纺丝即可得到。
本发明的一种实施方式中,所述杂化材料的添加量为阻燃聚丙烯腈纤维质量的1%-3%。
本发明的第四个目的是将上述磷氮锌二维超分子包覆二硫化钼杂化材料或者阻燃聚丙烯腈纤维应用于阻燃领域中。
本发明的有益效果为:
本发明的磷氮锌二维超分子包覆二硫化钼杂化材料是利用Zn 2+、含氮化合物物与含磷分子间的交联,在二硫化钼表面自组装形成磷氮锌二维超分子制备得到,方法简便,环境友好。
本发明杂化材料作为阻燃剂,有效的发挥了有机无机协同阻燃作用,提高二硫化钼的阻燃效率,减少了基体中阻燃剂的添加量,较少用量(2wt%)即可得到具有较好阻燃效果的阻燃纤维,其中最大热释放速率不超过100W/g,残碳量不低于57%,极限氧指数大于27(难燃级别),且同时不会对基体的力学性能产生影响,具有非常好的应用前景。
附图说明
图1为实施例1所得的磷氮锌二维超分子包覆二硫化钼杂化材料的SEM图;
图2为实施例1所得的磷氮锌二维超分子包覆二硫化钼杂化材料的TEM图;
图3为实施例1所得的聚丙烯腈纤维、阻燃聚丙烯腈纤维的热重(TG)图;
图4为实施例1所得的聚丙烯腈纤维、阻燃聚丙烯腈纤维的热释放速率图;
图5为实施例1所得的聚丙烯腈纤维、阻燃聚丙烯腈纤维的总热释放量图;
图6为实施例1所得的聚丙烯腈纤维、阻燃聚丙烯腈纤维的极限氧指数图。
具体实施方式
测试方法:本发明利用微型量热仪测得热释放速率和总热释放量;利用热重分析仪测定热重(TG)图;利用极限氧指数仪测定阻燃纤维所纺织物的极限氧指数(GB 5454-1997,LOI<22,易燃;22≤LOI≤27,可燃;LOI>27,难燃);利用XQ-2单纤强力测试仪测试阻燃聚丙烯腈纤维强力。
实施例1
阻燃剂的制备:将0.5g三聚氰胺、0.1g乙酸锌溶解在200mL去离子水中,然后向溶液中加入0.1g二硫化钼纳米片并超声分散2h,带分散均匀后缓慢向上述分散液中滴加0.5g植酸,30℃搅拌4h。最后经去离子水离心清洗、60℃真空干燥,得到磷氮锌二维超分子包覆二硫化钼杂化材料。
经过SEM、TEM测试,分别如图1和2所示,所得杂化材料表面粗糙,二硫化钼纳米片表面有块状负载物,呈明显的三明治结构,表面片状二维超分子成功包覆二硫化钼纳米片。
阻燃聚丙烯腈纤维的制备:称取0.06g磷氮锌二维超分子包覆二硫化钼杂化材料,超声分散在15g N,N-二甲基甲酰胺中,再加入3g聚丙烯腈粉末,80℃溶解8h,得到的纺丝液置于60℃真空烘箱中2h,进行脱泡处理。用TYD01纺丝注射泵进行纺丝,纺丝参数为:速度10μL min -1,针头内径0.3mm,凝固浴DMF的水溶液(DMF含量60%);得到的聚丙烯腈纤维60℃干燥24h,得到阻燃聚丙烯腈纤维。
所得阻燃聚丙烯腈纤维进行热重分析、热释放速率、总热释放量测试以及极限氧指数测试,分别如图3-6所示。具体性能结果见表1。
实施例2
阻燃剂的制备:将0.8g三聚氰胺、0.15g乙酸锌溶解在200mL去离子水中,然后向溶液中加入0.2g二硫化钼纳米片并超声分散2h,带分散均匀后缓慢向上述分散液中滴加1g植酸,30℃搅拌4h。最后经去离子水离心清洗、60℃真空干燥,得到磷氮锌二维超分子包覆二硫化钼杂化材料。
阻燃聚丙烯腈纤维的制备:参照实施例1,制备得到阻燃聚丙烯腈纤维。具体性能参数见表1。
实施例3
阻燃剂的制备:将0.5g三聚氰胺、0.1g乙酸锌溶解在200mL去离子水中,然后向溶液 中加入0.1g二硫化钼纳米片并超声分散2h,带分散均匀后缓慢向上述分散液中滴加0.5g植酸,60℃搅拌4h。最后经去离子水离心清洗、60℃真空干燥,得到磷氮锌二维超分子包覆二硫化钼杂化材料。
阻燃聚丙烯腈纤维的制备:参照实施例1,制备得到阻燃聚丙烯腈纤维。具体性能参数见表1。
实施例4
阻燃剂的制备:将0.5g聚乙烯亚胺、0.1g乙酸锌溶解在200mL去离子水中,然后向溶液中加入0.1g二硫化钼纳米片并超声分散2h,带分散均匀后缓慢向上述分散液中滴加0.8g植酸,10℃搅拌8h。最后经去离子水离心清洗、60℃真空干燥,得到磷氮锌二维超分子包覆二硫化钼杂化材料。
阻燃聚丙烯腈纤维的制备:参照实施例1,制备得到阻燃聚丙烯腈纤维。具体性能参数见表1。
实施例5
阻燃剂的制备:将0.5g聚乙烯亚胺、0.1g乙酸锌溶解在200mL去离子水中,然后向溶液中加入0.2g二硫化钼纳米片并超声分散2h,带分散均匀后缓慢向上述分散液中滴加1g氨基三亚甲基膦酸,30℃搅拌4h。最后经去离子水离心清洗、60℃真空干燥,得到磷氮锌二维超分子包覆二硫化钼杂化材料。
阻燃聚丙烯腈纤维的制备:参照实施例1,制备得到阻燃聚丙烯腈纤维。具体性能参数见表1。
实施例6
参照实施例1制备得到阻燃剂材料,然后参照实施例1阻燃聚丙烯腈纤维的制备方法,仅将阻燃剂的用量替换为0.3g,其他条件不变,制备得到阻燃PAN纤维。具体性能参数见表1。
表1不同实施例阻燃PAN纤维阻燃性能数据
Figure PCTCN2020078518-appb-000001
Figure PCTCN2020078518-appb-000002
实施例7 阻燃剂制备条件的优化
参照实施例1,将二硫化钼、乙酸锌、三聚氰胺、植酸的添加量质量比替换为表2所示的用量比,制备阻燃PAN纤维。所得阻燃PAN纤维的具体性能参数见表2。
表2不同二硫化钼、乙酸锌、三聚氰胺、植酸的质量比制备的阻燃剂阻燃性能
Figure PCTCN2020078518-appb-000003
对照例1
参照实施例1中的阻燃聚丙烯腈纤维的制备方法,将阻燃剂化合物分别替换为三聚氰胺-氰尿酸超分子/二硫化钼(MCA/MoS2)杂化材料、二硫化钼纳米片/二氧化硅杂化材料,制备得到阻燃聚丙烯腈纤维。所得性能结果见表3。
表3不同阻燃剂制备的阻燃聚丙烯腈纤维的性能结果
Figure PCTCN2020078518-appb-000004

Claims (11)

  1. 一种磷氮锌二维超分子包覆二硫化钼杂化材料,其特征在于,所述材料的组分按照重量份数配比,包括:1~2份二硫化钼、1~1.5份锌盐、5~8份含氮化合物、5~10含磷化合物;
    其中,含磷化合物为植酸、2-膦酸丁烷-1,2,4-三羧酸、氨基三亚甲基膦酸、乙二胺四甲叉膦酸中的一种或多种;锌盐为乙酸锌、氯化锌、硝酸锌中的一种或多种;含氮化合物为聚乙烯亚胺、三聚氰胺、对苯二胺、乙二胺、硫脲中的一种或多种。
  2. 一种磷氮锌二维超分子包覆二硫化钼杂化材料,其特征在于,所述材料的组分按照重量份数配比,包括:1~2份二硫化钼、1~1.5份锌盐、5~8份含氮化合物、5~10含磷化合物。
  3. 根据权利要求1所述的杂化材料,其特征在于,所述含磷化合物包括植酸、2-膦酸丁烷-1,2,4-三羧酸、氨基三亚甲基膦酸、乙二胺四甲叉膦酸中的一种或多种。
  4. 根据权利要求1所述的杂化材料,其特征在于,所述锌盐包括乙酸锌、氯化锌、硝酸锌中的一种或多种。
  5. 根据权利要求1所述的杂化材料,其特征在于,所述含氮化合物包括聚乙烯亚胺、三聚氰胺、对苯二胺、乙二胺、硫脲中的一种或多种。
  6. 根据权利要求1所述的杂化材料,其特征在于,所述杂化材料的制备方法包括:按照重量份数配比,将二硫化钼纳米片与锌盐和含氮化合物、含磷化合物在水溶液中混合,反应完全,即得杂化材料。
  7. 根据权利要求6所述的杂化材料,其特征在于,所述反应的温度为10~60℃。
  8. 一种阻燃聚丙烯腈纤维,其特征在于,所述阻燃聚丙烯腈纤维包含权利要求1-7任一所述的杂化材料。
  9. 一种阻燃聚丙烯腈纤维的制备方法,其特征在于,所述方法是将权利要求1-7任一所述的杂化材料添加到聚丙烯腈纺丝液中,湿法纺丝即得。
  10. 根据权利要求9所述的方法,其特征在于,所述杂化材料的添加量为阻燃聚丙烯腈纤维质量的1%-3%。
  11. 权利要求1-7任一所述的杂化材料或者权利要求8所述的阻燃聚丙烯腈纤维在阻燃领域中的应用。
PCT/CN2020/078518 2019-03-12 2020-03-10 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用 WO2020182111A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/148,784 US20210130584A1 (en) 2019-03-12 2021-01-14 Phosphorus-nitrogen-zinc Two-dimensional Supramolecular Coated Molybdenum Disulfide Hybrid Flame Retardant and Application Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910187910.8 2019-03-12
CN201910187910.8A CN109942891B (zh) 2019-03-12 2019-03-12 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/148,784 Continuation US20210130584A1 (en) 2019-03-12 2021-01-14 Phosphorus-nitrogen-zinc Two-dimensional Supramolecular Coated Molybdenum Disulfide Hybrid Flame Retardant and Application Thereof

Publications (1)

Publication Number Publication Date
WO2020182111A1 true WO2020182111A1 (zh) 2020-09-17

Family

ID=67009712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078518 WO2020182111A1 (zh) 2019-03-12 2020-03-10 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用

Country Status (3)

Country Link
US (1) US20210130584A1 (zh)
CN (1) CN109942891B (zh)
WO (1) WO2020182111A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942891B (zh) * 2019-03-12 2020-03-06 江南大学 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用
CN111040349B (zh) * 2019-12-13 2021-05-28 江南大学 一种阻燃聚乙烯醇复合材料及其制备方法
CN111073036B (zh) * 2019-12-13 2021-05-14 江南大学 一种植酸胆碱阻燃剂、制备方法及其在制备阻燃热塑性淀粉中的应用
CN114106466B (zh) * 2020-08-26 2023-12-12 合肥杰事杰新材料股份有限公司 一种低燃烧热低烟无卤阻燃聚丙烯复合材料及其制备方法
CN113088066B (zh) * 2021-04-07 2022-03-08 福州大学 一种阻燃热塑性聚氨酯复合材料
CN113817287A (zh) * 2021-08-25 2021-12-21 中国地质大学(武汉) 一种生物基纳米协同阻燃剂及其制备方法和应用
CN113831596B (zh) * 2021-10-11 2023-07-07 安徽理工大学 一种阻燃剂、阻燃抑烟复合材料及制备方法
CN114381097B (zh) * 2022-01-25 2022-12-06 福州大学 一种阻燃热塑性pet复合材料及其制备方法
CN114990718B (zh) * 2022-06-24 2023-11-28 江南大学 一种无卤环保复配型阻燃粘胶纤维及其制备方法
CN115181418B (zh) * 2022-09-13 2022-11-22 广东南缆电缆有限公司 B1级阻燃包带及其制备方法和应用
CN115626985B (zh) * 2022-09-23 2023-09-05 浙大宁波理工学院 一种Mo基聚合物及其制备方法和应用
CN115434142B (zh) * 2022-10-11 2023-10-31 常熟市翔鹰特纤有限公司 一种阻燃聚丙烯腈织物的制备方法
CN116120640B (zh) * 2023-01-10 2024-03-22 东北林业大学 一种膨胀型纳米复合阻燃剂及其制备方法和在木塑复合材料中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997699A (zh) * 2004-05-04 2007-07-11 通用电气公司 具有改进的电性能的不含卤素的阻燃聚酰胺组合物
US20080241529A1 (en) * 2007-03-29 2008-10-02 Clariant International Ltd. Flameproofed adhesive and sealing materials
KR20150068866A (ko) * 2013-12-12 2015-06-22 주식회사 경신전선 압출용 고온내수성 난연 수지 조성물, 이를 이용하여 제조된 절연체 및 이를 포함하는 전선 및 케이블
CN107501868A (zh) * 2017-09-30 2017-12-22 四会市启德信息咨询服务有限公司 一种无卤膨胀型阻燃电缆护套
CN109942891A (zh) * 2019-03-12 2019-06-28 江南大学 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207819A1 (de) * 2012-05-10 2013-11-14 Mahle International Gmbh Gleitlack für die Beschichtung von Triebwerksmodulen und Beschichtungsverfahren
CN103756015B (zh) * 2014-01-14 2016-04-20 中国科学技术大学 一种超支化三嗪成炭剂微胶囊化阻燃剂及其制备方法
CN108129624B (zh) * 2017-12-29 2020-03-27 青岛德创新材料有限公司 一种钼磷氮杂化膨胀阻燃剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997699A (zh) * 2004-05-04 2007-07-11 通用电气公司 具有改进的电性能的不含卤素的阻燃聚酰胺组合物
US20080241529A1 (en) * 2007-03-29 2008-10-02 Clariant International Ltd. Flameproofed adhesive and sealing materials
KR20150068866A (ko) * 2013-12-12 2015-06-22 주식회사 경신전선 압출용 고온내수성 난연 수지 조성물, 이를 이용하여 제조된 절연체 및 이를 포함하는 전선 및 케이블
CN107501868A (zh) * 2017-09-30 2017-12-22 四会市启德信息咨询服务有限公司 一种无卤膨胀型阻燃电缆护套
CN109942891A (zh) * 2019-03-12 2019-06-28 江南大学 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用

Also Published As

Publication number Publication date
US20210130584A1 (en) 2021-05-06
CN109942891A (zh) 2019-06-28
CN109942891B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2020182111A1 (zh) 一种磷氮锌二维超分子包覆二硫化钼杂化阻燃剂及其应用
CN102585347B (zh) 一种无卤膨胀型阻燃聚丙烯混合物及其制备方法
CN103910907B (zh) 一种氧化石墨烯接枝改性三聚氰胺焦磷酸盐阻燃剂的方法
CN101974167A (zh) 一种膨胀型阻燃剂及其合成方法
KR20160079529A (ko) 표면에 인이 도핑된 산화 그래핀을 포함하는 난연제 및 이의 제조방법
CN103756015A (zh) 一种超支化三嗪成炭剂微胶囊化阻燃剂及其制备方法
CN113980216B (zh) 一种链状大分子阻燃剂的制备方法和应用
CN105001451A (zh) 一种含dopo基团的石墨烯及其制备方法
CN102926200A (zh) 一种阻燃棉纤维及其制备方法
CN113522698A (zh) 一种纤维素纳米晶体/MXene自组装阻燃抗静电涂层及在玻璃钢上的应用
CN103214691B (zh) 磷氮系膨胀型阻燃剂及其制备方法
CN108586807A (zh) 一种阻燃功能化石墨烯及其制备和应用
CN114990876A (zh) 一种可用于防护服的新型阻燃织物及其制备方法
CN102926202B (zh) 一种阻燃涂层及其制备方法和应用
CN111607219B (zh) 一种低烟热塑性聚氨酯弹性体复合材料及其制备方法
CN110592950B (zh) 一种无溶剂制备阻燃棉织物的方法
CN105801867B (zh) 一种基于生物质结构的膨胀型阻燃剂及其制备方法
CN105949509B (zh) 一种有机-无机杂化六甲叉膦酸镁阻燃剂及其制备方法
CN108866658A (zh) 一种混合编织阻燃滤袋玻纤及其制备方法
CN114990877A (zh) 一种用于防护服的新型阻燃复合材料及其制备方法和应用
WO2022088852A1 (zh) 一种高伸长间位芳纶聚合体及其制备方法
CN107674240A (zh) 一种复合型含磷阻燃剂的制备方法
CN113061394A (zh) 一种阻燃天然生漆膜及其制备方法
CN113045889A (zh) 一种无卤阻燃尼龙
CN114685937A (zh) 阻燃环氧树脂复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769657

Country of ref document: EP

Kind code of ref document: A1