WO2020179929A1 - 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器 - Google Patents

細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器 Download PDF

Info

Publication number
WO2020179929A1
WO2020179929A1 PCT/JP2020/009897 JP2020009897W WO2020179929A1 WO 2020179929 A1 WO2020179929 A1 WO 2020179929A1 JP 2020009897 W JP2020009897 W JP 2020009897W WO 2020179929 A1 WO2020179929 A1 WO 2020179929A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
cell tissue
cell
coating liquid
cells
Prior art date
Application number
PCT/JP2020/009897
Other languages
English (en)
French (fr)
Inventor
明石 満
隆美 赤木
小田 淳志
▲祥▼平 近江
Original Assignee
国立大学法人大阪大学
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019040785A external-priority patent/JP7256494B2/ja
Priority claimed from JP2019083571A external-priority patent/JP7340185B2/ja
Application filed by 国立大学法人大阪大学, Ntn株式会社 filed Critical 国立大学法人大阪大学
Priority to US17/435,890 priority Critical patent/US20240158727A1/en
Priority to EP20765757.8A priority patent/EP3936238A4/en
Priority to CN202080018860.1A priority patent/CN113474092B/zh
Publication of WO2020179929A1 publication Critical patent/WO2020179929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment

Definitions

  • the present invention relates to a method for producing a cell tissue, a cell tissue production set suitable for the method, and a culture vessel containing the cell tissue produced by the production method.
  • an assay method for evaluating cell tissues by arranging cell tissues (cell aggregates) in which cells are aggregated and aggregated in each of a plurality of wells (recesses) aligned in a well plate is It is widely used for evaluation and screening for selecting compounds effective as new drugs.
  • By performing an assay method on such cell tissue it is possible to evaluate multiple items in a short time with a small amount of sample, ensuring quickness, convenience, safety, reproducibility and high reliability. Is advantageous in that
  • Patent Document 11 discloses a method of finely coating a liquid material using a coating needle.
  • a coating unit is intended to correct defects in a fine pattern, and can perform fine coating using a coating liquid having a wide range of viscosities.
  • one coating needle is projected from a through hole formed in the bottom of the coating liquid container that holds the coating liquid. The coating needle makes the coating liquid adhering to the tip contact the object to be coated to perform coating.
  • iPS-derived cardiomyocytes are dispersed in a fibrinogen solution and applied, and then immersed in a thrombin solution to fix the tissue by gelation.
  • a coating agent in which cardiomyocytes and fibrinogen are dispersed is applied to the first solution, and a coating agent is applied to the second solution as a gelling initiator.
  • the application is performed by adding thrombin so as to cover the.
  • the cardiomyocytes inside the first solution and the fibrinogen solution developed an unintended gelation. Therefore, there is a problem that the gelled cardiomyocyte mass inside the coating liquid container may be clogged, or the gelled cardiomyocytes may remain in the coating liquid container and cannot be applied.
  • the present invention has been made for the purpose of providing a bioprinting technique as described above, which does not cause problems such as gelation inside the coating liquid container before executing the coating step and clogging associated therewith. Surprisingly, it was found that using bioprinting technology that can achieve the above objectives, it is possible to produce a cell tissue having high density and high shape retention while maintaining cell viability.
  • the present invention is a method of producing a cell tissue having high density and high shape retention while maintaining gel viability inside the coating liquid container, resulting in no problems such as clogging and the like, and maintaining cell viability.
  • a method for producing a tissue is provided.
  • the present invention makes it possible to produce a high-density and highly shape-retaining cell tissue while maintaining cell viability, and to produce a plurality of cell tissues and a plurality of types of cell tissues in one container (medium). It provides a method for producing a cell tissue that can be produced and a culture vessel containing the cell tissue produced by the production method.
  • the first coating liquid is applied to the object to be coated, and the second coating liquid is superposed on the first coating liquid applied in the first coating step.
  • the present invention provides a method for producing a cell tissue, which comprises a second coating step. More specifically, the second coating step includes gelling the interface between the first coating liquid and the second coating liquid while maintaining the fluid state of the coating liquid of the first solution.
  • the present invention while maintaining the viability of cells, it is possible to produce a high-density and highly shape-retaining cellular tissue, and a plurality of cellular tissues and a plurality of types of cellular tissues can be stored in one container (medium). It becomes possible to produce. Therefore, it has an excellent effect that it is possible to evaluate a large number of samples in one evaluation experiment.
  • FIG. 1 Overall view showing a fine coating apparatus used in Embodiment 1 according to the present invention
  • the figure which shows the cell application operation in the application unit typically The figure which shows the image of the droplet spot observed with the phase contrast microscope in the coating experiment 1.
  • FIG. 12 Graph showing experimental results of coating experiment 5
  • Figure of image showing cell aggregates produced in coating experiment 6 The figure which showed the live cell / dead cell (Live / Dead) fluorescence staining image in application experiment 7.
  • the figure which shows the image of the state when the myocardial tissue shown in FIG. 12 was cultured for 6 days.
  • FIG. 6 is a schematic schematic diagram for explaining a coating method using a coating needle as a method for producing a cell tissue according to the third embodiment of the present invention and the sedimentation of cells after coating.
  • FIG. 6 is a diagram showing an example of a fine coating device according to a third embodiment. The figure which shows the example of a coating device main body.
  • Phase contrast micrograph of cell tissue The figure which shows the thickness measurement result by HE staining of a cell tissue.
  • Phase-contrast micrograph of cell tissue observed by fluorescence staining.
  • Phase-contrast micrograph of cell tissue obtained using the conventional method.
  • FIG. 33 A photograph showing an image of a three-dimensional cell tissue when cardiomyocytes and thrombin are dispersed in the first coating solution.
  • Flowchart for producing a plurality of cell tissues shown in FIG. 33 Top view schematically showing a modified example in which a plurality of cell tissues in a culture vessel were prepared using a fine coating device.
  • the cell tissue in the present invention refers to a cell aggregate in a state in which cells are aggregated, aggregated, laminated, organized, and functioning on a substrate.
  • the method for producing a cell tissue according to the first aspect of the present invention is A second coating liquid is superposed on the first coating liquid applied in the first coating step of applying the first coating liquid to the object to be coated and the first coating liquid applied in the first coating step, and the first coating liquid is applied. And a second coating step for gelling the interface between the second coating liquid and Is included.
  • the second applying step in the first aspect is performed while maintaining the fluid state of the applying solution of the first solution. It may include gelling the interface of the second coating liquid.
  • the first coating solution according to the first or second aspect may contain cells and a gelation initiator.
  • the second coating liquid may contain a gelling agent.
  • the method for producing a cell tissue according to a fifth aspect of the present invention is A first application step of applying a first application solution containing cells and a gelation initiator to an application target, and a second application step of applying a gelling agent to the first application solution applied in the first application step. It may include a second coating step in which the coating solutions are coated in layers and the gelling reaction is started at the interface between the first coating solution and the second coating solution.
  • the method for producing a cell tissue according to a sixth aspect according to the present invention is
  • the first coating step of applying the first coating solution containing cells to the object to be coated, and the first coating solution applied in the first coating step contain collagen, gelatin and / or agar as a gelling agent. It may include a second coating step in which the second coating liquid is applied in layers and the gelling reaction is started by heating or cooling at the interface between the first coating liquid and the second coating liquid.
  • the method for producing a cell tissue according to a seventh aspect according to the present invention is A first coating step of applying a first coating solution containing cells to an object to be coated, and a second coating solution containing a photocrosslinkable gelatin hydrogelling agent in the first coating solution applied in the first coating step. It may include a second coating step of laminating the coating liquids and initiating a gelation reaction by light irradiation at the interface between the first coating liquid and the second coating liquid.
  • a medium is a medium to which the first coating solution and the second coating solution are applied. It may include a step of immersing the cells in and culturing the cells.
  • the first coating solution may contain the thickening polysaccharide in any one of the first to eighth aspects.
  • the second coating solution according to any one of the first to ninth aspects may include a thickening polysaccharide.
  • the gelation initiator may be thrombin in any of the third to fifth aspects described above.
  • the gelling agent may be fibrinogen, collagen, gelatin or a mixture of two or more thereof in any of the fourth or fifth aspects described above.
  • the thickening polysaccharide may be sodium hyaluronate, sodium alginate or a mixture thereof.
  • the cell may be a cardiomyocyte in any of the third to thirteenth aspects described above.
  • a cell tissue formation set according to a fifteenth aspect of the present invention includes at least a first container containing a first coating solution containing cells and a gelling initiator, and a second coating solution containing a gelling agent. Includes a second container.
  • the first coating liquid may contain a thickening polysaccharide.
  • the second coating liquid may contain a thickening polysaccharide.
  • the gelation initiator may be thrombin in any of the 15th to 17th aspects described above.
  • the gelling agent may be fibrinogen, collagen, gelatin or a mixture of two or more kinds thereof in any of the 15th to 18th aspects described above.
  • the thickening polysaccharide may be sodium hyaluronate, sodium alginate or a mixture thereof in any of the 16th to 19th aspects described above.
  • the cells may be cardiomyocytes in any of the 15th to 20th aspects described above.
  • the cell tissue of the 22nd aspect according to the present invention is a cell tissue produced by the method for producing a cell tissue according to any one of the 1st to 14th aspects described above.
  • the method for producing a cell tissue according to a twenty-third aspect of the present invention is any one of the first to fourteenth aspects, wherein the first applying step is performed using contact application with an application needle.
  • a method for producing a cell tissue according to a twenty-fourth aspect of the present invention is the method according to any one of the first to fourteenth aspects and the twenty-third aspect, The coating operation of the first coating step and the second coating step is performed for a plurality of coating target positions in the same culture container, and the culture medium forming step is performed.
  • the method for producing a cell tissue according to a twenty-fifth aspect of the present invention is the coating operation according to the twenty-fourth aspect, wherein the first coating step and the second coating step are applied to a plurality of application target positions in the same culture container. After carrying out, the medium forming step may be carried out.
  • the method for producing a cell tissue according to a twenty-sixth aspect of the present invention is the method for producing a cell tissue according to the twenty-fourth aspect, wherein the coating operation of the first coating step and the second coating step is performed on each coating target position of the same culture container. After executing the above, the medium formation step may be executed for the application target position.
  • the method for producing a cell tissue according to the 27th aspect of the present invention is the same in the 24th aspect after the application operation of the first application step is executed on a plurality of application target positions of the same culture container.
  • the coating operation of the second coating step may be executed on a plurality of coating target positions of the culture container, and then the medium forming step may be executed on a plurality of coating target positions of the same culture container.
  • the method for producing a cell tissue according to the 28th aspect of the present invention is such that in any of the 24th to 27th aspects, the second coating solution containing the first coating solution is immersed.
  • the medium forming step of applying the coating solution of 3 may be included.
  • a method for producing a cell tissue according to a twenty-ninth aspect of the present invention is the method for producing a cell tissue according to any one of the twenty-fourth to twenty-eighth aspects, in which cells containing the same type of cells are applied to a plurality of application target positions in the same culture container. Tissue may be created.
  • the method for producing a cell tissue according to a thirtieth aspect of the present invention is the method for producing a cell tissue according to any one of the twenty-fourth to twenty-eighth aspects, wherein cells containing different types of cells are applied to a plurality of application target positions in the same culture container. Tissue may be created.
  • the method for producing a cell tissue according to a thirty-first aspect according to the present invention is the method for producing a cell tissue according to the thirty-first aspect, wherein in any one of the twenty-fourth to thirty-third aspects, the second coating solution is applied over the first coating solution.
  • An ink jet method or a dispenser method may be used for the two coating steps.
  • a two-component gelling solution may be used as a coating solution at the time of cell tissue formation.
  • the culture vessel of the 33rd aspect according to the present invention contains a plurality of cell tissues in the same vessel.
  • the culture vessel of the 34th aspect according to the present invention may contain a plurality of cell tissues of the same type in the same container in the 33rd aspect described above.
  • the culture vessel of the 35th aspect according to the present invention may contain a plurality of different types of cell tissues in the same container in the 33rd aspect described above.
  • a culture container according to a thirty-sixth aspect of the present invention is the culture container according to any one of the thirty-third to thirty-fifth aspects, which includes a plurality of cell tissues in the same container and has a plurality of the containers.
  • a small droplet of several pL (picolitre) attached to the tip of the coating needle is one. It is highly safe and reproducible and can be automated by using a fine coating device that can accurately coat a predetermined position of an object in a very short time, for example, in 0.1 seconds. It is intended to produce a highly reliable cell tissue (cell aggregate).
  • the present invention by using a high-speed fine coating device, even a material having a high viscosity that cannot be handled by a conventional printer, for example, a high-viscosity solution containing cells and a gelling agent, can be used in a short time. It is possible to reliably produce a plurality of cell tissues (cell aggregates) at a predetermined position with high accuracy. As a result, according to the present invention, the desired cells can be arbitrarily and two-dimensionally and three-dimensionally arranged and controlled, and various cell tissues can be automated and mass-produced in a sterile state. Become. Therefore, the method for producing a cell tissue according to the present invention makes it possible to mass-produce a cell tissue having high safety, reproducibility, and reliability by automation.
  • the method for producing a cell tissue according to the present invention is not limited to the configuration using the fine coating device of the embodiment described below, and a cell coating operation (cell coating method) executed in the fine coating device and This is achieved by a cell coating operation (cell coating method) based on the same technical idea.
  • FIG. 1 is an overall view showing a fine coating apparatus 1 used in the first embodiment.
  • the fine coating apparatus 1 includes a coating apparatus main body 2 and a display/control unit 3 that performs setting, control, and display on the coating apparatus main body 2.
  • the display / control unit 3 of the fine coating device 1 in the first embodiment is composed of a so-called personal computer (PC).
  • the coating device main body 2 of the fine coating device 1 has an XY table 4 that can be moved in the horizontal direction on the main body base 12, a Z table 5 that can be moved in the vertical direction (vertical direction) with respect to the XY table 4, and a Z table 5.
  • the coating unit 6 fixed to a vertically movable drive mechanism and an optical detection unit (for example, CCD camera) 7 for observing the coating target on the XY table 4 are provided.
  • the coating liquid 10 that is a cell-containing solution is applied, and a substrate or the like on which a plurality of cell tissues are formed is placed and fixed.
  • the coating unit 6 in the fine coating apparatus 1 configured as described above is configured to perform a cell coating operation of aligning and forming a plurality of cell tissues on the substrate or the like on the XY table 4.
  • a cell coating operation of aligning and forming a plurality of cell tissues on the substrate or the like on the XY table 4.
  • FIG. 2 is a diagram showing a coating needle holding portion 13 mounted on the coating unit 6.
  • An application needle 9 is projected on the application needle holding portion 13.
  • FIG. 3 is a diagram showing a tip portion of the coating needle 9.
  • the tip 9a of the tip portion formed in a conical shape is formed flat so as to face the horizontal plane of the XY table 4 (see (a) in FIG. 3). ). That is, the plane of the tip 9a is a plane orthogonal to the vertical direction.
  • the diameter d of the tip 9a greatly contributes to the shape of the cell tissue produced, as will be described later. In the first embodiment, 50 to 330 ⁇ m was used as the diameter d of the tip 9a of the coating needle 9.
  • the tip portion of the coating needle 9 is formed in a conical shape, and the tip 9a is a horizontal plane. Therefore, the tip 9a is polished to a horizontal plane to form the tip.
  • the diameter d of 9a can be easily formed to a desired value, for example in the range of 50-330 ⁇ m.
  • the tip 9a of the coating needle 9 is configured by a horizontal plane (see (a) of FIG. 3), but the surface shape of the tip 9a has a predetermined diameter, for example, 30 ⁇ m or less.
  • the cells may be formed on a concave surface (hemispherical surface) having a diameter, and the cell coating operation may be performed so that the cells can be held on the concave surface (see (b) of FIG. 3).
  • the tip 9a of the application needle 9 may be provided with a projection 9b having a step.
  • the needle tip is continuously applied to the substrate a plurality of times, and the needle tip is raised by a predetermined distance for each cell application operation, for example, 0.
  • a predetermined distance for each cell application operation for example 0.
  • FIG. 4 is a diagram schematically showing a cell application operation in the application unit 6.
  • the coating unit 6 includes a coating liquid container 8 in which a coating liquid reservoir 8a for storing a predetermined amount of the coating liquid 10 which is a cell-containing solution is formed, and a coating needle 9 penetrating the coating liquid reservoir 8a.
  • the coating needle holding unit 13 is provided.
  • the coating needle holding portion 13 includes a slide mechanism portion 16 that slidably holds the coating needle 9 in the vertical direction (vertical direction).
  • the coating needle holding portion 13 is provided so as to be detachable at a predetermined position of the drive mechanism portion 17, and may be configured to be detachable from the drive mechanism portion 17 by the magnetic force of a magnet, for example.
  • the coating needle holding portion 13 is fixed to the drive mechanism portion 17 of the coating device main body 2 as described above, and is configured to reciprocate at a high speed at a predetermined interval in the vertical direction (vertical direction).
  • the drive control of the drive mechanism unit 17 and the setting of the drive control of the YX table 4 and the Z table 5 are performed by the display/control unit 3.
  • the slide mechanism portion 16 provided in the coating needle holding portion 13 holds the coating needle 9 in a reciprocating manner up and down.
  • the slide mechanism unit 16 is configured to perform a reciprocating operation in which the coating liquid 10 held by the tip 9a of the coating needle 9 rises after coming into contact with an object to be coated. In the slide mechanism portion 16, when the tip 9a of the coating needle 9 descends and comes into contact with the substrate 11, for example, the coating needle 9 moves the slide mechanism portion 16 in the vertical direction so as to rise from the contact position. It has a sliding configuration.
  • the slide mechanism portion 16 of the coating unit 6 of the first embodiment is configured to apply the coating liquid 10 held by the tip 9a of the coating needle 9 to the coating target object by contact.
  • the tip 9a of the coating needle 9 performs a reciprocating motion of folding back and ascending at a position in contact with the object to be coated.
  • the vertical reciprocating operation of the coating needle 9 at this time is high speed, and for example, one reciprocating motion is preferably set to 0.5 seconds or less, more preferably 0.1 seconds or less.
  • the application needle holding portion 13 of the application unit 6 is provided with the slide mechanism portion 16 that holds the application needle 9 and can slide up and down, and with respect to the drive mechanism portion 17 that moves vertically. Is detachably fixed.
  • the application needle holding portion 13 is configured such that the application needle 9 can move vertically through the application liquid reservoir 8a that stores the application liquid 10 that is a cell-containing solution (vertical direction). Holes (upper hole 14a, lower hole 14b) through which the coating needle 9 penetrates are formed in the upper part and the lower part of the coating liquid container 8.
  • the cell coating operation in the coating unit 6 schematically shown in FIG. 4 will be described.
  • the coating needle 9 passes through the coating liquid pool 8a of the coating liquid container 8 and comes into contact with the substrate 11 which is the object to be coated, and the coating liquid 10 containing cells is placed on the substrate 11. It is applied to form droplet spots.
  • This cell coating operation is repeated a predetermined number of times, and the coating liquid 10 is applied a plurality of times to produce a desired cell tissue on the substrate 11.
  • FIG. 4 shows a standby state in the cell application operation.
  • the coating needle 9 is inserted through the upper hole 14a, and the tip 9a of the coating needle 9 is immersed in the coating liquid 10 of the coating liquid pool 8a.
  • the tip 9a of the coating needle 9 is immersed in the coating liquid 10, and the coating liquid 10 adhering to the tip 9a does not dry.
  • the diameter of the lower hole 14b of the coating liquid container 8 is fine (for example, 1 mm or less), the coating liquid 10 does not leak from the coating liquid pool 8a.
  • FIG. 4B shows a state in which the tip 9a of the coating needle 9 protrudes from the lower hole 14b of the coating liquid container 8 and the tip 9a descends from the coating liquid pool 8a toward the substrate 11 (lowering step). Showing. That is, FIG. 4B shows a descending state in which the tip 9a of the coating needle 9 penetrates the coating liquid reservoir 8a of the coating liquid container 8 and protrudes. In this descending state, the coating liquid 10 is attached to the coating needle 9, but a certain amount of the coating liquid 10 is held at the tip 9a of the coating needle 9 due to the surface tension of the coating liquid 10 attached. ing.
  • FIG. 4C shows a state (coating step) in which the coating liquid 10 held by the tip 9a of the coating needle 9 comes into contact with the surface of the substrate 11 and the coating liquid 10 is applied onto the surface of the substrate 11. ing.
  • the droplet spot of the coating liquid 10 applied at this time corresponds to a constant amount of the coating liquid 10 held at the tip 9a of the coating needle 9.
  • the coating liquid 10 held by the tip 9a of the coating needle 9 comes into contact with the object to be coated (contact coating), but the tip 9a of the coating needle 9 contacts the surface of the substrate 11.
  • the impact load at the moment of contact is configured to be about 0.06 N or less.
  • the coating needle 9 is slidably held by the slide mechanism portion 16 so as to absorb the impact in the vertical direction, the impact load at the time of contact is extremely small. It has become.
  • FIG. 4 shows a state immediately after the coating needle 9 has coated the coating liquid 10 on the surface of the substrate 11, and shows a state in which the coating needle 9 is elevated. After this rising state, the tip 9a of the coating needle 9 shifts to a standby state in which the tip 9a of the coating needle 9 is immersed in the coating liquid 10 in the coating liquid reservoir 8a (accommodation step).
  • the operation of (a) ⁇ (b) ⁇ (c) ⁇ (d) ⁇ (a) shown in FIG. 4 is a one-cycle cell application operation.
  • one cycle of the cell coating operation is performed in 0.1 seconds, and the cell coating operation is executed in a short time.
  • a desired cell tissue is produced by repeating the cell application operation a predetermined number of times (for example, 10 cycles).
  • the fine coating device 1 In the cell coating operation of the fine coating device 1 according to the first embodiment of the present invention, several pL (picolitre) is coated by bringing a very small amount of coating liquid 10 adhering to the tip of the coating needle 9 into contact with the object to be coated. It is possible to apply and form a large amount of droplet spots with a high placement accuracy, for example, a placement accuracy of ⁇ 15 ⁇ m or less, preferably ⁇ 3 ⁇ m or less. Further, as the viscosity of the coating liquid 10, it is possible to apply a material having a viscosity of 1 ⁇ 10 5 mPa ⁇ s or less, and it is possible to apply a highly viscous cell dispersion liquid.
  • a printer using a nozzle such as an inkjet printer cannot be used due to problems such as clogging.
  • the highly viscous cell dispersion liquid can be precisely applied to a predetermined position on the surface of the substrate 11 or the like, a cell tissue in which cells having arbitrary patterning are three-dimensionally formed is formed. It can be made. Therefore, in the method for producing a cell tissue according to the present invention, the produced cell tissue is used in the fields of drug discovery research such as screening for evaluation of drug efficacy and safety and regenerative medicine, and progress in each field. It is effective for.
  • Example 1 Using the fine coating apparatus 1 described in Embodiment 1 above, a coating experiment 1 was performed using coating liquids 10 having different concentrations and viscosities. In this coating experiment 1, the shape of the droplet spot was confirmed using three types of coating solutions 10 of 5%, 10%, and 20% gelatin PBS (phosphate buffer) solutions.
  • three types of coating solutions 10 of 5%, 10%, and 20% gelatin PBS (phosphate buffer) solutions.
  • Three coating liquid containers 8 in the coating unit 6 are prepared, and three types of gelatin PBS solutions in which gelatin is dissolved in a phosphate buffer solution (PBS) at a volume of 5, 10 or 20 by volume (% w / v) are applied. Prepared as liquid 10.
  • the coating liquid 10 used in this coating experiment 1 contains no cells.
  • each coating liquid container 8 20 ⁇ L of 5%, 10%, and 20% gelatin PBS solutions were filled in each coating liquid container 8.
  • a tip 9a (planar shape) having a diameter d of 100 ⁇ m was used.
  • 5 ⁇ 5 spots were applied by spot contact with the coating liquid 10 at intervals of 150 ⁇ m on a slide glass fixed to the XY table 4. The droplet spot formed by coating on the slide glass was observed with a phase contrast microscope.
  • FIG. 5 is a diagram showing an image of a droplet spot observed with a phase-contrast microscope in coating experiment 1.
  • a 5% gelatin PBS solution viscosity 3 mPa ⁇ s
  • a coating liquid 10 is applied onto a slide glass using a coating needle 9 having a tip 9a diameter d (tip diameter) of 100 ⁇ m. It is an image which shows the formed droplet spot.
  • a droplet spot formed by applying a 10% gelatin PBS solution (viscosity 30 mPa ⁇ s) as a coating liquid 10 onto a slide glass using a coating needle 9 (tip diameter 100 ⁇ m) is formed. It is an image which shows.
  • FIG. 5 shows droplets formed by applying a 20% gelatin PBS solution (viscosity 220 mPa ⁇ s) as a coating liquid 10 onto a slide glass using a coating needle 9 (tip diameter 100 ⁇ m). It is an image showing a spot.
  • a 20% gelatin PBS solution viscosity 220 mPa ⁇ s
  • the drop spot had a similar shape (5% gelatin droplet spot diameter 136 ⁇ 3 ⁇ m, 10% gelatin droplet spot diameter 147 ⁇ 1 ⁇ m, 20% gelatin droplet spot diameter 151 ⁇ 1 ⁇ m). That is, in the coating experiment 1, a stable droplet spot could always be confirmed without being largely dependent on the gelatin concentration and viscosity.
  • the droplet spot diameter is in the range of 1.3 to 1.6 times the tip diameter of the coating needle 9, and the droplet can be at least twice as large.
  • the coating liquid for which the coating test is performed a liquid having a higher viscosity is used, and the diameter of the tip 9a of the coating needle 9 is about 1.0 to 1.2 times. It is applied within the range.
  • a low-viscosity coating that forms droplets that are twice as large as or larger than the diameter of the tip 9a of the coating needle 9 within a range where cell tissues do not overlap in the well. A coating test is conducted using the liquid.
  • Example 2 Using the fine coating apparatus 1 described in the above-described embodiment, a coating experiment 2 using coating needles 9 having different tip 9a diameters (tip diameters) was conducted. In this coating experiment 2, a 5% gelatin PBS solution was used as the coating liquid 10, and the shape of the formed droplet spot was confirmed. The coating liquid 10 used in this coating experiment 2 contains no cells.
  • FIG. 6 is a diagram showing an image of a droplet spot observed with a phase-contrast microscope in coating experiment 2.
  • FIG. 6A is an image showing a droplet spot formed by applying a coating solution 10 of 5% gelatin PBS solution on a slide glass using an application needle 9 having a tip diameter of 50 ⁇ m.
  • FIG. 6B is an image showing a droplet spot formed by applying a coating solution 10 of a 5% gelatin PBS solution on a slide glass using an application needle 9 having a tip diameter of 100 ⁇ m.
  • FIG. 6C is an image showing a droplet spot formed by applying a coating solution 10 of a 5% gelatin PBS solution onto a slide glass using a coating needle 9 having a tip diameter of 150 ⁇ m.
  • the formed droplet spots have a droplet spot diameter substantially proportional to the diameter (50 ⁇ m, 100 ⁇ m, 150 ⁇ m) of the coating needle 10. It was confirmed that (50 ⁇ m coating needle: droplet spot diameter 75 ⁇ 2 ⁇ m, 100 ⁇ m coating needle: droplet spot diameter 137 ⁇ 3 ⁇ m, 150 ⁇ m coating needle: droplet spot diameter 219 ⁇ 5 ⁇ m).
  • Example 3 In the coating experiment 3, a coating liquid 10 in which normal human dermal fibroblasts (NHDF) were dispersed in a 10% gelatin PBS solution at a concentration of 2 ⁇ 10 7 cells/mL was used. In the coating experiment 3, three types of coating needles 9 having tip diameters (tip diameters) of 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m were brought into point contact on the slide glass using the fine coating device 1 to coat the coating liquid 10. The shape of the droplet spot formed by coating on the slide glass was observed with a phase-contrast microscope.
  • NHDF normal human dermal fibroblasts
  • FIG. 7 is a diagram showing an image of a droplet spot observed by a phase-contrast microscope in coating experiment 3.
  • FIG. 7A is an image showing droplet spots formed by applying a 10% gelatin PBS solution in which NHDF is dispersed onto a slide glass using a coating needle 9 having a tip diameter of 100 ⁇ m.
  • FIG. 7B is an image showing droplet spots formed by applying a 10% gelatin PBS solution in which NHDF is dispersed onto a slide glass using a coating needle 9 having a tip diameter of 150 ⁇ m.
  • FIG. 7 (c) is an image showing a droplet spot formed by applying a 10% gelatin PBS solution in which NHDF is dispersed onto a slide glass using a coating needle 9 having a tip diameter of 200 ⁇ m.
  • Example 4 In the application experiment 4, a similar experiment was performed using a liver cancer cell line (HepG2) instead of the normal human dermal fibroblasts (NHDF) in the application experiment 3 described above.
  • the coating liquid 10 in which HepG2 was dispersed in a 10% gelatin PBS solution at a concentration of 5 ⁇ 10 7 cells/mL was used.
  • FIG. 8 is an image showing droplet spots formed by applying a 10% gelatin PBS solution in which HepG2 is dispersed onto a slide glass using a coating needle 9 having a tip diameter of 100 ⁇ m. Also in the coating experiment 4, it was confirmed that a predetermined amount of cells were present in the droplet spot, and stable coating was possible regardless of the type of cells. In the coating experiment 5 described below, the relationship between the tip diameter of the coating needle 9 and the number of coated cells contained in the formed droplet spot was verified.
  • Example 5 In the coating experiment 5, a coating solution 10 in which iPS cell-derived cardiomyocytes (iPS-CM) were dispersed in a PBS solution at a concentration of 4 ⁇ 10 7 cells/mL was used, and the tip diameter was 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m. , 330 ⁇ m, respectively, to form droplet spots. In the coating experiment 5, the relationship between the tip diameter of the coating needle 9 and the number of coated cells contained in the formed droplet spot was verified.
  • iPS-CM iPS cell-derived cardiomyocytes
  • the above coating solution 10 was coated once on a slide glass, and the number of cells after coating was measured with a fluorescence microscope (cells were nuclear-stained with DAPI of a fluorescent dye before coating) and the position. Calculated by phase contrast microscopy.
  • 20 or more points were measured for the droplet spots formed by the coating needles 9 having tip diameters of 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, and 330 ⁇ m, and the average value was calculated.
  • FIG. 9 is a graph showing the experimental results of the coating experiment 5.
  • the vertical axis represents the number of applied cells [cells/spot], and the horizontal axis represents the tip diameter [ ⁇ m] of the application needle 9.
  • the vertical axis represents the number of applied cells [cells/spot]
  • the horizontal axis represents the tip diameter [ ⁇ m] of the application needle 9.
  • An average of 4.0 coated cells are present in the droplet spot formed by the coated needle 9 having a tip diameter of 100 ⁇ m, and an average of 4.5 coated cells are present in the droplet spot formed by the coated needle 9 having a tip diameter of 150 ⁇ m.
  • the standard deviation (positive direction) of the number of coated cells in each coated needle 9 is indicated by an error bar.
  • the tip diameter of the coating needle 9 to be used is related to the number of coated cells present in the formed droplet spot, and the droplet spot increases as the tip diameter of the coating needle 9 increases. It was confirmed that the number of the coated cells present in the cells increased. Therefore, by determining the tip diameter of the coating needle 9, it was possible to verify that the number of coated cells in the droplet spot can be controlled within a certain range.
  • Example 6 In the coating experiment 6, the cell aggregate 20 was produced using the fine coating device 1.
  • a coating solution 10 in which normal human skin fibroblasts (NHDF) were dispersed in a 2.5% sodium alginate PBS solution at a concentration of 2 ⁇ 10 7 cells / mL was used.
  • the coating liquid 10 was filled in the coating liquid container 8 of the coating unit 6 and the cell coating operation was performed by the fine coating device 1.
  • FIG. 10 is an image showing the cell aggregate 20 manufactured in the coating experiment 6.
  • the stop position (folding position) of the tip 9a of the applying needle 9 during the applying step in the cell applying operation is raised every cycle ( For example, it was confirmed that it is possible to create the cell aggregate 20 having a desired shape by repeating the cell coating operation of a plurality of cycles by 0.5 ⁇ m).
  • Example 7 In the coating experiment 7, the viability of the coated cells in the formed droplet spots coated using the fine coating device 1 was confirmed.
  • FIG. 11 is a diagram showing a live / dead fluorescent stained image in the application experiment 7.
  • FIG. 11 shows a live / dead (Live / Dead) fluorescence-stained image of cells 15 in the coating solution 10 before application, and (b) shows the cells 15 in the droplet spot after application.
  • the live cell/dead cell (Live/Dead) fluorescence stained image is shown.
  • the live cells are green and the dead cells are stained in red.
  • live cells are indicated by ⁇
  • dead cells are indicated by ⁇ .
  • Example 8 the cell tissue of iPS cell-derived cardiomyocytes (iPS-CM) was constructed on the cell disk using the fine coating device 1, and the beating behavior of the cardiomyocyte tissue in the cell tissue was evaluated.
  • iPS-CM iPS cell-derived cardiomyocytes
  • a coating solution 10 (first coating solution) in which iPS-CM was dispersed in a 20 mg / mL fibrinogen solution at a concentration of 4 ⁇ 10 7 cells / mL was used.
  • the coating needle 9 having a tip diameter of 330 ⁇ m was used to continuously coat the cell disk 10 times, and then immersed in a thrombin solution (second coating solution) of 800 units / mL (8.3 mg / mL). By doing so, tissue fixation by gelation was performed. Fibrinogen was formed into fibrin (protein involved in blood coagulation) by the action of thrombin, and the gelation reaction was used to immobilize the tissue on the substrate.
  • the cells were immersed in a medium and cultured for 6 days, and the pulsatile behavior over time was observed with a phase-contrast microscope.
  • myocardial tissue having a diameter of about 300 ⁇ m was formed, and the structure of myocardial tissue at equal intervals could be confirmed even after culturing for 6 days.
  • FIG. 12 is an image showing the state immediately after application (culture for 0 days) of the myocardial tissue produced in the application experiment 8.
  • FIG. 13 is an image showing a state when the myocardial tissue shown in FIG. 12 is cultured for 6 days.
  • FIG. 14 is an enlarged image of one of myocardial tissues cultured for 5 days. As shown in FIGS. 13 and 14, the structure of the myocardial tissue was confirmed, and it was confirmed that the cell tissue was reliably constructed.
  • cardiomyocytes started beating after culturing for 2 days, and after culturing for 6 days, an average of 82 beatings per minute were observed in 6 samples, and 6 samples were observed. The standard deviation in number was 15.
  • FIG. 15 is a graph showing contraction/relaxation rates obtained by analysis of a pulsating moving image in the myocardial tissue (cellular tissue) cultured in FIG. 14 for 5 days.
  • the vertical axis represents the moving speed [ ⁇ m / s] of contraction / relaxation of myocardial tissue
  • the horizontal axis represents time [s].
  • a constant pulsation was shown in myocardial tissue (cellular tissue), and contraction/relaxation rates of a constant cycle were confirmed.
  • the number of beats was 78 times / min
  • the average contraction rate was 8.7 ⁇ m / s
  • the average relaxation rate was 4.6 ⁇ m / s.
  • the cells that can be used in the present invention are not particularly limited, but are, for example, fibroblasts, vascular endothelial cells, epidermal cells, smooth muscle cells, myocardial cells, gastrointestinal cells, nerve cells, hepatocytes, renal cells, and the like.
  • Various primary cells such as pancreatic cells, differentiated cells derived from stem cells such as ES cells and iPS cells, and various cancer cells can be used.
  • the cell-containing solution contains extracellular matrix components such as fibronectin, gelatin, collagen, laminin, elastin and matrigel, fibroblast growth factor and platelets in order to provide an environment in which the encapsulated cells can stably adhere and grow.
  • extracellular matrix components such as fibronectin, gelatin, collagen, laminin, elastin and matrigel, fibroblast growth factor and platelets
  • cell growth factors such as derived growth factors
  • additives such as vascular endothelial cells, lymphatic endothelial cells, and various stem cells may be included.
  • fibrinogen, alginic acid, a thermosensitive polymer and the like may be included as a gelling agent.
  • the present invention provides a new production method for producing a cell tissue.
  • the structure is such that the solution adhering to the tip surface is applied using a coating needle, so that clogging of the solution is suppressed and the cell tissue is suppressed.
  • the resolution and the formation speed of the cells are improved, and a reliable cell tissue can be reliably produced with a smaller sample amount (sample).
  • a high-viscosity cell dispersion liquid is applied to an object to create a cell tissue, so that evaporation of the cell dispersion liquid after application is suppressed. And can maintain high cell viability.
  • a very small amount of coating liquid adhering to the tip of a needle is brought into contact with an object to be coated, so that droplets having a coating amount of several pL (picolitre) are arranged in a high manner.
  • the coating can be applied with an accuracy of, for example, ⁇ 15 ⁇ m or less, preferably ⁇ 3 ⁇ m or less. Further, it is possible to apply a material having a viscosity of 1 ⁇ 10 5 mPa ⁇ s or less, and it is possible to apply a highly viscous cell dispersion liquid.
  • the present invention it becomes possible to precisely apply a highly viscous cell dispersion liquid to a predetermined position on an object (a substrate or the like), and to perform arbitrary patterning to make cells three-dimensionally A shaped cell tissue can be produced.
  • the produced cell tissue can be used in the fields of drug discovery research such as screening for drug efficacy and safety evaluation and regenerative medicine.
  • the formed droplet spots are coated. It has a droplet spot diameter substantially proportional to the diameter of the needle 10.
  • a culture vessel having a large number of wells (bottomed holes) is generally used for efficient culture for cell tissues.
  • one cell tissue is prepared in one well (bottomed hole) and evaluated.
  • the fine coating apparatus 1 according to the first embodiment it is possible to form a fine droplet spot, and thus it is possible to prepare a plurality of cell tissues in one well (bottomed hole).
  • FIG. 16 shows one well w in a culture vessel having a plurality of wells (for example, 96-well plate), and the cell tissue c is prepared in a flat-bottomed well w having a diameter of 6.5 mm.
  • FIG. 16A shows a state in which the cell tissue c is produced in the entire one well w, and is a state in which the cell tissue c is produced by a conventional method for producing a cell tissue.
  • FIG. 16B shows a state in which one cell tissue c is produced in one well w using the method for producing a cell tissue of the first embodiment.
  • FIG. 16 (c) shows a state in which a plurality of (six) cell tissues c are prepared in one well w by using the method for preparing cell tissues of the first embodiment.
  • Each cell tissue c produced as shown in FIG. 16 is immersed in a medium and cultured.
  • the method for producing a cell tissue of the first embodiment by using the method for producing a cell tissue of the first embodiment, it is possible to prepare six cell tissues c in a flat-bottomed well w having a diameter of 6.5 mm, for example. ..
  • the number of cell tissues that can be produced in one well w varies depending on the size of the well w and the size of the cell tissue.
  • FIG. 17 is a plan view schematically showing an example in which a cell tissue c is produced in a well w having a different shape.
  • a cell tissue c in a 96-well plate, eight cell tissues c can be prepared on the circumference in one well w having a diameter of 6.45 mm, and one cell tissue c can be prepared in the center thereof. It shows that it can be done.
  • the diameter of the cell tissue c shown in (a) of FIG. 17 is about 1.0 mm.
  • FIG. 17B is an arrangement example in which four cell tissues c having a diameter of about 1.0 mm are prepared in a well w of a square flat bottom of 3.24 mm ⁇ 3.24 mm in a 384-well plate.
  • FIG. 17 is an arrangement example in which four cell tissues c having a diameter of about 1.0 mm are prepared in a well w of a square flat bottom of 3.24 mm ⁇ 3.24 mm in a 384-well plate.
  • FIG. 17 (c) shows a case where 81 (9 ⁇ 9) cell tissues c having a diameter of about 0.1 mm were prepared in a square flat bottom well w of 3.24 mm ⁇ 3.24 mm in a 384-well plate.
  • the distance from the inner wall surface of the well w to the cell tissue c is 250 ⁇ m.
  • the method for producing a cell tissue of the first embodiment it becomes possible to produce a plurality of cell tissues c inside the small well w. According to the method for producing a cell tissue of the first embodiment, it was possible to produce the cell tissue c at an arrangement density of 771.4 cells/cm 2 .
  • the method for producing a cell tissue of the first embodiment it is possible to prepare a sample of 864 (96 ⁇ 9) cell tissues c using a 96-well w culture container. Further, for example, if 20 seconds are required for moving image analysis for one well w, one sample is provided for each well w in the conventional method for producing cell tissue, and therefore, 180 seconds for moving image capturing of 9 samples. Is required. On the other hand, in the method for producing a cell tissue according to the first embodiment, since nine samples are produced inside one well w, the moving image shooting is significantly shortened to 20 seconds.
  • a coating liquid containing cells attached to the tip 9a of the coating needle 9 is used by using the fine coating device 1 described in detail in the first embodiment described above. It is also possible to apply the coating liquid of 1).
  • a coating solution 10 (first coating solution) in which iPS cell-derived cardiomyocytes (iPS-CM) is dispersed in a fibrinogen solution is applied by a fine coating device 1, and then a thrombin solution is applied. The tissue was fixed by gelation by immersing in the (second coating solution).
  • iPS cell-derived cardiomyocytes were dispersed and coated in a fibrinogen solution by contact coating with a coating needle 9, and then the tissue was fixed by gelation by immersing in a thrombin solution.
  • fibrinogen when fibrinogen is used as a gelling agent when applying cardiomyocytes, cardiomyocytes and fibrinogen are dispersed and applied to the first coating solution as the first solution, and the second solution is applied.
  • the coating operation is performed by adding thrombin as a gelation initiator to the second coating liquid so as to cover the first coating liquid.
  • the above method was applied in a first coating step of applying a first coating solution containing cells (for example, cardiomyocytes) and a gelling agent (for example, fibrinogen) to an object to be coated, and a first coating step.
  • a method for preparing a cell tissue which comprises a second coating step of superimposing a second coating solution containing a gelation initiator (for example, thrombin) on a first coating solution to start a gelation reaction.
  • Gelation begins at the interface between the first coating solution and the second coating solution.
  • this preparation method is referred to as "the two-component cell tissue preparation method in the first embodiment", and the two-component cell tissue preparation method in the following embodiment 3 is "the two-component cell tissue preparation method in the third embodiment". Let's say.
  • unintentional gelation is performed in a solution of cells (cardiomyocytes) and a gelling agent (fibrinogen) inside the first coating solution before performing the coating step.
  • a gelling agent fibrinogen
  • the gelated cardiomyocytes inside the coating solution container may remain inside the coating solution container, and it may not be possible to apply all of the coating solution inside the coating solution container.
  • the method for producing a cell tissue in the third embodiment is to prevent the occurrence of gelation inside the coating liquid container before executing the coating step.
  • a two-component gelling solution is used as a coating solution at the time of cell tissue formation (hereinafter, referred to as "a two-component cell tissue preparation method in the third embodiment").
  • the first solution containing cells contains a gelling agent and the second coating solution contains a gelling initiator, whereas the second coating solution contains a gelling initiator.
  • the method for preparing a two-component cell tissue in No. 3 is significantly different in that the first solution containing cells contains a gelling initiator and the second coating solution contains a gelling agent. Other than this point, both are composed of common concepts and elements.
  • the gelling agent is applied to the first coating step of applying the first coating solution containing the cells and the gelation initiator to the object to be coated, and the first coating solution applied in the first coating step.
  • the present invention relates to a method for producing a cell tissue, which comprises a second coating step of superimposing a second coating solution containing the above-mentioned material to initiate a gelation reaction.
  • a cell tissue containing a first container containing a first coating solution containing cells and a gelation initiator, and a second container containing a second coating solution containing a gelling agent.
  • the second coating step of stacking the coating liquids to start the gelation reaction will be described.
  • the cells to which the method of the present invention can be applied are not particularly limited, but are iPS cell-derived cardiomyocytes, normal human heart fibroblasts, normal human fibroblasts, human vascular endothelial cells, and HePG2 cells. Etc. cells. You may use it in mixture of 2 or more types.
  • the present invention is preferably applied to iPS cell-derived cardiomyocytes, normal human fibroblasts, HepG2 cells, and particularly iPS cell-derived cardiomyocytes.
  • iPS cell-derived cardiomyocytes are usually closer to the morphology of the living heart and are usually normal human hearts because of the maturation of iPS cell-derived cardiomyocytes by factors emanating from normal human heart fibroblasts.
  • fibroblasts Used in combination with fibroblasts.
  • cells unmodified cells or cells modified with proteins, sugar chains, nucleic acids, etc., for example, coated with already known coating agents and coating methods such as fibronectin, gelatin, collagen, laminin, elastin, and matrigel. Cells can be used.
  • thrombin As the gelation initiator to be contained in the first coating liquid, thrombin, calcium chloride, alcohols, for example, ethyl alcohol, glycerin, etc. may be used. These gelling initiators are usually used properly according to the type of gelling agent contained in the second coating liquid. The proper use of these is known to those skilled in the art, and such known combinations may be used. For example, as a combination of use of a gelling initiator and a gelling agent (gelling initiator: gelling agent), thrombin: fibrinogen (gelling initiator: gelling agent), calcium chloride: sodium alginate (gelling initiation). Agent: gelling agent), calcium chloride: carrageenan (gelling initiator: gelling agent), alcohols: tamarind seed gum (gelling initiator: gelling agent) and the like.
  • thrombin fibrinogen
  • gelling initiator gelling agent
  • the first coating liquid is one in which the cells and gelling initiator are contained in an aqueous solution.
  • aqueous solution water, various physiological saline solutions such as phosphate buffered saline, Tris buffered saline, etc. may be used.
  • a medium used as a cell culture medium such as Dulbecco's Modified Eagle Medium, can be used.
  • These aqueous solutions are usually used properly according to the type of cells. The proper use of these is known to those skilled in the art, and such known combinations may be used.
  • PBS phosphate buffered saline
  • Dulvecco's Modified Eagle Medium a medium dedicated to each company, and in particular, phosphate buffered saline.
  • the amount of cells contained in the aqueous container is not particularly limited, but is 1 ⁇ 10 5 cells / mL to 1 ⁇ 10 9 cells / mL, preferably 1 ⁇ 10 6 cells / mL to 1 ⁇ . It may be contained at a concentration of about 10 8 pieces / mL, more preferably 1 ⁇ 10 7 pieces / mL to 1 ⁇ 10 8 pieces / mL. If it is too large, it will be difficult to prepare the solution, and if it is too small, cells will not be contained depending on the application amount.
  • the content of the gelation initiator is not particularly limited, and usually, the content thereof may be set appropriately in consideration of the speed of gelation. If the amount is too small, the gelation speed becomes slow, and the shape retention of the first coating liquid, which is the first liquid, deteriorates.
  • its concentration may be 1 unit / mL to 1000 unit / mL, preferably 10 unit / mL to 1000 unit / mL, and more preferably 100 unit / mL to 800 unit / mL. Good.
  • the first coating solution contains extracellular matrix components such as fibronectin, gelatin, collagen, laminin, elastin and matrigel, fibroblast growth factor and platelet-derived growth in order to provide an environment in which cells can stably adhere and proliferate.
  • extracellular matrix components such as fibronectin, gelatin, collagen, laminin, elastin and matrigel, fibroblast growth factor and platelet-derived growth in order to provide an environment in which cells can stably adhere and proliferate.
  • cell growth factors such as factors
  • additives such as vascular endothelial cells, lymphatic endothelial cells and various stem cells may be included.
  • a thickener may be further added as an additive to the first coating liquid.
  • thickening polysaccharides such as sodium hyaluronate and sodium alginate can be used.
  • the thickener is included in the first coating liquid to impart shape retention, and in particular, the thickening polysaccharide is effective in creating a three-dimensional cell tissue having high shape retention.
  • the amount thereof may be appropriately set in consideration of the shape retention of the first coating liquid, the possible viscosity range of the coating device used, the cost, the handleability and the like.
  • 1 mPa ⁇ s ⁇ 1 ⁇ 10 5 mPa ⁇ s preferably 3 ⁇ 10 3 mPa ⁇ s ⁇ 1 ⁇ 10 5 mPa ⁇ s, more preferably.
  • a value measured at 25 ° C. by the rotational viscosity method is used.
  • the extracellular matrix is included to promote cell growth and promote cell-to-cell or cell-to-matrix adhesion.
  • the amount is not particularly limited. The type and concentration may be designated according to the tissue to be produced.
  • the first application liquid is applied to the application target.
  • the object to be coated is not particularly limited, and a culture vessel usually used for cell proliferation is used.
  • the "same culture container” used in the present invention includes a well plate having 6 to 384 wells, a dish, a dish, a microwell plate (registered trademark, Thermo Fisher Scientific Inc.), and the like.
  • the "culture vessel” used here is a concave vessel having a flat or curved bottom surface and side surfaces. Further, the "culture container” may be a hemispherical surface formed by a curved surface having a continuous bottom surface and side surfaces.
  • the “multi-well culture vessel” is an integral culture vessel having a plurality of concave vessels (recesses: culture vessel).
  • the coating method in the method for producing a cell tissue in the third embodiment is not particularly limited to the fine coating apparatus 1, and for example, a known bioprinting technique such as an inkjet method, a dispenser method, or a laser assist method is used. It is also possible to do so.
  • a known bioprinting technique such as an inkjet method, a dispenser method, or a laser assist method is used. It is also possible to do so.
  • Patent Document 10 Patent No. 4802027
  • Patent Document 11 It is possible to use the coating device disclosed and described in (International Publication No. 2019/088824 pamphlet). The entire contents disclosed and described in those specifications and drawings are cited herein as a part of the contents of the description of the present application.
  • the coating needle method by the fine coating device 1 described in the first embodiment can perform fine coating using a coating liquid having a wide range of viscosity.
  • one coating needle is projected from a through hole formed in the bottom of the coating liquid container that holds the coating liquid.
  • coating is performed by bringing the coating liquid adhering to the tip into contact with an object to be coated.
  • the fine coating apparatus 1 described in the first embodiment is used as the coating method of the first coating liquid.
  • the tip 9a of the coating needle 9 to which a very small amount of coating liquid is attached is brought into contact with an object (such as a substrate) to bring a few pL (picolitre).
  • a droplet having a coating amount of several hundred ⁇ L (microliter) can be applied with high placement accuracy, for example, ⁇ 15 ⁇ m or less, preferably ⁇ 3 ⁇ m or less.
  • the viscosity of the first coating liquid it is possible to apply a material up to 1 ⁇ 10 5 mPa ⁇ s, and it is possible to apply a highly viscous cell dispersion liquid.
  • the coating method using the fine coating apparatus 1 it is possible to precisely coat a high-viscosity cell dispersion liquid on a predetermined position on an object to be coated (substrate or the like).
  • a coating liquid having a viscosity of about 3 ⁇ 10 3 mPa ⁇ s or more the coating liquid can be applied three-dimensionally, more specifically, in a three-dimensional dome shape, and the following second coating step The three-dimensional shape can be maintained in the meantime.
  • this property is referred to as "shape retention".
  • the coating amount of the first coating liquid may be appropriately set according to the desired amount.
  • the diameter of the tip 9a of the coating needle 9, the number of coatings, and the like can be adjusted.
  • the coating method using the coating needle is A coating liquid container having a coating liquid reservoir for storing a predetermined amount of the first coating liquid, and Using a fine coating device including a coating unit including a coating needle capable of penetrating the coating liquid pool in which the first coating liquid is stored, A standby step of immersing the tip of the coating needle in the first coating liquid filled in the coating liquid pool. A lowering step in which the tip of the coating needle penetrates the coating liquid pool and the tip of the coating needle to which the first coating liquid is attached is lowered. A coating step in which the tip of the coating needle to which the first coating liquid is attached is brought into contact with the coating object, and the first coating liquid is applied to the coating object to form a droplet spot, and the above. The step of raising the tip of the coating needle and accommodating the tip of the coating needle in the coating liquid pool is included.
  • the coating conditions may be appropriately adjusted so that the same coating material as the coating needle method can be obtained by appropriately setting the coating conditions.
  • the second coating liquid used in the second coating step contains a gelling agent in an aqueous solution.
  • Fibrinogen, sodium alginate, etc. may be used as the gelling agent contained in the second coating liquid. These gelling agents are usually used properly according to the type of gelling initiator contained in the first coating liquid. The proper use and combination of these have been described in the above-mentioned first coating liquid.
  • a gelling agent that cures without a gelling initiator may be used as the gelling agent contained in the second coating liquid.
  • a gelling agent When such a gelling agent is used, it is not necessary to include a gelling initiator in the first coating liquid.
  • gelling agents include collagen, gelatin, agar (agarose) and the like, and photocrosslinkable gelatin hydrogelating agents such as gelatin-methacrylamide and gelatin-acrylamide.
  • collagen is gelated by heating and gelatin is gelated by cooling.
  • the second coating liquid containing such a gelling agent after the second coating liquid is applied, the heating operation is performed when collagen is contained, and the cooling operation is performed when gelatin is contained. , Need to be gelled.
  • Gelatin-methacrylamide is gelated by irradiation with ultraviolet light (wavelength 365 ⁇ m). Gelatin-acrylamide gels when irradiated with ultraviolet light (wavelength 365 ⁇ m).
  • ultraviolet light wavelength 365 ⁇ m
  • the second coating liquid containing such a photocrosslinkable gelatin hydrogelating agent is used, after the second coating liquid is applied, light (ultraviolet, visible light, etc.) irradiation operation is performed to It is necessary to make a chemical reaction.
  • the same aqueous solution used in the above-mentioned first coating solution can be used, and the same aqueous solution used in the first coating solution may be used.
  • Different types of aqueous solutions may be used.
  • the amount of the gelling agent contained in the above aqueous solution is not particularly limited, and the content thereof is appropriately set in consideration of the speed of gelation, the concentration of the gelling agent, the hardness of the gel, and the like. You can do it like this. If it is too small, the gelation speed will be slow.
  • its concentration should be 0.1 mg / mL to 100 mg / mL, preferably 1 mg / mL to 80 mg / mL, and more preferably 1 mg / mL to 30 mg / mL. Good.
  • the second coating liquid may contain a component (additional additive) such as a thickener.
  • a component such as a thickener.
  • the thickener is included from the viewpoint of the shape retention of the applied first coating liquid, and sodium hyaluronate, sodium alginate, etc. can be used. When a thickener is included, the amount thereof should be appropriately set in consideration of the shape retention of the first coated liquid, the possible viscosity range of the fine coating device 1 to be used, the cost, the handleability, and the like. do it.
  • the second coating liquid for example, in the coating method using the coating needle 9, 5 ⁇ 10 2 mPa ⁇ s ⁇ 1 ⁇ 10 5 mPa ⁇ s, preferably 5 ⁇ 10 2 mPa ⁇ s ⁇ 1 ⁇ 10
  • the viscosity increasing agent may be added so that the viscosity is 4 mPa ⁇ s, more preferably 5 ⁇ 10 2 mPa ⁇ s to 5 ⁇ 10 4 mPa ⁇ s. If the amount is too small and the viscosity is too low, the shape-retaining property of the first coated liquid that has been applied cannot be maintained.
  • the viscosity of the second coating liquid uses a value measured at 25 ° C. by the rotational viscosity method.
  • the second coating liquid is applied by superposing the second coating liquid on the first coating liquid applied in the first coating step.
  • “Overlapping” means applying so as to cover the object to be coated (such as a substrate) of the first solution applied in the first coating step, and the surface in contact with the object to be coated with the first solution. It includes the meaning of covering other surfaces as well.
  • the interface between the applied first solution and the second solution gels.
  • the inside of the first coating liquid existing under the gelled interface does not gel, and the solution state (viscosity) of the first solution is maintained. Therefore, the cells inside the first coating liquid settle and settle due to gravity, and aggregate, deposit, and stack on the lower part of the first coating liquid.
  • the time interval from the end of the first coating process to the start of the second coating process is as short as possible. If the time interval is too long, there arises a problem that the first coating liquid dries and the contained cells die.
  • the coating amount of the second coating liquid is appropriately determined so that the second coating liquid is coated on the first coating liquid in consideration of the coating amount of the first coating liquid, the gelation speed, and the like.
  • the coating method of the second coating liquid may be a coating method using the fine coating device 1 of the first embodiment, but is not particularly limited, and for example, manual coating, for example, a syringe, a dropper, or the like is used. Droplet coating, bioprinting techniques, such as the inkjet method, the dispenser method, etc. can be used.
  • the agent exists as a liquid and maintains the solution state (viscosity) of the first coating solution, and as time passes, the cells settle and settle, and by aggregating, accumulating, and laminating under the first coating solution.
  • a three-dimensional cell tissue having a high density and a high shape-retaining property is produced without going through a complicated production process.
  • the contact surface between the first coating liquid and the second coating liquid, which is the outer peripheral portion of the cell tissue immediately after application, gels, and the inside of the first coating liquid is held in a liquid state, so that the cell tissue can also be dried. Can be suppressed.
  • Cell culture is performed by immersing the coating solution applied in the first application step and the second application step in the medium. At this time, it may be immersed in the medium together with the object to be coated (substrate).
  • a medium usually used may be used in relation to the cells. For example, when the cells contain iPS cell-derived cardiomyocytes, Dulvecco's Modified Eagle Medium or a commercially available medium of each company is used. ..
  • FIG. 18 is a diagram schematically showing the outline of the method for producing the cell tissue carried out in the third embodiment, and shows the form of the three-dimensional accumulation of the cell tissue after the coating step in the schematic diagram.
  • a first coating solution containing cells and a gelling initiator suspended therein is prepared, and the first coating solution is filled in a coating solution container.
  • the first coating liquid is applied to the coating target by the coating needle 9 (first liquid).
  • first liquid In the first coating step of applying the first coating liquid, a desired number of coating operations are executed.
  • a second coating liquid (second liquid) containing a gelling agent is applied so as to cover the first coating liquid (first liquid) applied in the first coating step.
  • the medium is added after the contact surface between the first coating liquid and the second coating liquid and the outer peripheral region thereof have gelled.
  • the first coating liquid which is the first liquid
  • the liquid state in which the fluidity is maintained is retained and has a dome structure, cells settle down and settle over time, and Aggregate, deposit, stack. As a result, a high-density three-dimensional cell tissue can be produced.
  • “high density” means a state in which there are no fibrin between cells and the cells are accumulated, and when expressed numerically as cell density, 1 ⁇ 10 8 cells/mL- This means that the cells have a density of about 1 ⁇ 10 9 cells / mL.
  • the second aspect of the third embodiment according to the present invention includes at least a first container containing a first coating solution containing cells and a gelation initiator, and a second coating solution containing a gelling agent. Concerning a cell tissue production set, including a second container.
  • the cell tissue preparation set is suitable for use in the method for producing cell tissue in the third embodiment.
  • the first coating solution and the second coating solution specified in the cell tissue preparation set are synonymous with the first coating solution and the second coating solution described in the method for preparing cell tissue of the third embodiment.
  • the method for producing a cell tissue in the third embodiment gelation or the like does not occur in the coating liquid container before the coating process is performed in the coating process using the fine coating device 1. Further, according to the method for producing a cell tissue in the third embodiment, a cell tissue having a high density and high shape retention can be produced while maintaining the cell viability.
  • FIG. 19 shows a fine coating device 100 for the first coating liquid used in Example 1.
  • FIG. 19 is a perspective view showing the fine coating apparatus 100.
  • the fine coating device 100 used in the first embodiment has a configuration that executes a coating method substantially the same as that of the fine coating device 1 described in the first embodiment, and is a first coating liquid adhering to the tip 9a of the coating needle 9. Is contact-applied to the object to be coated.
  • FIG. 20 is a perspective view showing a coating device main body 101 in the fine coating device 100 used in the first embodiment.
  • the movable portion 105 reciprocates in the Z direction by the operation of the cam 104, and the coating needle 9 supported so as to penetrate the coating liquid container 8 has the same Z. Reciprocates in the direction. By this reciprocating operation, the first coating liquid adhering to the tip 9a of the coating needle 9 is contact-coated with the object to be coated.
  • the display / control unit 103 includes a monitor, a control computer, and an operation panel. Input the coating speed command value from the operation panel and save it in the storage device of the control computer. At the time of coating operation, the coating speed command value is read from the storage device and sent to the control program of the coating device main body 101. The control program determines the rotation speed of a motor that is a drive mechanism in the coating apparatus main body 101 based on the coating speed command value, and reciprocates the coating needle 9 at a predetermined speed to execute the coating operation. When the control computer is communicating with a higher control system (not shown), the coating speed command value may be received from the higher control system. Further, the parameters corresponding to the type of the first coating liquid may be stored in the storage unit, and the coating speed command value may be calculated according to the designated type and coating amount or coating size of the first coating liquid.
  • the tip 9a of the coating needle 9 projects from the lower hole 14b provided on the bottom surface of the coating liquid container 8 to perform the coating operation (see FIG. 4).
  • the tip 9a of the coating needle 9 protrudes from the lower hole 14b of the coating liquid container 8
  • the first coating liquid adheres to the tip 9a of the coating needle 9 and protrudes from the coating liquid container 8.
  • the first coating liquid is pulled upward by the surface tension, and a substantially constant amount of the first coating liquid remains at the tip 9a of the coating needle 9.
  • the first coating solution was repeatedly applied under the above-mentioned coating conditions a plurality of times to perform cardiomyocyte in the coating solution container of the first coating solution, which was the first solution. It was confirmed that all of the gelling initiator thrombin could be applied. When the inside of the coating liquid container was visually inspected after the coating was completed, no gel generation of the first coating liquid was confirmed. A second coating liquid containing fibrinogen as a gelling agent is added as a second liquid so as to cover the first coating liquid of the first liquid.
  • FIG. 21 (2x magnification) shows a photograph taken from above the well plate showing the coating state as a result of applying the coating to 40 wells in the 96-well plate under the above conditions. As shown in FIG. 21, even if it applied several times, there was almost no variation in the number of cells.
  • the thickness of the cell tissue obtained after the culture was measured for the cell nucleus and cytoplasm by hematoxylin-eosin (HE) staining.
  • the measurement results of hematoxylin and eosin (HE) staining are shown in FIG. As confirmed by FIG. 23, the thickness of this tissue was about 50 ⁇ m.
  • FIG. 4-2-3) Cell tissue Cell nuclei, actin, and troponin were stained.
  • the result of the fluorescent staining is shown in FIG.
  • This photograph is originally a color photograph in which the cell nucleus is blue, actin is red, and cardiac troponin T is green.
  • FIG. 24 the expression of the striated structure of myocardial troponin T, which is characteristic of cardiomyocytes, was confirmed.
  • the number of beats was 50 to 60 beats / minute, which is close to that of an adult heart.
  • the first application solution in which cardiomyocytes and the gelling initiator thrombin are dispersed is applied multiple times, and as the second solution, the second application solution containing fibrinogen, which is a gelling agent.
  • the coating method in which the liquid is added so as to cover the first coating liquid of the first liquid a high-density and highly shape-retaining three-dimensional cell tissue is maintained at a cell viability without going through a complicated preparation process. I was able to create it easily.
  • Comparative Example 1 (1) Using the same fine coating apparatus 100 used in Example 1, the coating liquid was applied under the following coating conditions.
  • the gelling agent (fibrinogen) is contained in the first solution and the gelation initiator (thrombin) is contained in the second solution, which is a major difference from Example 1.
  • Coating needle diameter ⁇ 1000 ⁇ m
  • Coating needle shape Straight ⁇ Number of coatings: 10 times ⁇ Coating amount of the first coating liquid: several nL / 10 times ⁇ Coating amount of the second coating liquid: 15 ⁇ L / time ⁇ Standby time in the coating liquid container: 1020ms ⁇ Wait time after lowering the coating needle: 0 ms ⁇ Rise time: 5 ⁇ m / time ⁇ Time required to add the second coating solution: Within 5 s ⁇ Time required to add the medium: After making 4 pieces, add them manually with a micropipette
  • FIG. 26 it can be seen that an extracellular matrix exists between the substantially spherical cells. It can be seen that the cell density is lower in FIG. 26 as compared with FIG. 22 in the state immediately after the application before the cells settle. This is considered to be because the cells are immobilized in a sparse state by mixing the gelling agent in the first liquid and precipitation does not occur.
  • FIG. 25 (a) shows a specific coating needle 9 and a coating liquid container 8 that are piercably supported
  • FIG. 25 (b) is formed around the lower hole 14b of the coating liquid container 8. It shows a cell-embedded fibril gel.
  • FIG. 25C shows the cell-embedded fibril gel taken out from the coating liquid container 8.
  • 25D is an enlarged view of FIG. 25C.
  • a first coating liquid in which cardiomyocytes and fibrinogen are dispersed is applied, and as a second liquid, thrombin is contained so as to cover the first coating liquid as a gelation initiator.
  • fibrinogen gels in a form of embedding cardiomyocytes so that the cardiomyocytes are sparsely dispersed in the gel, and the three-dimensional myocardium has high density and high shape retention.
  • the coating solution container is used.
  • the gelation of the first coating liquid occurs in the coating liquid container, and therefore, there is a problem that the myocardial cell mass gelled in the coating liquid container may remain in the coating liquid container and cannot be coated.
  • a method for producing a cell tissue which comprises. (2) The above-mentioned (1), wherein the second coating step includes gelling the interface between the first coating liquid and the second coating liquid while maintaining the fluid state of the coating liquid of the first solution. How to make a cell tissue. (3) The method for producing a cell tissue according to (1) or (2) above, wherein the first coating liquid contains cells and a gelation initiator.
  • the method for producing a cell tissue according to any one of (1) to (3) above, wherein the second coating liquid contains a gelling agent.
  • the gelling agent is contained in the first coating step of applying the first coating solution containing the cells and the gelation initiator to the object to be coated, and the first coating solution applied in the first coating step.
  • a second coating step in which the second coating liquid is applied in layers and the gelation reaction is started at the interface between the first coating liquid and the second coating liquid.
  • a method for producing a cell tissue which comprises.
  • the above-mentioned (1) to (5) which comprises a step of immersing a first coating solution and a coating object coated with the second coating solution in a medium and culturing cells. How to make a cell tissue of.
  • a cell tissue formation set comprising at least a first container containing a first coating solution containing cells and a gelation initiator, and a second container containing a second coating solution containing a gelling agent.
  • the gelling initiator is thrombin.
  • a coating solution containing cells attached to the tip 9a of the coating needle 9 is used by using the coating method described in detail in the above-mentioned first and third embodiments (the first). 1) is applied to the object to be coated. After the first coating liquid is applied, the second coating liquid is applied so as to overlap the first coating liquid.
  • the method for applying the second coating liquid is not particularly limited, and for example, manual application, for example, droplet application with a syringe, a dropper, or the like, bioprinting technology, for example, an inkjet method, a dispenser method, or the like is used. can do.
  • the method for producing the cell tissue according to the fourth embodiment is the same as the step in the method for producing the cell tissue according to the third embodiment. That is, in the method for producing a cell tissue according to the fourth embodiment, as shown in the schematic view of FIG. 18, the first coating liquid is applied to the application target by the application needle 9 (first liquid). In the first coating step of coating the first coating liquid, the coating operation is performed a desired number of times. Next, a second coating liquid (second liquid) containing a gelling agent is applied so as to cover the first coating liquid (first liquid) applied in the first coating step. After the contact surface between the first coating liquid and the second coating liquid and the outer peripheral region thereof are gelled, the medium as the third coating liquid (third liquid) is added.
  • the inside of the first coating liquid of the first liquid has a dome structure in which the liquid state in which the fluidity is maintained is maintained, the cells settle and settle with the passage of time, and the cells are settled under the first coating liquid. Aggregate, deposit and stack. As a result, a high-density three-dimensional cell tissue can be produced.
  • the figure shown at the lower right in FIG. 18 schematically shows a state in which cells precipitate in the gel dome.
  • FIG. 27 is a diagram schematically showing each step in the method for producing a cell tissue according to the fourth embodiment.
  • FIG. 27A shows a state in which the application needle 9 is immersed in the first application liquid (first liquid) 30 filled in the application liquid container 8 (application needle immersion step).
  • FIG. 27B shows a first coating step A in which the first coating liquid 30 is applied by the coating needle 9.
  • the first coating liquid 30 is coated on the coating target a desired number of times.
  • FIG. 27 (c) shows the second coating step B in which the second coating liquid 40 is applied so as to cover the first coating liquid 30 applied in the first coating step A.
  • the second coating step B is executed by the coating operation by the micropipette 110.
  • FIG. 27 (d) shows a state in which the second coating liquid 40, which is overlapped so as to cover the first coating liquid 30 on the substrate, is immersed in the medium (50) by the medium forming step C.
  • the first coating solution 30 containing the cells and the gelation initiator is applied to the object to be coated, as in the method for producing the cell tissue of the third embodiment.
  • a second coating liquid 40 containing a gelling agent is applied in layers so as to cover the first coating liquid 30 applied in the first coating step A and the first coating step A to be applied to the gel. It has a second coating step B for initiating the chemical reaction. Then, a medium is formed so that the second coating liquid 40, which overlaps the first coating liquid 30, is immersed (medium forming step C).
  • the method for producing the cell tissue of the fourth embodiment is to efficiently produce the cell tissue at each of a plurality of application target positions on the substrate, for example.
  • the plurality of application positions may be the respective positions of the plurality of wells of the culture vessel, or there may be a plurality of application positions in one well so as to prepare a plurality of cell tissues in one well. It may be (see (c) of FIG. 16).
  • the first coating step A shown in FIG. 27 (b) is executed for the first coating target positions at the plurality of coating target positions, and then the first coating step A shown in FIG. 27 (b) is executed.
  • the second coating step B shown in (c) is executed.
  • the position is moved, and the first coating step A is performed on the second coating target position, and then the second coating step B is performed.
  • the culture medium forming step C is executed for each application target position. In this medium forming step C, a medium is formed in each well (culture container).
  • the first application step A and the second application step B in the method for producing the cell tissue of the fourth embodiment were the same as those described in Example 1 above.
  • a fine coating device 100 was used for the coating operation of the first coating liquid 30 in the first coating step A.
  • the coating operation of the second coating liquid 40 in the second coating step B was performed by manually dropping with a micropipette.
  • the first coating liquid (first liquid) 30 is as follows.
  • -Coating diameter Approximately 1.0 mm (contact coating with a coating needle)
  • Second coating liquid (second liquid) 40 Addition amount: 15 ⁇ L ⁇ Sodium hyaluronate: 0.5 mg / mL ⁇ Fibrinogen: 10 mg / mL ⁇ PBS ⁇ Viscosity: 1 ⁇ 10 3 mPa ⁇ s ⁇ Manual application (addition) with a micropipette -Add within 5 seconds (sec) after applying the first coating liquid 30.
  • FIG. 28 is a time chart showing an example of specific application times of the first application step A, the second application step B, and the medium formation step C in the method for producing a cell tissue of the fourth embodiment, and an interval time between steps. Is. As shown in FIG. 28, the first coating step A is performed for 4 seconds (sec) and the second coating step B is performed for 0.5 seconds (sec) with respect to one coating target position. In the first coating step A, the coating operation is executed 10 times. In the second coating step B, the second coating liquid 40 is manually added with a micropipette.
  • the first coating step A and the second coating step B are executed for each coating target position, and then the medium forming step C is executed for each coating target position ( 1 second (sec).
  • the interval time between the steps of performing the first applying step A, the second applying step B, and the medium forming step C is 1 second (sec).
  • the cells are suspended in the first coating liquid 30 and the first coating liquid 30 is applied.
  • the first coating solution 30 containing cells is applied to the application target by the application needle 9.
  • the second coating liquid 40 is added so as to cover the first coating liquid 30.
  • the area from the contact surface between the first coating liquid 30 and the second coating liquid 40 to the outer circumference is gelled. After gelling in this way, the medium is added.
  • the inside of the coating liquid in the medium has a dome structure in which the first coating liquid 30 is held as a liquid. Therefore, the cells are precipitated in the first coating liquid 30 with the passage of time. As a result, a high-density three-dimensional cell tissue could be produced.
  • the contact surface between fibrinogen and thrombin which is the outer peripheral part of the cell tissue immediately after application, gels, and the inside is kept in a liquid state, so that the drying of the cell tissue can be suppressed.
  • FIG. 29 is a photograph showing an image of a three-dimensional cell tissue when cardiomyocytes and thrombin are dispersed in the first coating liquid 30.
  • the state shown in FIG. 29 is a state before the cells are still precipitated, and it can be seen from the state shown in FIG. 29 that there is a gap between the cells.
  • FIG. 30 is a photograph showing an image of the thickness measurement result by the fluorescent color of the prepared cell tissue.
  • FIG. 31 is a photograph showing an image of an observation result of the produced cell tissue by fluorescent staining.
  • the substantially round shape is the cell nucleus 60
  • the blackish linear protein is actin 70
  • the whitish linear protein is troponin 80.
  • cell lamination By coating the membrane surface of cells suspended in the first coating liquid 30 with a protein which is a cell adhesion factor, cell lamination promotes cell adhesion and constructs a three-dimensional structure having high cell density.
  • a method or a cell accumulation method may be used.
  • the first application step A, the second application step B, and the culture medium formation step C are performed for each well of the multi-well culture container having a plurality of wells, so that a plurality of cell tissues can be obtained by drying cells. It suppresses death and can be produced at high speed, with high accuracy and with high shape stability. That is, while reducing the waiting time for the first coating liquid 30 applied in the initial stage of the first coating step A and suppressing cell death, switching of the coating mechanism for the coating operation of each coating liquid and culturing.
  • the method for producing a cell tissue according to the fourth embodiment which makes it possible to reduce the frequency of movement of the stage on which the container is placed and prevent the time required for the entire process from becoming long.
  • a plurality of three-dimensional cell tissues can be prepared in a multi-hole culture vessel.
  • the coating operation is performed according to the time chart shown in FIG. 28.
  • a waiting time occurs between the coating of the second coating liquid 40 and the coating of the third coating liquid (medium) 50.
  • the fibrinogen covering the outer periphery of the contact surface between the fibrinogen and thrombin gels, and the thrombin exists as a liquid in the first coating liquid 30, so that the cells are deposited during the waiting time and the cells are stacked.
  • a high-density three-dimensional cell tissue can be created.
  • by applying the medium as the third coating solution it is possible to culture the three-dimensional cell tissue for a long period of time without cell death.
  • the number of times such as times can be set.
  • the number of repetitions may be set according to various conditions such as the coating amounts of the first coating liquid 30 and the second coating liquid 40, and the gelation time of gelling agents such as fibrinogen and thrombin.
  • the first coating liquid 30 is applied a plurality of times in the first coating step A, and the second coating liquid 40 is applied once in the second coating step B.
  • the present invention is not limited to such a configuration, and the number of coating operations in each coating step is appropriately set.
  • the coating operations may be alternately performed once, and the coating may be continuously applied to a plurality of coating target positions.
  • the coating operation of the first coating liquid 30 or the second coating liquid 40 may be performed plural times.
  • the coating amount of the coating liquid at the coating target position increases.
  • the number of cells inside the first coating liquid 30 coated is increased by performing the coating operation a plurality of times, and the layer thickness of the cells is increased. ..
  • sodium hyaluronate is mixed as a thickener in the first coating liquid 30 and the second coating liquid 40, but other thickening agents such as sodium alginate are used. Polysaccharides may be used.
  • the thickener has the effect of improving the shape retention after the coating liquid is applied. That is, the thickener has an effect of suppressing the flow of the thickener after the coating liquid is applied and the shape is lost.
  • sodium hyaluronate has high adhesiveness, adheres well to culture vessels and cells, and is ideal for improving the shape retention of the coating liquid.
  • sodium hyaluronate has an advantage that it is derived from a living body and has high compatibility with cell growth.
  • the first coating solution (containing the gelation initiator) 30 and the second coating solution (including the gelling agent) 40 are used.
  • Calcium chloride and sodium alginate, calcium chloride and carrageenan, alcohols and tamarind seed gum, etc. may be used.
  • iPS cell-derived myocardial cells and human heart fibroblasts have been shown, but cells such as normal human fibroblasts, human vascular endothelial cells, HePG2 cells, or these are used. Even for cells in which two or more types are mixed, it is possible to prepare a cell tissue that is high-speed, highly accurate, has high shape stability, and suppresses cell death due to drying.
  • the cell tissue is coated using an inkjet device or a dispenser device.
  • the application of the second coating liquid 40 and the third coating liquid (medium) 50 is carried out by using an inkjet device or a dispenser device.
  • the inkjet device is capable of fine coating and has excellent high speed.
  • the dispenser device can deal with a wider range of liquids than the inkjet, and is suitable for coating a relatively large amount.
  • the first coating liquid 30 contains cells and a gelation initiator and the second coating liquid 40 contains a gelling agent is shown, but cardiomyocytes.
  • the first coating liquid 30 may be a combination containing cells and a gelling agent
  • the second coating liquid 40 may be a combination containing a gelling initiator.
  • the shape stability is high, and a cell tissue that conforms to a more desired shape, particularly a desired planar shape, can be produced.
  • the first coating step A of the first coating liquid 30 and the second coating liquid 40 of the second coating liquid 40 are performed on the culture surface of each well (culture container) of the 96-well plate.
  • the coating step B cell tissues existing independently at a plurality of locations in the same well (culture container) can be prepared (see (c) of FIG. 16).
  • a cell tissue having a diameter of about 1.0 mm is prepared by setting the tip diameter 9a of the coating needle 9 to 1.0 mm.
  • the tip diameter 9a of the application needle 9 it is possible to produce cell tissues having different diameters.
  • a cell tissue having a diameter of about 330 ⁇ m could be independently prepared at 6 locations in the same culture vessel. (See FIG. 12).
  • the first coating solution 30 in which the gelation initiator and the cells are mixed and the second coating solution 40 which is the gelling agent are added in a large amount.
  • the total number of cells is increased by applying the first coating liquid 30 in which the gelling agent and the cells are mixed to a plurality of flat culture surfaces of individual wells (culture vessels) using a fine coating device.
  • a large number of cell tissues that exist independently and have little variation in size can be produced by a simple process while being reduced.
  • Embodiment 5 a method for producing a cell tissue according to Embodiment 5 of the present invention and a cell tissue produced by the method will be described with reference to the accompanying drawings.
  • the same reference numerals are given to the elements having the same actions, configurations, and functions as those of the above-described first, second, third, and fourth embodiments, and the description is omitted in order to avoid duplicate description. May be done.
  • the first coating liquid 30 containing cells attached to the tip 9a of the coating needle 9 is used by using the coating method described in detail in the first embodiment. Is applied to the object to be applied. After applying the first coating liquid 30, the second coating liquid 40 is applied so as to cover the first coating liquid 30.
  • the coating method of the second coating liquid 40 is not particularly limited, and for example, manual coating, for example, droplet coating with a syringe, a dropper, etc., a bioprinting technique, for example, an inkjet method, a dispenser method, etc. Can be used.
  • the method for preparing the cell tissue of the fifth embodiment differs from the above-mentioned first, second, third, and fourth embodiments by using a series of coating steps of applying each cell tissue containing different types of cells to one culture vessel. This is the point of making.
  • FIG. 32 is a front view showing a fine application device 200 used in the method for producing a cell tissue according to the fifth embodiment.
  • the fine coating apparatus 200 is provided with three coating units 201, 202, and 203, each of which is filled with a solution containing different types of cells (first coating liquid 30X, 30Y, 30Z).
  • a container is provided.
  • These coating units 201, 202, and 203 have the same configuration as the coating unit 6 in the fine coating apparatus 1 described in the first embodiment, and similarly, the coating needle 9 is used to cover the coating target. It is configured to be contact-applied.
  • the fine coating device 200 is provided with two dispensers 204 and 205.
  • the two dispensers 204, 205 are arranged in parallel with the three coating units 201, 202, 203.
  • the first dispenser 204 is configured to apply the second coating liquid 40 so as to cover and overlap the applied first coating liquid 30 (30X, 30Y, 30Z).
  • the second dispenser 205 is applied so that the second coating liquid 40, which covers the first coating liquid 30 (30X, 30Y, 30Z) that has been applied, is immersed so as to form a medium. It is a configuration to do.
  • the fine coating apparatus 200 includes three coating units 201, 202, and 203 each having three types of the first coating liquid 30 (30X, 30Y, 30Z) having different cells (X cells, Y cells, Z cells). It is a structure that is applied by each. That is, in the fine coating apparatus 200, the first coating unit 201 executes the first coating step with the first coating liquid 30X in which the gelation initiator and the cells X are mixed, and the second coating unit 202 gels. The first coating process is performed by the first coating liquid 30Y in which the initiator and the cells Y are mixed, and the third coating unit 203 is the first coating liquid 30Z in which the gelling initiator and the cells Z are mixed. The first coating step according to the above is executed.
  • FIG. 33 is a plan view schematically showing an example in which independent cell tissues are prepared at three locations in one well (culture container) using the fine coating device 200.
  • FIG. 34 is a flowchart for producing the three types of cell tissues shown in FIG. After the multiwell culture vessel is fixed at a predetermined position in the fine coating device 200, the cell tissue producing operation in the fifth embodiment is started.
  • the designated first position in the specified well in the multi-hole culture vessel is set to be the application target position of the cell X by the first application unit 201.
  • the first coating process is performed by the set first coating unit 201, and the first coating liquid 30X, which is the first liquid in which the gelation initiator and the cells X are mixed, is applied to the first position ( Step 1).
  • the second coating step is performed in which the second coating liquid 40, which is the gelling agent, is coated by the first dispenser 204 so as to overlap the first coating liquid 30X as the second liquid.
  • the stage is moved with the second position in the identified well as the application target position of the cell Y (step 3).
  • the first coating step by the second coating unit 202 is executed with the second position as the coating target position, and the first coating liquid 30Y, which is a mixture of the gelation initiator and the cells Y, is the second liquid. It is applied to the position of (step 4).
  • the second coating liquid 40 which is a gelling agent, is applied as the second liquid by the first dispenser 204 so as to overlap the first coating liquid 30Y (second coating step).
  • the stage is moved with the third position in the specified well as the application target position of the cell Z (step 6).
  • the first coating step is performed by the third coating unit 203 with the third position as the coating target position, and the first coating liquid 30Z in which the gelation initiator and the cells Z are mixed is the third liquid as the first liquid. It is applied to the position of (step 7).
  • the second coating process is performed by the first dispenser 204 so that the second coating liquid 40, which is the gelling agent, overlaps the first coating liquid 30Z as the second liquid.
  • the stage is moved so that the specified well becomes the application target (step 9), and the second coating liquid 50 serving as the medium is supplied by the second dispenser 205.
  • a culture medium forming step of applying (adding) to the well is executed.
  • the first coating step, the second coating step and the medium forming step for the wells specified in the multi-hole culture vessel are executed as described above, the first coating step, the second coating step and the medium forming step for the next well are executed. Is executed. In this way, the first coating step, the second coating step, and the culture medium forming step are sequentially executed for each well in the multi-hole culture vessel, and different types of cell tissues are produced in each well.
  • the present invention is not limited to such a production method, and for example, Various combinations such as the case of producing a plurality of cell tissues of the same type and the cell tissues of different types in the same culture container, or the case of producing two or more cell tissues of different types are included.
  • a combination of X cells iPS cell-derived cardiomyocytes, Y cells: iPS cell-derived nerve cells, Z cells: primary hepatocytes
  • a combination of X cells iPS cell-derived cardiomyocytes, Y cells: iPS cell-derived nerve cells, Z cells: HepG2
  • FIG. 35 is a plan view schematically showing an example in which independent cell tissues are prepared at three locations in one well (culture container), and is a modified example of the cell tissue preparation example shown in FIG. 33 described above. Is.
  • FIG. 36 is a flowchart for preparing the three types of cell tissues shown in FIG. 35.
  • the cell tissue production operation is started after the multiwell culture vessel is fixed at a predetermined position.
  • the designated first position in the specified well in the multiwell culture container is set to be the application target position of the cell X by the first application unit 201.
  • the first coating step by the set first coating unit 201 is executed, and the first coating liquid 30X, which is a mixture of the gelation initiator and the cells X, is applied to the first position as the first liquid ( Step 1).
  • the stage is moved with the second position in the specified well as the application target position of the cell Y (step 2).
  • the first coating step by the second coating unit 202 is executed with the second position as the coating target position, and the first coating liquid 30Y, which is a mixture of the gelation initiator and the cells Y, is the second liquid. It is applied to the position of (step 3).
  • the stage is moved with the third position in the specified well as the application target position of the cell Z (step 4).
  • the first coating step by the third coating unit 203 is executed with the third position as the coating target position, and the first coating liquid 30Z, which is a mixture of the gelation initiator and the cells Z, is the third liquid. It is applied to the position of (step 5).
  • step 6 the second coating step is executed by the first dispenser 204 so that the second coating liquid 40, which is a gelling agent, overlaps the first coating liquids 30X, 30Y, and 30Z as the second liquid.
  • the stage is moved so that the inside of the specified well is the target of application (step 7), and the third coating liquid 50 serving as a medium is transferred by the second dispenser 205.
  • a medium forming step of being applied (added) into the wells is performed.
  • the wells in the multiwell culture vessel are sequentially subjected to the first applying step, and then the second applying step and the medium forming step. Is.
  • the method for producing a cell tissue is performed on a multi-well culture vessel, and cell tissues of different types are produced in each well.
  • the fine coating device 200 has a configuration for producing three types of cell tissues, but the present invention is not limited to such a configuration, and the type of cells to be produced. By providing the coating unit according to the above, it becomes possible to prepare a plurality of types of cell tissues.
  • the fine coating device 200 As described above, according to the configuration of the fine coating device 200 according to the fifth embodiment of the present invention, it is possible to prepare a plurality of types of cell tissues in one well (culture container).
  • the advantages of producing a plurality of types of cell tissues in one well (culture container) in this way include the following items.
  • each cell tissue containing each of cell X and cell Y is prepared in one well, the well The action on each cell (X, Y) can be simultaneously confirmed in the well by adding the drug.
  • anthracycline-based anticancer drugs are drugs that often cause cardiotoxicity.
  • the fine coating device 200 of the fifth embodiment a method of preparing a plurality of types of cell tissues for each well in the multi-hole culture vessel has been described, but the fine coating device 200 describes each well of the multi-hole culture vessel. It is also possible to prepare a plurality of cell tissues containing the same type of cells. In this way, by producing a plurality of cell tissues in one of the wells, it becomes possible to evaluate a plurality of sample numbers in one well. Further, in the analysis of images and moving images, a plurality of samples can be photographed by one photographing, so that the photographing time is shortened and the analysis time is shortened.
  • the culture vessel when 96 wells are used as the culture vessel, only one sample can be prepared in one well by the conventional method for preparing a cell tissue, but in the method for preparing a cell tissue according to the fifth embodiment, for example, one well is prepared. It is possible to prepare 4 samples of cell tissue c having a diameter of about 1.0 mm inside. Therefore, according to the method for producing cell tissue of the fifth embodiment, it is possible to prepare 384 (96 ⁇ 4) cell tissue samples using a 96-well w culture vessel. Further, for example, if 20 seconds of imaging is required for video analysis for one well, 80 seconds is required for video recording of 4 samples because one sample is used for one well in the conventional cell tissue preparation method. Becomes On the other hand, in the method for preparing the cell tissue of the fifth embodiment, since four samples are prepared inside one well, the moving image shooting is significantly shortened to 20 seconds.
  • the first coating solution 30 in which the gelation initiator and the cells are mixed and the second coating solution 40 which is the gelling agent are added in a large amount.
  • the third coating solution 50 as a medium to each well. It is possible to suppress cell death due to drying, and to create a three-dimensional cell tissue in a multi-well culture container with high speed, high accuracy, and high shape stability.
  • the total number of cells is increased by applying the first coating liquid 30 in which the gelling agent and the cells are mixed to a plurality of flat culture surfaces of individual wells (culture vessels) using a fine coating device.
  • a large number of cell tissues that exist independently and have little variation in size can be produced by a simple process while being reduced.
  • the method for producing a cell tissue according to the present invention is an important technique for studying drug discovery research and regenerative medicine because it can mass-produce various highly reliable cell tissues in a large amount, and industrial use This is a highly probable invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作製できる細胞の組織作製方法は、第1の塗布液を塗布対象物に塗布する第1塗布工程、および第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布する第2塗布工程、を含むものであり、第2塗布工程が、第1溶液の塗布液の流動状態を維持しつつ、第1の塗布液と第2の塗布液の界面をゲル化することを含むものである。

Description

細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器
 本発明は細胞組織を作製する方法、該方法に適した細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器に関する。
 生体外で細胞の三次元組織を構築する技術は、創薬研究および再生医療研究において重要であり、特にヒト生体組織に近い細胞組織の構築が求められている。
 生体外で細胞を取り扱う場合、プラスチックディッシュやガラスシャーレ等の培養容器を用いて二次元的に細胞培養を行うのが一般的である。しかしながら、実際の生体内では細胞が三次元的に増殖して組織や臓器を形成しているため、生体内に近い培養環境を実現するためには三次元の細胞組織を構築し、その細胞組織に対して評価実験を行うことが創薬研究および再生医療研究の進展には重要である。
 細胞同士が集合、凝集化した細胞組織(細胞集合体)を、例えばウェルプレートの整列した複数のウェル(凹部)のそれぞれに配置して、それぞれの細胞組織を評価するアッセイ法は、細胞機能の評価や、新規医薬品として有効な化合物を選択するスクリーニングにおいて広く用いられている。このような細胞組織に対してアッセイ法を行うことにより、少量の試料で多項目を短時間で評価することが可能であり、迅速性、簡便性、安全性、再現性および高い信頼性を確保する点において有利である。
 細胞を基板上に精密パターニング配置する技術しては、フォトリソグラフィ技術で基板を加工して細胞接着を制御する方法と、細胞を直接プリントして配置および固定化する方法がある。近年では、細胞を三次元(3D)に配置および積層するための3Dプリンタ技術の進展に伴い、3Dプリンタを用いた細胞集合体の構築が検討されており、細胞組織から得られた組織モデルによる創薬研究および再生医療への応用が盛んに展開されている(特許文献1~8参照)。
 近年、RFIDタグなどの微細な回路を印刷(塗布)方式で描画して形成するプリンテッドエレクトロニクス技術が急速に発展してきている。微細な回路のパターンや電極パターンを形成する方式としては、インクジェット方式、ディスペンサ方式などがあり、このようなプリンテッドエレクトロニクス技術は、回路や電極の形成への応用のみでなく、細胞組織の作成技術として応用するバイオプリンティング技術として研究されている(例えば、特許文献9参照)。
 本出願人らは、プリンティング技術の1つとして、塗布針を用いる技術を有しており、塗布針技術をバイオプリンティング技術へ応用し、生体外で細胞の三次元組織を構築する技術を研究開発している(特許文献10参照)。塗布針を用いて液体材料の微細な塗布を行なう方法としては、例えば、特許文献11に開示されている。このような塗布ユニットは、微細パターンの欠陥を修正することを目的とするもので、広範囲な粘度の塗布液を用いて微細な塗布を行なうことが可能である。塗布動作の際、塗布液を保持する塗布液容器の底部に形成された貫通孔から、1本の塗布針を突出させる。塗布針は、先端に付着している塗布液を被塗布物に接触させて塗布を行なう。
 上記塗布針を応用して、iPS由来心筋細胞をフィブリノゲン溶液に分散させて塗布した後、トロンビン溶液に浸漬することでゲル化による組織固定を塗布方法が行われている。該方法においては、フィブリノゲンを心筋細胞を塗布する際のゲル化剤として用いるにあたり、1液目に心筋細胞とフィブリノゲンを分散させた塗布剤を塗布し、2液目にゲル化開始剤として塗布剤を覆うようにトロンビンを添加することで塗布を行っている。しかしながら、塗布工程を実行する前に、1液目内部の心筋細胞とフィブリノゲン溶液に、意図しないゲル化が発生する現象が確認された。そのため、塗布液容器内部でゲル化した心筋細胞塊が目詰まりを起こす場合や、ゲル化した心筋細胞が塗布液容器に残り塗布できない場合があるという不具合が発生した。
特開2008−126459号公報 特開2008−017798号公報 特開2010−022251号公報 特開2015−229148号公報 特開2016−087822号公報 特開2017−163931号公報 特開2017−169560号公報 特開2017−131144号公報 特開2016−526910号公報 特許4802027号公報 国際公開第2019/088224号パンフレット
 本発明は、上記のようなバイオプリンティング技術において、塗布工程を実行する前の塗布液容器内部でゲル化、それに伴う目詰まり等の不具合が生じないバイオプリンティング技術を提供する目的で行われた。驚いたことに、上記目的を達成できるバイオプリンティング技術を用いれば、細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作製できることが見出された。
 本発明は、塗布液容器内部でゲル化、それに伴う目詰まり等の不具合が生じず、しかも、細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作製できる細胞の組織作製方法を提供するものである。
 また、本発明は、細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作製できると共に、複数の細胞組織および複数種類の細胞組織を一つの容器(培地)に作製することができる細胞組織の作製方法および該作製方法により作製された細胞組織を含む培養容器を提供するものである。
 すなわち、本発明は、第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布する第2塗布工程、を含むことを特徴とする細胞組織の作製方法を提供するものである。より詳しくは、第2塗布工程が、第1溶液の塗布液の流動状態を維持しつつ、第1の塗布液と第2の塗布液の界面をゲル化することを含むものである。
 本発明の方法に従えば、塗布針等のバイオプリンティング技術における塗布工程において、塗布工程実行前の塗布液容器内部でゲル化、それに伴う目詰まり等の不具合が生じない。
 また、本発明によれば、細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作製でき、複数の細胞組織および複数種類の細胞組織を一つの容器(培地)に作製することが可能となる。このため、一度の評価実験により多くのサンプルに対する評価を行うことが可能となる優れた効果を奏する。
本発明に係る実施形態1において用いる微細塗布装置を示す全体図 微細塗布装置における塗布ユニットに装着される塗布針保持部を示す図 塗布針保持部に設けられる塗布針の先端部分を示す図 塗布ユニットにおける細胞塗布動作を模式的に示す図 塗布実験1において位相差顕微鏡により観察した液滴スポットの画像を示す図 塗布実験2において位相差顕微鏡により観察した液滴スポットの画像を示す図 塗布実験3における位相差顕微鏡により観察した液滴スポットの画像を示す図 塗布実験4における位相差顕微鏡により観察した液滴スポットの画像を示す図 塗布実験5の実験結果を示すグラフ 塗布実験6において製造した細胞集合体を示す画像の図 塗布実験7における生細胞/死細胞(Live/Dead)蛍光染色像を示した図 塗布実験8において製造された心筋組織体の塗布直後の状態の画像を示す図 図12に示した心筋組織体を6日間培養したときの状態の画像を示す図 5日間培養した心筋組織体の1つを拡大した画像を示す図 図14に示した5日間培養した心筋組織体における拍動動画の解析により得られた収縮・弛緩速度を示すグラフ 本発明に係る実施形態2の細胞組織の作製方法として複数のウェルを有する多穴培養容器における1つのウェルを示しており、細胞組織を平底のウェルに細胞組織を作製した状態を模式的に示した図 実施形態2の細胞組織の作製方法において、形状の異なるウェルに細胞組織を作製した例を模式的に示す平面図 本発明に係る実施形態3の細胞組織の作製方法として塗布針を使用した塗布方法と塗布後の細胞の沈降沈殿を説明するための概略模式図。 実施形態3における微細塗布装置の例を示す図。 塗布装置本体の例を示す図。 96ウェルプレート内の40ウェルに塗布を行った結果の塗布状態を示す写真。 細胞組織の位相差顕微鏡写真。 細胞組織のHE染色による厚さ測定結果を示す図。 細胞組織を蛍光染色により観察した位相差顕微鏡写真。 塗布液容器内に心筋細胞を包埋したゲル状物質の形成を示す写真。 従来手法を用いて得られた細胞組織の位相差顕微鏡写真。 本発明に係る実施形態4の細胞組織の作製方法における各工程を模式的に示す図 実施形態4の細胞組織の作製方法における第1塗布工程、第2塗布工程、および培地形成工程のタイムチャート 第1の塗布液に心筋細胞とトロンビンと分散させた場合の三次元細胞組織の画像を示す写真 作製された細胞組織の蛍光染色による厚さ測定結果の画像を示す写真 作製した細胞組織の蛍光染色による観察結果の画像を示す写真 本発明に係る実施形態5の細胞組織の作製方法において用いられる微細塗布装置を示す正面図 微細塗布装置を用いて、培養容器内の複数の細胞組織を作製した例を模式的に示した平面図 図33に示した複数の細胞組織を作製するためのフローチャート 微細塗布装置を用いて、培養容器内の複数の細胞組織を作製した変形例を模式的に示した平面図 図35に示した複数の細胞組織を作製するためのフローチャート
 先ず始めに、本発明に係る細胞組織の作製方法、および該作製方法により作製された細胞組織を含む培養容器により作成された細胞組織における各種態様について記載する。
 なお、本発明における細胞組織とは、基板上で細胞が集合、凝集、積層化して組織化し、機能している状態の細胞集合体のことをいう。
 本発明に係る第1の態様の細胞組織の作製方法は、
 第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面をゲル化する第2塗布工程、
を含むものである。
 本発明に係る第2の態様の細胞組織の作製方法は、前記の第1の態様における前記第2塗布工程が、第1溶液の塗布液の流動状態を維持しつつ、第1の塗布液と第2の塗布液の界面をゲル化することを含むものでもよい。
 本発明に係る第3の態様の細胞組織の作製方法は、前記の第1または第2の態様における第1の塗布液が、細胞およびゲル化開始剤を含むものでもよい。
 本発明に係る第4の態様の細胞組織の作製方法は、前記の第1から第3の態様のいずれかにおいて、第2の塗布液がゲル化剤を含むものでもよい。
 本発明に係る第5の態様の細胞組織の作製方法は、
 細胞とゲル化開始剤を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面でゲル化反応を開始させる第2塗布工程、を含むものでもよい。
 本発明に係る第6の態様の細胞組織の作製方法は、
 細胞を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤としてコラーゲン、ゼラチンおよび/または寒天を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面で、加熱または冷却することよりゲル化反応を開始させる第2塗布工程、を含むものでもよい。
 本発明に係る第7の態様の細胞組織の作製方法は、
 細胞を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、光架橋性ゼラチンハイドロゲル化剤を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面で、光照射によりゲル化反応を開始させる第2塗布工程、を含むものでもよい。
 本発明に係る第8の態様の細胞組織の作製方法は、前記の第1から第7の態様のいずれかにおいて、第1の塗布液および第2の塗布液が塗布された塗布対象物を培地中に浸漬し、細胞を培養する工程を含むものでもよい。
 本発明に係る第9の態様の細胞組織の作製方法は、前記の第1から第8の態様のいずれかにおいて、第1の塗布液が増粘多糖類を含むものでもよい。
 本発明に係る第10の態様の細胞組織の作製方法は、前記の第1から第9の態様のいずれかにおいて、第2の塗布液が増粘多糖類を含むものでもよい。
 本発明に係る第11の態様の細胞組織の作製方法は、前記の第3から第5の態様のいずれかにおいて、ゲル化開始剤がトロンビンでもよい。
 本発明に係る第12の態様の細胞組織の作製方法は、前記の第4または第5の態様のいずれかにおいて、ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物でもよい。
 本発明に係る第13の態様の細胞組織の作製方法は、前記の第9から第10の態様のいずれかにおいて、増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物でもよい。
 本発明に係る第14の態様の細胞組織の作製方法は、前記の第3から第13の態様のいずれかにおいて、細胞が心筋細胞でもよい。
 本発明に係る第15の態様の細胞組織形成セットは、少なくとも、細胞とゲル化開始剤を含む第1の塗布液を含む第1の容器、およびゲル化剤を含む第2の塗布液を含む第2の容器を含む。
 本発明に係る第16の態様の細胞組織形成セットは、前記の第15の態様において、第1の塗布液が増粘多糖類を含むものでもよい。
 本発明に係る第17の態様の細胞組織形成セットは、前記の第15または第16の態様において、第2の塗布液が増粘多糖類を含むものでもよい。
 本発明に係る第18の態様の細胞組織形成セットは、前記の第15から第17の態様のいずれかにおいて、ゲル化開始剤がトロンビンでもよい。
 本発明に係る第19の態様の細胞組織形成セットは、前記の第15から第18の態様のいずれかにおいて、ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物でもよい。
 本発明に係る第20の態様の細胞組織形成セットは、前記の第16から第19の態様のいずれかにおいて、増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物でもよい。
 本発明に係る第21の態様の細胞組織形成セットは、前記の第15から第20の態様のいずれかにおいて、細胞が心筋細胞でもよい。
 本発明に係る第22の態様の細胞組織は、前記の第1から第14の態様のいずれかの細胞組織の作製方法により作製された細胞組織。
 本発明に係る第23の態様の細胞組織の作製方法は、前記第1塗布工程が塗布針による接触塗布を用いて行われる、第1から第14の態様のいずれかである。
 本発明に係る第24の態様の細胞組織の作製方法は、前記の第1から第14の態様、および第23の態様のいずれかにおいて、
 前記第1塗布工程と前記第2塗布工程の塗布動作を同一培養容器の複数の塗布対象位置に対して実行し、培地形成工程を実行するものである。
 本発明に係る第25の態様の細胞組織の作製方法は、前記の第24の態様において、同一培養容器の複数の塗布対象位置に対して前記第1塗布工程と前記第2塗布工程の塗布動作を実行した後、前記培地形成工程を実行してもよい。
 本発明に係る第26の態様の細胞組織の作製方法は、前記の第24の態様において、同一培養容器のそれぞれの塗布対象位置に対して前記第1塗布工程と前記第2塗布工程の塗布動作を実行した後、当該塗布対象位置に対して前記培地形成工程を実行してもよい。
 本発明に係る第27の態様の細胞組織の作製方法は、前記の第24の態様において、同一培養容器の複数の塗布対象位置に対する前記第1塗布工程の塗布動作が実行された後、当該同一培養容器の複数の塗布対象位置に対する前記第2塗布工程の塗布動作を実行し、その後当該同一培養容器の複数の塗布対象位置に対して前記培地形成工程を実行してもよい。
 本発明に係る第28の態様の細胞組織の作製方法は、前記の第24から第27の態様のいずれかにおいて、前記第1の塗布液を含む前記第2の塗布液が浸漬するように第3の塗布液を塗布する前記培地形成工程、を含むものでもよい。
 本発明に係る第29の態様の細胞組織の作製方法は、前記の第24から第28の態様のいずれかにおいて、同一培養容器の複数の塗布対象位置に対して、同じ種類の細胞を含む細胞組織を作製してもよい。
 本発明に係る第30の態様の細胞組織の作製方法は、前記の第24から第28の態様のいずれかにおいて、同一培養容器の複数の塗布対象位置に対して、種類の異なる細胞を含む細胞組織を作製してもよい。
 本発明に係る第31の態様の細胞組織の作製方法は、前記の第24から第30の態様のいずれかにおいて、前記第2の塗布液を前記第1の塗布液に重ねて塗布する前記第2塗布工程がインクジェット方式、またはディスペンサ方式が用いられてもよい。
 本発明に係る第32の態様の細胞組織の作製方法は、前記の第24から第31の態様のいずれかにおいて、細胞組織形成時に2液式のゲル化溶液を塗布液として用いてもよい。
 本発明に係る第33の態様の培養容器は、同一容器内に複数の細胞組織を含むものである。
 本発明に係る第34の態様の培養容器は、前記の第33の態様において、同一容器内に同じ種類の複数の細胞組織を含むものでもよい。
 本発明に係る第35の態様の培養容器は、前記の第33の態様において、同一容器内に種類の異なる複数の細胞組織を含むものでもよい。
 本発明に係る第36の態様の培養容器は、前記の第33から第35の態様のいずれかにおいて、同一容器内に複数の細胞組織を含み、該容器を複数有する。
 また、本発明に係る一態様の細胞組織作製方法としては、
 第1の塗布液を塗布対象物に塗布する第1塗布工程、
 前記第1塗布工程で塗布された前記第1の塗布液に、第2の塗布液を重ねて塗布する第2塗布工程、および
 前記第1の塗布液を含む前記第2の塗布液が浸漬するように第3の塗布液を塗布する培地形成工程、を含み、
 前記第1塗布工程と前記第2塗布工程の塗布動作を同一培養容器の複数の塗布対象位置に対して実行し、前記培地形成工程を実行するものであってもよい。
 以下に説明する細胞組織の作製方法においては、後述する実施形態において具体的な例示を用いて説明するように、塗布針の先端に付着させた数pL(ピコリットル)の微少な液滴を一回当たり極短時間で、例えば0.1秒で対象物の所定位置に高精度に塗布できる微細塗布装置を用いて、安全性および再現性が高く、自動化が可能であり、短時間で大量の信頼性の高い細胞組織(細胞集合体)の作製するものである。
 本発明においては、高速の微細塗布装置を用いることにより従来のプリンタでは対応することができなかった高粘性を有する材料、例えば細胞とゲル化剤を含む高粘度溶液であっても、短時間で所定位置に確実に塗布して、複数の細胞組織(細胞集合体)を高精度に製造することが可能となる。この結果、本発明によれば、所望の細胞を二次元的および三次元的に任意に配置制御することが可能となり、様々な細胞組織を自動化して無菌状態で多量に製造することが可能となる。従って、本発明に係る細胞組織の作製方法は、安全性および再現性が高く、信頼性を有する細胞組織を自動化により大量に製造することが可能となる。
 次に、添付の図面を参照して細胞組織の作製方法、および該作製方法により作成された細胞組織について実施形態を用いて説明する。なお、本発明に係る細胞組織の作製方法は、以下に説明する実施形態の微細塗布装置を用いる構成に限定されるものではなく、微細塗布装置において実行される細胞塗布動作(細胞塗布方法)と同等の技術的思想による細胞塗布動作(細胞塗布方法)により達成されるものである。
(実施形態1)
 以下、本発明に係る細胞組織の作製方法、および該作製方法により作成された細胞組織に関する具体的な実施形態1について添付の図面を参照して説明する。図1は、実施形態1において用いる微細塗布装置1を示す全体図である。図1に示すように、微細塗布装置1は、塗布装置本体2と、この塗布装置本体2に対する設定、制御、および表示を行う表示・制御部3とを備える。実施形態1における微細塗布装置1の表示・制御部3としては、所謂パーソナルコンピュータ(PC)で構成される。
 微細塗布装置1の塗布装置本体2は、本体ベース12において水平方向に移動可能なXYテーブル4と、XYテーブル4に対して上下方向(鉛直方向)に移動可能なZテーブル5と、Zテーブル5と同様に上下方向に移動可能な駆動機構に固定された塗布ユニット6と、XYテーブル4上の塗布対象物を観察するための光学検出部(例えば、CCDカメラ)7と、を備えている。XYテーブル4上には、細胞含有溶液である塗布液10が塗布されて、複数の細胞組織が形成される基板等が載置されて固定される。
 上記のように構成された微細塗布装置1における塗布ユニット6は、XYテーブル4上の基板等の上に複数の細胞組織を整列して形成する細胞塗布動作を行うよう構成されている。以下、塗布ユニット6の構成および塗布ユニット6による細胞塗布動作について説明する。
[塗布ユニットの構成]
 図2は、塗布ユニット6に装着される塗布針保持部13を示す図である。塗布針保持部13には、塗布針9が突設されている。図3は、塗布針9の先端部分を示す図である。本実施形態の塗布針9においては、円錐状に形成された先端部分の先端9aが、XYテーブル4の水平面に対向するように平面(フラット)に形成されている(図3の(a)参照)。即ち、先端9aの平面は鉛直方向に直交する平面である。先端9aの直径dは、後述するように、作製される細胞組織の形状に大きく寄与する。実施形態1においては、塗布針9の先端9aの直径dとして、50~330μmを用いた。実施形態1においては、図3の(a)に示すように、塗布針9の先端部分が円錐状に形成されており、先端9aが水平面であるため、先端9aを水平面に研磨することにより先端9aの直径dを、例えば50~330μmの範囲の所望の値に容易に形成することが可能である。
 なお、実施形態1においては、塗布針9の先端9aを水平な平面で構成した例で説明するが(図3の(a)参照)、この先端9aの面形状を所定直径、例えば30μm以下の直径を有する凹面(半球面)に形成し、この凹面に細胞が保持され得るように細胞塗布動作を行う構成としてもよい(図3の(b)参照)。このように塗布針9の先端9aを凹面に形成することにより、塗布針9による細胞塗布動作により、所望の細胞密度や、細胞配列を有する細胞組織を作製することが可能な構成となる。また、図3の(c)に示すように、塗布針9の先端9aに段差を有する突起9bを設けた構成としてもよい。このような突起9bを有する構成とすることにより、例えば、基板上に連続的に複数回塗布し、一回の細胞塗布動作毎に針先を所定距離だけ上昇させていくことにより、例えば0.5μm上昇させていくことにより、基板上に上方に延びた細胞組織を作製することが可能となる。
 図4は、塗布ユニット6における細胞塗布動作を模式的に示す図である。図4に示すように、塗布ユニット6は、細胞含有溶液である塗布液10を所定量貯留する塗布液溜り8aが形成された塗布液容器8と、塗布液溜り8aを貫通する塗布針9を備えた塗布針保持部13と、を有する。塗布針保持部13は、塗布針9を上下方向(鉛直方向)に摺動可能に保持するスライド機構部16を備える。塗布針保持部13は、駆動機構部17の所定位置において脱着可能に設けられており、例えば駆動機構部17に対してマグネットの磁力により脱着可能な構成としてもよい。
 塗布針保持部13は、塗布装置本体2における駆動機構部17に上記のように固定されており、上下方向(鉛直方向)に所定間隔を高速度で往復移動するよう構成されている。このような駆動機構部17の駆動制御や、YXテーブル4およびZテーブル5の駆動制御の設定等は、表示・制御部3において行われる。塗布針保持部13に設けたスライド機構部16は、塗布針9を上下に往復可能に保持している。スライド機構部16は、塗布針9の先端9aの保持する塗布液10が塗布対象物に接触した後に上昇する往復動作を行うように構成されている。なお、スライド機構部16は、塗布針9の先端9aが下降して、例えば基板11に当接したときには、その当接位置から上昇するように、塗布針9がスライド機構部16を鉛直方向に摺動する構成を有している。
 上記のように、実施形態1の塗布ユニット6におけるスライド機構部16は、塗布針9の先端9aの保持する塗布液10が塗布対象物に対して接触塗布する構成である。塗布針9の先端9aは、塗布対象物に接触した位置で折り返して上昇する往復動作を行っている。なお、このときの塗布針9の上下方向の往復動作は高速であり、例えば1往復が、好ましくは0.5秒以下、さらに好ましくは0.1秒以下に設定される。
 上記のように、塗布ユニット6における塗布針保持部13は、塗布針9を保持して上下に摺動可能なスライド機構部16を備えており、上下方向に移動する駆動機構部17に対しては脱着可能に固定されている。また、塗布針保持部13は、塗布針9が細胞含有溶液である塗布液10を貯留する塗布液溜り8aを上下方向(鉛直方向)に移動して貫通可能に構成されている。塗布液容器8の上部および下部には塗布針9が貫通する孔(上部孔14a、下部孔14b)が形成されている。
[細胞塗布動作]
 次に、図4に模式的に示した、塗布ユニット6における細胞塗布動作について説明する。図4に示した細胞塗布動作においては、塗布針9が塗布液容器8の塗布液溜り8aを通り抜けて、塗布対象物である基板11に接触し、基板11上に細胞を含む塗布液10が塗布されて、液滴スポットが形成される。この細胞塗布動作が所定回数繰り返されて、塗布液10が複数回塗布されることにより、基板11上に所望の細胞組織が作製される。
 図4における(a)は、細胞塗布動作における待機状態を示している。この待機状態においては、塗布針9が上部孔14aから挿入されており、塗布針9の先端9aが塗布液溜り8aの塗布液10に浸漬している。このように待機状態(待機工程)においては、塗布針9の先端9aが塗布液10に浸漬して、先端9aに付着する塗布液10が乾燥しない構成である。このとき、塗布液容器8の下部孔14bの直径は微細(例えば、1mm以下)であるため、塗布液10が塗布液溜り8aから漏洩することはない。
 図4における(b)は、塗布針9の先端9aが塗布液容器8の下部孔14bから突出して、先端9aが塗布液溜り8aから基板11に向かって下降している状態(下降工程)を示している。即ち、図4の(b)は、塗布針9の先端9aが塗布液容器8の塗布液溜り8aを貫通して突出する下降状態を示している。この下降状態においては、塗布針9には塗布液10が付着しているが、付着している塗布液10の表面張力により、塗布針9の先端9aには一定量の塗布液10が保持されている。
 図4における(c)は、塗布針9の先端9aの保持する塗布液10が基板11の表面に接触して、塗布液10が基板11の表面上に塗布された状態(塗布工程)を示している。このとき塗布される塗布液10の液滴スポットは、塗布針9の先端9aに保持された一定量の塗布液10に対応する。実施形態1においては、塗布針9の先端9aの保持する塗布液10が塗布対象物に接触して塗布(接触塗布)する構成であるが、塗布針9の先端9aが基板11の表面に接触(当接)した場合でも、その接触瞬間の衝撃荷重を約0.06N以下となるように構成されている。実施形態1においては、前述のように、塗布針9がスライド機構部16により鉛直方向の衝撃を吸収するように摺動可能に保持されているため、当接時における衝撃荷重は極めて小さな値となっている。
 図4における(d)は、塗布針9が基板11の表面上に塗布液10を塗布した直後の状態を示しており、塗布針9が上昇している状態を示している。この上昇状態の後、塗布針9の先端9aが塗布液溜り8aの塗布液10に浸漬する待機状態へ移行する(収容工程)。
 上記のように、図4に示す(a)→(b)→(c)→(d)→(a)の動作が1サイクルの細胞塗布動作である。実施形態1においては、1サイクルの細胞塗布動作を0.1秒で行っており、短時間で細胞塗布動作が実行されている。なお、実施形態1では細胞塗布動作を所定回数(例えば、10サイクル)繰り返すことにより、所望の細胞組織が作製される。
 本発明に係る実施形態1における微細塗布装置1の細胞塗布動作では、塗布針9の先端に付着した極微量な塗布液10を塗布対象物に接触させることにより、数pL(ピコリットル)の塗布量の液滴スポットを高い配置精度、例えば±15μm以下、好ましくは±3μm以下の配置精度で塗布し形成することができる。また、塗布液10の粘度としては、1×10mPa・s以下の材料を塗布することが可能であり、高粘度の細胞分散液の塗布が可能となる。実施形態1における微細塗布装置1の細胞塗布動作おいては、インクジェットプリンタ等のノズルを用いたプリンタでは目詰まり等の問題を有するため使用できなかった粘度10mPa・s以上、1×10mPa・s以下の材料を塗布材料として使用することが可能となる。また、塗布針9の先端に付着した極微量な塗布液10を塗布対象物に接触させて塗布するため、塗布針9の鉛直方向位置のバラツキに影響されることなく、塗布液10を所望の塗布量で安定して繰り返し塗布することができる。このように、実施形態1においては、高粘度の細胞分散液を基板11等の表面における所定の位置に精密塗布することができるため、任意のパターニングを有する細胞を立体的に造形した細胞組織を作製することができる。このため、本発明に係る細胞組織の作製方法は、作製された細胞組織が、薬剤の薬効、安全性の評価のスクリーニング等の創薬研究および再生医療の分野において利用されて、各分野における進展に効果を奏するものである。
(実験例1)
 前述の実施形態1において説明した微細塗布装置1を用いて、濃度および粘性が異なる塗布液10による塗布実験1を行った。この塗布実験1においては、5%、10%、および20%のゼラチンPBS(リン酸緩衝液)溶液の3種類の塗布液10を用いて液滴スポットの形状の確認を行った。
 塗布ユニット6における塗布液容器8を3個用意して、リン酸緩衝液(PBS)にゼラチンを5、10、20重量体積パーセント(%w/v)で溶解した3種類のゼラチンPBS溶液を塗布液10として準備した。なお、この塗布実験1において用いた塗布液10には細胞は含まれていない。
 塗布実験1において、それぞれの塗布液容器8に対して、5%、10%、20%のゼラチンPBS溶液を20μL充填した。塗布ユニット6における塗布針9としては先端9a(平面形状)の直径dが100μmを用いた。この塗布実験1においては、XYテーブル4に固定されたスライドガラス上に5×5スポット(spot)を150μm間隔で塗布液10を点接触して塗布した。スライドガラス上に塗布して形成された液滴スポットを位相差顕微鏡により観察した。
 図5は、塗布実験1において位相差顕微鏡により観察した液滴スポットの画像を示す図である。図5における(a)は、塗布液10として5%のゼラチンPBS溶液(粘度3mPa・s)を先端9aの直径d(先端直径)が100μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。図5における(b)は、塗布液10として10%のゼラチンPBS溶液(粘度30mPa・s)を塗布針9(先端直径100μm)を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。また、図5における(c)は、塗布液10として20%のゼラチンPBS溶液(粘度220mPa・s)を塗布針9(先端直径100μm)を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。
 図5における(a)、(b)、および(c)から明らかなように、微細塗布装置1の塗布ユニット6を用いることにより、濃度および粘性が異なる塗布液10であっても形成された液滴スポットは同様の形状を有していた(5%ゼラチン液滴スポット径136±3μm、10%ゼラチン液滴スポット径147±1μm、20%ゼラチン液滴スポット径151±1μm)。即ち、塗布実験1においては、ゼラチン濃度および粘性に大きく依存せず、常に安定した液滴スポットを確認することができた。発明者らの実験によれば、液滴スポット径は、塗布針9の先端直径に対して1.3~1.6倍の範囲内であり、少なくとも2倍以上の大きな液滴となることはなかった。別の実験例においては、塗布試験を行なっている塗布液として、更に高粘度化したものを用いており、塗布針9の先端9aの直径に対して、1.0~1.2倍程度の範囲内で塗布している。また、更に別の実験例においては、ウェル中で細胞組織が重複しない範囲内において、塗布針9の先端9aの直径に対して、2倍以上の大きな液滴となるような、低粘度の塗布液を用いて塗布試験を行っている。
(実験例2)
 前述の実施形態において説明した微細塗布装置1を用いて、先端9aの直径(先端直径)が異なる塗布針9による塗布実験2を行った。この塗布実験2においては、塗布液10として5%のゼラチンPBS溶液を用いて、形成された液滴スポットの形状を確認した。この塗布実験2において用いた塗布液10には細胞は含まれていない。
 塗布実験2においては、先端直径が、50μm、100μm、150μmの3種類の塗布針9を用いた。塗布実験2においては、XYテーブル4に固定されたスライドガラス上に5×5スポットを150μm間隔で塗布液10を点接触して塗布した。スライドガラス上に塗布して形成された液滴スポットを位相差顕微鏡により観察した。
 図6は、塗布実験2において位相差顕微鏡により観察した液滴スポットの画像を示す図である。図6における(a)は、5%のゼラチンPBS溶液の塗布液10を先端直径が50μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。図6における(b)は、5%のゼラチンPBS溶液の塗布液10を先端直径が100μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。図6における(c)は、5%のゼラチンPBS溶液の塗布液10を先端直径が150μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。
 図6における(a)、(b)、および(c)に示すように、形成された液滴スポットは、塗布針10の直径(50μm、100μm、150μm)に略比例した液滴スポット径を有することが確認できた(50μm塗布針:液滴スポット径75±2μm、100μm塗布針:液滴スポット径137±3μm、150μm塗布針:液滴スポット径219±5μm)。
(実験例3)
 塗布実験3においては、正常ヒト皮膚繊維芽細胞(NHDF)を2×10cells/mLの濃度で10%ゼラチンPBS溶液に分散させた塗布液10を用いた。塗布実験3においては、微細塗布装置1を用いて、先端直径(先端直径)が100μm、150μm、200μmの3種類の塗布針9をスライドガラス上に点接触させて塗布液10を塗布した。スライドガラス上に塗布して形成された液滴スポットの形状を位相差顕微鏡により観察した。
 図7は、塗布実験3における位相差顕微鏡により観察した液滴スポットの画像を示す図である。図7における(a)は、NHDFが分散された10%ゼラチンPBS溶液を先端直径が100μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。図7における(b)は、NHDFが分散された10%ゼラチンPBS溶液を先端直径が150μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。図7における(c)は、NHDFが分散された10%ゼラチンPBS溶液を先端直径が200μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。
 塗布実験3によれば、100μmの先端直径の塗布針9を用いた場合には、1つの液滴スポットにおいて0~3個の塗布細胞が確認された。先端直径が150μmの塗布針9を用いた場合には、1つの液滴スポットにおいて2~6個の塗布細胞が確認された。また、先端直径が200μmの塗布針9を用いて形成された1つの液滴スポットにおいては、約10個までの個数の塗布細胞を確認することができた。従って、塗布針9の先端直径を決定することにより、液滴スポットにおける塗布細胞の個数を1~10個程度までの範囲で制御することが可能であることが確認された。
(実験例4)
 塗布実験4においては、前述の塗布実験3における正常ヒト皮膚繊維芽細胞(NHDF)に換えて、肝がん細胞株(HepG2)を用いて同様の実験を行った。塗布実験4においては、HepG2を5×10cells/mLの濃度で10%ゼラチンPBS溶液に分散させた塗布液10を用いた。
 図8は、HepG2が分散された10%ゼラチンPBS溶液を先端直径が100μmの塗布針9を用いてスライドガラス上に塗布して形成された液滴スポットを示す画像である。塗布実験4においても、液滴スポット中に所定量の細胞が存在しており、細胞の種類によらず安定的な塗布が可能であることが確認された。以下に説明する塗布実験5においては、塗布針9の先端直径と、形成された液滴スポットに含まれる塗布細胞数との関連性について検証した。
(実験例5)
 塗布実験5においては、iPS細胞由来心筋細胞(iPS−CM)を4×10cells/mLの濃度でPBS溶液に分散させた塗布液10を用いて、先端直径が50μm、100μm、150μm、200μm、330μmのそれぞれの塗布針9により液滴スポットを形成した。塗布実験5においては、塗布針9の先端直径と、形成された液滴スポットに含まれる塗布細胞数との関連性について検証した。
 塗布実験5においては、上記の塗布液10をスライドガラス上に1回塗布し、塗布後の細胞数を蛍光顕微鏡(細胞は塗布前に蛍光色素のDAPIで核染色されたものを使用)および位相差顕微鏡観察により算出した。この塗布実験5において、先端直径が50μm、100μm、150μm、200μm、330μmの各塗布針9により形成された液滴スポットに関して、20点以上について計測し、その平均値を求めた。
 図9は、塗布実験5の実験結果を示すグラフである。図9において、縦軸が塗布細胞数[cells/spot]を示し、横軸が塗布針9の先端直径[μm]を示す。図9に示すように、iPS−CMを4×10cells/mLの濃度でPBS溶液に分散させた場合には、先端直径が50μmの塗布針9で塗布したとき液滴スポットには平均1.1個の塗布細胞が存在した。先端直径が100μmの塗布針9による液滴スポットには平均4.0個の塗布細胞が存在し、先端直径が150μmの塗布針9による液滴スポットには平均4.5個の塗布細胞が存在し、先端直径が200μmの塗布針9による液滴スポットには平均19.1個の塗布細胞が存在し、そして先端直径が330μmの塗布針9による液滴スポットには平均85.3個の塗布細胞が存在していた。なお、図9において各塗布針9における塗布細胞数の標準偏差(正方向)をエラーバーで示している。
 上記のように、使用する塗布針9の先端直径と、形成される液滴スポットに存在する塗布細胞の個数が関連性を有しており、塗布針9の先端直径が大きくなるに従って液滴スポットに存在する塗布細胞の個数が増加することが確認された。このため、塗布針9の先端直径を決定することにより、液滴スポットにおける塗布細胞の個数をある程度の範囲で制御可能であることを検証することができた。
(実験例6)
 塗布実験6においては、微細塗布装置1を用いて細胞集合体20を製造した。塗布実験6においては、正常ヒト皮膚繊維芽細胞(NHDF)を2×10cells/mLの濃度で2.5%アルギン酸ナトリウムPBS溶液に分散した塗布液10を用いた。この塗布液10を塗布ユニット6の塗布液容器8に充填して微細塗布装置1により細胞塗布動作を行った。
 塗布実験6においては、アルギン酸ナトリウムを含む細胞分散液を先端直径が100μmであり、先端9aに段差を有する突起9bを持つ塗布針9(図3の(c)参照)を用いて、スライドガラス上に1600回連続的に塗布した。このとき、一回の細胞塗布動作毎に針先を0.5μm上昇させることにより、細胞集合体20を製造した。その結果、直径50μm、高さ500μmの細胞集合体20が製造された。図10は、塗布実験6において製造した細胞集合体20を示す画像である。
 上記のように、基板11における塗布すべき一定位置(一定点)に対して、細胞塗布動作における塗布工程時の塗布針9の先端9aの停止位置(折り返し位置)を、1サイクル毎に上昇(例えば、0.5μm)させて、複数サイクルの細胞塗布動作を繰り返すことにより、所望形状の細胞集合体20の作成が可能であることが確認できた。
(実験例7)
 塗布実験7においては、微細塗布装置1を用いて塗布した形成された液滴スポットにおける塗布細胞の生存率を確認した。塗布実験7においては、正常ヒト皮膚繊維芽細胞(NHDF)を8×10cells/mLの濃度でPBS溶液に分散させた塗布液10を用いた。また、塗布実験7においては、先端直径が330μmの塗布針9によりスライドガラス上に40回連続的に塗布液10を塗布し、塗布後の細胞15の生存率を生細胞/死細胞(Live/Dead)蛍光染色法(死細胞が赤色染色)により評価した。図11は、塗布実験7における生細胞/死細胞(Live/Dead)蛍光染色像を示した図である。
 図11において、(a)が塗布前の塗布液10における細胞15の生細胞/死細胞(Live/Dead)蛍光染色像を示しており、(b)が塗布後の液滴スポットにおける細胞15の生細胞/死細胞(Live/Dead)蛍光染色像を示している。なお、塗布実験7における生細胞/死細胞(Live/Dead)蛍光染色像では、生細胞が緑色であり、死細胞が赤色に染色された画像であるが、図11の生細胞/死細胞(Live/Dead)蛍光染色像を示す図においては、生細胞を○で示し、死細胞を●で示した。
 塗布実験7において細胞15の生存率を確認した結果、塗布前の細胞生存率が96%に対して、塗布後においても91%の高い細胞生存率を示していた。この確認結果により、微細塗布装置1を用いた細胞塗布動作においては、直接的に細胞15にダメージを与えることが殆どないことが明らかとなった。なお、塗布前の細胞生存率が96%から塗布後の細胞生存率が91%に僅かに低下しているが、この低下は時間経過に伴う通常の低下であり、他の要因である。
(実験例8)
 塗布実験8においては、微細塗布装置1を用いて、セルディスク上へiPS細胞由来心筋細胞(iPS−CM)の細胞組織を構築し、その細胞組織における心筋組織体の拍動挙動を評価した。
 塗布実験8においては、iPS−CMを4×10cells/mLの濃度で20mg/mLのフィブリノゲン溶液に分散させた塗布液10(第1の塗布液)を用いた。塗布実験8においては、先端直径が330μmの塗布針9によりセルディスク上に10回連続的に塗布し、その後800unit/mL(8.3mg/mL)のトロンビン溶液(第2の塗布液)に浸漬することにより、ゲル化による組織固定を行った。フィブリノゲンがトロンビンの作用によりフィブリン(血液凝固に関わる蛋白質)が形成され、そのゲル化反応を利用することで、組織を基板に固定化した。
 その後、培地に浸して6日間培養を行い、経時的な拍動挙動を位相差顕微鏡により観察した。その結果、塗布直後は、直径約300μmの心筋組織が形成されており、6日間培養後においても等間隔の心筋組織の構造を確認することができた。
 図12は、塗布実験8において製造された心筋組織の塗布直後(0日間培養)の状態を示す画像である。図13は、図12に示した心筋組織を6日間培養したときの状態を示す画像である。図14は、5日間培養した心筋組織の1つを拡大して示した画像である。図13および図14に示すように、心筋組織の構造が確認され、細胞組織が確実に構築されていることが確認できた。
 製造された心筋組織においては、心筋細胞が2日間培養後から拍動を開始し、6日間培養後では6個のサンプル数において1分間あたり平均82回の拍動が観察され、6個のサンプル数における標準偏差が15であった。
 また、高速度カメラで撮影した拍動動画の解析により、一定周期の収縮・弛緩速度が得られた。図15は、図14に示した5日間培養した心筋組織(細胞組織)における拍動動画の解析により得られた収縮・弛緩速度を示すグラフである。図15において、縦軸が心筋組織の収縮・弛緩する移動速度[μm/s]であり、横軸が時間[s]である。
 図15に示すように、心筋組織(細胞組織)においては一定の拍動を示し、一定周期の収縮・弛緩速度が確認された。このときの拍動数は78回/minであり、平均収縮速度は8.7μm/sであり、平均弛緩速度4.6μm/sであった。
 上記の塗布実験8において得られた心筋組織を96ウェルプレート等の各ウェルに製造することにより、ロボットを用いて無菌状態で自動評価するハイスループット化が可能な心毒性評価キットを製造することが可能である。
 本発明で使用できる細胞は、特に限定されるものではないが、例えば、線維芽細胞、血管内皮細胞、表皮細胞、平滑筋細胞、心筋細胞、消化管細胞、神経細胞、肝細胞、腎細胞、膵細胞等の各種初代細胞、ES細胞およびiPS細胞等の幹細胞由来の分化細胞、並びに各種がん細胞等が使用できる。細胞としては、未修飾の細胞、またはタンパク質、糖鎖、核酸等で修飾された細胞、例えばフィブロネクチン、ゼラチン、コラーゲン、ラミニン、エラスチン等の既に知られているコーティング剤、コーティング方法でコーティングされた細胞を用いることができる。
 なお、細胞含有溶液には、内包した細胞が安定して接着・増殖できる環境を与えるために、フィブロネクチン、ゼラチン、コラーゲン、ラミニン、エラスチン、マトリゲル等の細胞外マトリックス成分、線維芽細胞増殖因子や血小板由来成長因子等の細胞増殖因子、その他、血管内皮細胞やリンパ管内皮細胞、各種幹細胞等の添加剤を含ませてもよい。また、ゲル化剤としてフィブリノゲンやアルギン酸、感熱応答性高分子等を含ませてもよい。
 前述の実施形態1および各実験例を用いて説明したように、本発明は、細胞組織を作製する新たな作製方法を提供するものである。従来のノズルを用いたプリンタを用いて作製する場合と比較して、塗布針を用いてその先端表面に付着した溶液を塗布する構成であるため、溶液が目詰まりすることが抑制され、細胞組織の解像度および形成速度が向上し、より少ないサンプル量(試料)で信頼性の高い細胞組織を確実に作製することができる。また、従来のプリンタを用いた場合に比較して、高粘度の細胞分散液を対象物に対して塗布して、細胞組織を作製しているため、塗布後の細胞分散液における蒸発を抑えることができ、高い細胞生存率を維持することができる。
 本発明における微細塗布装置においては、針(塗布針)の先端に付着した極微量な塗布液を塗布対象物に接触させることにより、数pL(ピコリットル)の塗布量となる液滴を高い配置精度、例えば±15μm以下、好ましくは±3μm以下の配置精度で塗布することができる。また、塗布液の粘度としては、1×10mPa・sまでの材料を塗布することが可能であり、高粘度の細胞分散液の塗布が可能となる。このように、本発明によれば、高粘度の細胞分散液を対象物(基板等)に対して所定の位置に精密塗布することが可能となり、任意のパターニングを有し、細胞を立体的に造形した細胞組織を作製することができる。この結果、作製された細胞組織は、薬剤の薬効、安全性の評価のスクリーニング等の創薬研究および再生医療の分野において利用できる。
(実施形態2)
 以下、本発明に係る細胞組織の作製方法、および該作製方法により作成された細胞組織に関する実施形態2について説明する。なお、実施形態2の説明において、前述の実施形態1と同様の作用、構成、および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
 実施形態1において説明したように、塗布針9の先端9aの直径dとしては、50~330μmを用いることが可能であり、実験例2において説明したように、形成された液滴スポットは、塗布針10の直径に略比例した液滴スポット径を有する。このように実施形態1の細胞組織の作製方法を用いることにより、極小の液滴スポットを形成することが可能である。細胞組織のために効率的に培養を行うためには、多数のウェル(有底穴)を有する培養容器が一般的に使用される。このような培養容器を用いる従来の細胞組織の作製方法においては、1つのウェル(有底穴)に1つの細胞組織を作製し、評価していた。しかしながら、実施形態1における微細塗布装置1を用いることにより、微細な液滴スポットを形成することができるため、1つのウェル(有底穴)に複数の細胞組織を作製することが可能となる。
 図16は、複数のウェル(例えば、96ウェルプレート)を有する培養容器における1つのウェルwを示しており、細胞組織cを直径が6.5mmの平底のウェルwに細胞組織cを作製した状態を模式的に示した図である。図16の(a)は、1つのウェルwの全体に細胞組織cが作製された状態を示しており、従来の細胞組織の作製方法により作製された状態である。図16の(b)は、実施形態1の細胞組織の作製方法を用いて、1つのウェルwに1つの細胞組織cを作製した状態を示している。図16の(c)は、実施形態1の細胞組織の作製方法を用いて、1つのウェルwに複数(6つ)の細胞組織cを作製した状態を示している。図16に示すように作製されたそれぞれの細胞組織cは培地に浸されて培養される。
 図16の(c)に示すように、実施形態1の細胞組織の作製方法を用いることにより、例えば直径が6.5mmの平底のウェルwに6つの細胞組織cを作製することが可能となる。1つのウェルwに作製できる細胞組織の数は、ウェルwの大きさ、細胞組織の大きさにより異なる。
 図17は、形状の異なるウェルwに細胞組織cを作製した例を模式的に示す平面図である。図17において、(a)は、96ウェルプレートにおいて、直径6.45mmの1つのウェルwに円周上に8つの細胞組織cを作製し、その中央に1つの細胞組織cを作製することができることを示している。図17の(a)に示す細胞組織cの直径は約1.0mmである。図17の(b)は、384ウェルプレートにおいて、3.24mm×3.24mmの正方形の平底のウェルwに約1.0mm径の細胞組織cを4つ作製した場合の配置例である。図17の(c)は、384ウェルプレートにおいて、3.24mm×3.24mmの正方形の平底のウェルwに約0.1mm径の細胞組織cを81(9×9)個を作製した場合の配置例である。図17に示したそれぞれの細胞組織cの配置例において、ウェルwの内壁面から細胞組織cまでの距離が250μmである。
 上記のように、実施形態1の細胞組織の作製方法を用いることにより、小さいウェルwの内部に複数の細胞組織cを作製することが可能となる。実施形態1の細胞組織の作製方法によれば、771.4個/cmの配置密度で細胞組織cを作製することが可能であった。
 上記のように、小さいウェルwの1つに複数の細胞組織cを作製することにより、1つのウェルwで複数のサンプル数に対する評価を行うことが可能となる。また、画像および動画の解析において、一回の撮影にて複数のサンプルを撮影することが可能となるため、撮影時間が短縮され、引いては解析時間が短縮されることになる。例えば、培養容器として96ウェルwを用いた場合、従来の細胞組織の作製方法では、1つのウェルw内に1サンプルの作製しかできないが、実施形態1の細胞組織の作製方法では、例えば、1つのウェルw内に直径が約1.0mmの細胞組織cを9サンプル作製することが可能である。このため、実施形態1の細胞組織の作製方法によれば、96ウェルwの培養容器を用いて864個(96×9)の細胞組織cのサンプルを作成することが可能となる。また、例えば、1つのウェルwに対する動画解析に20秒の撮影が必要とすると、従来の細胞組織の作製方法では1つのウェルwに1つのサンプルであるため、9サンプルの動画撮影には180秒が必要となる。一方、実施形態1の細胞組織の作製方法では、1つのウェルwの内部に9つのサンプルが作製されているため、動画撮影は20秒と大幅に短縮されることになる。
(実施形態3)
 以下、本発明に係る実施形態3の細胞組織の作製方法、および該作製方法により作成された細胞組織に関して添付の図面を参照して説明する。なお、実施形態3の説明において、前述の実施形態1、2と同様の作用、構成、および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
 本発明に係る実施形態3の細胞組織の作製方法においては、前述の実施形態1において詳細に説明した微細塗布装置1を用いて、塗布針9の先端9aに付着した細胞を含む塗布液(第1の塗布液)を塗布することも可能な構成である。前述の実施形態1における実験例8では、iPS細胞由来心筋細胞(iPS−CM)をフィブリノゲン溶液に分散させた塗布液10(第1の塗布液)を微細塗布装置1により塗布し、その後トロンビン溶液(第2の塗布液)に浸漬することにより、ゲル化による組織固定を行った。
 上記のように、塗布針9による接触塗布により、iPS細胞由来心筋細胞をフィブリノゲン溶液に分散させて塗布した後、トロンビン溶液に浸漬することでゲル化による組織固定をした。この作製方法においては、フィブリノゲンを心筋細胞を塗布する際のゲル化剤として用いるにあたり、1液目としての第1の塗布液に心筋細胞とフィブリノゲンを分散させて塗布し、2液目としての第2の塗布液にゲル化開始剤として第1の塗布液を覆うようにトロンビンを添加することで塗布動作を行っている。
 すなわち、上記方法は、細胞(例えば、心筋細胞)とゲル化剤(例えば、フィブリノゲン)を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 第1塗布工程で塗布された第1の塗布液に、ゲル化開始剤(例えば、トロンビン)を含む第2の塗布液を重ねて塗布しゲル化反応を開始させる第2塗布工程、を含み細胞組織の作製方法を実施したものである。ゲル化は、第1の塗布液と第2の塗布液との界面で開始する。なお、この作成方法を、「実施形態1における2液式細胞組織作製方法」といい、下記の実施形態3における2液式細胞組織作製方法を「実施形態3における2液式細胞組織作製方法」というものとする。
 実施形態1における2液式細胞組織作製方法においては、塗布工程を実行する前に、第1の塗布液の内部の細胞(心筋細胞)とゲル化剤(フィブリノゲン)の溶液において、意図しないゲル化が発生する現象が確認された。そのため、塗布液容器内部でゲル化した心筋細胞が塗布液容器内部に残り、塗布液容器内部の全ての塗布液を塗布できない場合が生じることがあった。
 実施形態3における細胞組織の作製方法は、塗布工程を実行する前の塗布液容器内部でゲル化の発生を防止するものである。実施形態3の細胞組織の作製方法においても、細胞組織形成時に2液式のゲル化溶液を塗布液として用いている(以下、「実施形態3における2液式細胞組織作製方法」という)。
 実施形態1における2液式細胞組織作製方法においては、細胞が含まれる第1溶液にゲル化剤が含まれ、第2塗布溶液にゲル化開始剤が含まれているのに対して、実施形態3における2液式細胞組織の作製方法においては、細胞が含まれる第1溶液にゲル化開始剤が含まれ、第2塗布溶液にゲル化剤が含まれている点が大きく異なる。この点以外は、両者は共通する概念、要素で構成される。
 実施形態3においては、細胞とゲル化開始剤を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 第1塗布工程で塗布された第1の塗布液に、ゲル化剤を含む第2の塗布液を重ねて塗布しゲル化反応を開始させる第2塗布工程、を含む細胞組織の作製方法に関する。
 また、実施形態3においては、細胞とゲル化開始剤を含む第1の塗布液を含む第1の容器、およびゲル化剤を含む第2の塗布液を含む第2の容器を含む、細胞組織作製セットに関する。
 まず、本発明に係る実施形態3の細胞組織の作製方法における、
 細胞とゲル化開始剤を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤を含む第2の塗布液を重ねて塗布しゲル化反応を開始させる第2塗布工程について説明する。
 第1塗布工程
 本発明の方法が適用できる細胞は、特に限定されるものではないが、iPS細胞由来の心筋細胞、正常ヒト心臓線維芽細胞、正常ヒト線維芽細胞、ヒト血管内皮細胞、HePG2細胞等の細胞である。2種以上混合して使用してもよい。本発明は、これらの中でも、iPS細胞由来の心筋細胞、正常ヒト線維芽細胞、HepG2細胞、特に、iPS細胞由来の心筋細胞に適用することが好ましい。iPS細胞由来の心筋細胞を使用する場合、より生体の心臓の形態に近づけ、正常ヒト心臓線維芽細胞から発される因子によりiPS細胞由来の心筋細胞を成熟化させる理由で、通常、正常ヒト心臓線維芽細胞と混合して使用される。細胞としては、未修飾の細胞、またはタンパク質、糖鎖、核酸等で修飾された細胞、例えばフィブロネクチン、ゼラチン、コラーゲン、ラミニン、エラスチン、マトリゲル等の既に知られているコーティング剤、コーティング方法でコーティングされた細胞を用いることができる。
 第1の塗布液に含ませるゲル化開始剤としては、トロンビン、塩化カルシウム、アルコール類、例えば、エチルアルコール、グリセリン等)を使用すればよい。これらのゲル化開始剤は、通常、第2の塗布液に含ませるゲル化剤の種類に応じて使い分けられている。これらの使い分けは、当業者に公知であり、そのような公知の組合せで使用すればよい。例えば、ゲル化開始剤とゲル化剤の使用の組合せ(ゲル化開始剤:ゲル化剤)としては、トロンビン:フィブリノゲン(ゲル化開始剤:ゲル化剤)、塩化カルシウム:アルギン酸ナトリウム(ゲル化開始剤:ゲル化剤)、塩化カルシウム:カラギーナン(ゲル化開始剤:ゲル化剤)、アルコール類:タマリンドシードガム(ゲル化開始剤:ゲル化剤)等の組合せ使用が挙げられる。
 細胞として、iPS細胞由来の心筋細胞を使用する場合は、トロンビン:フィブリノゲン(ゲル化開始剤:ゲル化剤)の組合せ使用が好ましい。
 第1の塗布液は、上記細胞とゲル化開始剤が、水性溶液に含まれるものである。
 水性溶液としては、水、各種の生理食塩水、例えば、リン酸緩衝生理食塩水、トリス緩衝生理食塩水等を使用するようにすればよい。他にも、細胞培養液として使用される培地、例えばDulbecco’s Modified Eagle Medium等を使用することができる。これらの水溶液は、通常、細胞の種類に応じて使い分けられている。これらの使い分けは、当業者に公知であり、そのような公知の組合せで使用すればよい。例えば、iPS細胞由来の心筋細胞であれば、リン酸緩衝生理食塩水(PBS)、Dulbecco’s Modified Eagle Medium、各社専用培地、特に、リン酸緩衝生理食塩水を使用することが好ましい。
 上記水性容器に含ませる細胞の量は、特に、限定されるものではないが、1×10個/mL~1×10個/mL、好ましくは、1×10個/mL~1×10個/mL、より好ましくは、1×10個/mL~1×10個/mL程度の濃度で含有させるようにすればよい。多すぎると、溶液の調整が困難であり、少なすぎると、塗布量によっては細胞が含まれないものとなる。
 ゲル化開始剤の含有量は、特に限定されるものではなく、通常、ゲル化の速さを考慮し、適宜その含有量を設定するようにすればよい。その量が、少なすぎると、ゲル化の速さが遅くなり、1液目である第1の塗布液の保形性が低下する。例えば、トロンビンを用いる場合、その濃度は、1unit/mL~1000unit/mL、好ましくは10unit/mL~1000unit/mL、より好ましくは、100unit/mL~800unit/mL程度の濃度で含有させるようにすればよい。
 第1の塗布液には、細胞が安定して接着・増殖できる環境を与えるために、フィブロネクチン、ゼラチン、コラーゲン、ラミニン、エラスチン、マトリゲル等の細胞外マトリックス成分、線維芽細胞増殖因子や血小板由来成長因子等の細胞増殖因子、その他、血管内皮細胞やリンパ管内皮細胞、各種幹細胞等の添加剤を含ませてもよい。
 第1の塗布液には、添加剤としてさらに増粘剤を添加してもよい。増粘剤としては、増粘多糖類、例えば、ヒアルロン酸ナトリウム、アルギン酸ナトリウムを使用することができる。
 増粘剤は、第1の塗布液に保形性を付与するために含ませるものであり、特に、増粘多糖類は、保形性の高い三次元細胞組織の作成に効果がある。
 増粘剤を含ませる場合、その量は、第1の塗布液の保形性、使用する塗布装置の可能な粘度範囲、コスト、取り扱い性等を考慮し適宜設定するようにすればよい。例えば、実施形態1の微細塗布装置1を用いた塗布方法では、1mPa・s~1×10mPa・s、好ましくは、3×10mPa・s~1×10mPa・s、より好ましくは、1×10mPa・s~5×10mPa・sの粘度になるように増粘剤を含ませるようにすればよい。その粘度が低すぎると第1の塗布液の保形性が低下する。なお、第1の塗布液の粘度は、回転粘度法により25℃で測定された値を用いている。
 細胞外マトリックスは、細胞の成長を促し、細胞と細胞、あるいは細胞と基質の接着を促すために含ませるものである。細胞外マトリックスを含ませる場合、その量は特に制限はない。作製したい組織に合わせてその種類、濃度を指定するようにすればよい。
 実施形態3における細胞組織の作製方法の第1塗布工程においては、第1の塗布液を塗布対象物に塗布する。使用される塗布対象物は、特に限定されず、細胞増殖のために通常使用されている培養容器が用いられる。本発明で使用する「同一培養容器」としては、6から384のウェルを有するウェルプレート、ディッシュ、シャーレ、マイクロウェルプレート(登録商標、Thermo Fisher Scientific Inc.)等である。ここで用いる「培養容器」は、底面が平面または曲面で形成され、側面を有する凹状の容器である。また、「培養容器」としては底面と側面が連続した曲面で形成された半球面でもよい。なお、「多穴培養容器」は、複数の凹状の容器(凹部:培養容器)を有する一体物の培養容器である。
 実施形態3における細胞組織の作製方法における塗布方法としては、微細塗布装置1に特に限定されるものではなく、例えば、公知のバイオプリンティング技術、例えば、インクジェット方式、ディスペンサ方式、レーザーアシスト方式等を使用することも可能である。
 溶液の粘度が高い場合には、実施形態1において説明した微細塗布装置1による塗布針法が好適に使用できる。塗布針法を用いて溶液、液体の塗布を行う方法については、実施形態1において説明した微細塗布装置1を用いる他に、例えば、特許文献10(特許第4802027号公報明細書)および特許文献11(国際公開第2019/088224号パンフレット)に開示され、記載されている塗布装置を用いることが可能である。それらの明細書、図面に開示、記載されている全内容を本願明細書の記載内容の一部としてここに引用する。
 例えば、実施形態1において説明した微細塗布装置1による塗布針法は、広範囲な粘度の塗布液を用いて微細な塗布を行なうことが可能である。塗布動作の際、塗布液を保持する塗布液容器の底部に形成された貫通孔から、1本の塗布針を突出させる。塗布針法は、先端に付着している塗布液を被塗布物に接触させて塗布を行なうものである。
 第1の塗布液の塗布方法は、実施形態1において説明した微細塗布装置1が用いられる。微細塗布装置1を用いた塗布方法は、前述したように、極微量な塗布液を付着させた塗布針9の先端9aを対象物(基板等)に接触させることにより、数pL(ピコリットル)から数100μL(マイクロリットル)の塗布量となる液滴を高い配置精度、例えば±15μm以下、好ましくは±3μm以下の配置精度で塗布することができる。また、第1の塗布液の粘度としては、1×10mPa・sまでの材料を塗布することが可能であり、高粘度の細胞分散液の塗布が可能となる。このように、微細塗布装置1を用いた塗布方法によれば、高粘度の細胞分散液を塗布対象物(基板等)に対して所定の位置に精密塗布することが可能である。特に、粘度として、3×10mPa・s程度以上の塗布液を使用することにより、塗布液を立体的に、詳しくは、立体的ドーム状に塗布することができ、次の第2塗布工程までの間にその立体的形状を保つことができる。本発明においてはこの特性を「保形性」という。
 第1の塗布液の塗布量は、所望の量に応じて塗布方法の条件を適宜設定すればよい。微細塗布装置1を用いた塗布方法においては、塗布針9の先端9aの直径、塗布回数等により調整可能である。
 より具体的には、塗布針による塗布方法は、
 第1の塗布液を所定量貯留する塗布液溜りを有する塗布液容器と、
 前記第1の塗布液が貯留された前記塗布液溜りを貫通可能な塗布針と、を含む塗布ユニットを備えた微細塗布装置を用い、
 前記塗布液溜りに充填された前記第1の塗布液に前記塗布針の先端を浸漬させる待機工程、
 前記塗布針の先端が前記塗布液溜りを貫通して、前記第1の塗布液が付着された前記塗布針の先端を下降させる下降工程、
 前記第1の塗布液が付着された前記塗布針の先端を塗布対象物に接触させて、前記第1の塗布液を前記塗布対象物に塗布して液滴スポットを形成する塗布工程、および
 前記塗布針の先端を上昇させて、前記塗布針の先端を前記塗布液溜りに収容する収容工程、を含んで実行される。
 塗布針法以外のバイオプリンティング技術を使用する場合においても、塗布条件を適宜設定することにより塗布針法と同様の塗布物が得られるように適宜塗布条件を調整して塗布を行えばよい。
 第2塗布工程
 第2塗布工程において使用される第2の塗布液は、ゲル化剤が、水性溶液に含まれるものである。
 第2の塗布液に含ませるゲル化剤としては、フィブリノゲン、アルギン酸ナトリウム等を使用すればよい。これらのゲル化剤は、通常、第1の塗布液に含ませるゲル化開始剤の種類に応じて使い分けられている。これらの使い分け、組み合わせは、前述の第1の塗布液において説明した。
 第2の塗布液に含ませるゲル化剤として、ゲル化開始剤なしで硬化するゲル化剤を使用してもよい。このようなゲル化剤を使用する場合は、第1の塗布液にゲル化開始剤を含ませる必要はない。このようなゲル化剤として、コラーゲン、ゼラチン、寒天(アガロース)等、また、ゼラチン−メタクリルアミド、ゼラチン−アクリルアミドなどの光架橋性ゼラチンハイドロゲル化剤等が挙げられる。例えば、コラーゲンは加熱することによりゲル化し、ゼラチンは冷却することによりゲル化する。このようなゲル化剤を含有する第2の塗布液を使用した場合には、第2の塗布液を塗布した後、コラーゲンを含む場合は加熱操作を行い、ゼラチンを含む場合は冷却操作を行い、ゲル化反応させる必要がある。ゼラチン−メタクリルアミドは紫外光(波長365μm)を照射することによりゲル化する。ゼラチン−アクリルアミドは、紫外光(波長365μm)を照射することによりゲル化する。このような光架橋性ゼラチンハイドロゲル化剤を含有する第2の塗布液を使用した場合には、第2の塗布液を塗布した後、光(紫外線、可視光等)照射操作を行い、ゲル化反応させる必要がある。
 第2の塗布液に含まれる水性溶液は、前述の第1の塗布液で使用する同様の水性溶液を使用することができ、第1の塗布液で使用されている同一の水性溶液でもよいし、異なる種類の水性溶液を使用してもよい。
 上記の水性溶液に含ませるゲル化剤の量は、特に限定されるものではなく、ゲル化の速さ、ゲル化剤の濃度、ゲルの硬さ等を考慮し、適宜その含有量を設定するようにすればよい。少なすぎると、ゲル化の速さが遅くなる。例えば、フィブリノゲンを用いる場合、その濃度は0.1mg/mL~100mg/mL、好ましくは、1mg/mL~80mg/mL、より好ましくは、1mg/mL~30mg/mLの濃度になるようにすればよい。
 第2の塗布液には、増粘剤等の成分(さらなる添加剤)が含まれてもよい。増粘剤は、塗布済の第1の塗布液の保形の観点から含ませるものであり、ヒアルロン酸ナトリウム、アルギン酸ナトリウム等を使用することができる。増粘剤を含ませる場合、その量は、塗布済の第1の塗布液の保形性、使用する微細塗布装置1の可能な粘度範囲、コスト、取り扱い性等を考慮し適宜設定するようにすればよい。第2の塗布液としては、例えば、塗布針9を用いた塗布方法では、5×10mPa・s~1×10mPa・s、好ましくは、5×10mPa・s~1×10mPa・s、より好ましくは、5×10mPa・s~5×10mPa・sの粘度になるように増粘剤を含ませるようにすればよい。その量が少なく、粘度が低すぎると、塗布済の第1の塗布液の保形性が保てなくなる。なお、第2の塗布液の粘度は、回転粘度法により25℃で測定された値を用いている。
 第2の塗布液は、第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布する。「重ねて」とは、第1塗布工程で塗布された第1の溶液の塗布対象物(基板等)を覆うように塗布することであり、第1の溶液の塗布対象物と接している面以外の面をも覆うようにという意味を含むものである。
 上記のように、第2の塗布液を、第1の塗布液に重ねて塗布することにより、塗布された第1の溶液と第2の溶液との界面がゲル化する。この時、このゲル化した界面の下に存在する第1の塗布液の内部はゲル化せず、第1の溶液の溶液状態(粘度)を保っている。そのため、第1の塗布液の内部の細胞は、重力により沈降沈殿し、第1の塗布液の下部に凝集、堆積、積層する。
 第1塗布工程終了から、第2塗布工程開始までの時間間隔は、できる限り短いことが望ましい。その、時間間隔が長すぎると、第1の塗布液が乾燥し、含有される細胞が死滅するという問題が生じる。
 第2の塗布液の塗布量は、第1の塗布液の塗布量、ゲル化の速さ等を考慮して、第2の塗布液が第1の塗布液に重ねて塗布されるように適宜設定され
る。
 第2の塗布液の塗布方法としては、実施形態1の微細塗布装置1を用いた塗布方法でもよいが、特に限定されるものではなく、例えば、手作業による塗布、例えば、注射器、スポイト等による液滴塗布、バイオプリンティング技術、例えば、インクジェット法、ディスペンサ法等を使用することができる。
 第2の塗布液を塗布後、第1の塗布液と第2の塗布液の接触面(界面)のみがゲル化し、ゲル化した界面の下に存在する第1の塗布液の内部は硬化開始剤が液体として存在し、第1の塗布液の溶液状態(粘度)を保っており、時間の経過に従って、細胞が沈降沈殿し、第1の塗布液の下部に凝集、堆積、積層することにより、複雑な作製工程を介することなく高密度であり、かつ保形性の高い三次元細胞組織が作製される。
 塗布直後の細胞組織の外周部である第1の塗布液と第2の塗布液の接触面がゲル化し、第1の塗布液の内部は液体の状態で保持されるため、細胞組織の乾燥も抑制できる。
 細胞の培養は、第1塗布工程および第2塗布工程で塗布された塗布液を培地中に浸して行う。このとき、塗布対象物(基板)と共に培地に浸してもよい。培地としては、細胞との関係で、通常使用される培地を使用すればよく、例えば、細胞にiPS細胞由来心筋細胞を含む場合は、Dulbecco’s Modified Eagle Medium、各社市販専用培地が使用される。
 図18は、実施形態3で実施した細胞組織の作製方法の概略を模式的に示した図であり、塗布工程後の細胞組織の三次元集積の形態を模式図で表している。
 細胞とゲル化開始剤とを懸濁含有する第1の塗布液を用意し、該第1の塗布液を塗布液容器に充填する。塗布針9により塗布対象に第1の塗布液を塗布する(1液目)。この第1の塗布液を塗布する第1塗布工程においては、所望の回数の塗布動作が実行される。次に、ゲル化剤を含む第2の塗布液(2液目)が、第1塗布工程において塗布された第1の塗布液(1液目)を覆うように塗布される。第1の塗布液と第2の塗布液との接触面とその外周領域がゲル化した後、培地が添加される。1液目の第1の塗布液の内部は、流動性が保たれた液体状態が保持されてドーム構造となっているため、時間経過とともに細胞が沈降沈殿し、第1の塗布液の下部に凝集、堆積、積層する。その結果、高密度の三次元細胞組織を作製することができる。
 本発明において、「高密度」とは、細胞間にフィブリングル等が存在せず、細胞が集積している状態を意味し、細胞密度として数値的に表すと、1×10個/mL~1×10個/mL程度の密度を有する場合を意味している。
 本発明に係る実施形態3における第2の側面としては、少なくとも、細胞とゲル化開始剤を含む第1の塗布液を含む第1の容器、およびゲル化剤を含む第2の塗布液を含む第2の容器を含む、細胞組織作製セットに関する。
 該細胞組織作製セットは、実施形態3における細胞組織の作製方法への使用に適している。細胞組織作製セットにおいて規定する第1の塗布液および第2の塗布液は、実施形態3の細胞組織の作製方法で説明した第1の塗布液および第2の塗布液と同義である。
 実施形態3における細胞組織の作製方法に従えば、微細塗布装置1を用いた塗布工程において、塗布工程実行前の塗布液容器の内部でゲル化等が生じることがない。また、実施形態3における細胞組織の作製方法に従えば、細胞の生存率を維持した上で、高密度かつ保形性の高い細胞組織を作成できる。
 以下、実施形態3における細胞組織の作製方法について、具体的な実施例を用いて説明するが、本発明はそれらの実施例に限定的に解釈されるべきでなく、本発明の概念に接した当業者が想到し、実施可能であると観念するであろうあらゆる技術的思想、その具体的態様が本発明に含まれるものとして理解されるべきものである
 実施例1
(1)塗布方法
(1−1)第1の塗布液(1液目)の塗布動作
 実施例1で使用した第1の塗布液の微細塗布装置100を図19に示す。図19は、微細塗布装置100を示す斜視図である。実施例1で用いた微細塗布装置100は、実施形態1において説明した微細塗布装置1と実質的に同じ塗布方法を実行する構成であり、塗布針9の先端9aに付着した第1の塗布液を塗布対象物に接触塗布する構成である。図20は、実施例1で用いた微細塗布装置100における塗布装置本体101を示す斜視図である。
 XYZステージ105に支持された塗布装置本体101においては、カム104の動作により、可動部105がZ方向に往復動作を行い、塗布液容器8を貫通可能に支持された塗布針9が同様のZ方向に往復動作する。この往復動作により、塗布針9の先端9aに付着した第1の塗布液が塗布対象物に接触塗布される。
 表示・制御部103は、モニター、制御用コンピュータ、操作パネルからなる。操作パネルから塗布速度指令値を入力し、制御用コンピュータの記憶装置に保管する。塗布動作時には塗布速度指令値を記憶装置から読み出して塗布装置本体101の制御プログラムに送出する。制御プログラムは塗布速度指令値に基づいて塗布装置本体101における駆動機構であるモータの回転速度を決定し、所定の速度で塗布針9を往復動作させて塗布動作を実行する。制御用コンピュータが上位の制御システム(図示せず)と通信している場合には、塗布速度指令値を上位の制御システムから受け取ってもよい。また、第1の塗布液の種類に応じたパラメータを記憶部に保管し、指定された第1の塗布液の種類と塗布量または塗布サイズに応じて塗布速度指令値を算出してもよい。
 実施形態1の微細塗布装置1において説明したように、塗布針9の先端9aは塗布液容器8の底面に設けられた下部孔14bから突出して塗布動作を行う(図4参照)。塗布針9の先端9aが塗布液容器8の下部孔14bから突き出す時に、塗布針9の先端9aに第1の塗布液が付着して塗布液容器8から突出する。この時、表面張力によって第1の塗布液が上方に引き上げられ、塗布針9の先端9aにはほぼ一定量の第1の塗布液が残される。塗布針9の先端9aに残された第1の塗布液を塗布対象に転写することにより、再現性のある塗布動作を実現することができる。
(1−2)第2の溶液の塗布動作
 第2の溶液の塗布動作は、マイクロピペットを用いて手動で滴下することにより行った。
(2)塗布条件cells
・塗布針径:           φ1000μm
・塗布針形状:          ストレート
・塗布回数:          10回
・第1の塗布液の塗布量:    数100nL/10回
・第2の塗布液の塗布量:    15μL/1回
・塗布液容器内の待機時間:     1020ms
・塗布針降下後の待機時間:     0ms
・上昇時間:          5μm/1回
・第2の塗布液の添加までの所要時間:  5s以内
・培地添加までの所要時間:   4個作成後まとめて、マイクロピペットにて手動で添加
(3)塗布液
(3−1)第1の塗布液(1液目)
・iPS細胞由来心筋細胞:   ヒト心臓線維芽細胞 = 3:1
・細胞数:           8×10cells/mL
・ヒアルロン酸ナトリウム:   13mg/mL
・トロンビン:         800unit/mL
・PBS
・粘度:            1.5×10mPa・s)
(3−2)第2の塗布液(2液目)
・添加量:           15μL
・ヒアルロン酸ナトリウム:   0.5mg/mL
・フィブリノゲン:      10mg/mL
・PBS
・粘度:            1×10mPa・s
(4)結果考察
(4−1)作製方法
 上記塗布条件で第1の塗布液を繰返し複数回の塗布動作を行い、1液目である第1の塗布液の塗布液容器内の心筋細胞とゲル化開始剤のトロンビンを残らず塗布できることを確認した。塗布終了後、塗布液容器の内部を目視したところ、第1の塗布液のゲルの発生は確認されなかった。2液目としてゲル化剤であるフィブリノゲンを含む第2の塗布液を、1液目の第1の塗布液を覆うように添加する。
 上記の条件にて96ウェルプレート内の40ウェルに塗布を行った結果の塗布状態を、ウェルプレート上方から撮影した写真を、図21(倍率2倍)に示す。図21に示されているように、複数回塗布しても、概ね細胞数にばらつきはなかった。
(4−2)組織観察
(4−2−1)密度
 塗布1時間後に得られた細胞組織を、位相差顕微鏡を用いて顕微鏡観察した。該顕微鏡観察は、塗布液(図18の右下に描いたゲルドームと記載された状態)を上から観察したものである。その写真を図22に示す。
 図22からわかるように、細胞と細胞との間に細胞間マトリックスがほとんど存在せず、高密度の三次元細胞組織が作製されたことが解る。密度は3.5×10個/mLであった。
 なお、培養は、温度37℃、CO 5%の環境下、7日間行った。
(4−2−2)厚さ
 培養後に得られた細胞組織の厚さを、細胞核および細胞質をヘマトキシリン・エオジン(HE)染色により測定した。ヘマトキシリン・エオジン(HE)染色測定結果を図23に示す。図23により確認すると、この組織の厚さは、50μm程度であった。
(4−2−3)細胞組織
 細胞核、アクチン、トロポニン染色を行った。
 その蛍光染色の結果を図24に示す。
 この写真は、本来カラー写真であり、細胞核が青で、アクチンが赤で、心筋トロポニンTが緑で写し出されている。図24より、心筋細胞に特徴的な心筋トロポニンTの横紋構造の発現を確認した。また拍動数は成人の心臓に近い50~60拍動/分であった。
(4−3)考察
 1液目として心筋細胞とゲル化開始剤のトロンビンを分散させた第1の塗布液を複数回塗布し、2液目としてゲル化剤であるフィブリノゲンを含む第2の塗布液を、1液目の第1の塗布液を覆うように添加する塗布方法により、高密度かつ保形性の高い三次元細胞組織を、複雑な作製工程を介することなく、細胞生存率を維持し、簡易に作成することができた。
 比較例1
(1)実施例1で使用した同じ微細塗布装置100を使用して、下記塗布条件で、塗布液を塗布した。
 比較例においては、ゲル化剤(フィブリノゲン)が第1の溶液に、ゲル化開始剤(トロンビン)が第2の溶液に入っている点が、実施例1と大きく異なる点である。
(2)塗布条件
・塗布針径:          φ1000μm
・塗布針形状:         ストレート
・塗布回数:         10回
・第1の塗布液の塗布量:    数nL/10回
・第2の塗布液の塗布量:    15μL/1回
・塗布液容器内の待機時間:    1020ms
・塗布針降下後の待機時間:    0ms
・上昇時間:         5μm/1回
・第2の塗布液の添加までの所要時間: 5s以内
・培地添加までの所要時間:  4個作成後まとめて、マイクロピペットにて手動で添加
(3)塗布液
(3−1)第1の塗布液(1液目)
・iPS細胞由来心筋細胞:  ヒト心臓線維芽細胞 = 3:1
・細胞数:          8×10cells/mL
・ヒアルロン酸ナトリウム:  13mg/mL
・フィブリノゲン:     10mg/mL
・PBS
・粘度:1.5×10mPa・s)
(3−2)第2の塗布液(2液目)
・添加量           15μL
・ヒアルロン酸ナトリウム   0.5mg/mL
・トロンビン:        800unit/mL
・PBS
・粘度:           1×10mPa・s
(4)結果考察
(4−1)組織観察
(4−1−1)密度
 塗布直後に得られた細胞組織を、位相差顕微鏡を用いて顕微鏡観察を行った。その、写真を図26に示す。
 図26においては、略球状の細胞と細胞の間に、細胞間マトリックスが存在していることが解る。塗布直後の細胞が沈殿する前の状態において、図22と比較すると図26では細胞密度が低いことが分かる。これは、1液目にゲル化剤を混合することにより細胞は疎の状態で固定化されてしまい、沈殿が起こらないためと考えている。
(4−2)作製方法
 1液目としての第1の塗布液に心筋細胞とフィブリノゲンを分散させた場合、15分経過した後、塗布液容器内に心筋細胞を包埋したゲル状物質を確認した(図25)。
 図25の(a)は、貫通可能に支持された具体的な塗布針9と塗布液容器8を示しており、図25の(b)は、塗布液容器8の下部孔14bの周囲に形成された細胞包埋フィブリルゲルを示している。図25の(c)は、塗布液容器8から取り出した細胞包埋フィブリルゲルをしめしている。図25の(d)は、図25の(c)の拡大図である。
 本比較例の作製方法においては、塗布液容器内に細胞が残留し、第1の塗布液内の細胞数のバラツキが発生した。
(4−3)考察
 1液目として心筋細胞とフィブリノゲンを分散させた第1の塗布液を塗布し、2液目としてゲル化開始剤として1液目の塗布液を覆うようにトロンビンを含む第2の塗布液を塗布する本比較例においては、心筋細胞を包埋する形でフィブリノゲンがゲル化するため、心筋細胞がゲル内で疎に分散し、高密度かつ保形性の高い三次元心筋細胞組織を、細胞生存率を維持し、簡易に作成することが困難となる不具合が生じた。
 また、1液目に心筋細胞とフィブリノゲンを分散させた第1の塗布液を、繰り返し塗布を繰り返すか、塗布液容器内に第1の塗布液を長時間保持ししていると、塗布液容器内で第1の塗布液のゲル化が生じ、そのため、塗布液容器内部でゲル化した心筋細胞塊が塗布液容器に残り塗布できない場合があるという不具合が生じた。
 以上開示事項から、本発明に係る実施形態3における第1の側面のより具体的な態様として、例えば、下記のものが提供される。
(1)第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布する第2塗布工程、
を含むことを特徴とする細胞組織の作製方法。
(2)第2塗布工程が、第1溶液の塗布液の流動状態を維持しつつ、第1の塗布液と第2の塗布液の界面をゲル化することを含む、上記(1)に記載の細胞組織の作製方法。
(3)第1の塗布液が細胞およびゲル化開始剤を含む、上記(1)または上記(2)に記載の細胞組織の作製方法。
(4)第2の塗布液がゲル化剤を含む、上記(1)~上記(3)のいずれかに記載の細胞組織の作製方法。
(5)細胞とゲル化開始剤を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
 前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面でゲル化反応を開始させる第2塗布工程、
を含むことを特徴とする細胞組織の作製方法。
(6)第1の塗布液および第2の塗布液が塗布された塗布対象物を培地中に浸漬し、細胞を培養する工程を含む、上記(1)~上記(5)のいずれかに記載の細胞組織の作製方法。
(7)第1の塗布液が増粘多糖類を含む、上記(1)~上記(6)のいずれかに記載の細胞組織の作製方法。
(8)第2の塗布液が増粘多糖類を含む、上記(1)~上記(7)のいずれかに記載の細胞組織の作製方法。
(9)ゲル化開始剤がトロンビンである、上記(3)~上記(8)のいずれかに記載の細胞組織の作製方法。
(10)ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物である、上記(4)~上記(9)のいずれかに記載の細胞組織の作製方法。
(11)増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物であり、上記(7)~上記(10)のいずれかに記載の細胞組織の作製方法。
(12)細胞が心筋細胞である、上記(3)~上記(11)のいずれかに記載の細胞組織の作製方法。
 また、本発明に係る実施形態3における第2の側面のより具体的な態様として、例えば、下記のものが提供される。
(13)少なくとも、細胞とゲル化開始剤を含む第1の塗布液を含む第1の容器、およびゲル化剤を含む第2の塗布液を含む第2の容器を含む、細胞組織形成セット。
(14)第1の塗布液が増粘多糖類を含む、上記(13)に記載の細胞組織形成セット。
(15)第2の塗布液が増粘多糖類を含む、上記(13)または上記(14)に記載の細胞組織形成セット。
(16)ゲル化開始剤がトロンビンである、上記(13)~上記(15)のいずれかに記載の細胞組織形成セット。
(17)ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物である、上記(13)~上記(16)のいずれかに記載の細胞組織形成セット。
(18)増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物であり、上記(14)~上記(17)のいずれかに記載の細胞組織形成セット。
(19)細胞が心筋細胞である、上記(13)~上記(18)のいずれかに記載の細胞組織形成セット。
(20)上記(1)~上記(12)のいずれかに記載の細胞組織の作製方法により作製された細胞組織。
(21)第1塗布工程を塗布針による接触塗布を用いて行う、上記(1)~上記(12)のいずれかに記載の細胞組織の作製方法。
(実施形態4)
 以下、本発明に係る実施形態4の細胞組織の作製方法、および該作製方法により作成された細胞組織に関して説明する。なお、実施形態4の説明において、前述の実施形態1、2、3と同様の作用、構成、および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
 本発明に係る実施形態4の細胞組織の作製方法においては、前述の実施形態1および3において詳細に説明した塗布方法を用いて、塗布針9の先端9aに付着した細胞を含む塗布液(第1の塗布液)を塗布対象物に塗布する。第1の塗布液を塗布した後、第1の塗布液に重なるように第2の塗布液を塗布する構成である。第2の塗布液の塗布方法は、特に限定されるものではなく、例えば、手作業による塗布、例えば、注射器、スポイト等による液滴塗布、バイオプリンティング技術、例えば、インクジェット法、ディスペンサ法等を使用することができる。
 実施形態4の細胞組織の作製方法においては、前述の実施形態3において説明した塗布方法を用いることにより、微細な液滴スポットを形成することができるため、小さな培養容器である1つのウェル(有底穴)に複数の細胞組織を作製している(図16の(c)参照)。
 実施形態4の細胞組織の作製方法は、前述の実施形態3の細胞組織の作製方法における工程と同じである。即ち、実施形態4の細胞組織の作製方法は、図18の模式図に示したように、塗布針9により塗布対象に第1の塗布液を塗布する(1液目)。この第1の塗布液を塗布する第1塗布工程においては、所望の回数の塗布動作が実行される。次に、ゲル化剤を含む第2の塗布液(2液目)が、第1塗布工程において塗布された第1の塗布液(1液目)を覆うように塗布される。第1の塗布液と第2の塗布液との接触面とその外周領域がゲル化した後、第3の塗布液(3液目)としての培地が添加される。1液目の第1の塗布液の内部は、流動性が保たれた液体状態が保持されてドーム構造となっているため、時間経過とともに細胞が沈降沈殿し、第1の塗布液の下部に凝集、堆積、積層する。その結果、高密度の三次元細胞組織を作製することができる。図18における右下に示した図には、ゲルドームにおいて細胞が沈殿する状態を模式的に示している。
 図27は、実施形態4の細胞組織の作製方法における各工程を模式的に示す図である。図27の(a)は、塗布針9が塗布液容器8に充填された第1の塗布液(1液目)30の内部に浸漬された状態である(塗布針浸漬工程)。図27の(b)は、塗布針9により第1の塗布液30を塗布する第1塗布工程Aを示している。第1塗布工程Aにおいては、第1の塗布液30が所望の回数だけ塗布対象に対して塗布される。図27の(c)は、第1塗布工程Aにおいて塗布された第1の塗布液30に覆い重なるように第2の塗布液40が塗布される第2塗布工程Bを示している。実施形態4においては第2塗布工程Bがマイクロピペット110による塗布動作により実行される。次に、第2の塗布液40の全体が浸漬するように第3の塗布液50が塗布(添加)され培地が形成される(培地形成工程C)。図27の(d)は、培地形成工程Cにより基板上の第1の塗布液30を覆うように重なった第2の塗布液40が培地(50)中に浸漬された状態を示している。
 上記のように、実施形態4の細胞組織の作製方法においては、前述の実施形態3の細胞組織の作製方法と同様に、細胞とゲル化開始剤を含む第1の塗布液30を塗布対象物に塗布する第1塗布工程A、および第1塗布工程Aで塗布された第1の塗布液30に対して覆うように、ゲル化剤を含む第2の塗布液40を重ねて塗布し、ゲル化反応を開始させる第2塗布工程Bとを有している。その後、第1の塗布液30を覆うように重なる第2の塗布液40が浸漬されるように培地が形成される(培地形成工程C)。
 実施形態4の細胞組織の作製方法は、例えば基板上の複数の塗布対象位置のそれぞれの位置に細胞組織を効率的に作製するものである。複数の塗布対象位置としては、培養容器の複数のウェルのそれぞれの位置でもよく、または1つのウェルの中に複数の細胞組織を作製するように1つのウェルの中に複数の塗布対象位置があってもよい(図16の(c)参照)。
 実施形態4の細胞組織の作製方法においては、複数の塗布対象位置における第1の塗布対象位置に対して、図27の(b)に示す第1塗布工程Aが実行され、次に図27の(c)に示す第2塗布工程Bが実行される。次に、位置を移動して第2の塗布対象位置に対して、第1塗布工程Aが実行され、次に第2塗布工程Bが実行される。このように、複数の塗布対象位置のそれぞれに対して、第1塗布工程Aおよび第2塗布工程Bが順次実行される。全ての塗布対象位置に対して第1塗布工程Aおよび第2塗布工程Bが実行された後、それぞれの塗布対象位置に対する培地形成工程Cが実行される。この培地形成工程Cにおいては、それぞれのウェル(培養容器)に培地が形成される。
 実施形態4の細胞組織の作製方法における第1塗布工程Aおよび第2塗布工程Bは、前述の実施例1において説明して塗布方法を用いた。第1塗布工程Aにおける第1の塗布液30の塗布動作は微細塗布装置100を用いた。第2塗布工程Bにおける第2の塗布液40の塗布動作はマイクロピペットを用いて手動で滴下することにより行った。
(1)第1の塗布液(1液目)30は以下の通り。
・iPS細胞由来心筋細胞:   ヒト心臓線維芽細胞 = 3:1
・細胞数:           8×10cells/mL
・ヒアルロン酸ナトリウム:   13mg/mL
・トロンビン:         800unit/mL
・PBS
・粘度:            1.5×10mPa・s)
・塗布直径:約1.0mm(塗布針による接触塗布)
(2)第2の塗布液(2液目)40
・添加量:           15μL
・ヒアルロン酸ナトリウム:   0.5mg/mL
・フィブリノゲン:      10mg/mL
・PBS
・粘度:            1×10mPa・s
・マイクロピペットによる手動による塗布(添加)
・第1の塗布液30の塗布後、5秒(sec)以内に添加する。
(3)培地(3液目)50
・複数の塗布対象位置に対する第1塗布工程Aおよび第2塗布工程Bの塗布が終了した後、培養容器の全体に対してマイクロピペットによる手動で添加する。
 図28は、実施形態4の細胞組織の作製方法における第1塗布工程A、第2塗布工程B、および培地形成工程Cの具体的な塗布時間と、工程間の間隔時間の一例を示すタイムチャートである。図28に示すように、1つの塗布対象位置に対して第1塗布工程Aが4秒(sec)実行され、第2塗布工程Bが0.5秒(sec)実行される。第1塗布工程Aにおいては10回の塗布動作が実行されている。第2塗布工程Bにおいてはマイクロピペットにて第2の塗布液40を手動で添加している。
 図28のタイムチャートに示すように、最初にそれぞれの塗布対象位置に対する第1塗布工程Aと第2塗布工程Bを実行し、その後にそれぞれの塗布対象位置に対して培地形成工程Cが実行(1秒(sec))される。なお、第1塗布工程Aと第2塗布工程Bと培地形成工程Cとが実行される各工程間の間隔時間は1秒(sec)である。これらの塗布時間および間隔時間は、第1の塗布液30および第2の塗布液の組成内容、塗布量、および作製する細胞組織の数などの塗布条件により適宜変更される。
 実施形態4の細胞組織の作製方法においては、前述の実施形態3において図18の模式図に示したように、第1の塗布液30に細胞を懸濁し、その第1の塗布液30を塗布液容器8に充填する。第1の塗布液30を塗布液容器8に充填した後、塗布針9により塗布対象に細胞を含む第1の塗布液30を塗布する。次に第2の塗布液40を、第1の塗布液30を覆うように添加する。その結果、第1の塗布液30と第2の塗布液40との接触面から外周までがゲル化する。このようにゲル化した後、培地を添加する。
 図18の右下に示したように、培地中の塗布液内部においては、第1の塗布液30が液体のまま保持されるドーム構造となっている。このため、第1の塗布液30の内部において時間経過とともに細胞が沈殿する。その結果、高密度の三次元細胞組織を作製することができた。
 また塗布直後の細胞組織の外周部であるフィブリノゲンとトロンビンの接触面がゲル化して、その内部は液体の状態で保持されるため、細胞組織の乾燥も抑制できる構成となっている。
 図29は、第1の塗布液30に心筋細胞とトロンビンと分散させた場合の三次元細胞組織の画像を示す写真である。図29に示す状態は、まだ細胞が沈殿する前の状態であり、図29に示す状態から細胞と細胞の間に隙間があることが分かる。図29に示した細胞組織の厚さを測定した結果、50μm程度の厚さを有しており、かつ高密度に積層されていることを確認した。図30は、作製された細胞組織の蛍光色による厚さ測定結果の画像を示す写真である。さらに、細胞核、アクチン、トロポニン染色の結果、細胞が生存していることを確認し、心筋細胞に特徴的なアクチンとトロポニンの発現を確認した。図31は、作製した細胞組織の蛍光染色による観察結果の画像を示す写真である。図31において、略丸形状が細胞核60であり、黒っぽい線状のタンパク質がアクチン70であり、白っぽい線状のタンパク質がトロンポニン80である。
 なお、第1の塗布液30に懸濁する細胞の膜表面に細胞接着因子であるタンパク質をコーティングすることによって、細胞同士の接着を促進し、高い細胞密度を有する三次元構造を構築する細胞積層法や細胞集積法を用いてもよい。
[多穴培養容器に対する塗布動作]
 前述のように第1塗布工程A、第2塗布工程B、および培地形成工程Cを複数のウェルを有する多穴培養容器の各ウェルに対して行うことにより、複数の細胞組織を、乾燥による細胞死を抑制し、高速、高精度かつ高い形状安定性で作製することができる。即ち、第1塗布工程Aの初期段階において塗布された第1の塗布液30に対する待ち時間を低減して細胞死を抑制しつつ、各塗布液の塗布動作のための塗布機構の切り替えや、培養容器を載置したステージの移動の頻度を低減することが可能となり、工程全体の所要時間が長くなることを抑制することができるものとなる、このように、実施形態4の細胞組織の作製方法を行うことにより、多穴培養容器において複数の三次元細胞組織を作製することができる。
 なお、ゲル化開始剤と細胞とを混合した第1の塗布液30と、ゲル化剤である第2の塗布液40を混合して、ゲルに包埋した細胞組織を作製する際には、約10秒から数分程度のゲル化時間が必要となる。このゲル化時間と、培地を形成するための第3の塗布液の塗布(添加)までの待ち時間とを同じ工程に組み込むことにより、細胞死と所要時間の抑制のみならず、所定の塗布位置に安定した形状のゲルに包埋した細胞組織を作製することができる。
 96ウェルプレートなどの多穴培養容器に細胞組織を作製する場合、図28に示したタイムチャートに従って塗布動作が行われる。この塗布動作において、第2の塗布液40の塗布後、第3の塗布液(培地)50の塗布までに待ち時間が発生する。しかし、フィブリノゲンとトロンビンの接触面近傍の外周を覆うフィブリノゲンがゲル化し、第1の塗布液30の内部はトロンビンが液体として存在するため、この待ち時間の間に細胞が沈殿することにより細胞が積層し、高密度な三次元細胞組織が作成できる。さらに、第3の塗布液として培地を塗布することにより、細胞死することなく長期での三次元細胞組織の培養が可能となる。
 第1の塗布液30の塗布動作(第1塗布工程A)と、第2の塗布液40の塗布動作(第2塗布工程B)との繰り返し回数、即ち第3の塗布液50を塗布(培地形成工程C)するまでの第1塗布工程Aと第2塗布工程Bとの繰り返し回数については、4回、6回、8回、12回、24回、36回、48回、96回、384回などの回数が設定可能である。この繰り返し回数は、第1の塗布液30と第2の塗布液40の塗布量、フィブリノゲンとトロンビンなどのゲル化剤のゲル化時間などの各種条件に応じて設定すればよい。
 なお、図28に示したタイムチャートにおいては、第1塗布工程Aで複数回の第1の塗布液30の塗布動作を行い、第2塗布工程Bで1回の第2の塗布液40の塗布動作を行う構成で説明したが、本発明はこのような構成に限定されるものではなく、それぞれの塗布工程における塗布動作の回数は適宜設定される。例えば、第1塗布工程Aと第2塗布工程Bにおいて1回ずつ交互に塗布動作を行い、複数の塗布対象位置に連続的に塗布してもよい。また、それぞれの塗布工程において、第1の塗布液30または第2の塗布液40をそれぞれ複数回塗布動作を行ってもよい。このように複数回の塗布動作を行った場合には、塗布対象位置における塗布液の塗布量が増加する。特に。細胞を懸濁している第1の塗布液30に関しては、複数回塗布動作を行うことにより、塗布された第1の塗布液30の内部の細胞数が増加し、細胞の積層厚さが増加する。
 なお、実施形態4の細胞組織の作製方法においては、第1の塗布液30と第2の塗布液40に増粘剤としてヒアルロン酸ナトリウムを混合しているが、アルギン酸ナトリウムなどの他の増粘多糖類を用いてもよい。増粘剤は塗布液が塗布された後の保形性の向上に効果を有する。即ち、増粘剤は塗布液が塗布された後に流れ出て形が崩れることを抑制する効果を有する。特に、ヒアルロン酸ナトリウムは接着性が高く、培養容器や細胞と良好に接着し、塗布液の保形性の向上に至適である。さらに、ヒアルロン酸ナトリウムは生体由来であり、細胞増殖の適合性が高いという利点も有する。
 実施形態4の細胞組織の作製方法においては、第1の塗布液(ゲル化開始剤を含む)30と第2の塗布液(ゲル化剤を含む)40として、トロンビンとフィブリノゲンの組合せの他に、塩化カルシウムとアルギン酸ナトリウム、塩化カルシウムとカラギーナン、アルコール類とタマリンドシードガムなどを用いてもよい。
 また、実施形態4の細胞組織の作製方法においては、iPS細胞由来心筋細胞とヒト心臓線維芽細胞について示したが、正常ヒト線維芽細胞、ヒト血管内皮細胞、HePG2細胞等の細胞、あるいはこれらを2種以上混合した細胞についても、高速、高精度かつ形状安定性が高く、乾燥による細胞死を抑制した細胞組織を作製することができる。
 なお、実施形態4の細胞組織の作製方法においては、第1の塗布液30の塗布動作が塗布針9を用いた接触塗布により実行されているため、インクジェット装置やディスペンサ装置を用いて細胞組織を作製したときに生じるおそれのあるノズル詰まりの心配がなく、さらに広範囲な液体に対応可能であり、かつ微細塗布が可能である。また、第2の塗布液40および第3の塗布液(培地)50の塗布に関しては、インクジェット装置やディスペンサ装置を用いて実行している。インクジェット装置は微細塗布が可能であり、高速性に優れている。ディスペンサ装置はインクジェットよりも広範囲な液体に対応することが可能であり、比較的量の多い塗布に適している。
 また、実施形態4の細胞組織の作製方法においては、第1の塗布液30に細胞とゲル化開始剤を含み、第2の塗布液40にゲル化剤を含む例を示したが、心筋細胞を除いては第1の塗布液30に細胞とゲル化剤、第2の塗布液40にゲル化開始剤を含む組合せでもよい。この場合、短時間で細胞を包埋したゲルが形成されるため形状安定性が高く、より目的の形状、特に目的の平面形状に沿った細胞組織を作製することができる。
[1つのウェル(培養容器)に対する複数の細胞組織の作製]
 実施形態4の細胞組織の作製方法における第1の塗布液30の塗布動作(第1塗布工程A)、第2の塗布液40の塗布動作(第2塗布工程B)、および第3の塗布液50の塗布動作(培地形成工程C)を、1つのウェル(培養容器)に対して実行して、複数の細胞組織を作製することも可能である。実施形態4の細胞組織の作製方法における各工程を、それぞれのウェル(培養容器)内の複数位置に対して行うことにより、独立した複数の細胞組織を1つのウェル(培養容器)内に作製することができる。
 例えば、96ウェルプレートに細胞組織を作製する場合、従来のマイクロピペットを用いた細胞播種方法では、96ウェルプレートのそれぞれのウェル(培養容器)の培養面全体に細胞が広がり、その直径が6.5mm(ウェルの直径)となってしまう(図16の(a)参照)。しかしながら、実施形態4の細胞組織の作製方法を用いることにより、第1の塗布液30および第2の塗布液40を直径が1.0mm以内となるように塗布することが可能であり、1つのウェルの内部に微細な細胞組織を作製することができる(図16の(b)参照)。
 さらに、96ウェルプレートのそれぞれのウェル(培養容器)の培養面において、複数の位置のそれぞれに対して、第1の塗布液30の第1塗布工程A、および第2の塗布液40の第2塗布工程Bを行うことにより、同一ウェル(培養容器)内の複数個所に独立して存在する細胞組織を作製することができる(図16の(c)参照)。
 なお、同一ウェル(培養容器)内の複数個所に独立した細胞組織を作製するために、塗布針9の先端直径9aを1.0mmとすることにより、直径が約1.0mmの細胞組織を作製することができた。また、塗布針9の先端直径9aを変更することにより、異なる直径の細胞組織を作製することができる。例えば、先端直径9aが330μmの塗布針9を用いて細胞組織を作製した場合には、直径が約330μmの細胞組織を、同一の培養容器内の6個所に独立して作製することができた(図12参照)。
 上記のように、1つのウェル(培養容器)内の複数個所に独立して細胞組織を作製することにより、創薬プロセスでの薬効薬理評価や安全性評価における薬剤評価を効率的に行うことができる。従来の細胞組織の作製方法では、1つのウェル(培養容器)には1つの細胞組織しか作製できないため、1つのウェル(培養容器)から1個の解析結果しか取得できなかった。しかし、本発明に係る実施形態4の細胞組織の作製方法によれば、1つのウェル(培養容器)内において複数の細胞組織を作製することができるため、1つのウェル(培養容器)から複数の解析結果を取得することができ、ハイスループットで評価効率の高い細胞組織が得られる。
 以上のように、実施形態4の細胞組織の作製方法によれば、ゲル化開始剤と細胞を混合した第1の塗布液30と、ゲル化剤である第2の塗布液40とを、多穴培養容器の複数のウェル(有底穴:培養容器)のそれぞれに対して連続して塗布した後、最後にそれぞれのウェルに対して培地である第3の塗布液50を塗布することにより、乾燥による細胞死を抑制し、高速、高精度、かつ高い形状安定性で多穴培養容器に三次元の細胞組織を作成することができた。
 また、微細塗布装置を用いて、ゲル化剤と細胞を混合した第1の塗布液30を個別のウェル(培養容器)の平坦な培養面の複数個所に塗布することにより、全体の細胞数を低減しつつ、独立して存在し、大きさのばらつきの少ない多数の細胞組織を簡易な工程で作製することができる。
(実施形態5)
 以下、本発明に係る実施形態5の細胞組織の作製方法、および該作製方法により作成された細胞組織に関して添付の図面を参照して説明する。なお、実施形態5の説明において、前述の実施形態1、2、3、4と同様の作用、構成、および機能を有する要素には同じ参照符号を付し、重複する記載を避けるため説明を省略する場合がある。
 本発明に係る実施形態5の細胞組織の作製方法においては、前述の実施形態1において詳細に説明した塗布方法を用いて、塗布針9の先端9aに付着した細胞を含む第1の塗布液30を塗布対象物に塗布する。第1の塗布液30を塗布した後、第1の塗布液30に覆い重なるように第2の塗布液40を塗布する構成である。第2の塗布液40の塗布方法は、特に限定されるものではなく、例えば、手作業による塗布、例えば、注射器、スポイト等による液滴塗布、バイオプリンティング技術、例えば、インクジェット法、ディスペンサ法等を使用することができる。
 実施形態5の細胞組織の作製方法において、前述の実施形態1、2、3、4と異なる点は、種類の異なる細胞を含むそれぞれの細胞組織を1つの培養容器に一連の塗布工程を用いて作製する点である。
 図32は、実施形態5の細胞組織の作製方法において用いられる微細塗布装置200を示す正面図である。微細塗布装置200には、3つの塗布ユニット201、202、203が設けられており、それぞれには種類の異なる細胞を含む溶液(第1の塗布液30X、30Y、30Z)が充填された塗布液容器が設けられている。これらの塗布ユニット201、202、203の構成としては、実施形態1において説明した微細塗布装置1における塗布ユニット6と同様の構成を有しており、同様に塗布針9を用いて塗布対象に対して接触塗布する構成である。
 また、微細塗布装置200には、2つのディスペンサ204、205が設けられている。2つのディスペンサ204、205は、3つの塗布ユニット201、202、203と並設されている。第1のディスペンサ204は、第2の塗布液40を塗布済みの第1の塗布液30(30X、30Y、30Z)に覆い重なるように塗布するように構成されている。第2のディスペンサ205は、塗布済みの第1の塗布液30(30X、30Y、30Z)に覆い重なる第2の塗布液40が浸漬状態となるように塗布して培地が形成されるように塗布する構成である。
 実施形態5における微細塗布装置200は、細胞(X細胞、Y細胞、Z細胞)が異なる3種類の第1の塗布液30(30X、30Y、30Z)が3つの塗布ユニット201、202、203のそれぞれにより塗布される構成である。即ち、微細塗布装置200において、第1の塗布ユニット201はゲル化開始剤と細胞Xとを混合した第1の塗布液30Xによる第1塗布工程を実行し、第2の塗布ユニット202はゲル化開始剤と細胞Yとを混合した第1の塗布液30Yによる第1塗布工程を実行し、そして、第3の塗布ユニット203はゲル化開始剤と細胞Zとを混合した第1の塗布液30Zによる第1塗布工程を実行する。
 図33は、微細塗布装置200を用いて、1つのウェル(培養容器)内の3カ所に独立した細胞組織を作製した例を模式的に示した平面図である。図34は、図33に示した3種類の細胞組織を作製するためのフローチャートである。微細塗布装置200において所定の位置に多穴培養容器が固定された後、実施形態5における細胞組織作製動作が開始される。
 実施形態5における細胞組織作製動作が開始されると、多穴培養容器における特定されたウェルにおける指定された第1の位置が第1の塗布ユニット201による細胞Xの塗布対象位置となるようにセットされる。セットされた第1の塗布ユニット201による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Xとを混合した第1の塗布液30Xが第1の位置に塗布される(ステップ1)。ステップ2においては、2液目としてゲル化剤である第2の塗布液40が第1の塗布液30Xに重なるように第1のディスペンサ204により塗布される第2塗布工程が実行される。第2の塗布液40が塗布された後、特定されたウェル内の第2の位置を細胞Yの塗布対象位置としてステージを移動する(ステップ3)。
 第2の位置を塗布対象位置として、第2の塗布ユニット202による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Yとを混合した第1の塗布液30Yが第2の位置に塗布される(ステップ4)。ステップ5においては、2液目としてゲル化剤である第2の塗布液40が第1の塗布液30Yに重なるように第1のディスペンサ204により塗布される(第2塗布工程)。第2の塗布液40が塗布された後、特定されたウェル内の第3の位置を細胞Zの塗布対象位置としてステージを移動する(ステップ6)。
 第3の位置を塗布対象位置として、第3の塗布ユニット203による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Zとを混合した第1の塗布液30Zが第3の位置に塗布される(ステップ7)。ステップ8においては、2液目としてゲル化剤である第2の塗布液40が第1の塗布液30Zに重なるように第1のディスペンサ204により第2塗布工程が実行される。第2の塗布液40が塗布された後、特定されたウェル内が塗布対象となるようにステージを移動して(ステップ9)、第2のディスペンサ205により培地となる第3の塗布液50がウェル内に塗布(添加)される培地形成工程が実行される。
 上記のように多穴培養容器において特定されたウェルに対する第1塗布工程、第2塗布工程および培地形成工程が実行されると、次のウェルに対する第1塗布工程、第2塗布工程および培地形成工程が実行される。このように、多穴培養容器におけるそれぞれのウェルに対して第1塗布工程、第2塗布工程および培地形成工程が順次実行されて、それぞれのウェルにおいて種類の異なる細胞組織が作製される。
 なお、実施形態5においては、1つのウェル(同一培養容器)に3種類の細胞組織を複数作製する場合について説明したが、本発明はこのような作製方法に限定されるものではなく、例えば、同一の培養容器に同じ種類の複数の細胞組織と、種類の異なる細胞組織とを作製する場合や、異なる種類としても2種類以上の細胞組織を作製する場合などの各種組み合わせが含まれる。
 また、種類の異なる複数の細胞を1つのウェルに塗布する場合の組み合わせの具体例としては、例えば、
(1)X細胞:iPS細胞由来心筋細胞、Y細胞:iPS細胞由来神経細胞、Z細胞:初代肝細胞の組み合わせ、
(2)X細胞:iPS細胞由来心筋細胞、Y細胞:iPS細胞由来神経細胞、Z細胞:HepG2の組み合わせ、
(3)X細胞:iPS細胞由来心筋細胞、Y細胞:iPS細胞由来神経細胞、Z細胞:HeLa細胞の組み合わせ、
(4)X細胞:iPS細胞由来心筋細胞、Y細胞:ヒト心臓線維芽細胞、Z細胞:ヒト心臓血管内皮細胞の組み合わせ、などがある。
 図35は、1つのウェル(培養容器)内の3カ所に独立した細胞組織を作製した例を模式的に示した平面図であり、前述の図33に示した細胞組織の作製例の変形例である。図36は、図35に示した3種類の細胞組織を作製するためのフローチャートである。
 図35および図36に示した細胞組織の作製方法において、所定の位置に多穴培養容器が固定された後、細胞組織作製動作が開始される。細胞組織作製動作が開始されると、多穴培養容器における特定されたウェルにおける指定された第1の位置が第1の塗布ユニット201による細胞Xの塗布対象位置となるようにセットされる。セットされた第1の塗布ユニット201による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Xとを混合した第1の塗布液30Xが第1の位置に塗布される(ステップ1)。
 第1の塗布液30Xが塗布された後、特定されたウェル内の第2の位置を細胞Yの塗布対象位置としてステージを移動する(ステップ2)。第2の位置を塗布対象位置として、第2の塗布ユニット202による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Yとを混合した第1の塗布液30Yが第2の位置に塗布される(ステップ3)。
 第1の塗布液30Yが塗布された後、特定されたウェル内の第3の位置を細胞Zの塗布対象位置としてステージを移動する(ステップ4)。第3の位置を塗布対象位置として、第3の塗布ユニット203による第1塗布工程が実行されて、1液目としてゲル化開始剤と細胞Zとを混合した第1の塗布液30Zが第3の位置に塗布される(ステップ5)。
 ステップ6においては、2液目としてゲル化剤である第2の塗布液40が第1の塗布液30X、30Y、30Zに重なるように第1のディスペンサ204により第2塗布工程が実行される。第2の塗布液40が塗布された後、特定されたウェル内が塗布対象となるようにステージを移動して(ステップ7)、第2のディスペンサ205により培地となる第3の塗布液50がウェル内に塗布(添加)される培地形成工程が実行される。
 上記のように、図36に示した細胞組織の作製方法は、多穴培養容器におけるウェルに対して、第1塗布工程が順次実行され、その後第2塗布工程および培地形成工程が実行される構成である。このように、多穴培養容器に対して細胞組織の作製方法が実行されて、それぞれのウェルにおいて種類の異なる細胞組織が作製される。
 なお、実施形態5においては、微細塗布装置200が3種類の細胞組織を作製する構成を有するものであるが、本発明はこのような構成に限定されるものではなく、作製すべき細胞の種類に応じて塗布ユニットを設けることにより、複数種類の細胞組織を作製することが可能となる。
 上記のように、本発明に係る実施形態5の微細塗布装置200の構成によれば、複数種類の細胞組織を1つのウェル(培養容器)に作製することが可能となる。このように1つのウェル(培養容器)内に複数種類の細胞組織を作製することの利点としては以下の事項が挙げられる。
 (1)例えば、細胞Xと細胞Yに異なった作用を与える薬剤が存在する場合、細胞Xと細胞Yのそれぞれを含むそれぞれの細胞組織が1つのウェル内に作製されていると、該ウェルに薬剤を添加することにより、該ウェル内でそれぞれの細胞(X、Y)に対する作用を同時に確認することができる。例えば、アントラサイクリン系の抗がん剤は心毒性を発生させることが多い薬剤である。がん細胞とiPS細胞由来心筋細胞を1つのウェルに共存させることで、そこに抗がん剤を添加することにより、がん細胞には抗がん剤本来の効果が、iPS細胞由来心筋細胞には心毒性の効果が同時に観測することができる。
 (2)異なる種類の細胞組織が培地を共有することにより、細胞から生成されるサイトカインや添加した薬剤を代謝した物質を共有することができる。例えば、細胞Xで代謝された薬剤が細胞Yに作用するといったことを観測することができる。
 実施形態5の微細塗布装置200においては、多穴培養容器におけるそれぞれのウェルに対して複数種類の細胞組織を作製する方法を説明したが、微細塗布装置200は、多穴培養容器のそれぞれのウェルに対して同じ種類の細胞を含む複数の細胞組織を作製することも可能である。このように、ウェルの1つに複数の細胞組織を作製することにより、1つのウェルで複数のサンプル数に対する評価を行うことが可能となる。また、画像および動画の解析において、一回の撮影にて複数のサンプルを撮影することが可能となるため、撮影時間が短縮され、引いては解析時間が短縮されることになる。例えば、培養容器として96ウェルを用いた場合、従来の細胞組織の作製方法では、1つのウェル内に1サンプルの作製しかできないが、実施形態5の細胞組織の作製方法では、例えば、1つのウェル内に直径が約1.0mmの細胞組織cを4サンプル作製することが可能である。このため、実施形態5の細胞組織の作製方法によれば、96ウェルwの培養容器を用いて384個(96×4)の細胞組織のサンプルを作成することが可能となる。また、例えば、1つのウェルに対する動画解析に20秒の撮影が必要とすると、従来の細胞組織の作製方法では1つのウェルに1つのサンプルであるため、4サンプルの動画撮影には80秒が必要となる。一方、実施形態5の細胞組織の作製方法では、1つのウェルの内部に4つのサンプルが作製されているため、動画撮影は20秒と大幅に短縮されることになる。
 以上のように、実施形態5の細胞組織の作製方法によれば、ゲル化開始剤と細胞を混合した第1の塗布液30と、ゲル化剤である第2の塗布液40とを、多穴培養容器の複数のウェル(有底穴:培養容器)のそれぞれに対して連続して塗布した後、最後にそれぞれのウェルに対して培地である第3の塗布液50を塗布することにより、乾燥による細胞死を抑制し、高速、高精度、かつ高い形状安定性で多穴培養容器に三次元の細胞組織を作成することができる。
 また、微細塗布装置を用いて、ゲル化剤と細胞を混合した第1の塗布液30を個別のウェル(培養容器)の平坦な培養面の複数個所に塗布することにより、全体の細胞数を低減しつつ、独立して存在し、大きさのばらつきの少ない多数の細胞組織を簡易な工程で作製することができる。
 本発明をある程度の詳細さをもって実施形態において説明したが、この構成は例示であり、この実施形態の開示内容は構成の細部において変化してしかるべきものである。本発明においては、実施形態における要素を他の要素との置換、組合せ、および順序の変更は請求された本発明の範囲及び思想を逸脱することなく実現し得るものである。
 本発明に係る細胞組織の作製方法は、信頼性の高い様々な細胞組織を大量に製造することができるため、創薬研究および再生医療を研究する上でも重要な技術であり、産業上の利用可能性が高い発明である。

Claims (36)

  1.  第1の塗布液を塗布対象物に塗布する第1塗布工程、および
     前記第1塗布工程で塗布された第1の塗布液に、第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面をゲル化する第2塗布工程、
    を含むことを特徴とする細胞組織の作製方法。
  2.  前記第2塗布工程が、第1溶液の塗布液の流動状態を維持しつつ、第1の塗布液と第2の塗布液の界面をゲル化することを含む、請求項1に記載の細胞組織の作製方法。
  3.  第1の塗布液が細胞およびゲル化開始剤を含む、請求項1または請求項2に記載の細胞組織の作製方法。
  4.  第2の塗布液がゲル化剤を含む、請求項1から請求項3のいずれか一項に記載の細胞組織の作製方法。
  5.  細胞とゲル化開始剤を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
     前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面でゲル化反応を開始させる第2塗布工程、
    を含むことを特徴とする細胞組織の作製方法。
  6.  細胞を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
     前記第1塗布工程で塗布された第1の塗布液に、ゲル化剤としてコラーゲン、ゼラチンおよび/または寒天を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面で、加熱または冷却することよりゲル化反応を開始させる第2塗布工程、
    を含むことを特徴とする細胞組織の作製方法。
  7.  細胞を含む第1の塗布液を塗布対象物に塗布する第1塗布工程、および
     前記第1塗布工程で塗布された第1の塗布液に、光架橋性ゼラチンハイドロゲル化剤を含む第2の塗布液を重ねて塗布し、第1の塗布液と第2の塗布液の界面で、光照射によりゲル化反応を開始させる第2塗布工程、
    を含むことを特徴とする細胞組織の作製方法。
  8.  第1の塗布液および第2の塗布液が塗布された塗布対象物を培地中に浸漬し、細胞を培養する工程を含む、請求項1から請求項7のいずれか一項に記載の細胞組織の作製方法。
  9.  第1の塗布液が増粘多糖類を含む、請求項1から請求項8のいずれか一項に記載の細胞組織の作製方法。
  10.  第2の塗布液が増粘多糖類を含む、請求項1から請求項9のいずれか一項に記載の細胞組織の作製方法。
  11.  ゲル化開始剤がトロンビンである、請求項3または請求項5に記載の細胞組織の作製方法。
  12.  ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物である、請求項4または請求項5に記載の細胞組織の作製方法。
  13.  増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物である、請求項9から請求項10のいずれか一項に記載の細胞組織の作製方法。
  14.  細胞が心筋細胞である、請求項3から請求項13のいずれか一項に記載の細胞組織の作製方法。
  15.  少なくとも、細胞とゲル化開始剤を含む第1の塗布液を含む第1の容器、およびゲル化剤を含む第2の塗布液を含む第2の容器を含む、細胞組織形成セット。
  16.  第1の塗布液が増粘多糖類を含む、請求項15に記載の細胞組織形成セット。
  17.  第2の塗布液が増粘多糖類を含む、請求項15または請求項16に記載の細胞組織形成セット。
  18.  ゲル化開始剤がトロンビンである、請求項15から請求項17のいずれか一項に記載の細胞組織形成セット。
  19.  ゲル化剤がフィブリノゲン、コラーゲン、ゼラチンまたはそれらの2種以上の混合物である、請求項15から請求項18のいずれか一項に記載の細胞組織形成セット。
  20.  増粘多糖類が、ヒアルロン酸ナトリウム、アルギン酸ナトリウムまたはそれらの混合物であり、請求項16から19のいずれか一項に記載の細胞組織形成セット。
  21.  細胞が心筋細胞である、請求項15から請求項20のいずれか一項に記載の細胞組織形成セット。
  22.  請求項1から請求項14のいずれか一項に記載の細胞組織の作製方法により作製された細胞組織。
  23.  前記第1塗布工程が塗布針による接触塗布を用いて行われる、請求項1から請求項14のいずれか一項に記載の細胞組織の作製方法。
  24.  前記第1塗布工程と前記第2塗布工程の塗布動作を同一培養容器の複数の塗布対象位置に対して実行し、培地形成工程を実行する、請求項1から請求項14、および請求項23のいずれか一項に記載の細胞組織の作製方法。
  25.  同一培養容器の複数の塗布対象位置に対して前記第1塗布工程と前記第2塗布工程の塗布動作を実行した後、前記培地形成工程を実行する、請求項24に記載の細胞組織の作製方法。
  26.  同一培養容器のそれぞれの塗布対象位置に対して前記第1塗布工程と前記第2塗布工程の塗布動作を実行した後、当該塗布対象位置に対して前記培地形成工程を実行していく、請求項24に記載の細胞組織の作製方法。
  27.  同一培養容器の複数の塗布対象位置に対する前記第1塗布工程の塗布動作が実行された後、当該同一培養容器の複数の塗布対象位置に対する前記第2塗布工程の塗布動作を実行し、その後当該同一培養容器の複数の塗布対象位置に対して前記培地形成工程を実行していく、請求項24に記載の細胞組織の作製方法。
  28.  前記第1の塗布液を含む前記第2の塗布液が浸漬するように第3の塗布液を塗布する前記培地形成工程、を含む、請求項24から請求項27のいずれか一項に記載の細胞組織の作製方法。
  29.  同一培養容器の複数の塗布対象位置に対して、同じ種類の細胞を含む細胞組織を作製する、請求項24から28のいずれか一項に記載の細胞組織の作製方法。
  30.  同一培養容器の複数の塗布対象位置に対して、種類の異なる細胞を含む細胞組織を作製する、請求項24から請求項28のいずれか一項に記載の細胞組織の作製方法。
  31.  前記第2の塗布液を前記第1の塗布液に重ねて塗布する前記第2塗布工程がインクジェット方式、またはディスペンサ方式が用いられる、請求項24から請求項30のいずれか一項に記載の細胞組織の作製方法。
  32.  細胞組織形成時に2液式のゲル化溶液を塗布液として用いた、請求項24から請求項31のいずれか一項に記載の細胞組織の作製方法。
  33.  同一容器内に複数の細胞組織を含む、培養容器。
  34.  同一容器内に同じ種類の複数の細胞組織を含む、請求項33に記載の培養容器。
  35.  同一容器内に種類の異なる複数の細胞組織を含む、請求項33に記載の培養容器。
  36.  同一容器内に複数の細胞組織を含み、該容器を複数有する、請求項33から請求項35のいずれか一項に記載の培養容器。
PCT/JP2020/009897 2019-03-06 2020-03-03 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器 WO2020179929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/435,890 US20240158727A1 (en) 2019-03-06 2020-03-03 Cell tissue production method, cell tissue production set, and cultivation container containing cell tissue produced by said production method
EP20765757.8A EP3936238A4 (en) 2019-03-06 2020-03-03 CELLULAR TISSUE PRODUCTION METHOD, CELLULAR TISSUE PRODUCTION SET, AND CULTURE VESSEL CONTAINING CELLULAR TISSUE PRODUCED BY SUCH PRODUCTION METHOD
CN202080018860.1A CN113474092B (zh) 2019-03-06 2020-03-03 细胞组织的制备方法、细胞组织制备套件和包含通过该制备方法制备的细胞组织的培养容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-040785 2019-03-06
JP2019040785A JP7256494B2 (ja) 2019-03-06 2019-03-06 細胞組織作製方法および細胞組織作製セット
JP2019-083571 2019-04-25
JP2019083571A JP7340185B2 (ja) 2019-04-25 2019-04-25 細胞組織作製方法および該作製方法により作製された細胞組織を含む培養容器

Publications (1)

Publication Number Publication Date
WO2020179929A1 true WO2020179929A1 (ja) 2020-09-10

Family

ID=72338708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009897 WO2020179929A1 (ja) 2019-03-06 2020-03-03 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器

Country Status (4)

Country Link
US (1) US20240158727A1 (ja)
EP (1) EP3936238A4 (ja)
CN (1) CN113474092B (ja)
WO (1) WO2020179929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070524A1 (ja) * 2022-09-27 2024-04-04 Ntn株式会社 細胞組織の製造方法、塗布方法および塗布装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017798A (ja) 2006-07-14 2008-01-31 Olympus Corp 生体組織製造装置および生体組織製造方法
JP2008126459A (ja) 2006-11-20 2008-06-05 Kanagawa Acad Of Sci & Technol ゲルの製造方法及びそのための装置
JP2010022251A (ja) 2008-07-17 2010-02-04 Institute Of Physical & Chemical Research 静電インクジェット現象を利用した三次元構造を有する細胞組織の作製
JP4802027B2 (ja) 2006-03-30 2011-10-26 Ntn株式会社 パターン修正装置およびその塗布ユニット
WO2014199622A1 (ja) * 2013-06-10 2014-12-18 株式会社クラレ 組織構造体及びその作製方法
WO2015025957A1 (ja) * 2013-08-23 2015-02-26 国立大学法人大阪大学 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法
JP2015229148A (ja) 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 吐出方法
JP2016087822A (ja) 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 インクジェット装置とインクジェット方法
JP2016526910A (ja) 2013-07-31 2016-09-08 オルガノボ,インク. 組織の作製のための自動化デバイス、システム、および方法
JP2017131144A (ja) 2016-01-27 2017-08-03 株式会社リコー 三次元細胞集合体作製用材料、三次元細胞集合体作製用組成物、三次元細胞集合体作製用セット、組成物収容容器、及び三次元細胞集合体の作製方法
JP2017163931A (ja) 2016-03-17 2017-09-21 株式会社リコー 三次元細胞集合体及びその製造方法
JP2017169560A (ja) 2016-03-17 2017-09-28 株式会社リコー 三次元培養構造物及びその製造方法
WO2017210663A1 (en) * 2016-06-03 2017-12-07 Paul Gatenholm Preparation and applications of rgd conjugated polysaccharide bioinks with or without fibrin for 3d bioprinting of human skin with novel printing head for use as model for testing cosmetics and for transplantation
WO2018071639A1 (en) * 2016-10-12 2018-04-19 Advanced Biomatrix, Inc. Three-dimensional (3-d) printing inks made from natural extracellular matrix molecules
JP2018522587A (ja) * 2015-07-22 2018-08-16 インベンティア ライフ サイエンス プロプライアタリー リミティド 3d組織培養モデルの印刷方法
US20180280578A1 (en) * 2015-07-21 2018-10-04 Bioink Solutions Inc. Bio-ink composition having improved physical and biological properties
JP2018532418A (ja) * 2015-11-09 2018-11-08 オルガノボ インコーポレイテッド 組織製造のための改善された方法
US20180370116A1 (en) * 2017-06-27 2018-12-27 University Of Florida Research Foundation, Inc. Three-dimensional printing of reactive materials using intersecting jets
WO2019088224A1 (ja) 2017-11-02 2019-05-09 国立大学法人大阪大学 細胞チップおよび三次元組織チップ、およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051654B2 (en) * 2003-05-30 2006-05-30 Clemson University Ink-jet printing of viable cells
JP2011172925A (ja) * 2010-01-29 2011-09-08 Terumo Corp 医療用積層体
EA028039B1 (ru) * 2014-09-05 2017-09-29 Частное Учреждение Лаборатория Биотехнологических Исследований "3Д Биопринтинг Солюшенс" Устройство и способы печати биологических тканей и органов

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802027B2 (ja) 2006-03-30 2011-10-26 Ntn株式会社 パターン修正装置およびその塗布ユニット
JP2008017798A (ja) 2006-07-14 2008-01-31 Olympus Corp 生体組織製造装置および生体組織製造方法
JP2008126459A (ja) 2006-11-20 2008-06-05 Kanagawa Acad Of Sci & Technol ゲルの製造方法及びそのための装置
JP2010022251A (ja) 2008-07-17 2010-02-04 Institute Of Physical & Chemical Research 静電インクジェット現象を利用した三次元構造を有する細胞組織の作製
WO2014199622A1 (ja) * 2013-06-10 2014-12-18 株式会社クラレ 組織構造体及びその作製方法
JP2016526910A (ja) 2013-07-31 2016-09-08 オルガノボ,インク. 組織の作製のための自動化デバイス、システム、および方法
WO2015025957A1 (ja) * 2013-08-23 2015-02-26 国立大学法人大阪大学 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法
JP2015229148A (ja) 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 吐出方法
JP2016087822A (ja) 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 インクジェット装置とインクジェット方法
US20180280578A1 (en) * 2015-07-21 2018-10-04 Bioink Solutions Inc. Bio-ink composition having improved physical and biological properties
JP2018522587A (ja) * 2015-07-22 2018-08-16 インベンティア ライフ サイエンス プロプライアタリー リミティド 3d組織培養モデルの印刷方法
JP2018532418A (ja) * 2015-11-09 2018-11-08 オルガノボ インコーポレイテッド 組織製造のための改善された方法
JP2017131144A (ja) 2016-01-27 2017-08-03 株式会社リコー 三次元細胞集合体作製用材料、三次元細胞集合体作製用組成物、三次元細胞集合体作製用セット、組成物収容容器、及び三次元細胞集合体の作製方法
JP2017169560A (ja) 2016-03-17 2017-09-28 株式会社リコー 三次元培養構造物及びその製造方法
JP2017163931A (ja) 2016-03-17 2017-09-21 株式会社リコー 三次元細胞集合体及びその製造方法
WO2017210663A1 (en) * 2016-06-03 2017-12-07 Paul Gatenholm Preparation and applications of rgd conjugated polysaccharide bioinks with or without fibrin for 3d bioprinting of human skin with novel printing head for use as model for testing cosmetics and for transplantation
WO2018071639A1 (en) * 2016-10-12 2018-04-19 Advanced Biomatrix, Inc. Three-dimensional (3-d) printing inks made from natural extracellular matrix molecules
US20180370116A1 (en) * 2017-06-27 2018-12-27 University Of Florida Research Foundation, Inc. Three-dimensional printing of reactive materials using intersecting jets
WO2019088224A1 (ja) 2017-11-02 2019-05-09 国立大学法人大阪大学 細胞チップおよび三次元組織チップ、およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936238A4
XU TAO ET AL.: "Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology", BIOMATERIALS, vol. 34, 2013, pages 130 - 139, XP028952876, DOI: 10.1016/j.biomaterials.2012.09.035 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070524A1 (ja) * 2022-09-27 2024-04-04 Ntn株式会社 細胞組織の製造方法、塗布方法および塗布装置

Also Published As

Publication number Publication date
EP3936238A4 (en) 2022-11-30
EP3936238A1 (en) 2022-01-12
CN113474092A (zh) 2021-10-01
US20240158727A1 (en) 2024-05-16
CN113474092B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US9764515B2 (en) Multidispensor cartesian robotic printer
Neto et al. Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns
Liu et al. A review of manufacturing capabilities of cell spheroid generation technologies and future development
Xie et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes
KR20200093032A (ko) 3d 세포 구성물을 제조하기 위한 바이오 프린터
JP7333543B2 (ja) 細胞チップおよび三次元組織チップ、およびその製造方法
US9176115B2 (en) Engineering individually addressable cellular spheroids using aqueous two-phase systems
JP6021802B2 (ja) 培養方法及び薬物スクリーニング方法
WO2020179929A1 (ja) 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器
JP4632400B2 (ja) 細胞培養用基板、その製造方法、それを用いた細胞スクリーニング法
JP2019209301A (ja) 塗布ユニットおよび微細塗布装置
JP7340185B2 (ja) 細胞組織作製方法および該作製方法により作製された細胞組織を含む培養容器
JP7256494B2 (ja) 細胞組織作製方法および細胞組織作製セット
JP6937382B2 (ja) カラムアレイ、及びカラムアレイを作成する方法
WO2024070524A1 (ja) 細胞組織の製造方法、塗布方法および塗布装置
JP2017079722A (ja) 異方性ハイドロゲル、マイクロビーズ、マイクロビーズの製造方法、足場及び足場の製造方法
US20220389373A1 (en) Methods and systems for generating three-dimensional biological structures
Gonçalves et al. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs
WO2019235513A1 (ja) 塗布ユニット、微細塗布装置、並びに細胞チップおよび細胞組織チップの製造方法
WO2024205435A1 (en) Device and a system for generation of ordered arrays of cell microcarriers on a substrate
Petrak Automated, Spatio-Temporally Controlled Cell Microprinting with Polymeric Aqueous Biphasic Systems
Todhunter Rapid Synthesis of 3D Tissues by Chemically Programmed Assembly
Hoggatt Development of a fluidic mixing nozzle for 3D bioprinting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020765757

Country of ref document: EP

Effective date: 20211006