WO2024070524A1 - 細胞組織の製造方法、塗布方法および塗布装置 - Google Patents

細胞組織の製造方法、塗布方法および塗布装置 Download PDF

Info

Publication number
WO2024070524A1
WO2024070524A1 PCT/JP2023/032319 JP2023032319W WO2024070524A1 WO 2024070524 A1 WO2024070524 A1 WO 2024070524A1 JP 2023032319 W JP2023032319 W JP 2023032319W WO 2024070524 A1 WO2024070524 A1 WO 2024070524A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
container
coating liquid
liquid
coating material
Prior art date
Application number
PCT/JP2023/032319
Other languages
English (en)
French (fr)
Inventor
▲祥▼平 近江
佳也 塚本
淳志 小田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022166456A external-priority patent/JP2024058995A/ja
Priority claimed from JP2022206880A external-priority patent/JP2024048319A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024070524A1 publication Critical patent/WO2024070524A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/02Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • This disclosure relates to a method for producing cell tissue, a coating method, and a coating device.
  • JP 2020-178612 A discloses a method for forming multiple cell tissues in a single container using a needle application method.
  • paragraph 0096 and Figure 17 illustrate an example of a combination of a well as an object to be coated and cell tissue as the first coating liquid to be supplied thereto.
  • JP2020-178612A does not disclose the relationship between the three parameters of the radius of the first coating liquid containing the cells, the radius of the second coating liquid covering it, and the size of the well. If the second coating liquid is dropped using a dispenser at a position close to the inner wall of the well in FIG. 17(a) of JP2020-178612A, static electricity may cause the second coating liquid to adhere to the inner wall of the well or to shift from the intended position. As a result, the second coating liquid may not be able to completely cover the first coating liquid, and the first coating liquid may break down.
  • the present disclosure has been made in consideration of the above problems.
  • the purpose of the present disclosure is to provide a method for producing cell tissue that can be used to evaluate the effects of cells on a small scale with high reproducibility and high accuracy on a high throughput basis by supplying a coating liquid with high positional accuracy while taking into account the dimensions and center position.
  • Another object of the present disclosure is to provide a coating method and coating device that can further reduce the total time required to create cell tissue.
  • N first coating liquids (N ⁇ 1, a natural number) are supplied into the coating object, and cells are arranged.
  • M second coating liquids are supplied into the coating object so as to cover at least one of the N first coating liquids.
  • a first dimension that is the maximum value of the dimension from the center to the outer edge of each of the N first coating liquids is r 1n (1 ⁇ n ⁇ N, a natural number)
  • a second dimension that is the maximum value of the dimension from the center to the outer edge of each of the M second coating liquids is r 2m (1 ⁇ m ⁇ M, a natural number)
  • the distance between the center of an arbitrary first coating liquid selected from N and having a first dimension of r 1n and the center of an arbitrary second coating liquid selected from M and having a second dimension of r 2m is D n , m (Equation 1) between an arbitrary first coating liquid and an arbitrary second coating liquid .
  • a step is performed in which a first coating material is supplied as a coating material to a first container included in a plate having a plurality of containers capable of receiving the coating material using a first coating mechanism.
  • a simultaneous supply pre-movement step is performed in which a stage on which the plate is placed is moved.
  • a simultaneous supply step is performed in which the first coating material is supplied to a second container arranged at a distance from the first container on the plate using the first coating mechanism, and at the same time, a second coating material is supplied as a coating material to the first container using a second coating mechanism arranged at a distance from the first coating mechanism.
  • the coating device includes a coating mechanism and a stage.
  • the coating mechanism is capable of supplying a coating material to be coated.
  • the stage is capable of placing a plate onto which the coating material is to be supplied.
  • the coating mechanism includes a first coating mechanism and a second coating mechanism adjacent to the first coating mechanism. The distance between the first coating mechanism and the second coating mechanism is equal to the amount of movement of the stage between the first coating and the second coating by the coating mechanism.
  • the coating liquid by supplying the coating liquid with high positional accuracy while taking into account the dimensions and center position, it is possible to provide a method for producing cell tissue that can be evaluated on a small scale with high throughput and with high reproducibility and accuracy.
  • the present disclosure makes it possible to further reduce the total time required to create cell tissue.
  • FIG. 1 is a schematic diagram of a coating device according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a coating mechanism of the coating apparatus shown in FIG. 1 .
  • FIG. 2 is a schematic perspective view of a sample application set.
  • 3 is a schematic diagram showing the center and dimensions of each coating liquid supplied in each step of the cell tissue manufacturing method of embodiment 1.
  • FIG. FIG. 4 is a schematic diagram showing the positional relationship of two first coating liquids. 4 is a schematic diagram showing the relationship between the center, dimensions, and position of a first coating liquid and a first virtual curve covering the first coating liquid.
  • FIG. FIG. 4 is a schematic diagram showing a relationship between a first virtual curve and a second coating liquid.
  • FIG. 2 is a schematic diagram showing a first example of a positional relationship between a first coating liquid and a second coating liquid.
  • FIG. 11 is a schematic diagram showing a second example of the positional relationship between the first coating liquid and the second coating liquid.
  • FIG. 4 is a schematic diagram showing the positional relationship of two second coating liquids.
  • 5 is a schematic diagram showing the relationship between the center, dimensions, and position of a second coating liquid and a second virtual curve covering the second coating liquid.
  • FIG. FIG. 13 is a schematic diagram showing the relationship between a second virtual curve and a well.
  • 1 is a phase contrast microscope image in Example 1.
  • 13 is a phase contrast microscope image in Example 2.
  • FIG. 11 is a schematic plan view showing the positions and dimensions of each coating liquid supplied in Example 3.
  • FIG. 16 is a schematic plan view showing the center positions and center-to-center distances of the same coating liquids as in FIG. 15 .
  • 13 is a phase contrast microscope image in Example 3.
  • 13 is a phase contrast microscope image in Example 4.
  • 13 is a schematic diagram and photographs showing the positions where the second coating liquid is expected to be applied and the positions where the second coating liquid is actually applied when the application position within the well is changed.
  • FIG. 11 is a schematic diagram showing a state before a first coating liquid is applied in embodiment 2.
  • FIG. 11 is a schematic diagram showing a composition of a first coating liquid in embodiment 2.
  • 11 is a schematic diagram showing a step of applying a first application liquid in the second embodiment.
  • FIG. FIG. 11 is a schematic diagram showing a state after a first coating liquid has been applied in embodiment 2.
  • FIG. 13 is a schematic diagram showing a step of supplying a second coating liquid in the second embodiment.
  • FIG. 25 is a schematic diagram showing the state inside the well after the step of FIG. 24 has been performed.
  • FIG. 11 is a schematic diagram showing a process of supplying a culture medium in the second embodiment.
  • FIG. 2 is a schematic diagram showing the state of cells in a first coating liquid before culture.
  • FIG. 4 is a schematic diagram showing the state of cells in a first coating liquid after culture.
  • the phase contrast microscope image (left) is taken immediately after the coating solution was supplied to the well, and the phase contrast microscope image (right) is taken after culturing for 6 days.
  • 1 is a graph showing Ca 2+ transient waveforms in an experiment using coated tissue.
  • FIG. 13 is a graph showing the change in BPM upon addition of isoproterenol to each of the coated tissue and the 2D tissue.
  • 1 is a graph showing the change in AMP upon addition of isoproterenol to each of the coated tissue and the 2D tissue.
  • FIG. 11 is a schematic front view showing a first example of a coating device according to a third embodiment.
  • FIG. 13 is a schematic front view showing a second example of a coating device according to the third embodiment.
  • FIG. 34 is a schematic diagram showing a needle coating mechanism of the coating device shown in FIG. 33 .
  • FIG. 13 is a flowchart showing a coating method according to a third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be placed in a coating device used in a coating method of embodiment 3.
  • FIG. 11 is a schematic cross-sectional view showing a first step of a coating method according to a third embodiment.
  • FIG. A schematic cross-sectional view showing a second step of the coating method of embodiment 3.
  • FIG. 1 is a schematic diagram showing an example of a method for producing a three-dimensional cell tissue. 44 is a photograph of a three-dimensional cell tissue obtained by the production method of FIG. 43.
  • FIG. 11 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be placed in a coating device used in a coating method of embodiment 3.
  • FIG. 11 is a schematic cross-sectional view showing a first step of a coating method
  • FIG. 1 is a schematic diagram showing the results of cell tissue production in one container contained in a plate.
  • FIG. 46 is a schematic diagram showing an example of a plurality of cell tissues formed in a single container, as in FIG. 45(C). This is an example of the preparation of cell tissue using a coating needle with a diameter of 330 ⁇ m.
  • 13 is a schematic diagram for comparing the timing of application in the application method of the third embodiment and the application method of the comparative example.
  • FIG. FIG. 13 is a schematic front view showing an example of a coating device according to a fourth embodiment.
  • 10 is a flowchart showing a coating method according to a fourth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be placed in a coating device used in a coating method of embodiment 4.
  • FIG. A schematic cross-sectional view showing a first step of a coating method according to embodiment 4.
  • a schematic cross-sectional view showing a fifth step of the coating method of embodiment 4. 13 is a schematic diagram for comparing the timing of application in a coating method according to a fourth embodiment with a coating method according to a comparative example.
  • FIG. 13 is a flowchart showing a coating method according to a first example of embodiment 5.
  • 13 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be placed in a coating device used in a coating method according to a first example of embodiment 5.
  • FIG. 13 is a schematic cross-sectional view showing a first step of a coating method according to a first example of embodiment 5.
  • FIG. A schematic cross-sectional view showing a second step of the coating method according to the first example of embodiment 5.
  • FIG. 13 is a flowchart showing another example of the coating method according to the second example of the fifth embodiment.
  • 13 is a plan view showing an aspect of a coating material formed in one container in embodiment 6.
  • FIG. 13 is a schematic cross-sectional view showing a first example of a coating mechanism and a part of a plate to be placed in a coating device used in a coating method of embodiment 7.
  • FIG. 13 is a schematic cross-sectional view showing a second example of a coating mechanism and a part of a plate to be placed in a coating device used in a coating method according to embodiment 7.
  • FIG. 13 is a schematic cross-sectional view showing a third example of a coating mechanism and a part of a plate to be placed in a coating device used in a coating method according to embodiment 7.
  • FIG. 1 is a schematic diagram of a coating device according to a first embodiment.
  • the coating device according to this embodiment will be described with reference to FIG. 1.
  • an X-axis direction, a Y-axis direction, and a Z-axis direction are introduced.
  • the coating device according to this embodiment mainly includes a processing chamber, a Y-axis table 2 arranged inside the processing chamber, an X-axis table 1, a Z-axis table 3, a coating mechanism 4, an observation optical system 6, a CCD camera 7 connected to the observation optical system 6, and a control unit.
  • the control unit includes a monitor 9, a control computer 10, and an operation panel 8.
  • a Y-axis table 2 is installed on the bottom of the treatment chamber.
  • This Y-axis table 2 is movable in the Y-axis direction.
  • a guide section is installed on the underside of the Y-axis table 2.
  • This guide section is slidably connected to a guide rail installed on the bottom of the treatment chamber.
  • a ball screw is connected to the underside of the Y-axis table 2.
  • the upper surface of the Y-axis table 2 serves as a mounting surface on which a sample application set 11, which will be described later, is mounted.
  • the Y-axis table 2 functions as a holding stand that holds the sample application set 11, which is the object to which the liquid material is applied.
  • the X-axis table 1 is installed on the Y-axis table 2.
  • the X-axis table 1 is placed on a structure installed so as to straddle the Y-axis table 2 in the X-axis direction.
  • a moving body to which the Z-axis table 3 is connected is installed on the X-axis table 1 so as to be movable in the X-axis direction.
  • the moving body is movable in the X-axis direction, for example, using a ball screw.
  • the X-axis table 1 is fixed to the bottom surface of the processing chamber via the structure. Therefore, the above-mentioned Y-axis table 2 is movable in the Y-axis direction relative to the X-axis table 1.
  • the Z-axis table 3 is installed on the moving body connected to the X-axis table 1.
  • the observation optical system 6 and the coating mechanism 4 are connected to the Z-axis table 3.
  • the observation optical system 6 is used to observe the coating position of the sample coating set 11, which is the object to be coated.
  • the CCD camera 7 converts the observed image into an electrical signal.
  • the Z-axis table 3 holds the observation optical system 6 and the coating mechanism 4 so that they can be moved in the Z-axis direction.
  • the control computer 10 and operation panel 8 for controlling the Y-axis table 2, X-axis table 1, Z-axis table 3, observation optical system 6, and coating mechanism 4, as well as the monitor 9 associated with the control computer, are installed outside the processing chamber.
  • the monitor 9 displays the image data converted by the above-mentioned CCD camera 7 and the output data from the control computer 10.
  • the operation panel 8 is used to input commands to the control computer 10.
  • FIG. 2 is a schematic diagram showing the coating mechanism of the coating device shown in FIG. 1.
  • the coating mechanism 4 of this embodiment mainly includes a servo motor 41, a cam 43, a bearing 44 held in contact with the cam surface of the cam 43, a cam connecting plate 45, a movable part 46, a movable base 35 that holds the coating needle holder 20, and a coating material container 21.
  • the coating needle holder 20 is detachable from the movable base 35.
  • the movable base 35 as a base body detachably holds the coating needle holder 20.
  • the servo motor 41 is installed so that its central axis extends in the direction along the Z-axis direction shown in FIG. 1.
  • a cam 43 is connected to the rotation shaft of the servo motor 41.
  • the cam 43 is rotatable around the central axis of the servo motor 41.
  • the cam 43 includes a center portion connected to the rotation shaft of the servo motor 41 and a flange portion connected to one end of the center portion.
  • the upper surface of the flange portion (the surface on the servo motor 41 side) is a cam surface. This cam surface is formed in an annular shape along the outer periphery of the center portion, and is formed in a slope shape so that the distance from the bottom surface of the flange portion varies.
  • the cam surface includes an upper end flat region that is the furthest from the bottom surface (thickest), a lower end flat region that is spaced apart from the upper end flat region, and a slope portion that smoothly connects between the upper end flat region and the lower end flat region.
  • the lower end flat region is the region that is closest to the bottom surface (thinnest).
  • a bearing 44 is disposed so as to contact the cam surface of the cam 43.
  • a cam connecting plate 45 is connected to the bearing 44.
  • the other end of the cam connecting plate 45, opposite to the one end connected to the bearing 44, is fixed to a movable part 46.
  • a movable base 35 is connected to the movable part 46 as a base body.
  • a coating needle holder 20 is installed on the movable base 35.
  • the coating needle holder 20 includes a coating needle 24.
  • the coating needle 24 can apply a liquid material to, for example, a well 12 of the sample application set 11.
  • the coating needle 24 is disposed so as to protrude from the coating needle holder 20 on the lower surface of the coating needle holder 20 (the lower side opposite to the side where the servo motor 41 is located).
  • a coating material container 21 is disposed below the coating needle holder 20. The coating needle 24 is held in an inserted state in the coating material container 21.
  • a fixed pin is fixed to the movable part 46.
  • the other fixed pin is fixed to the stand that holds the servo motor 41.
  • a spring is installed to connect these fixed pins. This spring causes the movable part 46 to receive a force directed towards the coating material container 21. The force of this spring also keeps the bearing 44 pressed against the cam surface of the cam 43.
  • the movable part 46 and the movable base 35 are connected to a linear guide installed on a stand that holds the servo motor 41, and are capable of moving along the Z-axis direction.
  • the servo motor 41 is driven to rotate the rotation shaft of the servo motor 41 and rotate the cam 43.
  • the position of the bearing 44 in the Z-axis direction which is in contact with the cam surface of the cam 43, varies in accordance with the rotation of the rotation shaft of the servo motor 41.
  • the movable part 46 and the movable base 35 move in the Z-axis direction, thereby changing the position of the coating needle 24 in the Z-axis direction.
  • the coating needle 24 can be reciprocated in the Z-axis direction.
  • the tip of the coating needle 24 is immersed in the coating material container 21 in which the liquid material is stored.
  • the coating needle 24 protrudes downward from the tip hole in the bottom surface of the coating material container 21 to perform the coating operation.
  • the tip of the coating needle 24 protrudes from the tip hole of the coating material container 21 and goes outside the coating material container 21.
  • the liquid material is pulled upward by surface tension, and a nearly constant amount of liquid material is attached to the tip of the application needle 24.
  • the attached liquid material is transferred to the sample application set 11 in this way, achieving a highly reproducible application process.
  • the coating speed command value output from the operation panel 8 is stored in the storage device of the control computer 10.
  • the coating speed command value read from the storage device is sent to the control program of the coating mechanism 4.
  • the control program of the coating mechanism 4 determines the rotation speed of the servo motor 41 based on the coating speed command value and rotates it. This causes the coating operation to be performed while reciprocating the coating needle 24 in the Z-axis direction.
  • the coating speed command value may be sent from the higher-level control system to the control program of the coating mechanism 4.
  • parameters according to the type of liquid material to be coated may be stored in the storage device of the control computer 10.
  • the coating speed command value may be calculated according to the specified type of liquid material, coating amount, and coating dimensions.
  • FIG. 3 is a schematic perspective view of the sample application set.
  • the application liquid as a liquid material is applied and supplied inside a plurality of wells 12 formed in the sample application set 11.
  • the sample application set 11 has a thickness in the Z-axis direction, and a plurality of wells 12 are formed on its uppermost surface.
  • the plurality of wells 12 are recessed portions of the upper surface of the sample application set 11.
  • the plurality of wells 12 may be formed at intervals from each other, for example, in eight rows in the Y-axis direction and twelve rows in the X-axis direction in FIG. 3, for a total of 96 wells.
  • the planar shape of the wells 12 is arbitrary, for example, circular.
  • FIG. 4 is a schematic diagram showing the center and dimensions of each coating liquid supplied in each step of the manufacturing method of cell tissue of the first embodiment.
  • the coating liquid in each of the figures after FIG. 4 shows a shape viewed from the Z direction in a plane.
  • a coating liquid having a circular shape in a plane view is supplied.
  • the coating liquid may be a slightly deformed shape from a perfect circle, or an elliptical planar shape slightly deviated to one side.
  • the coating liquid may be a polygonal planar shape (or a planar shape approximating these polygons), such as an octagon or a dodecagon, which is different from both a circle and an ellipse.
  • the dimensions of the coating liquid described below mean the maximum dimension from the center (centroid) to the outer edge. If the planar shape of the coating liquid is circular, the dimensions mean r 1n as the radius in (A) of FIG. 4, and if it is elliptical, the dimensions mean r 1n as the major axis in (A) of FIG. 4.
  • N first coating liquids are supplied to one well 12 selected from the multiple wells 12 of the sample coating set 11.
  • N is a natural number equal to or greater than 1, and at least one first coating liquid AA shown in (A) is supplied.
  • one of the multiple first coating liquids AA is a liquid supplied continuously in time by one coating mechanism.
  • First coating liquids AA supplied by one coating mechanism in a time-disconnected manner are considered to be separate from each other.
  • first coating liquids AA supplied by different coating mechanisms at the same time are considered to be separate from each other.
  • at least one of them contains cells to be cultured. Therefore, cells to be cultured are arranged in the well 12 by the supply of the first coating liquid AA.
  • the dimension of the first coating liquid AA is defined as a first dimension r1n (1 ⁇ n ⁇ N). That is, the first dimension of the first of N first coating liquids AA is represented by r11 , and the first dimension of the second is represented by r12 .
  • FIG. 5 is a schematic diagram showing the arrangement relationship of two first coating liquids.
  • N is a natural number of 2 or more
  • the distance between the centers (centroids) of the two first coating liquids AA is d n,n+1 .
  • the arrangement relationship of the two first coating liquids may be such that they do not overlap each other as shown in (A) in FIG. 5, that one is completely contained inside the other as shown in (B), or that they partially overlap as shown in (C).
  • (A) includes the case where the two are circumscribed to each other.
  • B) includes the case where one is inscribed to the other.
  • the second coating liquid BB (see (C) in FIG. 4) is supplied into the well 12 in M pieces (M ⁇ 1, a natural number) so as to cover at least one of the N first coating liquids AA from above in the Z-axis direction.
  • FIG. 6 is a schematic diagram showing the relationship between the center, dimensions, and position of the first coating liquid and the first virtual curve covering it.
  • the first virtual curve A′ is a virtual figure (for example, a circle) used to determine the dimensions of one second coating liquid BB that overlaps with the first coating liquid AA.
  • the virtual curve may not be a curve (it may be a straight line), but in the following, such cases will also be referred to as a virtual curve.
  • One or more first coating liquids AA that overlap with one second coating liquid BB are selected from the N first coating liquids AA. From the respective centers (centroids) of the one or more first coating liquids AA, the centroids of the first coating liquids AA are determined as a first centroid G1 of the first virtual curve A'.
  • each of the N first coating liquids AA determines the centroid of each first coating liquid AA.
  • the centroid refers to the point at which the coating liquid is balanced by using that position as a fulcrum. For example, if the first coating liquid AA is circular or elliptical, with a uniform weight, its centroid will be equal to the center.
  • the position coordinates of the center of the first first coating liquid AA are (x 1 , y 1 ), and similarly, the center of the Nth first coating liquid AA is (x N , y N ).
  • This center position (center coordinates) is equal to the coordinates of the centroid of the first coating liquid AA when the first coating liquid AA is circular or elliptical.
  • N ⁇ 4 the N-gon formed by connecting the centers is divided into (N ⁇ 2) triangles, and the area s n of each triangle is multiplied by the centroid coordinate gx n (gy n ) of the triangle, the sum is calculated, and the sum is divided by the total area of the N-gon. That is,
  • the first virtual dimension r 1v of the first virtual curve A' is obtained so as to cover all of the first coating liquid AA.
  • the arrangement of the multiple first coating liquids AA within a single first virtual curve A' may be any of (A), (B), and (C) in FIG. 5. That is, the multiple first coating liquids AA covered by the second coating liquid BB (described next) may be separated from each other, may be contained within each other, or may be arranged so as to partially intersect.
  • the second dimension r 2m of the second coating liquid BB is larger than the first virtual dimension r 1v of the first virtual curve A' thus formed.
  • the second dimension of the second coating liquid BB means the maximum dimension from the center (centroid) to the outer edge. This is shown in FIG. 7.
  • FIG. 7 is a schematic diagram showing the relationship between the first virtual curve and the second coating liquid. With reference to FIG. 7 and (C) in FIG. 4, the second coating liquid BB is supplied so as to cover the entire first virtual curve A'. Also, the second coating liquid BB is supplied so as to overlap the entire second coating liquid BB without inscribing the first virtual curve A'.
  • FIG. 8 is a schematic diagram showing a first example of the positional relationship between the first and second coating liquids.
  • the first coating liquid AA may be covered by the second coating liquid BB so as to be completely contained inside the second coating liquid BB without being inscribed therein.
  • the first coating liquid AA may be completely outside the second coating liquid BB without being inscribed or overlapping therewith.
  • the first coating liquid AA is completely covered so as not to be inscribed by another second coating liquid (not shown) present to the left of the second coating liquid BB shown in the figure.
  • the first coating liquid AA and the second coating liquid BB are each selected from one or more. Therefore, if the distance between the center of the n-th first coating liquid AA and the center of the m-th second coating liquid is Dn ,m , then in both cases (A) and (B), the following equation (12) is naturally satisfied: r2m > r1n ... (12) In addition, in the case of (A), (Equation 13) D n,m ⁇ r 2m -r 1n (1) Also, in the case of (B), (Equation 14) D n,m > r 2m + r 1n ... (2) The second coating liquid BB is supplied so that either the above formula (1) or (2) is satisfied.
  • FIG. 9 is a schematic diagram showing a second example of the positional relationship between the first and second coating liquids.
  • the first coating liquid AA may be disposed so as not to be inscribed or circumscribed in the second coating liquid BB.
  • the first coating liquid A1o on the left side and the first coating liquid A2o on the right side are neither inscribed nor circumscribed in the second coating liquids B1o and B2o. Therefore, as shown in FIG. 9, the second coating liquid B1o and the second coating liquid B2o may partially overlap.
  • the formula (1) is established between the first coating liquid A1o and the second coating liquid B1o
  • the formula (2) is established between the first coating liquid A1o and the second coating liquid B2o.
  • the formula (1) is also established between the first coating liquid A2o and the second coating liquid B2o
  • the formula (2) is also established between the first coating liquid A2o and the second coating liquid B1o.
  • FIG. 10 is a schematic diagram showing the arrangement relationship of two second coating liquids.
  • M is a natural number of 2 or more
  • the distance between the centers (centroids) of the two second coating liquids BB is p m,m+1 .
  • the arrangement relationship of the two second coating liquids may be such that they do not overlap each other as shown in (A) in FIG. 10, that one is completely contained inside the other as shown in (B), or that they partially overlap as shown in (C).
  • (A) includes the case where the two are circumscribed to each other.
  • B) includes the case where one is inscribed to the other.
  • FIG. 11 is a schematic diagram showing the relationship between the center, dimensions, and position of the second coating liquid and the second virtual curve covering it. With reference to FIG. 11 and (D) in FIG.
  • the second virtual curve B' is a virtual figure (for example, a circle) used to determine the dimensions of the well 12 to which the second coating liquid BB is to be supplied. From the centers (centroids) of the M second coating liquids BB supplied into the well 12, the centroid of the entire M second coating liquids BB is obtained as the second centroid G2 of the second virtual curve B'.
  • the method for measuring the center position of the second coating liquid BB is the same as that for the first coating liquid AA.
  • the position coordinates of the center of the first second coating liquid BB are (x 1 , y 1 ), and similarly, the center of the Mth second coating liquid BB is (x M , y M ).
  • This center position (center coordinates) is equal to the coordinates of the centroid of the second coating liquid BB when the second coating liquid BB is circular or elliptical.
  • the coordinates are obtained by dividing the M-polygon formed by connecting the centers into (M ⁇ 2) triangles, multiplying the area s m of each triangle by the centroid coordinate gx m (gy m ) of the triangle, adding up the product, and dividing the product by the total area of the M-polygon. That is,
  • the second virtual dimension r 2v of the second virtual curve B' is obtained so as to cover all of the M second coating liquids BB.
  • the arrangement of the multiple second coating liquids BB within the second virtual curve B' may be any of (A), (B), and (C) in FIG. 10. That is, the multiple second coating liquids BB supplied to the well 12 (described next) may be separated from each other, may be contained within one another, or may be arranged so as to partially intersect.
  • the third dimension r3 of the well 12 is larger than the second virtual dimension r2v of the second virtual curve B' thus formed. This is shown in FIG. 12.
  • FIG. 12 is a schematic diagram showing the relationship between the second virtual curve and the well. With reference to FIG. 12 and (E) in FIG. 4, the well 12 accommodates the second virtual curve B' without inscribing it. For this reason, if the dimension of the well 12 is r3 , then naturally the following equation (22) r3 > r2v (20) holds. Also, in FIG. 12, the distance L3 between the second centroid G2 and the center of the well 12 with the dimension r3 is given by: (Equation 23) L3 ⁇ r3 - r2v ... (21) It is expressed as:
  • N quantities (N ⁇ 1, a natural number) of a first coating liquid AA are supplied into a well 12 as a coating object, and cells are arranged therein.
  • M quantities (M ⁇ 1, a natural number) of a second coating liquid BB are supplied into the well 12 so as to cover at least one of the N quantities of the first coating liquid AA.
  • a first dimension which is the maximum value of the dimension from the center to the outer edge of each of the N first coating liquids AA is r 1n (a natural number where 1 ⁇ n ⁇ N)
  • a second dimension which is the maximum value of the dimension from the center to the outer edge of each of the M second coating liquids BB is r 2m (a natural number where 1 ⁇ m ⁇ M)
  • the distance between the center of an arbitrary first coating liquid AA selected from among the N liquids and having a first dimension of r 1n , and the center of an arbitrary second coating liquid BB selected from among the M liquids and having a second dimension of r 2m is D n,m between an arbitrary first coating liquid AA and an arbitrary second coating liquid BB is expressed as (Equation 24): D n,m ⁇ r 2m -r 1n (1) and (Equation 25) D n,m > r 2m + r 1n ... (2)
  • the signal is supplied so that either of the following
  • the first coating liquid AA is contained without being in contact with the second coating liquid BB, as shown in (A) of FIG. 8. Therefore, the collapse of the first coating liquid AA can be suppressed when the second coating liquid BB is dropped onto the first coating liquid AA.
  • formula (2) is satisfied, the first coating liquid AA does not come into contact with the second coating liquid BB at all, as shown in (B) of FIG. 8. Therefore, the collapse of the first coating liquid AA can be suppressed when the second coating liquid BB is dropped onto the first coating liquid AA. Therefore, by supplying the coating liquid with high positional accuracy while taking into account the dimensions and center position, it is possible to provide a method for producing cell tissue that can be evaluated on a small scale with high throughput and with high reproducibility and accuracy.
  • the second dimension r2m is larger than a reference dimension equal to or larger than a first virtual dimension r1v, which is the maximum dimension of a first virtual curve A' determined to cover all of the one or more first coating liquids AA and inscribe in any one of the one or more first coating liquids AA, with a first centroid G1 of one or more first coating liquids AA overlapping with the second coating liquid BB among the N first coating liquids AA as a center .
  • the first centroid G1 is determined from the central position of each of the one or more first coating liquids AA overlapping with the second coating liquid BB.
  • the maximum dimension at which any one of the first coating liquids AA and the first virtual curve A' can be inscribed is the first virtual dimension r1v , if the second dimension r2m is made larger than that, the second coating liquid BB that overlaps with the first coating liquid AA will not be inscribed in the first coating liquid AA, and therefore, collapse of the first coating liquid AA can be suppressed when the second coating liquid BB is dropped onto the first coating liquid AA.
  • the third dimension r3 of the well 12 is larger than a reference dimension equal to or larger than a second virtual dimension r2v , which is the maximum dimension of a second virtual curve B' that is determined to be centered at the second centroid G2 of the M second coating liquids BB, cover all of the M second coating liquids BB, and inscribe any of the M second coating liquids.
  • the second centroid G2 is determined from the central positions of each of the M second coating liquids BB.
  • the maximum dimension at which any of the second coating liquids BB and the second virtual curve B' can be inscribed is the second virtual dimension r2v , if the third dimension r3 is made larger than that, the second coating liquid BB will not adhere to the inner wall surface of the well 12. This makes it possible to suppress the collapse of the first coating liquid AA when the second coating liquid BB is dropped onto the first coating liquid AA.
  • the step of supplying the second coating liquid BB may use any one selected from the group consisting of a coating needle method, an inkjet method, a dispenser method, a laser print method, and a pipette method. If the viscosity of the second coating liquid BB is high (it is a high-viscosity solution), the coating needle method may be used. However, by using an inkjet method, a dispenser method, a laser print method, or a pipette method other than the coating needle method for the second coating liquid BB, the second coating liquid BB is supplied onto the first coating liquid AA by dripping. This makes it possible to suppress problems such as the first coating liquid AA getting mixed in and contaminating a coating material container that stores the second coating liquid BB in a coating device having a coating needle.
  • At least one of the M second coating liquids BB may be supplied by a first method selected from the group consisting of a coating needle method, an inkjet method, a dispenser method, a laser print method, and a pipette method, and another second coating liquid BB different from the at least one of the M second coating liquids BB may be supplied by a second method different from the first method.
  • the first coating liquid AA may be supplied by the coating needle method
  • the second coating liquid BB may be supplied by the inkjet method.
  • the first coating liquid AA may be supplied by the coating needle method
  • the second coating liquid BB may be supplied by the dispenser method. In this way, the efficiency of the coating step and the quality of the coating liquid formed can be improved by using an appropriate preferred method depending on the properties and order of the coating liquids to be applied.
  • the application device of Figures 1 and 2 When a method other than the application needle method is used, it is preferable to combine the application device of Figures 1 and 2 with an inkjet method device, dispenser method device, or the like, depending on the method.
  • the first application liquid AA when the first application liquid AA is supplied by the application needle method and the second application liquid BB is supplied by the dispenser method, the first application liquid AA may be supplied by the application device of Figures 1 and 2, and the second application liquid BB may be supplied by a different application device for the dispenser method.
  • the application device of Figures 1 and 2 has only a single application mechanism 4, but by using an application device having multiple application mechanisms 4, all of the multiple application liquids may be supplied by different application mechanisms 4 within a single application device.
  • the first coating liquid AA contains cells to be cultured and a gelling agent
  • the second coating liquid BB is a high-viscosity solution.
  • a high-viscosity solution is a solution with a higher viscosity than the gelling agent. This provides the effect of improving the shape retention of the first coating liquid when the second coating liquid BB and the culture medium are added to the well 12.
  • the effect of being able to construct a cellular tissue including a collagen gel scaffold is obtained.
  • the first coating liquid AA a mixture of cells and a collagen solution as a gelling agent is prepared and supplied into the well 12.
  • the second coating liquid BB methylcellulose, which has a higher viscosity than the collagen solution, is used and supplied so as to cover the first coating liquid AA. Furthermore, the culture medium is dropped onto the first coating liquid AA and the second coating liquid BB in the well 12, thereby forming the cellular tissue. In the cellular tissue, the first coating liquid AA and the second coating liquid BB are immersed in the culture medium.
  • the cell tissue is cultured, for example, in an environment of 37° C. and 5% CO 2. This causes the collagen solution to gel, and the applied tissue is fixed in the well 12.
  • the high viscosity solution as the second application liquid BB can be removed by replacing the culture medium.
  • the second example of the cell tissue formed is as follows.
  • the first coating liquid AA contains the cells to be cultured
  • the second coating liquid BB contains a gelling agent.
  • the gelling agent gels at the interface between the first coating liquid AA and the second coating liquid BB, and the effect of forming a scaffold-free cell tissue in the gel dome is obtained.
  • the first coating liquid AA is a mixture of cells, thrombin, which is a gelling initiator, and sodium hyaluronate, which is a high-viscosity polymer.
  • the second coating liquid BB which contains fibrinogen, which is a gelling agent, is dripped so as to cover the first coating liquid AA.
  • the interface between the first coating liquid AA and the second coating liquid BB is gelled, and a so-called gel dome is formed.
  • the second coating liquid BB is gelled as a whole.
  • the cells in the first coating liquid AA are precipitated in the gel dome, forming the cell tissue.
  • the culture medium is dripped in the same manner as in the first example, and the culture is performed under the same environment as in the first example.
  • a gelling agent is used to form cell tissue from the cells supplied into the well 12. However, if the first application liquid AA contains fibrinogen, a gel dome will not be formed.
  • At least one of the first coating liquid AA and the second coating liquid BB contains at least one of collagen and fibrinogen as a gelling agent.
  • at least one of the first coating liquid AA and the second coating liquid BB may contain one of collagen and fibrinogen as a gelling agent.
  • at least one of the first coating liquid AA and the second coating liquid BB may contain both collagen and fibrinogen as gelling agents.
  • the first coating liquid AA and the second coating liquid BB may be supplied into the well 12 by a two-liquid mixing method.
  • the two-liquid mixing method means that both the first coating liquid and the second coating liquid contain at least one of a gelling agent and a gelling initiator. That is, the first coating liquid AA may contain cells and a gelling initiator, and the second coating liquid BB may contain a gelling agent.
  • a scaffold-free cell tissue can be constructed.
  • the first coating liquid AA may contain cells and a gelling agent
  • the second coating liquid BB may contain a gelling initiator.
  • a cell tissue containing a scaffold can be constructed.
  • both the first coating liquid AA and the second coating liquid BB may contain a gelling agent.
  • the gelling agent is not particularly limited, and in addition to the gelling agents used in the two-liquid mixing method, temperature-responsive gelling agents can be used.
  • the gelling agent may include proteins, sugar chains, natural polymers, synthetic polymers, peptides, etc. More specifically, the gelling agent may include collagen, fibrinogen, gelatin, GelMA, sodium alginate, polyamino acids, polyethylene glycol, thermoresponsive polymers, Matrigel, etc.
  • cell tissues can be constructed by combining multiple types of gelling agents appropriately selected from the above.
  • a gelling initiator that corresponds to the gelling agent must be included.
  • the gelling agent is fibrinogen, thrombin is used as the gelling initiator.
  • the gelling agent is sodium alginate, calcium chloride is used as the gelling initiator.
  • the high-viscosity solution having a higher viscosity than the gelling agent is not particularly limited.
  • the high-viscosity solution is any one selected from the group consisting of sodium alginate, sodium hyaluronate, methylcellulose, hydroxybutylcellulose, and cellulose nanofiber.
  • a combination of multiple types of the above high-viscosity solutions may be used.
  • the cells that can be used in this embodiment are not particularly limited.
  • the cells may be any one selected from the group consisting of cardiomyocytes, nerve cells, hepatocytes, cancer cells, vascular endothelial cells, and fibroblasts. More specifically, the cells may be any one of various primary cells such as cardiomyocytes, nerve cells, hepatocytes, vascular endothelial cells, fibroblasts, epidermal cells, smooth muscle cells, digestive tract cells, kidney cells, and pancreatic cells, differentiated cells derived from stem cells (such as iPS and ES), and various cancer cells.
  • stem cells such as iPS and ES
  • a mixture of multiple cells may be cultured, regardless of whether the cells are disease-like or normal-like.
  • a third cell and a fourth cell different from the third cell may be co-cultured in one of the N first application liquids AA.
  • the third cell may be the same as or different from the first cell described below.
  • the fourth cell may be the same as or different from the second cell described below.
  • the volume ratio of cells contained in the first coating liquid AA is defined as the cell volume concentration of the first coating liquid AA.
  • the cell volume concentration indicates the ratio of the volume of cells to the total volume of the first coating liquid AA.
  • the cell volume concentration of the first coating liquid AA is preferably 0.001 vol% or more and 50 vol% or less.
  • the cell volume concentration is expressed as a volume percentage (unit: vol%).
  • 50 vol% is equivalent to 50 v/v%.
  • 50 vol/% is also equivalent to a volume ratio of 50%.
  • the volume percentage may be expressed in the unit v/v%.
  • the volume percentage may be expressed in the unit % in this specification.
  • the numerical value of the volume percentage expressed in the unit vol% is equal to the numerical value of the volume percentage expressed in the unit v/v% and the numerical value of the percentage expressed in the unit %.
  • the cell volume concentration of the first coating liquid AA is 1 vol% or more and 30 vol% or less.
  • the cell volume concentration of the first coating liquid AA is 25 vol%.
  • N is a natural number greater than or equal to 2
  • at least one of the N first application liquids AA supplied into the well 12 contains cells, and at least one other first application liquid AA different from the at least one may not contain cells but may contain at least one selected from the group consisting of cytokines, drugs, ECM and added factors.
  • the first application liquid AA may contain at least one selected from the group consisting of cytokines, ECM and added factors, or a mixture of two or more of these.
  • the cytokines, drugs, ECM and added factors act on the cells contained in at least one first application liquid AA.
  • first coating liquids AA when a plurality of first coating liquids AA are applied in one well 12, different types of cells may be contained among the first coating liquids AA, for example, one of them may be a cardiomyocyte and the other may be a cancer cell. Alternatively, one of the plurality of first coating liquids AA may contain a cardiomyocyte, and the other may contain the same type of cardiomyocyte.
  • the cells contained in at least one of the N first coating liquids AA supplied into the well 12 are first cells, and the cells contained in at least one other first coating liquid AA different from the at least one are second cells.
  • the second cells may be the same type as the first cells or different types.
  • the first coating liquid AA containing the first cells or the second cells may contain additives such as extracellular matrix components such as fibronectin, gelatin, collagen, laminin, elastin, and matrigel, and cell growth factors such as fibroblast growth factor and platelet-derived growth factor. This provides an environment in which the cells contained in the first coating liquid AA can stably adhere and grow.
  • the medium is not particularly limited. Any medium selected from the group consisting of DMEM, RPMI1640, M199, and MEM can be used as the medium. Various additives can be added to the medium, including, but not limited to, antibiotics, FBS, and various growth factors.
  • the medium and the second coating liquid BB can be the same solution. However, if the same solution is used for the medium and the second coating liquid BB, the medium must be a high viscosity solution.
  • the position where the culture medium is dropped is preferably a position that overlaps with the center of the second coating liquid BB in a plan view, but is not limited to this.
  • the culture medium may be the same solution as the second coating liquid BB. However, the solution for forming the culture medium is supplied independently of the second coating liquid BB so as to immerse the second coating liquid BB.
  • a thickening polysaccharide may be mixed into at least one of the first coating liquid AA and the second coating liquid BB.
  • the thickening polysaccharide may be any one selected from the group consisting of sodium alginate, sodium hyaluronate, methyl cellulose, hydroxybutyl cellulose, and cellulose nanofiber.
  • This section describes an example in which only one first coating liquid AA is formed and the gelling agent is contained in the first coating liquid AA.
  • the first coating liquid a mixture of iPS cardiomyocytes (iCell cardiomyocyte2) and cardiac fibroblasts in a number ratio of 4:1 mixed with a 1.05 mg/mL collagen solution was used.
  • the cell volume concentration of the 4:1 number ratio of iPS cardiomyocytes and cardiac fibroblasts was 25 vol%.
  • the second coating liquid a solution of PBS(+) containing calcium ions and magnesium ions and 0.75 g of methylcellulose dissolved in 100 mL of solution was used.
  • the medium iCell seeding medium was used.
  • the coating object one well 12 included in a sample coating set 11 (see Figure 3, referred to as a 96-well plate) having 96 wells 12 was used.
  • the first coating liquid was supplied to the center of a circular well with a diameter of 6.5 mm of the 96-well plate using a coating needle with a needle diameter of 700 ⁇ m.
  • a 4.5 mm diameter droplet of the second coating liquid was dispensed directly above the center of the first coating liquid using a dispenser.
  • 100 ⁇ L of culture medium was dispensed onto the first and second coating liquids using a pipette.
  • Fig. 13 is a phase contrast microscope image in Example 1. Referring to Fig. 13, a structure was formed without the first coating liquid collapsing.
  • the values of the above parameters in this example are as follows, and all of the above formulas are satisfied.
  • L1 0 mm
  • L2 0 mm
  • Dn,m 0 mm
  • r3 6.5 mm
  • L3 0 mm.
  • This section describes an example in which only one first coating liquid AA is formed and the gelling agent is contained in the second coating liquid BB.
  • the first coating solution a mixture of 3 mg/mL sodium hyaluronate solution and 260 unit/mL thrombin solution was used, which contained iPS cardiomyocytes (iCell cardiomyocyte2) and cardiac fibroblasts in a number ratio of 4:1.
  • the second coating solution a 5 mg/mL sodium hyaluronate solution was mixed with a 5 mg/mL fibrinogen solution to prepare a PBS(+) solution containing calcium ions and magnesium ions.
  • iCell seeding medium was used as the medium.
  • One well of a 96-well plate was used as the coating object.
  • the first coating solution was supplied to the center of a circular well with a diameter of 6.5 mm of the 96-well plate using a coating needle with a needle diameter of 700 ⁇ m.
  • the second coating liquid with a diameter of 3.5 mm was dropped directly above the center of the first coating liquid using a dispenser. Furthermore, 100 ⁇ L of medium was dropped onto the first coating liquid and the second coating liquid using a pipette.
  • Fig. 14 is a phase contrast microscope image in Example 2. Referring to Fig. 14, a structure was formed without the first coating liquid collapsing.
  • the values of the above parameters in this example are as follows, and all of the above formulas are satisfied.
  • L1 0 mm
  • L2 0 mm
  • D1,1 0 mm
  • r3 6.5 mm
  • L3 0 mm.
  • the first coating solution used was a mixture of iPS cardiomyocytes (iCell cardiomyocyte2) and cardiac fibroblasts in a number ratio of 4:1, mixed with a 1.05 mg/mL collagen solution.
  • the cell volume concentration of the iPS cardiomyocytes and cardiac fibroblasts in a number ratio of 4:1 was 25 vol%.
  • the second coating solution used was a PBS(+) solution containing calcium ions and magnesium ions, with 0.75 g of methylcellulose dissolved in 100 mL of solution.
  • iCell seeding medium was used as the medium.
  • the coating target was one well of a 96-well plate.
  • FIG. 15 is a schematic plan view showing the position and dimensions of each coating liquid supplied in Example 3.
  • FIG. 16 is a schematic plan view showing the center position and center-to-center distance of each coating liquid, which is the same as FIG. 15.
  • the first first coating liquid A1o was supplied to a position 1.0 mm off the center of a circular well with a diameter of 6.5 mm in a 96-well plate using a coating needle with a needle diameter of 1000 ⁇ m.
  • the second first coating liquid A2o was supplied to a position 2.0 mm off the center of the first coating liquid A1o using a coating needle with a needle diameter of 700 ⁇ m.
  • the second coating liquid BB with a diameter of 4.5 mm was dropped by a dispenser with the center at a position (the outer edge of the first coating liquid A1o) that was 0.5 mm off the center of the first coating liquid A1o on the straight line connecting the centers of the two first coating liquids A1o and A2o. Furthermore, 100 ⁇ L of culture medium was dripped onto the first and second coating solutions using a pipette.
  • Fig. 17 is a phase contrast microscope image in Example 3.
  • the two first coating liquids were able to form a structure without collapsing.
  • the values of the above parameters in this example are as follows, and all of the above formulas are satisfied.
  • r11 0.7 mm
  • r12 1.0 mm
  • d1,1 2.0 mm
  • r1v 1.425 mm
  • L2 0 mm
  • D1,1 0 mm
  • P1,1 0 mm
  • r3 6.5 mm
  • L3 0.5 mm.
  • This section describes an example in which multiple (three or more) first coating liquids AA are formed, one second coating liquid BB is formed, and a gelling agent is contained in the second coating liquid BB.
  • the first coating solution used was a mixture of iPS cardiomyocytes (iCell cardiomyocyte2) and cardiac fibroblasts in a number ratio of 4:1, 3 mg/mL sodium hyaluronate solution, and 260 unit/mL thrombin solution.
  • the cell volume concentration of the 4:1 number ratio of iPS cardiomyocytes and cardiac fibroblasts was 10 vol%.
  • the second coating solution was a mixture of 5 mg/mL sodium hyaluronate solution and 5 mg/mL fibrinogen solution, and a PBS(+) solution containing calcium ions and magnesium ions was prepared.
  • iCell seeding medium was used as the medium.
  • One well of a 96-well plate was used as the coating target.
  • Figure 18 is a phase contrast microscope image in Example 4. Referring to Figure 18, all of the circles in the figure indicate the outer edges of the first coating liquid. That is, the photograph in the upper left of Figure 18 shows a cell tissue to which four droplets of the first coating liquid have been applied, spaced apart so as not to touch each other. The photograph in the upper right of Figure 18 shows a cell tissue to which five droplets of the first coating liquid have been applied in a straight line so as to be partially in contact. The photograph in the lower left of Figure 18 shows a cell tissue to which eight droplets of the first coating liquid have been arranged to form the perimeter of a square so as to be partially in contact. The photograph in the lower right of Figure 18 shows a cell tissue to which six droplets of the first coating liquid have been arranged to form a solid triangle so as to be partially in contact.
  • the first coating liquid was able to form a structure without collapsing.
  • the dimension r 1n of the first coating liquid is 0.2 mm.
  • the value of d n,m is 0.3 mm only in the upper left photograph, and 0.15 mm in all of the photographs other than the upper left photograph.
  • This section describes an example in which only the second coating liquid BB is applied to the inside of the well 12 while changing the application position.
  • Figure 19 is a schematic diagram and photograph showing the expected application position and the actual application position when the application position of the second application liquid in the well is changed.
  • the top of Figure 19 is a schematic diagram showing the expected application position.
  • the middle of Figure 19 is a schematic diagram showing the actual application position.
  • the bottom of Figure 19 is an actual photograph of the schematic diagram shown in the middle of Figure 19.
  • As the second application liquid a PBS(+) solution containing calcium ions and magnesium ions, in which 0.75 g of methylcellulose is dissolved in 100 mL of solution, was used.
  • the dimension of the second application liquid is 4.5 mm, and the diameter of the well is 6.5 mm.
  • the position and shape of the second coating liquid may be different from the expected one, and it may be positioned at a position offset from the first coating liquid. This increases the possibility that the first coating liquid will collapse. Therefore, it is required to supply the second coating liquid so that it does not come into contact with the inner wall of the well.
  • the technical field of this embodiment relates to a method for producing myocardial tissue from cardiomyocytes using a coating device (bioprinter) (a method for producing myocardial tissue). Specifically, this embodiment relates to the production of myocardial tissue using the same coating device as the coating device of the first embodiment.
  • FIG. 20 is a schematic diagram showing the state before the first coating liquid is applied in the second embodiment.
  • the tip of the coating needle 24 constituting the bioprinter is immersed in the first coating liquid AA (first bioink), and the first coating liquid AA is attached to the tip of the coating needle 24.
  • FIG. 21 is a schematic diagram showing the composition of the first coating liquid in the second embodiment.
  • the first coating liquid AA is obtained by mixing the cells C to be cultured, collagen as a gelling agent, and the first solvent m.
  • the cells C in FIG. 21 include C1 and C2, which will be described later.
  • FIG. 22 is a schematic diagram showing the process of applying the first coating liquid in the second embodiment. Referring to FIG.
  • FIG. 22 is a schematic diagram showing the state after the first coating liquid has been applied in embodiment 2. Referring to Figure 23, the coating needle 24 then moves upward as indicated by arrow M2. In this manner, the first coating liquid AA is applied to a container such as the well 12 using a so-called pin-type bioprinter.
  • FIG. 24 is a schematic diagram showing the step of supplying the second coating liquid in the second embodiment.
  • FIG. 25 is a schematic diagram showing the state inside the well after the step of FIG. 24 has been performed.
  • the second coating liquid BB (second bio-ink) is supplied into the well 12 so as to cover the first coating liquid AA applied inside the well 12.
  • the second coating liquid BB may be dropped, for example, by a dispenser, but the method of supplying the second coating liquid BB is not limited to this.
  • the second coating liquid BB may be supplied by any method selected from the group consisting of a pin method, an inkjet method, a dispenser method, and manually using a pipette.
  • FIG. 26 is a schematic diagram showing the step of supplying a culture medium in the second embodiment.
  • the culture medium M is supplied into the well 12.
  • the culture medium M is supplied so as to be immersed in and covered by the first coating liquid AA and the second coating liquid BB.
  • the method of dropping the culture medium M is not particularly limited.
  • the culture medium M may be supplied by any method selected from the group consisting of a pin method, an inkjet method, a dispenser method, and manually using a pipette.
  • the culture medium M may be supplied by a dispenser or a micropump.
  • FIG. 27 is a schematic diagram showing the state of cells in the first coating liquid before culture.
  • FIG. 28 is a schematic diagram showing the state of cells in the first coating liquid after culture.
  • the cells C in the first coating liquid AA before culture contain cardiomyocytes C1 and cardiac fibroblasts C2.
  • the ratio of the number of cardiomyocytes C1 in the cells C is 75% or more, and preferably 80% or more.
  • the ratio of the number of cardiac fibroblasts C2 in the cells C is 20% or less.
  • the number ratio (%) in the cells C is 80 ⁇ C1 ⁇ 100 (or 75 ⁇ C1 ⁇ 100) and 0 ⁇ C2 ⁇ 20.
  • the cell volume concentration of the cardiomyocytes C1 and cardiac fibroblasts C2 contained in the first coating solution AA is preferably 0.001 vol% or more and 50 vol% or less. Of these, the cell volume concentration is more preferably 1 vol% or more and 30 vol% or less. Of these, the cell volume concentration is most preferably 25 vol%.
  • cell tissue can be stably formed by culturing the cells, as in Example 6 described below. By culturing, both the cardiomyocytes C1 and cardiac fibroblasts C2 grow from the state shown in FIG. 27 to the state shown in FIG. 28, and myocardial tissue is formed.
  • the first coating liquid AA (first biotank) is a mixture of cells C, collagen, and a first solvent m as described above.
  • the first coating liquid AA may be a mixture of the above liquid to which various additives have been added.
  • the cardiomyocytes C1 contained in the cells C may be at least one of normal cardiomyocytes and disease-derived cardiomyocytes.
  • the normal cardiomyocytes are, for example, human iPS cell-derived cardiomyocytes
  • the disease-derived cardiomyocytes are, for example, disease-derived human iPS cell-derived cardiomyocytes.
  • the cardiomyocytes C1 may be either primary cardiomyocytes or stem cell-derived cardiomyocytes.
  • the primary cardiomyocytes may be derived from various animal species such as humans, mice, and rats. Examples of stem cell-derived cardiomyocytes include (above) iPS cell-derived cardiomyocytes, ES cell-derived cardiomyocytes, and direct reprogramming cell-derived cardiomyocytes.
  • disease-derived cardiomyocytes include cells collected from animal species with a disease, cells produced by inducing differentiation of stem cells produced from cells collected from animal species with a disease, and cells that have been genetically modified.
  • the cells C may also be mixed with cardiac fibroblasts C2, vascular endothelial cells, nerve cells, and the like.
  • the above-mentioned cells other than cardiomyocytes may be derived from animals or diseases. By using these, the cell tissue obtained by culture can be made to more closely resemble myocardial tissue.
  • Collagen types I, II, III, and V are used as the gelling agent.
  • collagen type I it is preferable to use collagen type I, and it is particularly preferable to use collagen type I-A. This is because collagen type I-A is most abundant in the heart.
  • the concentration of collagen type I-A is 0.01 mg/mL or more and 2.1 mg/mL or less, and of these, 0.1 mg/mL or more and 2.1 mg/mL or less is preferable. Furthermore, of these, 0.5 mg/mL or more and 2.1 mg/mL or less is particularly preferable.
  • the collagen gel in the first coating liquid AA may be mixed with fibrin gel, matrigel, gelatin, GelMA (gelatin methacryloyl), etc. in any ratio.
  • the material of the first solvent m in the first coating liquid AA is not particularly limited. However, it is preferable to use a culture medium or a buffer solution as the first solvent m.
  • the culture medium as the first solvent m is preferably at least one selected from the group consisting of DMEM, DMEM/Ham F-12, ⁇ MEM, RPMI1640 (for example, culture medium manufactured by Lonza, Thermo, Nacalai Tesque, and Wako.
  • Model number is, for example, 30264-85 (Nacalai Tesque, Inc.)), William's medium, M199, commercially available culture medium for cardiomyocytes (iCell cardiomyocyte thawing medium, iCell cardiomyocyte maintenance medium, etc.), and commercially available culture medium for fibroblasts (FGM-3). It is also preferable to use at least one selected from the group consisting of PBS (+/-), Tris buffer solution, and Tyrode's buffer solution as the buffer solution for the first solvent m. As the first solvent m, a mixture of two or more selected from at least any of the various media and buffer solutions described above may be used, and in this case, the ratio at which the two or more types are mixed may be arbitrary.
  • the various additives in the first coating liquid AA are not particularly limited. However, thickeners, cell growth factors, proteins, drugs, etc. may be added as various additives in the first coating liquid AA.
  • the thickener in the first coating liquid AA may include one or more substances selected from the group consisting of cellulose, cellulose nanofiber, chitin, chitosan, chitin nanofiber, chitosan nanofiber, methylcellulose, carboxymethylcellulose, hydroxybutylcellulose, sodium alginate, sodium hyaluronate, polyethylene glycol, gellan gum, carrageenan, pectin, xanthan gum, gelatin, agarose, and polyvinyl alcohol.
  • the cell growth factors, proteins, drugs, etc., as various additives in the first coating solution AA may be selected from the group consisting of FGF (fibroblast growth factor), B27 (registered trademark) supplement, triiodothyronine, dexamethasone, insulin-like growth factor (IGF-I), insulin, nerve growth factor (NGF), isoproterenol, epidermal growth factor (EGF), hepatocyte growth factor (HGF), laminin, fibronectin, collagen, gelatin, sodium hyaluronate, proteoglycan, nidogen, Rho kinase inhibitor (Rock Inhibitor), and Matrigel.
  • FGF fibroblast growth factor
  • B27 registered trademark
  • triiodothyronine dexamethasone
  • IGF-I insulin-like growth factor
  • NGF nerve growth factor
  • isoproterenol insulin-like growth factor
  • EGF epidermal growth factor
  • HGF hepatocyte growth factor
  • the second coating liquid BB (second biotank) is composed of a mixed solution of a thickener and a second solvent.
  • the second coating liquid BB may be the above mixed solution to which various additives are added.
  • the thickener of the second coating liquid BB may contain one or more substances selected from the group consisting of cellulose, cellulose nanofiber, chitin, chitosan, chitin nanofiber, chitosan nanofiber, methylcellulose, carboxymethylcellulose, hydroxybutylcellulose, sodium alginate, sodium hyaluronate, polyethylene glycol, gellan gum, carrageenan, pectin, xanthan gum, gelatin, agarose, and polyvinyl alcohol.
  • the material of the second solvent is not particularly limited. However, it is preferable to use a culture medium or a buffer solution as the solvent.
  • the culture medium and buffer solution as the second solvent may be selected from the same group of materials as the culture medium and buffer solution as the first solvent m described above, and may be mixed and used in the same ratio as the first solvent m, so the description will not be repeated.
  • the various additives to the second solvent may be selected from the same group of materials as the various additives to the first coating liquid AA (first solvent m) described above, so the description will not be repeated.
  • the medium M supplied after the second coating liquid BB may be selected from the same material group as the medium used for the first solvent m and the second solvent, and may be mixed and used in the same ratio as the first solvent m and the second solvent, so the description will not be repeated.
  • the various additives added to the medium M may be selected from the same material group as the various additives to the first coating liquid AA and the second coating liquid BB, so the description will not be repeated.
  • the medium M is RPMI1640
  • the additive factor (additive) to the medium M is preferably one or more selected from the group consisting of B27 (registered trademark) supplement, triiodothyronine, dexamethasone, and insulin-like growth factor (all four of these). This allows the stable formation of cell tissue by culturing cells, as in Example 6 described below.
  • WO 2019/088224 discloses a technique for applying a cell-containing solution using a pin-type bioprinter.
  • the application solution may unintentionally gel and clog inside the application solution container before the application process is performed. This phenomenon is particularly likely to occur in application solutions in which cardiomyocytes are dispersed in fibrinogen. Therefore, JP 2020-141599 A discloses a technique for suppressing unintentional gelation of the application solution before the application process is performed. Specifically, in JP 2020-141599 A, cells, a gelation initiator, and a thickener are applied as a first application solution, and a gelling agent is dripped as a second application solution to form a so-called gel dome.
  • JP 2020-141599 A proposes a technology to suppress the problem of the first coating liquid unintentionally gelling before application, but because the coating liquid is supplied by a so-called two-liquid mixing method, a gel dome exists as the outer shell of the coating liquid in which the cell tissue is contained after application. This makes it difficult for drugs and proteins, etc. supplied from outside the coating liquid to pass through the mesh of the gel dome as the outer shell. As a result, there is a problem that drugs and proteins, etc. are less likely to penetrate and act on the cell tissue. Furthermore, JP 2020-141599 A does not disclose an example of using the protein most abundant in the adult heart as a gelling agent. For this reason, the myocardial tissue constructed by this method may not be able to reproduce the high functionality of the adult heart.
  • the present disclosure has been made in consideration of the above problems.
  • the purpose of the present disclosure is to provide a method for producing myocardial tissue that is capable of forming highly functional myocardial tissue that is closer to an adult heart, without impeding the penetration and action of drugs and the like from the outside into cell tissue.
  • the tip of the coating needle 24 included in the coating device is immersed in the first coating liquid AA, so that the first coating liquid AA is attached to the tip of the coating needle 24.
  • the first coating liquid AA attached to the tip of the coating needle 24 is applied to the inside of the well 12, which is the object to be coated.
  • the first coating liquid AA is a mixed solution of the cells to be cultured, collagen as a gelling agent, and the first solvent m.
  • the method for producing myocardial tissue disclosed herein does not use the so-called two-liquid mixing method, and therefore does not form a gel dome, which occurs in the two-liquid mixing method. This makes it difficult for the gel dome to inhibit the penetration and action of drugs and proteins into the cell tissue. This makes it possible to construct cell tissue that allows drugs and proteins to easily penetrate and act.
  • Collagen particularly collagen type I-A
  • Collagen is the protein that is most abundant in adult hearts. Therefore, by including collagen as a gelling agent in the first coating liquid AA, it is possible to construct highly functional myocardial tissue that is closer to the adult heart.
  • collagen will not gel unless the second coating liquid BB and culture medium (RPMI 1640, etc.) are supplied and the coating liquid is controlled to a temperature at which it can gel (for example, 37°C). This makes it possible to prevent unintended gelation of the first coating liquid AA before the supply of the coating liquid is completed.
  • a temperature at which it can gel for example, 37°C
  • the cells C contained in the first coating liquid AA were iPS cardiomyocytes (iCell Cardiomyocyte2) as cardiomyocytes C1 and normal human cardiac fibroblasts as cardiac fibroblasts C2, with a number ratio of 4:1.
  • the cell volume concentration of the cells C in the first coating liquid AA was 25 vol%.
  • the gelling agent contained in the first coating solution AA was collagen, type I-A collagen with a concentration of 0.7 mg/mL.
  • the first solvent m contained in the first coating solution AA was RPMI 1640.
  • the second coating liquid BB was a mixed solution of a thickener and a second solvent. Specifically, methylcellulose was used as a thickener to improve the retention of the second coating liquid BB.
  • the second solvent was phosphate buffered saline (+) (PBS(+)).
  • the medium supplied after the second coating solution BB was RPMI 1640.
  • the factors added to the medium were B27 (registered trademark) supplement, 75 nM triiodothyronine, 1 ⁇ M dexamethasone, and 100 ng/mL insulin-like growth factor (IGF-I).
  • a coating needle 24 was used in which the cross section cut perpendicular to the extension direction in the region where the needle diameter is constant except for the tip is a circle with a diameter of 1000 ⁇ m.
  • the first coating liquid AA was applied to one well 12 of a 96-well plate (see FIG. 3).
  • the second coating liquid BB was dripped using a dispenser so as to cover the first coating liquid AA.
  • the medium RPMI 1640 added to the well 12 was replaced once every 2-3 days, and the cells were cultured for 6 to 7 days to form cell tissue, i.e., myocardial tissue.
  • the number of days of culture is preferably 6 days or more.
  • the number of days of culture may be 2 weeks or more.
  • Figure 29 shows a phase contrast microscope image (left) taken immediately after the coating solution was supplied to the well, and a phase contrast microscope image (right) taken after six days of culture.
  • the coating diameter of 56 pieces of the second coating solution BB was 1095 ⁇ 42 ⁇ m. In this way, myocardial tissue was stably formed.
  • Ca2 + Transient Measurement After the myocardial tissue was stained after 7 days of culture, Ca 2+ transient measurements were performed in order to investigate the function of myocardial contraction. The measurements were performed on the myocardial tissue after culture shown in FIG. 29 of this embodiment (hereinafter referred to as "coated tissue") and the plate-cultured tissue as a comparative example (hereinafter referred to as "2D tissue").
  • the myocardial tissue of the comparative example was a mixture of iPS cardiomyocytes (iCell Cardiomyocyte2) and normal human cardiac fibroblasts in a ratio of 4:1.
  • the myocardial tissue of the comparative example was seeded with 50,000 cells per well and plate-cultured in the same medium as the coated tissue obtained with the same coating device as in the second embodiment. The results are shown in Table 1 below.
  • the beat rate (BPM) of the obtained myocardial tissue was about twice that of the 2D tissue in the coated tissue.
  • the peak width of the fluorescence intensity of the Ca 2+ transient waveform detected by the contraction of the myocardial tissue was about half that of the 2D tissue in the coated tissue.
  • the peak width of the fluorescence intensity means the time width of the Ca 2+ transient waveform shown in the following Figure 30. From this, it was confirmed that the coated tissue was a more stable tissue than the 2D tissue.
  • Fig. 30 is a graph showing the Ca2 + transient waveform in the coated tissue experiment.
  • the horizontal axis of Fig. 30 indicates the elapsed time, and the vertical axis indicates the detected fluorescence intensity. Referring to Fig. 30, it can be seen that the peak width of the fluorescence intensity in the coated tissue is about 945 msec.
  • the fluorescence intensity of the Ca2 + transient waveform is indicated by AMP, and the peak width of the fluorescence intensity is indicated by PWD90.
  • Isoproterenol a ⁇ -adrenergic receptor agonist
  • Isoproterenol generally increases the pulsation rate and contractile force of cardiomyocytes.
  • the contractile force of cardiomyocytes correlates with the fluorescence intensity (AMP) of Ca2+ transient measurements.
  • AMP fluorescence intensity
  • Figure 31 is a graph showing the change in BPM when isoproterenol was added to both the coated tissue and the 2D tissue.
  • the horizontal axis of Figure 31 shows the amount of isoproterenol added in nM, and the vertical axis shows the change in BPM in %.
  • the BPM value increased with increasing isoproterenol concentration in both the coated tissue and the 2D tissue.
  • Figure 32 is a graph showing the change in AMP when isoproterenol was added to each of the coated tissue and the 2D tissue.
  • the horizontal axis of Figure 32 shows the amount of isoproterenol added in nM, and the vertical axis shows the change in AMP in %.
  • the AMP value increased depending on the concentration of isoproterenol in the coated tissue, but did not increase much in the 2D tissue even when the concentration of isoproterenol was increased. This result indicates the possibility that cardiomyocytes are more mature, i.e. more functional, in the coated tissue compared to the 2D tissue.
  • the culture vessel may be referred to as a "plate,” and each well formed therein as a “vessel.”
  • the method includes a step of supplying a first coating material A1 as a coating material to a first container 112A-1 included in a plate 111 having a plurality of containers 112A capable of receiving a coating material using a first coating mechanism 104.
  • the method includes a step of moving a stage 101 on which the plate 111 is placed.
  • the method includes a step of supplying a first coating material A1 to a second container 112A-2 adjacent to the first container 112A-1 of the plate 111 using the first coating mechanism 104, and at the same time supplying a second coating material B as a coating material to the first container 112A-1 using a second coating mechanism 105 adjacent to the first coating mechanism 104. This will be described in detail below.
  • FIG. 33 is a schematic front view showing a first example of a coating device according to the third embodiment.
  • the coating device 100 includes a needle coating mechanism 104 and a dripping mechanism 105 as a coating mechanism 107 capable of supplying the coating material to be coated.
  • “coating” includes both the supply of the coating material using a coating needle, which will be described later, and the supply of the coating material by dripping. For this reason, the former supply using a coating needle may be referred to as “needle coating” in this specification.
  • the 33 includes one needle coating mechanism 104 and two dripping mechanisms 105.
  • the two dripping mechanisms 105 are dripping mechanisms 105-1 and 105-2, and are arranged at an interval in the X direction.
  • the needle coating mechanism 104 and the dripping mechanism 105 are arranged at an interval in the X direction. The mutual X-direction interval between them is constant and does not change.
  • the X-axis stage 101 (stage) is movable along the X direction, which is a horizontal direction.
  • the Y-axis stage 102 is movable along the Y direction, which is a horizontal direction.
  • a guide portion is provided on the underside of the X-axis stage 101 or the Y-axis stage 102.
  • the guide portion is slidably connected to a guide rail (not shown).
  • the upper surface of the X-axis stage 101 is a mounting surface on which the plate 111 can be placed.
  • the X-axis stage 101 is placed on the Y-axis stage 102, and the plate 111 is placed on the X-axis stage 101.
  • the X-axis stage 101 may be placed on the Y-axis stage 102, and the plate 111 may be placed on the X-axis stage 101.
  • the needle application mechanism 104, the dripping mechanism 105, and the observation optical system 106 are connected to a member that can move in the Z direction, such as a Z-axis table.
  • the needle application mechanism 104, the dripping mechanism 105, and the observation optical system 106 are held in the coating device 100 so that they can move in the Z direction.
  • the observation optical system 106 observes and measures the position on the plate 111 where the coating material is to be applied.
  • the observation optical system 106 may be equipped with a CCD camera that converts the observed image into an electrical signal.
  • the observation optical system 106 may observe the plate 111 and the like using visible light.
  • the observation of the plate 111 and the like is not limited to visible light, and may be performed using infrared rays, X-rays, ultrasound, etc., and depending on the material of the plate 111, the plate 111 can be observed using magnetism.
  • the plate 111 observed by a means other than visible light does not need to be transparent or semi-transparent, and may be opaque.
  • FIG 34 is a schematic front view showing a second example of a coating device relating to embodiment 3.
  • coating device 100 relating to the second example has a basically similar configuration to coating device 100 relating to the first example, so the same components are given the same reference numerals and descriptions will not be repeated as long as the functions etc. are the same.
  • Coating device 100 in Figure 34 has three needle coating mechanisms 104 and two drip mechanisms 105.
  • the three needle coating mechanisms 104 are needle coating mechanism 104-1, needle coating mechanism 104-2, and needle coating mechanism 104-3. These three needle coating mechanisms are arranged at intervals in the X direction, but the mutual X-directional intervals are constant and do not change.
  • the X-direction distance between adjacent mechanisms (between the centers of the through holes) of the three needle coating mechanisms 104-1 to 104-3 and the two drip mechanisms 105-1 and 105-2 may all be equal to the first distance D1 between the containers 112A described below.
  • a coating device 100 having only a single needle coating mechanism 104 as shown in FIG. 33 is used.
  • FIG. 35 is a schematic diagram showing the needle coating mechanism of the coating device shown in FIG. 33.
  • the needle coating mechanism 104 of this embodiment (the needle coating mechanism 104-1 and needle coating mechanism 104-2 in FIG. 34 are the same) mainly includes a servo motor 41, a cam 43, a bearing 44 held in contact with the cam surface of the cam 43, a cam connecting plate 45, a movable part 46, a movable base 35 that holds the coating needle holder 20, and a coating material container 21.
  • the coating needle holder 20 is detachable from the movable base 35.
  • the movable base 35 as a base body detachably holds the coating needle holder 20.
  • FIG. 36 is a schematic perspective view of a plate.
  • the coating material as a liquid material is coated and supplied inside a plurality of containers 112A formed on plate 111.
  • Plate 111 has a thickness in the Z-axis direction, and a plurality of containers 112A are formed on its uppermost surface.
  • the plurality of containers 112A are recessed portions of the upper surface of plate 111.
  • the plurality of containers 112A may be formed at intervals from one another, for example, in eight rows in the Y-axis direction and twelve rows in the X-axis direction of FIG. 36, for a total of 96 containers.
  • the planar shape of containers 112A is arbitrary, for example, circular.
  • FIG. 37 is a flowchart showing a coating method according to embodiment 3. Referring to Fig. 37, first, the Z axis of coating mechanism 107 is lowered (S1).
  • FIG. 38 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be installed in a coating device used in the coating method of the third embodiment.
  • the needle coating mechanism 104 first coating mechanism
  • the dripping mechanism 105 second coating mechanism with a first distance D1 between them in the X direction are lowered.
  • the needle coating mechanism 104 includes a first coating material container 21A-1 containing a first coating material A1.
  • the dripping mechanism 105 (dripping mechanism 105-1 in FIG. 33) includes a second coating material container 21B containing a second coating material B.
  • a through hole 25 is formed in the bottom of each of these coating material containers 21 for supplying the coating material. The distance between the centers of these through holes 25 is the first distance D1 between the needle coating mechanism 104 and the dripping mechanism 105.
  • the first coating needle 24A-1 is lowered (S2).
  • the first coating needle 24A-1 is lowered by operating the Z-axis stage 103 (see FIG. 33) included in the coating device 100. This allows the stage to be moved with simple control.
  • Figure 39 is a schematic cross-sectional view showing the first step of the coating method of embodiment 3.
  • the first coating needle 24A-1 which is the coating needle 24 (see Figure 35) included in the needle coating mechanism 104, descends in the direction of the arrow in the figure.
  • At least the tip (lowest part) of the first coating needle 24A-1 is contained within the first coating material container 21A-1.
  • the first coating material container 21A-1 contains the first coating material A1 as the coating material. Therefore, at least the tip of the first coating needle 24A-1 is immersed in the first coating material A1.
  • a number of containers 112A are formed on a plate 111 (see FIG. 36) installed in a coating device 100 (see FIG. 33).
  • the containers 112A are shown as container 112A-1, container 112A-2 adjacent to the left of container 112A-1 in the X direction, and container 112A-3 adjacent to the left of container 112A-2 in the X direction.
  • the first distance between these containers in the X direction is equal to the first distance D1 between the needle coating mechanism 104 and the dripping mechanism 105.
  • the first distance D1 is the distance between the centers of the containers 112A adjacent to each other in the X direction.
  • container 112A-1 is placed at a position where it overlaps with the first coating needle 24A-1 in a plan view.
  • the first coating material A1 (first coating material) is applied by the first coating needle 24A-1 (part of the first coating mechanism) (S3). Specifically, as shown in FIG. 39, the first coating needle 24A-1 descends to supply the first coating material A1 attached to the tip of the first coating needle 24A-1 into the container 112A-1 (first container).
  • FIG. 40 is a schematic cross-sectional view showing the second step of the coating method of embodiment 3.
  • step (S5) a simultaneous pre-supply movement step is performed in which, for example, the X-axis stage 101 on which the plate 111 is placed is moved, for example, to the right in the X direction, as indicated by arrow M.
  • This causes the X-axis stage 101 and the plate 111 thereon to move, for example, to the right in the X direction.
  • the Y-axis stage 102 may also be moved in the Y direction. In this case, the Y-axis stage 102, the X-axis stage 101, and the plate 111 move in the Y direction.
  • the distance that the X-axis stage 101 moves to the right in the X-direction is equal to the first distance D1.
  • the distance between the centers of the needle coating mechanism 104 and the through-hole 25 of the dripping mechanism 105-1 is equal to the first distance D1. Therefore, the first distance D1 between the needle coating mechanism 104 and the dripping mechanism 105-1 is equal to the amount of movement of the X-axis stage 101.
  • the container 112A-2 is placed at a position that overlaps with the first coating needle 24A-1 in a plan view.
  • the container 112A-1 is placed at a position that overlaps with the through-hole 25 of the dripping mechanism 105 in a plan view.
  • steps (S2) to (S4) are repeated as in FIG. 39. That is, the first coating material A1 attached to the tip of the first coating needle 24A-1 is supplied into the container 112A-2 (second container). At the same time, a simultaneous supply step is performed (S21) in which the second coating material B is supplied dripping from the through-hole 25 of the second coating material container 21B into the container 112A-1 (first container). The second coating material B is supplied so as to cover the first coating material A1.
  • FIG. 41 is a schematic cross-sectional view showing the third step of the coating method of embodiment 3.
  • the first coating material A1 has not yet been supplied to the container 112A-3. Therefore, proceeding from (S100) toward N, the plate 111 moves again by the first distance D1 as shown by the arrow M in the figure (S5).
  • the container 112A-3 is placed at a position where it overlaps with the first coating needle 24A-1 in a plan view. Also, in FIG.
  • the container 112A-2 is placed at a position where it overlaps with the through hole 25 of the dripping mechanism 105 in a plan view. Thereafter, similar to FIG. 39 and FIG. 40, the first coating material A1 attached to the tip of the first coating needle 24A-1 is supplied into the container 112A-3. At the same time, a simultaneous supply process is performed in which the second coating material B is dropped from the through hole 25 of the second coating material container 21B into the container 112A-2, as in FIG. 40 (S21). The simultaneous supply process in FIG. 41 is repeated until there are no more containers 112A aligned in a row in the X direction to which the first coating material A1 should be supplied.
  • the X-axis stage 101 and plate 111 above it in FIG. 33 also move in the Y direction. Thereafter, the same supply as above may be performed on the containers 112A aligned adjacent to each other in a row in the Y direction.
  • container 112A-2 is the first container
  • container 112A-1 is the second container
  • container 112A-3 is the first container
  • container 112A-2 is the second container.
  • FIG. 42 is a schematic cross-sectional view showing the fourth step of the coating method of the third embodiment.
  • the first coating material A1 has been applied to all of the containers 112A-1 to 112A-3.
  • the plate 111 moves again by the first distance D1 as shown by the arrow M in the figure (S5).
  • the container 112A-3 is placed at a position where it overlaps with the through hole 25 of the dripping mechanism 105 in plan view.
  • the second coating material B is dripped from the through hole 25 of the second coating material container 21B into the container 112A-3 (second container) (S21). Then, the Z axis of the coating mechanism 107 rises (S22), and the process ends.
  • the culture medium is supplied from the drip mechanism 105-2 into each container 112A.
  • the culture medium occupies most of the inside of the container 112A and is supplied so that the first coating material A1 and the second coating material B are immersed in the culture medium.
  • the first coating material A1 is a mixture of cells to be cultured and thrombin, which is a gelation initiator.
  • the first coating material A1 is a mixture of, for example, iPS cell-derived cardiomyocytes and human cardiac fibroblasts in a number ratio of 3:1 at a concentration of 8 ⁇ 10 ⁇ 7 cells/mL.
  • the concentration of thrombin is, for example, 800 units/mL.
  • the first coating material A1 may also be mixed with 13 mg/mL sodium hyaluronate.
  • the first coating material A1 may also be mixed with a PBS solution.
  • the viscosity of the first coating material finally obtained may be, for example, 1.5 ⁇ 10 ⁇ 4 mPa ⁇ s.
  • the second coating material B mainly contains fibrinogen, which is a gelling agent, but may also be mixed with sodium hyaluronate and a PBS solution.
  • the second coating material B is mixed with 10 mg/mL fibrinogen and 0.5 mg/mL sodium hyaluronate. These allow the culture of the cells C contained in the first coating material A1.
  • FIG. 43 is a schematic diagram showing an example of a method for producing a three-dimensional cell tissue.
  • a first coating material A (same as the first coating material A1) is prepared in which cells C to be cultured are suspended in a PBS solution containing thrombin or the like. This is placed, for example, in a coating material container 21 of a coating device as shown in (C), and is supplied onto a substrate 112B or the like by a coating needle 24.
  • a second coating material B is supplied manually, for example, by a micropipette 18, so as to cover the first coating material A.
  • Fig. 44 is a photograph of the three-dimensional cellular tissue obtained by the preparation method of Fig. 43. Referring to Fig.
  • the obtained three-dimensional cellular tissue has a thickness of about 50 ⁇ m to 200 ⁇ m, and the cells are densely layered. Furthermore, as a result of staining of cell nuclei, actin, and troponin, it was confirmed that cells were alive in the three-dimensional cellular tissue of Fig. 44, and the expression of actin and troponin, which are characteristic of cardiomyocytes, was confirmed.
  • FIG. 45 is a schematic diagram showing the result of cell tissue being produced in one container included in a plate.
  • FIG. 45 in a conventional cell seeding method using a micropipette, cells C spread throughout the entire container 112A.
  • the first coating material A and the second coating material B can be supplied within a range of 1.0 mm in diameter of the container 112A having a diameter of 6.5 mm, and cell tissue can be produced.
  • multiple cell tissues such as (B) can be formed in the container 112A at intervals from each other.
  • FIG. 45 is a schematic diagram showing the result of cell tissue being produced in one container included in a plate.
  • FIG. 46 is a schematic diagram showing an example of multiple cell tissues formed in a single container as shown in (C) in FIG. 45.
  • a tissue containing multiple (e.g., eight) cells C can be obtained along the circumferential direction in a circular container 112A as shown in (A).
  • a tissue containing multiple (e.g., four) cells C can be obtained at each corner of a square container 112A as shown in (B).
  • (C) it is possible to obtain even more cell tissue.
  • Figure 47 shows an example of cell tissue preparation using an applicator needle with a diameter of 330 ⁇ m.
  • (A) shows the state immediately after application
  • (B) shows the state six days after application.
  • cell tissue can be prepared with spaces between each other as shown in the photograph.
  • a step of supplying a first coating material A1 as a coating material to a first container included in a plate 111 having a plurality of containers 112A capable of receiving a coating material using a first coating mechanism (needle coating mechanism 104) is performed.
  • a simultaneous supply pre-movement step (S5) in which a stage (for example, X-axis stage 101) on which the plate 111 is placed moves is performed.
  • the method includes a simultaneous supply step (S3, S21) in which the first coating material A1 is supplied to a second container arranged at an interval from the first container of the plate 111 using the first coating mechanism (needle coating mechanism 104), and at the same time, a second coating material B as a coating material is supplied to the first container (for example, container 112A-1) using a second coating mechanism (dropping mechanism 105-1) arranged at an interval from the first coating mechanism (needle coating mechanism 104).
  • the simultaneous supply pre-movement step and the simultaneous supply step are performed, the containers corresponding to the first container and the second container are changed along the movement direction (X direction) of the stage. That is, both the first container and the second container move in sequence from container 112A-1 to container 112A-2 to container 112A-3.
  • FIG. 48 is a schematic diagram for comparing the timing of application in the application method of the third embodiment with the application method of the comparative example.
  • the X-axis stage 101 moves, the dripping mechanism 105 is placed directly above the container 112A-1, and the second application material B is supplied to the container 112A-1.
  • the X-axis stage 101 moves again, the needle application mechanism 104 is placed directly above the container 112A-2, and the first application material A1 is supplied to the container 112A-2.
  • the movement process and the supply process are repeated in the same manner as above.
  • the second application material B is supplied to the container 112A-2, the XY stage 101 moves, the first application material A1 is supplied to the container 112A-3, the XY stage 101 moves, and the second application material B is supplied to the container 112A-3.
  • the time T1 required to finish supplying coating material to all containers 112A will be longer.
  • the method of this embodiment is applied, for example, after the first coating material A1 is supplied to the container 112A-1, the drip mechanism 105-1 is installed directly above the container 112A-1, and the needle coating mechanism 104 is installed directly above the container 112A-2 by the simultaneous supply pre-movement process. Then, the second coating material B is simultaneously supplied to the container 112A-1, and the first coating material A1 is simultaneously supplied to the container 112A-2. After that, the simultaneous supply pre-movement process and the simultaneous supply process are repeated, and the first coating material A1 and the second coating material B are repeatedly supplied simultaneously. In this way, simultaneous supply to multiple locations is possible in most coating processes.
  • the time T2 required to finish supplying the coating material to all the containers 112A can be significantly shortened compared to the time T1 in the comparative example.
  • the coating time of the first coating material A1 is 1 second
  • the drip time of the second coating material B is 1 second
  • the movement time of the XY stage 101 is 2 seconds.
  • the time required to complete supplying the coating material to the five containers 112A is 30 seconds in the comparative example, whereas it is 18 seconds in this embodiment.
  • the second coating material B is supplied to cover the first coating material A.
  • the distance between the first coating mechanism (needle coating mechanism 104) and the second coating mechanism (dripping mechanism 105-1) (the distance between the centers of the respective through holes 25: first distance D1) is equal to a natural number n times (n ⁇ 1) the first distance D1 (between the centers in the X direction) between the first container (for example, container 112A-1) of the plate 111 and the adjacent container adjacent to the first container 112A-1.
  • the needle coating mechanism 104 supplies the first coating material A1 to container 112A-1
  • the XY stage 101 is moved by the first distance D1, thereby enabling a simultaneous supply process to containers 112A-2 and 112A-1. This shortens the overall time required to prepare cell tissue, enabling high-throughput production of cell tissue.
  • the coating device 100 includes a coating mechanism 107 capable of supplying the coating material to be applied (first coating material A1 and second coating material B), and a stage (XY stage 101) on which a plate 111 to which the coating material is to be supplied can be placed.
  • the coating mechanism 107 includes a first coating mechanism (needle coating mechanism 104) and a second coating mechanism (dripping mechanism 105-1) adjacent to the first coating mechanism.
  • first distance D1 between the first coating mechanism (needle coating mechanism 104) and the second coating mechanism (dripping mechanism 105-1) is equal to the amount of movement of the XY stage 101 between the first coating by the coating mechanism 107 (when the first coating material A1 is applied to the container 112A-1 as described above) and the second coating (when the first coating material A1 is applied to the container 112A-2 and the second coating material B is dripped into the container 112A-1 as described above).
  • First distance D1 Because of these characteristics, as described above, after the needle coating mechanism 104 supplies the first coating material A1 to the container 112A-1, the XY stage 101 is moved by the first distance D1, enabling a simultaneous supply process to the containers 112A-2 and 112A-1.
  • FIG. 49 is a schematic front view showing an example of a coating apparatus according to the fourth embodiment.
  • the coating apparatus 100 according to the fourth embodiment has a configuration basically similar to that of the coating apparatus 100 according to each example of the third embodiment, so that the same components are given the same reference numerals, and the description will not be repeated as long as the functions and the like are the same.
  • the coating apparatus 100 in FIG. 49 has two needle coating mechanisms 104 and two dripping mechanisms 105.
  • the two needle coating mechanisms 104 are a needle coating mechanism 104-1 and a needle coating mechanism 104-2.
  • Each of these two needle coating mechanisms 104 and the two dripping mechanisms 105 is arranged at an interval in the X direction, but the mutual X direction interval is constant and does not change.
  • the X direction interval is equal to the X direction interval in the coating apparatus 100 in FIG. 34. Such a configuration may be used.
  • FIG. 50 is a flow chart showing the coating method of embodiment 4. Referring to FIG. 50, first the Z axis of the coating mechanism is lowered (S1).
  • FIG. 51 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be placed in a coating device used in the coating method of embodiment 4. With reference to FIG. 51, the same matters as those in FIG. 38 will not be described again.
  • step (S1) the needle coating mechanism 104-1 (first coating mechanism), the needle coating mechanism 104-2 (another first coating mechanism), and the dripping mechanism 105 (second coating mechanism) in FIG. 51 are lowered.
  • the needle coating mechanism 104-2 is disposed between the needle coating mechanism 104-1 and the dripping mechanism 105 (105-1).
  • the needle coating mechanism 104-2 includes another first coating material container 21A-2 containing another first coating material A2, and the tip of the second coating needle 24A-2 is immersed in the other first coating material A2 in the initial state.
  • the other first coating material A2 may be different in the type of cells suspended from the first coating material A1 in the first coating material container 21A-1.
  • the bottom of the other first coating material container 21A-2 has through holes 25 formed therein for supplying the coating material. The distance between the centers of the through holes 25 of each coating mechanism is the distance between each coating mechanism.
  • FIG. 52 is a schematic cross-sectional view showing the first step of the application method of embodiment 4. Referring to FIG. 50 and FIG. 52, steps (S2) to (S4) are basically the same as the steps in FIG. 39.
  • Fig. 53 is a schematic cross-sectional view showing the second step of the coating method of embodiment 4.
  • step (S5) is also basically the same as the step in Fig. 40. That is, the XY stage 101 on which the plate 111 is placed is moved by D1 to the right in the X direction, as indicated by the arrow M in the figure.
  • the distance between needle application mechanism 104-1 (the center of through hole 25) and needle application mechanism 104-2 (the center of through hole 25) is equal to the sum D1 + D2 of the first distance D1 between container 112A-1 and container 112A-2 and the second distance D2 between first application material A1 (first application material) and other first application material A2 (other first application material) supplied into container 112A-1.
  • container 112A-2 is positioned at a position where it overlaps with first application needle 24A-1 in a plan view
  • container 112A-1 is positioned at a position where it overlaps with second application needle 24A-2 in a plan view. Also, in FIG.
  • the distance between the needle application mechanism 104-1 (the center of the through hole 25) and the dripping mechanism 105 (the center of the through hole 25) is equal to the sum of twice the first distance D1 and 1/2 the second distance D2, that is, 2D1 + D2/2.
  • the second distance D2 is the coating distance between the centers of the first coating material A1 and the other first coating material A2, for example, in the X direction.
  • the second distance D2 also indicates the relative position in the X direction of the other first coating material A2 with respect to the center position in the X direction of the first coating material A1. Therefore, for example, in FIG. 53, the other first coating material A2 is to the right (positive side in the X direction) of the first coating material A1, so the value of D2 is positive. However, for example, if the other first coating material A2 is to the left (negative side in the X direction) of the first coating material A1, which is not shown, the value of D2 will be negative.
  • steps (S2) to (S4) are repeated in the same manner as in FIG. 52. That is, the first coating material A1 is supplied into the container 112A-2. At the same time, another first coating material A2 is supplied into the container 112A-1. At this time, the second coating needle 24A-2 operates in the same manner as the first coating needle 24A-1. That is, the second coating needle 24A-2 descends in the direction of the arrow in the figure (S11). The second coating needle 24A-2 applies the other first coating material A2 (S12). Thereafter, the second coating needle 24A-2 rises (S13).
  • the coating distance between the other first coating material A2 supplied into the container 112A-1 and the first coating material A1 supplied into the container 112A-1 is D2.
  • FIG. 54 is a schematic cross-sectional view showing the third step of the coating method of embodiment 4.
  • the simultaneous pre-supply movement step (S5) is performed again, in which the XY stage 101 on which the plate 111 is placed is moved by D1 to the right in the X direction, as indicated by the arrow M in the figure.
  • the container 112A-3 is positioned so as to overlap with the first coating needle 24A-1 in a planar manner.
  • the container 112A-2 is positioned so as to overlap with the second coating needle 24A-2 in a planar manner.
  • the container 112A-1 is positioned so as to overlap with the through-hole 25 of the dripping mechanism 105 in a planar manner.
  • steps (S2) to (S4) are repeated as in FIG. 52 and FIG. 53. That is, the first coating material A1 is supplied into the container 112A-3 (first container). At the same time, steps (S11) to (S13) are repeated as in FIG. 53. That is, another first coating material A2 is supplied into the container 112A-2 (third container). Furthermore, at the same time, step (S21) is performed as in FIG. 40. That is, the second coating material B is dripped into the container 112A-1 (second container). As shown in FIG. 54, the other first coating material A2 is supplied adjacent to the first coating material A1 already supplied in the container 112A-2 with a distance D2 between them. The second coating material B is supplied so as to cover the first coating material A1 and the other first coating material A2 in the container 112A-1.
  • FIG. 55 is a schematic cross-sectional view showing the fourth step of the coating method of the fourth embodiment.
  • the first coating material A1 has been applied to all of the containers 112A-1 to 112A-3. Then, the process proceeds from (S100) toward Y, and the plate 111 moves by the first distance D1 again as indicated by the arrow M in the figure (S5).
  • the container 112A-3 is placed at a position where it overlaps with the second coating needle 24A-2 in a plan view.
  • the container 112A-2 is placed at a position where it overlaps with the through-hole 25 of the dripping mechanism 105 in a plan view.
  • steps (S11) to (S13) are then repeated as in FIG. 53 and FIG. 54. That is, another first coating material A2 is supplied into container 112A-3.
  • step (S21) is repeated as in FIG. 54. That is, second coating material B is dripped into container 112A-2.
  • Figure 56 is a schematic cross-sectional view showing the fifth step of the coating method of embodiment 4.
  • plate 111 again moves by first distance D1 as indicated by arrow M in the figure (S5).
  • container 112A-3 is positioned so that it overlaps with through-hole 25 of dripping mechanism 105 in plan view.
  • second coating material B is dripped into container 112A-3 (S21), as in Figures 54 and 55.
  • the Z axis of coating mechanism 107 rises (S22), completing the process.
  • the culture medium is supplied from the drip mechanism 105-2 into each container 112A.
  • the culture medium occupies most of the inside of the container 112A and is supplied so that the first coating material A1 and the second coating material B are immersed in the culture medium.
  • a step of supplying another first coating material A2 as a coating material is performed simultaneously with the first coating material A1 and the second coating material B.
  • the step of supplying the other first coating material A2 is performed by using another first coating mechanism (needle coating mechanism 104-2) arranged between the first coating mechanism (needle coating mechanism 104-1) and the second coating mechanism (dripping mechanism 105) to a third container arranged between the first container and the second container.
  • the other first coating material A2 is supplied to the third container so as to be adjacent to the first coating material A1.
  • the second coating material B is supplied so as to cover the first coating material A1 and the other first coating material A2.
  • FIG. 57 is a schematic diagram for comparing the timing of application in the application method of the fourth embodiment with the application method of the comparative example.
  • the XY stage 101 moves, the needle application mechanism 104-2 is placed directly above the container 112A-1, and another first application material A2 is supplied to the container 112A-1.
  • the XY stage 101 moves again, the drip mechanism 105 is placed directly above the container 112A-1, and the second application material B is supplied to the container 112A-1.
  • the movement process and the supply process are repeated in the same manner as above.
  • the first application material A1 is supplied to the container 112A-2, the XY stage 101 moves, the other first application material A2 is supplied to the container 112A-2, the XY stage 101 moves, and the second application material B is supplied to the container 112A-2.
  • the time T1 required to finish supplying coating material to all containers 112A will be longer.
  • the needle coating mechanism 104-2 is installed directly above the container 112A-1, and the needle coating mechanism 104-1 is installed directly above the container 112A-2 by the simultaneous supply pre-movement process.
  • the other first coating material A2 is simultaneously supplied to the container 112A-1, and the first coating material A1 is simultaneously supplied to the container 112A-2.
  • the simultaneous supply pre-movement process and the simultaneous supply process simultaneously supply the second coating material B to the container 112A-1, the other first coating material A2 to the container 112A-2, and the first coating material A1 to the container 112A-3.
  • the simultaneous supply pre-movement process and the simultaneous supply process are repeated, and the first coating material A1 and the second coating material B are repeatedly supplied simultaneously.
  • the time T2 required to finish supplying the coating material to all of the containers 112A can be significantly shorter than the time T1 in the comparative example.
  • the coating time of the first coating material A1 and the other first coating material A2 is 1 second
  • the drip time of the second coating material B is 1 second
  • the movement time of the XY stage 101 is 2 seconds.
  • the time required to finish supplying the coating material to the five containers 112A is 45 seconds in the comparative example, whereas it is 21 seconds in this embodiment.
  • the distance between the first coating mechanism (needle coating mechanism 104-1) and the other first coating mechanism (needle coating mechanism 104-2) is equal to the sum of a natural number n times (n ⁇ 1) the first distance D1 between the first container on plate 111 and the adjacent container adjacent to the first container, and a second distance D2 between the first coating material supplied into the first container and the other first coating material.
  • the distance between each needle coating mechanism 104 and the dripping mechanism 105 of the coating mechanism 107 is determined (designed) taking into consideration the distance D1 between the containers 112A and the distance D2 in the X direction between the first coating material A1 to be actually coated and the other first coating material A2. Therefore, during the actual operation of Figures 52 to 56, the coating material can be easily coated at the desired position by simply moving the stage of the container 112A by the distance D1 between the containers 112A.
  • FIG. 58 is a flowchart showing a coating method according to a first example of embodiment 5. Referring to Fig. 58, first, the Z axis of coating mechanism 107 is lowered (S1).
  • Figure 59 is a schematic cross-sectional view showing a coating mechanism and a part of a plate to be installed in a coating device used in a coating method according to a first example of embodiment 5.
  • the coating device 100 used in this embodiment is basically the same as the coating device 100 used in embodiment 4. That is, the coating device 100 of this embodiment is equipped with two needle coating mechanisms 104 and two dripping mechanisms 105.
  • the two needle coating mechanisms 104 are needle coating mechanism 104-1 and needle coating mechanism 104-2.
  • the distance in the X direction between these two needle coating mechanisms 104 and the two dripping mechanisms 105 is the same as that in embodiment 4.
  • the distance between needle coating mechanism 104-1 (the center of the through hole 25) and needle coating mechanism 104-2 (the center of the through hole 25) is D1 + D2.
  • the distance between the needle application mechanism 104-1 (the center of the through hole 25) and the dripping mechanism 105 (the center of the through hole 25) is equal to the sum of twice the first distance D1 and 1/2 the second distance D2, that is, 2D1 + D2/2.
  • the distance between a pair of adjacent containers 112A is D1.
  • the coating distance (between the centers in the X direction) between the first coating material A1 and the other first coating material A2 is D3, which is different from D2 in embodiment 4.
  • the coating process is as follows.
  • FIG. 60 is a schematic cross-sectional view showing a first step of a coating method according to a first example of embodiment 5.
  • the first coating material A1 is supplied to container 112A-1, as in FIG. 52.
  • step (S5) the XY stage 101 on which plate 111 is placed is moved by D1 to the right in the X direction, as indicated by arrow M in the figure, as in FIG. 53.
  • steps (S2) to (S4) are performed again, and first coating material A1 is supplied to container 112A-2.
  • FIG. 61 is a schematic cross-sectional view showing the second step of the coating method according to the first example of the fifth embodiment.
  • the plate 111 moves to the right in the X direction by (D2-D3) (S6). This is based on the difference in the distance of the other first coating material A2 between the case where the other first coating material A2 is coated so that the coating interval is D2 as in the fourth embodiment and the case where the other first coating material A2 is coated so that the coating interval is D3 as in this embodiment.
  • the second coating needle 24A-2 descends (S11), the first coating material A2 is coated (S12), and the second coating needle 24A-2 ascends (S13).
  • the third interval D3 is set to a positive value smaller than the second interval D2 of the fourth embodiment, for example, so that the interval in the X direction between the centers becomes the third interval D3.
  • the third distance D3 also indicates the relative position in the X direction of the other first coating material A2 with respect to the central position in the X direction of the first coating material A1. Therefore, for example, in FIG. 61, the third distance D3 is a positive value, but if the other first coating material A2 is to the left (negative side in the X direction) of the first coating material A1 (not shown), the value of D3 will be negative. There are also cases where D3 will be a positive value greater than D2. As described above, the third distance D3 is a value that can be selected arbitrarily. For this reason, the movement direction of the plate 111 is to the right in the X direction in each figure, but there are also cases where it is to the left in the X direction.
  • FIG. 62 is a schematic cross-sectional view showing the third step of the coating method according to the first example of the fifth embodiment.
  • the plate 111 moves (D1-D2+D3) to the right in the X direction (S7). This is for the following reason. It is necessary to supply the first coating material A1 to the same position in the X direction in both the container 112A-2 and the container 112A-3. For this reason, the plate 111 should actually move by D1 between the coating process of the first coating material A1 to the container 112A-2 and the coating process of the first coating material A1 to the container 112A-3. However, since the plate 111 has already moved by (D2-D3) in FIG. 61, it should only move by the difference between these two, D1-(D2-D3).
  • steps (S2) to (S4) and step (S21) are then carried out simultaneously, similar to FIG. 40.
  • This causes the first coating material A1 and the second coating material B to be supplied simultaneously.
  • the first coating material A1 is supplied to the container 112A-3
  • the second coating material B is supplied to the container 112A-1.
  • the second coating material B is supplied so as to cover the first coating material A1 and the other first coating material A2.
  • Figure 63 is a schematic cross-sectional view showing the fourth step of the coating method according to the first example of embodiment 5.
  • the plate 111 moves (D2-D3) to the right in the X direction (S6), and another first coating material A2 is supplied to the container 112A-2 by steps (S11) to (S13).
  • step (S100) the steps of FIG. 62 and FIG. 63 are repeated while the stage moves based on the determination in step (S100) until there are no more containers 112A to which the first application material A1 should be applied.
  • FIG. 64 is a flow chart showing a coating method according to a second example of embodiment 5.
  • the first coating material A1 is supplied, similar to the steps (S1) to (S4) shown at the beginning of FIG. 50 of embodiment 4 and FIG. 52.
  • the first coating material A1 and another first coating material A2 are supplied simultaneously, similar to the subsequent steps (S5), (S2) to (S4), (S11) to (S13) of FIG. 50, and FIG. 53.
  • the plate 111 is moved by a distance D4 (S8), and then the second coating material B is supplied, for example, to the container 112A-1 of FIG. 53 (S21).
  • the second example of FIG. 64 differs from the first example of FIG. 58 to FIG. 63, in which only the other first coating material A2 is supplied at a different timing than the first coating material A1 and the second coating material B.
  • the second coating material B is supplied so as to cover the first coating material (the first coating material A1 and the other first coating material A2).
  • an arbitrary movement amount of the XY stage 101 can be selected in consideration of the third distance D3 between the first coating material A1 to be supplied into the first container and the other first coating material A2 supplied from the other first coating mechanism (needle coating mechanism 104-2). That is, step (S6) in FIG. 58 and (D2-D3) in FIG. 61, and step (S7) in FIG. 58 and (D1-D2+D3) in FIG. 62 are values selected according to the arbitrary distance D3 between the first coating material A1 and the other first coating material A2 in the container 112A.
  • the distance between each needle coating mechanism 104 and the dripping mechanism 105 of the coating mechanism 107 is determined (designed) to be a value D2 that is unrelated to the distance D3 in the X direction between the first coating material A1 and the other first coating material A2 to be actually coated. For this reason, as shown in Figures 58 to 63, only the first coating material A1 and the second coating material B are supplied simultaneously, and the other first coating material A2 needs to be adjusted in position separately, so it is supplied at a different time from the first coating material A1 and the second coating material B.
  • the distance between the first coating material A1 and the other first coating material A2 can be set to any value, such as D3.
  • the second coating material B is supplied to a central position between the first coating material A1 and the other first coating material A2.
  • the term D2/2 in the distance 4D1+D2/2 between the needle coating mechanism 104-1 and the dripping mechanism 105 in the coating mechanism 107 is determined taking this into consideration.
  • the second coating material B is supplied to a position slightly shifted to the right from the center between the first coating material A1 and the other first coating material A2.
  • the central position between the first coating material A1 and the other first coating material A2 is different from that in the fourth embodiment, but this is because the coating mechanism 107 in the fifth embodiment is the same as that in the fourth embodiment.
  • the second coating material B is supplied over a wide area to cover the entire first coating material A, no major problem occurs even if the central position is shifted as shown in FIG. 62.
  • the gap adjustment mechanism may be electric or manual.
  • a slide mechanism that can be fixed to a base plate material while shifting its position with a screw may be used as a manual gap adjustment mechanism.
  • a linear guide rolling guide, sliding guide, etc.
  • a stopper may be used as a manual gap adjustment mechanism.
  • a linear guide or a small electric stage incorporating a ball screw may be used as an electric gap adjustment mechanism.
  • the distance between the first coating mechanism (needle coating mechanism 104-1) and the other first coating mechanism (needle coating mechanism 104-2) is a natural number n times (n ⁇ 1) or more of the first distance D1 between the first container on the plate 111 and the adjacent container adjacent to the first container, and is any value less than the sum of the maximum conceivable value of the third distance D3 and the natural number n times the first distance D1.
  • the maximum conceivable value of the third distance D3 is, for example, the X-direction dimension of each container 112A.
  • Fig. 65 is a plan view showing an aspect of coating materials formed in one container in embodiment 6. Referring to Fig. 65, a first coating material A1, another first coating material A2, and yet another first coating material A3 are coated as first coating materials in a container 112A. Each of these first coating materials is covered with a second coating material B.
  • a three-dimensional cell tissue can be formed in which the first coating material is applied so as to be aligned not only in the X direction but also in the Y direction within one container 112A.
  • the first coating material A1, the other first coating material A2, and the second coating material B are supplied only by the X-direction movement of the XY stage 101 as in the case of embodiments 4 and 3. For this reason, the centers of these coating materials are aligned in a straight line along the X direction.
  • only the other first coating material A3 is applied on the positive side of the Y direction relative to the other coating materials. This is because the other first coating material A3 was supplied when the XY stage 101 was moved in the Y direction relative to when the first coating material A1, etc. were supplied.
  • FIG. 66 is a schematic cross-sectional view showing a first example of a coating mechanism and a part of a plate to be installed in a coating apparatus used in the coating method of the seventh embodiment.
  • the coating mechanism 107 of the coating apparatus 100 in the first example of the seventh embodiment is all the same as the coating mechanism 107 of the coating apparatus 100 shown in FIG. 38.
  • the interval between the containers 112A formed on the plate 111 used is different. Specifically, the container 112A-1 and the container 112A-2 to which the liquid material should be supplied are not adjacent to each other, and one container to which the liquid material is not supplied that is adjacent to the container 112A-1 is disposed between them.
  • the first interval D1 along the X direction between the centers of the adjacent containers is 1/2 of the interval (between the centers of the through holes 25) between the needle coating mechanism 104 and the dripping mechanism 105. That is, the center-to-center distance of the containers in FIG. 66 is smaller than that in FIG. 38. 38, the distance between needle coating mechanism 104 and dripping mechanism 105 is actually D1, and the distance between the centers of containers 112A is D1/2.
  • the former is shown as 2D1 and the latter as D1 (the same applies to Figures 67 and 36 described below).
  • FIG. 67 is a schematic cross-sectional view showing a second example of a coating mechanism and a part of a plate to be installed in a coating device used in the coating method of embodiment 7.
  • the coating mechanism 107 of the coating device 100 in the second example of embodiment 7 is entirely similar to the coating mechanism 107 of the coating device 100 shown in FIG. 51.
  • the container 112A-1 and the container 112A-2 to which the liquid material should be supplied are not adjacent to each other, and there is one container between them to which the liquid material is not supplied.
  • the center-to-center distance of the containers in FIG. 67 is smaller than that in FIG. 51.
  • the distance between the needle coating mechanism 104-1 (the center of the through hole 25) and the needle coating mechanism 104-2 (the center of the through hole 25) is equal to the sum of twice D1 and D2, that is, 2D1+D2.
  • the distance between the needle application mechanism 104-1 (the center of the through hole 25) and the dripping mechanism 105 (the center of the through hole 25) is equal to the sum of four times the first distance D1 and half the second distance D2, that is, 4D1 + D2/2.
  • FIG. 68 is a schematic cross-sectional view showing a third example of a coating mechanism and a part of a plate to be installed in a coating device used in the coating method of embodiment 7.
  • the coating mechanism 107 and plate 111 of the coating device 100 in the third example of embodiment 7 are exactly the same as those shown in FIG. 59.
  • the container 112A-1 and container 112A-2 to which the liquid material should be supplied are not adjacent, and there is one container between them to which the liquid material is not supplied.
  • the center-to-center distance of the containers in FIG. 68 is smaller than that in FIG. 59.
  • the distance D3 between the first coating material A1 and the other first coating material A2 to be applied in each container 112A is arbitrarily determined regardless of the distance between the mechanisms in the coating mechanism 107.
  • the second coating material B is supplied so as to cover the first coating material A.
  • the interval (the interval between the centers of the through holes 25: the first interval D1) between the first container (for example, container 112A-1) of the plate 111 and the first interval D1 (between the centers in the X direction) between the first container 112A-1 and the adjacent container adjacent thereto is equal to a natural number n times (n ⁇ 1).
  • the distance between the first coating mechanism (needle coating mechanism 104-1) and the other first coating mechanism (needle coating mechanism 104-2) is equal to the sum of the natural number n times (n ⁇ 1) the first distance D1 between the first container on the plate 111 and the adjacent container adjacent to the first container, and the second distance D2 between the first coating material supplied into the first container and the other first coating material.
  • n k. Due to such characteristics, it is possible to repeat the simultaneous supply pre-movement process and the simultaneous supply process as described above.
  • the distance between the first coating mechanism (needle coating mechanism 104-1) and the other first coating mechanism (needle coating mechanism 104-2) is a natural number n times (n ⁇ 1) or more of the first distance D1 between the first container on the plate 111 and the adjacent container adjacent to the first container, and is an arbitrary value less than the sum of the maximum conceivable value of the third distance D3 and the natural number n times the first distance D1.
  • the maximum conceivable value of the third distance D3 is, for example, the X-direction dimension of each container 112A. In this way, if the third distance D3 is determined arbitrarily, the movement amount of the XY stage 101 can be determined arbitrarily accordingly, thereby making it possible to create a three-dimensional cell tissue having an arbitrary third distance D3.
  • the first distance D1 between adjacent containers 112A is generally 39 mm for 6 wells, 26 mm for 12 wells, 18 mm for 24 wells, 13 mm for 48 wells, 9 mm for 96 wells, 4.5 mm for 384 wells, and 2.25 mm for 1536 wells.
  • the more wells there are in the plate 111 the smaller the distance D1 becomes. Therefore, if the distance D1 becomes small, the space may be so narrow that it may not be possible to install the needle application mechanism 104 and the dripping mechanism 105 within that space.
  • the width of the container 112A in the X direction is narrower than in other embodiments. For this reason, it may not be possible to apply two coating materials in one container with a distance D2 between them, as in Figure 67. In such cases, it is useful to apply the materials so that the distance is D3, which is smaller than D2, as in Figure 68.
  • the application needle 24 is used to apply the first application material A (A1, A2), and the drip mechanism 105 (air-type or cylinder-type dispenser) is used to drip the second application material B.
  • the first application material A (A1, A2) may be supplied by the drip mechanism
  • the second application material B may be supplied by the application needle 24.
  • at least one of the first application material A and the second application material B may be supplied by an inkjet device or a micropump.
  • An inkjet device is capable of fine dripping and has excellent high-speed performance.
  • a micropump is inexpensive and is excellent at dripping large amounts.
  • application using the application needle 24 can eliminate nozzle clogging, which is a concern when using an inkjet device, and is applicable to a wide variety of liquid materials. Furthermore, the application needle 24 allows fine application. Furthermore, a dispenser is applicable to a wider variety of liquid materials than an inkjet device, and is suitable for dripping relatively large amounts. As described above, it is preferable to take advantage of the characteristics of various liquid material supply devices and use them appropriately or in combination. In this way, high-quality cell tissue can be produced efficiently.
  • the Z-axis stage when coating in the container 112A where the measurement was performed, it is preferable to adjust the Z-axis stage to keep the distance between the culture surface and the tip of the coating needle 24 constant.
  • the measurement of the Z-direction distance between the culture surface and the tip of the coating needle 24 may be performed by a laser or infrared light, or may be performed by a stereo microscope or a phase-contrast microscope.
  • a device that outputs a laser or infrared light, a stereo microscope, a phase-contrast microscope, or the like may be incorporated in the coating device 100.
  • cell tissue containing cells is used as each coating material.
  • this is not limiting, and for example, general biological materials or chemical materials may be used as each coating material.
  • the type of cells contained in the first coating material A1 is a mixture of iPS cell-derived cardiomyocytes and human cardiac fibroblasts in a number ratio of 3:1. However, other cells may also be used.
  • the other cells are also coated at multiple locations on the flat culture surface of each container 112A using the coating device 100. This reduces the total number of cells, and creates cell tissue that exists independently and has little variation in size in a simple process (see FIG. 45(C)).
  • the combination of the gelling initiator contained in the first coating material A (first coating material A1, A2; the same applies below) and the gelling agent contained in the second coating material B may also be calcium chloride and sodium alginate, calcium chloride and carrageenan, alcohols, and tamarind seed gum.
  • the first coating material A may contain a gelling agent
  • the second coating material B may contain a gelling initiator, inversely to the above.
  • the first coating material A1 (or first coating material A2; the same applies below) contains the cells to be cultured and a gelation initiator, and the second coating material B contains a gelling agent.
  • the first coating material A1 may contain cells and a gelling agent
  • the second coating material B may contain a gelling initiator. If this is done as in the alternative example, a solid gel in which the cells are embedded is formed in a short period of time. This results in high shape stability, and makes it possible to create cell tissue that is closer to the desired shape (particularly the desired planar shape).
  • a so-called two-liquid mixed gelling agent may be used as the first coating material A1.
  • a two-liquid mixed gelling agent means, for example, a liquid agent that is gelled by mixing fibrinogen, a gelling agent, with thrombin, a gelling initiator.
  • a temperature-dependent or light-curing type may be used as the first coating material A1.
  • Temperature-dependent gelling agents include collagen, gelatin, gellan gum, agarose, and chitosan.
  • Light-curing gelling agents include photocrosslinked gelatin. The type of gelling agent used in the coating material is appropriately selected according to the characteristics of the cells and the coating material.
  • the second coating material B does not need to be used.
  • a material that exhibits biocompatibility such as thickening polysaccharides such as methylcellulose, sodium hyaluronate, and sodium alginate, may be used as the second coating material B. This ensures shape retention after coating.
  • the method includes the steps of: supplying N (N ⁇ 1 natural number) first coating liquids into an object to be coated and arranging cells; and supplying M (M ⁇ 1 natural number) second coating liquids into the object to be coated so as to cover at least one of the N first coating liquids.
  • a first dimension that is the maximum value of the dimensions from the center to the outer edge of each of the N first coating liquids is r 1n (1 ⁇ n ⁇ N natural number)
  • a second dimension that is the maximum value of the dimensions from the center to the outer edge of each of the M second coating liquids is r 2m (1 ⁇ m ⁇ M natural number)
  • a distance between a center of any one of the first coating liquids selected from N and having the first dimension r 1n and a center of any one of the second coating liquids selected from M and having the second dimension r 2m is D n,m
  • Equation 1 between any one of the first coating liquids and any one of the second coating liquids is D n,m ⁇ r 2m ⁇ r 1n (1).
  • Appendix 2 The method for producing a cell tissue according to Appendix 1, wherein the second dimension r2m is greater than a reference dimension equal to or greater than a first virtual dimension r1v which is a maximum dimension of a first virtual curve obtained to cover all of the one or more first coating liquids and to inscribe any of the one or more first coating liquids, the first virtual dimension being centered on a first centroid of one or more first coating liquids that overlap with the second coating liquid among the N first coating liquids, and the first centroid is obtained from a central position of each of the one or more first coating liquids that overlap with the second coating liquid.
  • Appendix 3 The method for producing a cell tissue according to appendix 1 or 2, wherein a third dimension r3 of the object to be coated is larger than a reference dimension equal to or larger than a second virtual dimension r2v which is the maximum dimension of a second virtual curve obtained so as to cover all of the M second coating liquids and inscribe any of the M second coating liquids, the second virtual dimension being centered on the second centroid of the M second coating liquids, and the second centroid is obtained from the central positions of each of the M second coating liquids.
  • Appendix 4 The method for producing a cell tissue described in any one of appendices 1 to 3, wherein the cells contained in at least one of the N first coating liquids supplied into the coating object are first cells, and the cells contained in at least one other first coating liquid different from the at least one are second cells.
  • Appendix 5 The method for producing a cell tissue according to any one of appendix 1 to 4, wherein at least one of the N first coating liquids supplied into the coating object contains the cells, and at least one other first coating liquid different from the at least one does not contain the cells but contains at least one selected from the group consisting of a cytokine, a drug, an ECM, and an additive factor.
  • Appendix 8 The method for producing cell tissue described in Appendix 7, wherein the first coating liquid contains the cells and a gelling agent, and the second coating liquid is a solution having a higher viscosity than the gelling agent.
  • Appendix 9 The method for producing cell tissue described in Appendix 7, wherein the first coating liquid contains the cells and the second coating liquid contains a gelling agent.
  • Appendix 11 The method for producing cell tissue described in Appendix 10, wherein the first coating liquid contains the cells and a gelation initiator, and the second coating liquid contains a gelling agent.
  • Appendix 12 The method for producing cell tissue described in Appendix 10, wherein the first coating liquid contains the cells and a gelling agent, and the second coating liquid contains a gelling initiator.
  • Appendix 17 The method for producing a cell tissue described in any one of Appendices 1 to 16, wherein a third cell and a fourth cell different from the third cell are co-cultured so that the cells are contained in one of the N first coating liquids.
  • Appendix 20 The method for producing cell tissue described in any one of Appendices 1 to 19, wherein, in the step of supplying M pieces of the second coating liquid, at least one of the M pieces of the second coating liquid is supplied by a first method selected from the group consisting of a coating needle method, an inkjet method, a dispenser method, a laser print method, and a pipette method, and another of the M pieces of the second coating liquid different from the at least one is supplied by a second method different from the first method.
  • a first method selected from the group consisting of a coating needle method, an inkjet method, a dispenser method, a laser print method, and a pipette method
  • (Appendix 21) a step of immersing a tip of a coating needle included in a coating device in a first coating liquid, thereby causing the first coating liquid to adhere to the tip of the coating needle; applying the first coating liquid attached to the tip of the coating needle into an object to be coated,
  • the method for producing myocardial tissue wherein the first application liquid is a mixed solution of cells to be cultured, collagen as a gelling agent, and a first solvent.
  • the method further includes a step of supplying a second coating liquid into the object to be coated so as to cover the first coating liquid, 22.
  • Appendix 23 The method for producing myocardial tissue described in Appendix 22, wherein the thickener comprises one or more substances selected from the group consisting of cellulose, cellulose nanofiber, chitin, chitosan, chitin nanofiber, methylcellulose, hydroxybutylcellulose, sodium alginate, sodium hyaluronate, polyethylene glycol, gellan gum, carrageenan, pectin, xanthan gum, gelatin, agarose, and polyvinyl alcohol.
  • the thickener comprises one or more substances selected from the group consisting of cellulose, cellulose nanofiber, chitin, chitosan, chitin nanofiber, methylcellulose, hydroxybutylcellulose, sodium alginate, sodium hyaluronate, polyethylene glycol, gellan gum, carrageenan, pectin, xanthan gum, gelatin, agarose, and polyvinyl alcohol.
  • the method further includes a step of supplying a medium for culturing the cells into the object to be coated after the step of supplying the second coating liquid,
  • the medium is RPMI 1640
  • the method for producing myocardial tissue described in Appendix 22 or 23, wherein the additional factor to the culture medium is one or more selected from the group consisting of B27 (registered trademark) supplement, triiodothyronine, dexamethasone, and insulin-like growth factor.
  • the cells include at least cardiomyocytes, The ratio of the number of cardiomyocytes constituting the cells is 80% or more, The method for producing myocardial tissue according to any one of claims 21 to 26, wherein the ratio of the number of cardiac fibroblasts constituting the cells is 20% or less.
  • Appendix 28 The method for producing myocardial tissue described in Appendix 27, wherein the cardiomyocytes are at least one of normal human iPS cell-derived cardiomyocytes and disease-derived human iPS cell-derived cardiomyocytes.
  • (Appendix 101) supplying a first coating material to a first container included in a plate having a plurality of containers capable of receiving the coating material, using a first coating mechanism; a simultaneous pre-supply movement step in which a stage on which the plate is placed moves; a simultaneous supplying step of supplying the first coating material to a second container arranged at an interval from the first container on the plate by using the first coating mechanism, and simultaneously supplying a second coating material as the coating material to the first container by using a second coating mechanism arranged at an interval from the first coating mechanism,
  • the coating method wherein the containers corresponding to the first container and the second container are changed along a movement direction of the stage every time the pre-simultaneous supply movement step and the simultaneous supply step are performed.
  • a step of supplying another first coating material as the coating material simultaneously with the first coating material and the second coating material is performed, the step of supplying the other first coating material to a third container disposed between the first container and the second container by using another first coating mechanism disposed between the first coating mechanism and the second coating mechanism;
  • the other first coating material is supplied to the third container adjacent to the first coating material, 102.
  • Appendix 104 The coating method described in Appendix 103, wherein the distance between the first coating mechanism and the other first coating mechanism is equal to the sum of a natural number n times (n ⁇ 1) the first distance between the first container on the plate and an adjacent container adjacent to the first container, and a second distance between the first coating material supplied into the first container and the other first coating material.
  • the second coating material is applied to cover the first coating material,
  • the coating method described in Appendix 101, wherein in the simultaneous supply pre-movement process, an arbitrary movement amount of the stage can be selected taking into consideration a third interval between the first coating material to be supplied into the first container and another first coating material as the coating material supplied from another first coating mechanism.
  • Appendix 106 The coating method described in Appendix 105, wherein the distance between the first coating mechanism and the other first coating mechanism is any value equal to or greater than a natural number n times (n ⁇ 1) the first distance between the first container on the plate and an adjacent container adjacent to the first container, and equal to or less than the sum of the maximum conceivable value of the third distance and a natural number n times the first distance.
  • Appendix 108 The coating method according to any one of appendices 101 to 107, wherein the supplying step and the simultaneous supplying step are performed by operating a Z-axis stage.
  • (Appendix 110) a coating mechanism capable of supplying a coating material to be applied; a stage on which a plate to which the coating material is to be supplied can be placed, the coating mechanism includes a first coating mechanism and a second coating mechanism adjacent to the first coating mechanism; A coating apparatus, wherein a distance between the first coating mechanism and the second coating mechanism is equal to a movement amount of the stage between a first coating and a second coating by the coating mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

細胞組織の製造方法での、第2塗布液(BB)を供給する工程においては、N個の第1塗布液(AA)のそれぞれの第1寸法をr1n(1≦n≦Nの自然数)、M個の第2塗布液のそれぞれの第2寸法をr2m(1≦m≦Mの自然数)とし、N個の中から選択された任意の第1寸法がr1nの第1塗布液の中心と、M個の中から選択された任意の第2寸法がr2mの第2塗布液の中心との距離をDn,mとすれば、任意の第1塗布液(AA)と任意の第2塗布液(BB)との間で (数1)Dn,m<r2m-r1n・・・(1) および (数2)Dn,m>r2m+r1n・・・(2) のいずれかが成立するように供給される。

Description

細胞組織の製造方法、塗布方法および塗布装置
 本開示は、細胞組織の製造方法、塗布方法および塗布装置に関する。
 1つの容器内に、異種の細胞および組織を近接して培養することで、生体と類似した極性のある細胞・組織を形成する技術が、たとえば特開2020-178612号公報(特許文献1)に開示されている。特開2020-178612号公報には、1つの容器内に複数の細胞組織を塗布針方式により形成する方法が開示されている。
特開2020-178612号公報
 特開2020-178612号公報では、たとえば段落0096および図17にて、塗布対象物であるウェルと、その中に供給される第1塗布液としての細胞組織との組み合わせについて例示されている。
 しかし特開2020-178612号公報には、細胞を含む第1塗布液の半径と、それを覆う第2塗布液との半径と、ウェルの大きさとの3つのパラメータの間の関係について開示されていない。仮に特開2020-178612号公報の図17(a)において、ウェルの内壁に近い位置に第2塗布液をディスペンサを用いて滴下すれば、静電気により第2塗布液がウェルの内壁に付着したり、目的の位置からずれたりすることがある。結果として、第2塗布液が第1塗布液を完全に覆うことが出来ず、第1塗布液が崩壊する可能性がある。
 本開示は上記の課題に鑑みなされたものである。本開示の目的は、寸法および中心位置を考慮しつつ塗布液を高い位置精度で供給することにより、小スケールかつハイスループットで作用を再現性高く高精度に評価可能な細胞組織の製造方法を提供することである。
 本開示の他の目的は、細胞組織の作製に要する総時間をいっそう短縮できる塗布方法および塗布装置を提供することである。
 本開示に従った細胞組織の製造方法では、塗布対象物内に第1塗布液がN個(N≧1の自然数)供給され、細胞が配置される。N個の第1塗布液のうち少なくとも1個を覆うように、塗布対象物内に第2塗布液がM個(M≧1の自然数)供給される。第2塗布液を供給する工程においては、N個の第1塗布液のそれぞれの中心から外縁までの寸法の最大値である第1寸法をr1n(1≦n≦Nの自然数)、M個の第2塗布液のそれぞれの中心から外縁までの寸法の最大値である第2寸法をr2m(1≦m≦Mの自然数)とし、N個の中から選択された任意の第1寸法がr1nの第1塗布液の中心と、M個の中から選択された任意の第2寸法がr2mの第2塗布液の中心との距離をDn,mとすれば、任意の第1塗布液と任意の第2塗布液との間で
  (数1)Dn,m<r2m-r1n・・・(1)
および
  (数2)Dn,m>r2m+r1n・・・(2)
のいずれかが成立するように供給される。
 本開示に従った塗布方法では、塗布材料を受け入れ可能な複数の容器を有するプレートに含まれる第1容器に、第1塗布機構を用いて塗布材料としての第1塗布材料を供給する工程がなされる。プレートを載置するステージを移動する同時供給前移動工程がなされる。プレートの第1容器と間隔をあけて配置される第2容器に第1塗布機構を用いて第1塗布材料を供給すると同時に、第1容器に、第1塗布機構と間隔をあけて配置される第2塗布機構を用いて塗布材料としての第2塗布材料を供給する同時供給工程がなされる。同時供給前移動工程および同時供給工程がなされる毎に、第1容器および第2容器に相当する容器がステージの移動方向に沿って変更される。
 本開示に従った塗布装置は、塗布機構と、ステージとを備える。塗布機構は、塗布されるべき塗布材料を供給可能である。ステージは、塗布材料が供給されるべきプレートを載置可能である。塗布機構は、第1塗布機構と、第1塗布機構に隣接する第2塗布機構とを含む。第1塗布機構と第2塗布機構との間隔は、塗布機構による1回目の塗布時と2回目の塗布時との間でのステージの移動量に等しい。
 本開示によれば、寸法および中心位置を考慮しつつ塗布液を高い位置精度で供給することにより、小スケールかつハイスループットで作用を再現性高く高精度に評価可能な細胞組織の製造方法を提供できる。
 本開示によれば、細胞組織の作製に要する総時間をいっそう短縮できる。
実施の形態1に従った塗布装置の模式図である。 図1に示した塗布装置の塗布機構を示す模式図である。 試料塗布セットの概略斜視図である。 実施の形態1の細胞組織の製造方法の各工程において供給される各塗布液の中心および寸法を示す概略図である。 2個の第1塗布液の配置関係を示す概略図である。 第1塗布液と、これを覆う第1仮想曲線との中心、寸法、位置の関係を示す概略図である。 第1仮想曲線と第2塗布液との関係を示す概略図である。 第1塗布液と第2塗布液との位置関係の第1例を示す概略図である。 第1塗布液と第2塗布液との位置関係の第2例を示す概略図である。 2個の第2塗布液の配置関係を示す概略図である。 第2塗布液と、これを覆う第2仮想曲線との中心、寸法、位置の関係を示す概略図である。 第2仮想曲線とウェルとの関係を示す概略図である。 実施例1における位相差顕微鏡像である。 実施例2における位相差顕微鏡像である。 実施例3において供給された各塗布液の位置および寸法を示す概略平面図である。 図15と同一の各塗布液の中心位置および中心間の距離を示す概略平面図である。 実施例3における位相差顕微鏡像である。 実施例4における位相差顕微鏡像である。 第2塗布液のウェル内における塗布位置を変化させたときの、塗布されると想定される位置と、実際に塗布された位置とを示す模式図および写真である。 実施の形態2における第1塗布液が塗布される前の態様を示す概略図である。 実施の形態2における第1塗布液の組成を示す概略図である。 実施の形態2における第1塗布液が塗布される工程を示す概略図である。 実施の形態2における第1塗布液が塗布された後の態様を示す概略図である。 実施の形態2における第2塗布液が供給される工程を示す概略図である。 図24の工程がなされた後のウェル内の態様を示す概略図である。 実施の形態2における培地が供給される工程を示す概略図である。 培養前の第1塗布液内の細胞の態様を示す概略図である。 培養後の第1塗布液内の細胞の態様を示す概略図である。 ウェル内に塗布液が供給された直後の位相差顕微鏡像(左)、および6日間培養後の位相差顕微鏡像(右)である。 塗布組織の実験におけるCa2+トランジエント波形を示すグラフである。 塗布組織および2D組織のそれぞれにイソプロテレノールを添加した際のBPMの変化を示すグラフである。 塗布組織および2D組織のそれぞれにイソプロテレノールを添加した際のAMPの変化を示すグラフである。 実施の形態3に係る塗布装置の第1例を示す概略正面図である。 実施の形態3に係る塗布装置の第2例を示す概略正面図である。 図33に示した塗布装置の針塗布機構を示す模式図である。 プレートの概略斜視図である。 実施の形態3の塗布方法を示すフローチャートである。 実施の形態3の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。 実施の形態3の塗布方法の第1工程を示す概略断面図である。 実施の形態3の塗布方法の第2工程を示す概略断面図である。 実施の形態3の塗布方法の第3工程を示す概略断面図である。 実施の形態3の塗布方法の第4工程を示す概略断面図である。 三次元細胞組織の作製方法の一例を示す概略図である。 図43の作製方法により得られた三次元細胞組織の写真である。 プレートに含まれる1つの容器内に細胞組織が作製された結果を示す概略図である。 図45中の(C)のように単一の容器内に複数形成された細胞組織の例を示す概略図である。 直径が330μmである塗布針を用いた細胞組織の作製例である。 実施の形態3の塗布方法と比較例の塗布方法との塗布がなされるタイミングを比較するための概略図である。 実施の形態4に係る塗布装置の例を示す概略正面図である。 実施の形態4の塗布方法を示すフローチャートである。 実施の形態4の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。 実施の形態4の塗布方法の第1工程を示す概略断面図である。 実施の形態4の塗布方法の第2工程を示す概略断面図である。 実施の形態4の塗布方法の第3工程を示す概略断面図である。 実施の形態4の塗布方法の第4工程を示す概略断面図である。 実施の形態4の塗布方法の第5工程を示す概略断面図である。 実施の形態4の塗布方法と比較例の塗布方法との塗布がなされるタイミングを比較するための概略図である。 実施の形態5の第1例に係る塗布方法を示すフローチャートである。 実施の形態5の第1例に係る塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。 実施の形態5の第1例に係る塗布方法の第1工程を示す概略断面図である。 実施の形態5の第1例に係る塗布方法の第2工程を示す概略断面図である。 実施の形態5の第1例に係る塗布方法の第3工程を示す概略断面図である。 実施の形態5の第1例に係る塗布方法の第4工程を示す概略断面図である。 実施の形態5の第2例に係る塗布方法の他の例を示すフローチャートである。 実施の形態6における一の容器内に形成される塗布材料の態様を示す平面図である。 実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第1例を示す概略断面図である。 実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第2例を示す概略断面図である。 実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第3例を示す概略断面図である。
 (はじめに)
 はじめに、実施の形態1の細胞組織の製造方法の特徴について簡単に説明する。図8を参照して、(A)のように、供給される第1寸法r1nの第1塗布液AAの中心と、それを覆う第2寸法r2mの第2塗布液BBの中心との距離Dn,mは、
  (数1)Dn,m<r2m-r1n・・・(1)
である。あるいは(B)のように、
  (数2)Dn,m>r2m+r1n・・・(2)
である。以下、実施の形態1の細胞組織の製造方法について、図に基づいて説明する。
 (実施の形態1)
 (装置構成)
 図1は、実施の形態1に従った塗布装置の模式図である。図1を用いて、本実施形態に従った塗布装置を説明する。なお、説明の便宜のため、X方向、Y方向、Z方向が導入されている。図1を参照して、本実施形態である塗布装置は、処理室と、当該処理室の内部に配置されたY軸テーブル2と、X軸テーブル1と、Z軸テーブル3と、塗布機構4と、観察光学系6と、当該観察光学系6に接続されたCCDカメラ7と、制御部とを主に備えている。制御部は、モニタ9と、制御用コンピュータ10と、操作パネル8とを含む。
 処理室の内部においては、当該処理室の底部上にY軸テーブル2が設置されている。このY軸テーブル2は、Y軸方向に移動可能になっている。具体的には、Y軸テーブル2の下面にガイド部が設置されている。当該ガイド部は、処理室の底面に設置されたガイドレールに摺動可能に接続されている。また、Y軸テーブル2の下面にはボールねじが接続されている。当該ボールねじをモータなどの駆動部材により動作させることにより、Y軸テーブル2はガイドレールに沿って(Y軸方向に)移動可能になっている。また、Y軸テーブル2の上部表面上は、後述の試料塗布セット11を搭載する搭載面となっている。つまりY軸テーブル2は、液体材料を塗布される対象物である試料塗布セット11を保持する保持台としての機能を有している。
 Y軸テーブル2上には、X軸テーブル1が設置されている。X軸テーブル1は、Y軸テーブル2をX軸方向に跨ぐように設置された構造体上に配置されている。X軸テーブル1には、Z軸テーブル3が接続された移動体がX軸方向に移動可能に設置されている。移動体は、たとえばボールねじを用いてX軸方向に移動可能となっている。なお、X軸テーブル1は上記構造体を介して処理室の底面に固定されている。そのため、上述したY軸テーブル2は、X軸テーブル1に対してY軸方向に移動可能になっている。
 X軸テーブル1に接続された移動体には、上述のようにZ軸テーブル3が設置されている。Z軸テーブル3には、観察光学系6および塗布機構4が接続されている。観察光学系6は塗布される対象物である試料塗布セット11の塗布位置を観察するためのものである。CCDカメラ7は、観察した画像を電気信号に変換する。Z軸テーブル3は、これらの観察光学系6および塗布機構4をZ軸方向に移動可能に保持している。
 これらのY軸テーブル2、X軸テーブル1、Z軸テーブル3、観察光学系6および塗布機構4を制御するための制御用コンピュータ10および操作パネル8、さらに制御用コンピュータに付随するモニタ9は、処理室の外部に設置されている。モニタ9は、上述したCCDカメラ7で変換された画像データや、制御用コンピュータ10からの出力データを表示する。操作パネル8は、制御用コンピュータ10への指令を入力するために用いられる。
 図2は、図1に示した塗布装置の塗布機構を示す模式図である。図2を参照して、本実施の形態の塗布機構4は、サーボモータ41、カム43、当該カム43のカム面に接触した状態で保持されている軸受44、カム連結板45、可動部46、塗布針ホルダ20を保持する可動ベース35、および塗布材料容器21を主に含む。塗布針ホルダ20は可動ベース35と着脱可能になっている。言い換えれば、ベース体としての可動ベース35は、塗布針ホルダ20を着脱可能に保持する。
 塗布機構4において、サーボモータ41は、図1に示したZ軸方向に沿った方向に中心軸が延びるように設置されている。サーボモータ41の回転軸にはカム43が接続されている。カム43は、サーボモータ41の中心軸を中心として回転可能になっている。カム43は、サーボモータ41の回転軸に接続された中心部と、当該中心部の一方端部に接続されたフランジ部とを含む。フランジ部の上部表面(サーボモータ41側の表面)はカム面となっている。このカム面は、中心部の外周に沿って円環状に形成されているとともに、フランジ部の底面からの距離が変動するようにスロープ状に形成されている。具体的には、カム面は底面からの距離が最も遠くなっている(厚みの厚い)上端フラット領域と、この上端フラット領域から間隔を隔てて配置された下端フラット領域と、この上端フラット領域と下端フラット領域との間を滑らかに接続するスロープ部とを含む。下端フラット領域は、底面からの距離が最も近くなっている(厚みの薄い)領域である。
 このカム43のカム面に接するように軸受44が配置されている。この軸受44にカム連結板45が接続されている。カム連結板45において、軸受44と接続された一方端部と反対側の他方端部は可動部46に固定されている。この可動部46には、ベース体としての可動ベース35が接続されている。この可動ベース35に塗布針ホルダ20が設置されている。塗布針ホルダ20は塗布針24を含む。塗布針24は、試料塗布セット11のたとえばウェル12に液体材料を塗布可能である。塗布針24は、塗布針ホルダ20の下面(サーボモータ41が位置する側と反対側である下側)において塗布針ホルダ20から突出するように配置されている。塗布針ホルダ20下には塗布材料容器21が配置されている。塗布材料容器21に塗布針24は挿入された状態で保持されている。
 可動部46には固定ピンが固定されている。また、サーボモータ41を保持している架台には他方の固定ピンが固定されている。この固定ピンの間を繋ぐようにバネが設置されている。このバネにより、可動部46は塗布材料容器21側に向けた力を受けた状態になっている。また、このバネの力によって、軸受44はカム43のカム面に押圧された状態を維持している。
 また、可動部46、可動ベース35は、サーボモータ41を保持する架台に設置されたリニアガイドに接続され、Z軸方向に沿って移動可能になっている。
 上述した塗布機構4においては、サーボモータ41を駆動することにより当該サーボモータ41の回転軸を回転させてカム43を回転させる。この結果、カム43のカム面に接触している軸受44のZ軸方向における位置がサーボモータ41の回転軸の回転に応じて変動する。そして、この軸受44のZ軸方向での位置変動に応じて、可動部46、可動ベース35がZ軸方向に移動することにより、塗布針24のZ軸方向における位置を変化させることができる。つまり塗布針24をZ軸方向に往復運動させることができる。この動作により、塗布針24がZ軸方向の上方にある時には、液体材料が収納された塗布材料容器21内に塗布針24の先端が浸漬される。この状態に対し、塗布針24は塗布材料容器21の底面の先端穴から下方に突出することで塗布動作がなされる。塗布針24の先端に液体材料が付着した状態で、塗布針24の先端が塗布材料容器21の先端穴から突出し、塗布材料容器21の外に出る。このとき、表面張力によって液体材料が上方に引き上げられ、塗布針24の先端にはほぼ一定量の液体材料が付着した状態となる。このように付着した液体材料が試料塗布セット11に転写されることで、再現性の高い塗布工程が実現できる。
 より詳しくは、図1および図2を参照して、操作パネル8から出力された塗布速度指令値は、制御用コンピュータ10の記憶装置に保管される。塗布動作時には、記憶装置から読みだされた塗布速度指令値が、塗布機構4の制御プログラムに送信される。塗布機構4の制御プログラムは、塗布速度指令値に基づいて、サーボモータ41の回転速度を決定し回転させる。これにより塗布針24をZ軸方向に往復運動させながら塗布動作がなされる。制御用コンピュータ10が図示されない上位の制御システムと通信している場合には、塗布速度指令値は上位の制御システムから塗布機構4の制御プログラムに送信されてもよい。また、塗布される液体材料の種類に応じたパラメータが、制御用コンピュータ10の記憶装置に保管されてもよい。指定された液体材料の種類、塗布量、塗布寸法に応じて塗布速度指令値が算出されてもよい。
 (製造方法の特徴)
 図3は、試料塗布セットの概略斜視図である。図3を参照して、本実施の形態では、液体材料としての塗布液は、試料塗布セット11に複数形成されたウェル12の内部に塗布供給される。ただし塗布液が供給される塗布対象物はこれに限られない。試料塗布セット11はZ軸方向に厚みを有し、その最上面に複数のウェル12が形成されている。複数のウェル12は、試料塗布セット11の上面がくぼんだ凹形状の部分である。複数のウェル12は互いに間隔をあけて、たとえば図3のY軸方向に8列、X軸方向に12列で合計96個形成されてもよい。ウェル12の平面形状はたとえば円形など任意である。
 図4は、実施の形態1の細胞組織の製造方法の各工程において供給される各塗布液の中心および寸法を示す概略図である。図4以降の各図の塗布液は、Z方向から平面視した形状を示す。図4を参照して、本実施の形態においては、たとえば平面視にて円形の塗布液が供給されることが好ましい。ただしこれに限らず、塗布液は完全な円形からやや崩れたものであったり、やや一方に大きくずれた形状の楕円形の平面形状であったりしてもよい。さらに塗布液は円形、楕円形のいずれとも異なる、たとえば八角形、十二角形などの多角形の平面形状(またはこれらの多角形に近似する平面形状)であってもよい。いずれにしても、以降に述べる塗布液の寸法とは、中心(図心)から外縁までの寸法の最大値を意味することとする。塗布液の平面形状が円形であれば、寸法は図4中の(A)における半径としてのr1nを意味し、楕円形であれば寸法は図4中の(A)における長半径としてのr1nを意味する。
 まず試料塗布セット11の複数のウェル12から選ばれた1つのウェル12に、第1塗布液がN個供給される。Nは1以上の自然数であり、(A)に示す第1塗布液AAが少なくとも1個供給される。なお複数の第1塗布液AAは、1つの塗布機構により時間的に連続して供給された液体によるものを1個とする。1つの塗布機構により時間的に分断されながら供給された液体による第1塗布液AAは互いに別個のものとする。また時間的に同時であっても、互いに異なる塗布機構から供給された液体による第1塗布液AAは互いに別個のものとする。複数個の第1塗布液AAが供給される場合、そのうち少なくとも1個に培養すべき細胞が含まれる。このため第1塗布液AAの供給により、ウェル12内には培養すべき細胞が配置される。
 第1塗布液AAの寸法を第1寸法r1n(1≦n≦N)とする。すなわちN個の第1塗布液AAのうち1個目の第1寸法はr11で表記され、2個目の第1寸法はr12で表記される。
 図5は、2個の第1塗布液の配置関係を示す概略図である。図5を参照して、N個(Nは2以上の自然数)のうち任意に選択された2個の第1塗布液AAのそれぞれの寸法をr1n、r1(n+1)とする。2個の第1塗布液AAのそれぞれの中心(図心)間の距離をdn,n+1とする。このとき2個の第1塗布液の配置関係は、図5中の(A)のように互いに重ならない場合と、(B)のように一方が他方の内部に完全に収まる場合と、(C)のように両者が部分的に重なる場合とがある。(A)には両者が互いに外接する場合を含む。(B)には一方が他方に内接する場合を含む。
 図5中の(A)の場合には以下の式(3)が、(B)の場合には以下の式(4)が、(C)の場合には以下の式(5)が、それぞれ成立する。式(3)中の等号は図5の(A)にて2つの第1塗布液AAが互いに外接する場合である。式(4)中の等号は図5の(B)にて一方の第1塗布液AAが他方に内接する場合である。式(5)にてr1n=r1(n+1)であれば、dn,n+1<r1n+r1(n+1)のみ成立する。
  (数3)dn,n+1≧r1n+r1(n+1)・・・(3)
  (数4)dn,n+1≦r1(n+1)-r1n・・・(4)
  (数5)r1(n+1)-r1n<dn,n+1<r1n+r1(n+1)・・・(5)
 第2塗布液BB(図4中の(C)参照)は、N個の第1塗布液AAのうち少なくとも1個をZ軸方向の上側から覆うようにM個(M≧1の自然数)だけ、ウェル12内に供給される。つまりたとえば、複数の第2塗布液BBのうち1個は複数の第1塗布液AAのうち一部を覆い、第2塗布液BBのうち他の1個は複数の第1塗布液AAのうち他の一部を覆ってもよい。図6は、第1塗布液と、これを覆う第1仮想曲線との中心、寸法、位置の関係を示す概略図である。図6および図4中の(B)を参照して、第1仮想曲線A’は、第1塗布液AAと重なる1個の第2塗布液BBの寸法を決めるために用いられる仮想の図形(たとえば円形)である。仮想曲線は曲線でない(直線となる)こともあり得るが、以下ではその場合もまとめて仮想曲線と呼称する。N個の第1塗布液AAのうち、1個の第2塗布液BBと重なる1個以上の第1塗布液AAが選ばれる。それら1個以上の第1塗布液AAのそれぞれの中心(図心)から、それらの第1塗布液AAの図心が、第1仮想曲線A’の第1図心G1として求められる。
 たとえばN個の第1塗布液AAの全てを覆う1個の第2塗布液BBが供給される場合、図6に示すように、N個の第1塗布液AAのそれぞれの中心を考える。1個の第1塗布液AAの中心の位置は、それぞれの第1塗布液AAの図心を決める。図心は、その位置を支点にすることにより、塗布液が釣り合う点を意味する。たとえば円形または楕円形などの、重量が均一に作用する第1塗布液AAであれば、その図心は中心に等しくなる。
 1個目の第1塗布液AAの中心の位置座標を(x,y)とし、同様にN個目の第1塗布液AAの中心を(x,y)とする。この中心位置(中心の座標)は、第1塗布液AAが円形または楕円形の場合には当該第1塗布液AAの図心の座標に等しい。当該中心の座標は、塗布装置の制御部に含まれるモニタ9の出力などから求められる。このとき第1図心G1の座標(X,Y)は、N=3のときは、各中心点の座標を3で除することにより、各中心点の座標を結んでなる三角形の図心として得られる。N≧4のときは、各中心を結んでなるN角形を(N-2)個の三角形に分割し、それぞれの三角形の面積sに三角形の図心座標gx(gy)を乗じたものを合計し、N角形の全面積で割ることにより得られる。すなわち
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
となる。第1塗布液AAを全て覆うよう、第1仮想曲線A’の第1仮想寸法r1vが求められる。第1仮想寸法r1vは、図6のように最も第1図心G1から離れたたとえばn=3およびn=Nの第1塗布液AAが第1仮想曲線A’の円形に内接するときの第1仮想曲線A’の(円形の)寸法として求められる。すなわち第1仮想曲線A’は、複数の第1塗布液AAのうち最も第1図心G1から見て外側にあり、それと内接することにより他の第1塗布液AAと内接するよりも寸法が大きくなる(最大寸法を生じる)ように形成される。つまり第1塗布液の寸法r1nと第1仮想曲線A’の第1仮想寸法r1vとの間には、
  (数8)r1v≧r1n・・・(8)
の関係が成り立ち、特に第1塗布液AAが1個の場合は上記の式(8)は等式となる。
 また第1図心G1と、n=3(3個目)であり寸法がr13の第1塗布液AA(第1仮想曲線A’に内接)の中心との距離L1は、
  (数9)L1=r1v-r13・・・(9)
となる。
 なお図6のように、単一の第1仮想曲線A’内における複数の第1塗布液AA間の配置状態は、図5中の(A),(B),(C)のいかなる態様であってもよい。すなわち(次に述べる)第2塗布液BBが覆う複数の第1塗布液AA同士は、互いに離れていてもよいし、一方が他方の内部に収まってもよいし、部分的に交わるように配置されてもよい。
 このようにして形成された第1仮想曲線A’の第1仮想寸法r1vよりも、第2塗布液BBの第2寸法r2mの方が大きい。先述した通り、第2塗布液BBの第2寸法は、中心(図心)から外縁までの寸法の最大値を意味する。そのことを図7に示す。図7は、第1仮想曲線と第2塗布液との関係を示す概略図である。図7および図4中の(C)を参照して、第2塗布液BBは第1仮想曲線A’の全体を覆うように供給される。また第2塗布液BBは第1仮想曲線A’を内接せずにその全体が第2塗布液BBと重なるように供給される。このため、M個の中から選ばれたm個目の第2塗布液BBの寸法をr2m(1≦m≦M)とすれば、当然に
  (数10)r2m>r1v・・・(10)
が成り立つ。また図7において第1図心G1と、寸法がr2mの第2塗布液BBの中心との距離L2は、
  (数11)L2<r2m-r1v・・・(11)
で表される。
 なお、第1仮想寸法r1vよりも大きい寸法r1v’=α×r1v(α>1.0)を基準寸法とし、当該基準寸法r1v’よりも大きくなるように第2塗布液BBの第2寸法r2mが決定されてもよい。αは1.1以上であることがより好ましい。αを大きくすれば、第1塗布液AAと第2塗布液BBとの外縁同士の隙間を広くできる。このことと、第2寸法r2mが第1仮想寸法r1v(上記のα=1.0)よりも大きくなるように決定されることとを全てまとめれば、第1仮想寸法r1v以上の基準寸法r1v’よりも、第2寸法r2mの方が大きい。
 図8は、第1塗布液と第2塗布液との位置関係の第1例を示す概略図である。図8を参照して、たとえば(A)のように、第1塗布液AAが第2塗布液BBに内接することなくその内側に完全に収まるように第2塗布液BBに覆われてもよい。あるいは(B)のように、第1塗布液AAが第2塗布液BBに外接することも重なることもなく第2塗布液BBの外側に完全に外れてもよい。(B)の場合には、第1塗布液AAは図示される第2塗布液BBの左側に存在する図示されない他の第2塗布液に内接しないように完全に覆われる。
 図8各図の第1塗布液AA、第2塗布液BBはいずれも1個以上の中から選択された任意のものである。このため、n番目の第1塗布液AAの中心とm番目の第2塗布液の中心との距離をDn,mとすれば、(A),(B)いずれの場合も当然に
  (数12)r2m>r1n・・・(12)
が成り立つ。その上で、(A)の場合には
  (数13)Dn,m<r2m-r1n・・・(1)
が成り立つ。また(B)の場合には
  (数14)Dn,m>r2m+r1n・・・(2)
が成り立つ。上記の式(1)と(2)とのいずれかが成立するように、第2塗布液BBが供給される。
 図9は、第1塗布液と第2塗布液との位置関係の第2例を示す概略図である。図9を参照して、本実施の形態では、第2塗布液BBに内接、外接のいずれもしないように第1塗布液AAが配置されればよい。図9では、左側の第1塗布液A1o、右側の第1塗布液A2oのいずれも第2塗布液B1o,B2oのいずれとも内接、外接しない。このため図9のように、第2塗布液B1oと第2塗布液B2oとが部分的に重なってもよい。図9の場合、第1塗布液A1oと第2塗布液B1oとの間には式(1)が成立し、第1塗布液A1oと第2塗布液B2oとの間には式(2)が成立する。また第1塗布液A2oと第2塗布液B2oとの間には式(1)が成立し、第1塗布液A2oと第2塗布液B1oとの間には式(2)が成立する。
 図10は、2個の第2塗布液の配置関係を示す概略図である。図10を参照して、M個(Mは2以上の自然数)のうち任意に選択された2個の第2塗布液BBのそれぞれの寸法をr2m、r2(m+1)とする。2個の第2塗布液BBのそれぞれの中心(図心)間の距離をpm,m+1とする。このとき2個の第2塗布液の配置関係は、図10中の(A)のように互いに重ならない場合と、(B)のように一方が他方の内部に完全に収まる場合と、(C)のように両者が部分的に重なる場合とがある。(A)には両者が互いに外接する場合を含む。(B)には一方が他方に内接する場合を含む。
 図10中の(A)の場合には以下の式(13)が、(B)の場合には以下の式(14)が、(C)の場合には以下の式(15)が、それぞれ成立する。式(13)中の等号は図10の(A)にて2つの第2塗布液BBが互いに外接する場合である。式(14)中の等号は図10の(B)にて一方の第2塗布液BBが他方に内接する場合である。式(15)にてr2m=r2(m+1)であれば、pm,m+1<r2m+r2(m+1)のみ成立する。
  (数15)pm,m+1≧r2m+r2(m+1)・・・(13)
  (数16)pm,m+1≦r2(m+1)-r2m・・・(14)
  (数17)r2(m+1)-r2m<pm,m+1<r2m+r2(m+1)・・・(15)
 次に第2塗布液BBと、これらが供給されるウェル12との寸法の関係を考える。第2塗布液BBはすべて同一(単一)のウェル12内に供給される。図11は、第2塗布液と、これを覆う第2仮想曲線との中心、寸法、位置の関係を示す概略図である。図11および図4中の(D)を参照して、第2仮想曲線B’は、第2塗布液BBを供給すべきウェル12の寸法を決めるために用いられる仮想の図形(たとえば円形)である。ウェル12内に供給されるM個の第2塗布液BBのそれぞれの中心(図心)から、それらM個の第2塗布液BB全体の図心が、第2仮想曲線B’の第2図心G2として求められる。
 たとえば図11に示すように、M個の第2塗布液BBのそれぞれをm=1,2,・・・,Mとする。なお第2塗布液BBの中心位置の測定方法は第1塗布液AAと同様である。
 1個目の第2塗布液BBの中心の位置座標を(x,y)とし、同様にM個目の第2塗布液BBの中心を(x,y)とする。この中心位置(中心の座標)は、第2塗布液BBが円形または楕円形の場合には当該第2塗布液BBの図心の座標に等しい。当該中心の座標は、塗布装置の制御部に含まれるモニタ9の出力などから求められる。このとき第2図心G2の座標(X,Y)は、M=3のときは、各中心点の座標を3で除することにより、各中心点の座標を結んでなる三角形の図心として得られる。M≧4のときは、各中心を結んでなるM角形を(M-2)個の三角形に分割し、それぞれの三角形の面積sに三角形の図心座標gx(gy)を乗じたものを合計し、M角形の全面積で割ることにより得られる。すなわち
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
となる。M個の第2塗布液BBを全て覆うよう、第2仮想曲線B’の第2仮想寸法r2vが求められる。第2仮想寸法r2vは、図11のように最も第2図心G2から離れたたとえばm=3およびm=Mの第2塗布液BBが第2仮想曲線B’の円形に内接するときの第2仮想曲線B’の(円形の)寸法として求められる。すなわち第2仮想曲線B’は、複数の第2塗布液BBのうち最も第2図心G2から見て外側にあり、それと内接することにより他の第2塗布液BBと内接するよりも寸法が大きくなる(最大寸法を生じる)ように形成される。つまり第2塗布液の寸法r2mと第2仮想曲線B’の第2仮想寸法r2vとの間には、
  (数20)r2v≧r2m・・・(18)
の関係が成り立ち、特に第2塗布液BBが1個の場合は上記の式(18)は等式となる。
 また第2図心G2と、m=3(3個目)であり寸法がr23の第2塗布液BB(第2仮想曲線B’に内接)の中心との距離L2は、
  (数21)L2=r2v-r23・・・(19)
となる。
 なお図11のように、第2仮想曲線B’内における複数の第2塗布液BB間の配置状態は、図10中の(A),(B),(C)のいかなる態様であってもよい。すなわち(次に述べる)ウェル12内に供給される複数の第2塗布液BB同士は、互いに離れていてもよいし、一方が他方の内部に収まってもよいし、部分的に交わるように配置されてもよい。
 このようにして形成された第2仮想曲線B’の第2仮想寸法r2vよりも、ウェル12の第3寸法rの方が大きい。そのことを図12に示す。図12は、第2仮想曲線とウェルとの関係を示す概略図である。図12および図4中の(E)を参照して、ウェル12は第2仮想曲線B’を内接することなく収納する。このため、ウェル12の寸法をrとすれば、当然に
  (数22)r>r2v・・・(20)が成り立つ。また図12において第2図心G2と、寸法がrのウェル12の中心との距離L3は、
  (数23)L3<r-r2v・・・(21)
で表される。
 なお、第2仮想寸法r2vよりも大きい寸法r2v’=β×r2v(β>1.0)を基準寸法とし、当該基準寸法r2v’よりもウェル12の第3寸法rの方が大きくなってもよい。βは1.1以上であることがより好ましい。βを大きくすれば、第2塗布液BBの外縁とウェル12の内壁面との隙間を広くできる。このことと、第3寸法rが第2仮想寸法r2v(上記のβ=1.0)よりも大きいこととを全てまとめれば、第2仮想寸法r2v以上の基準寸法r2v’よりも、第3寸法rの方が大きい。
 (作用効果)
 本実施の形態に係る細胞組織の製造方法では、塗布対象物としてのウェル12内に第1塗布液AAがN個(N≧1の自然数)供給され、細胞が配置される。N個の第1塗布液AAのうち少なくとも1個を覆うように、ウェル12内に第2塗布液BBがM個(M≧1の自然数)供給される。第2塗布液BBを供給する工程においては、N個の第1塗布液AAのそれぞれの中心から外縁までの寸法の最大値である第1寸法をr1n(1≦n≦Nの自然数)、M個の第2塗布液BBのそれぞれの中心から外縁までの寸法の最大値である第2寸法をr2m(1≦m≦Mの自然数)とし、N個の中から選択された任意の第1寸法がr1nの第1塗布液AAの中心と、M個の中から選択された任意の第2寸法がr2mの第2塗布液BBの中心との距離をDn,mとすれば、任意の第1塗布液AAと任意の第2塗布液BBとの間で
  (数24)Dn,m<r2m-r1n・・・(1)
および
  (数25)Dn,m>r2m+r1n・・・(2)
のいずれかが成立するように供給される。
 式(1)が成立すれば、図8中の(A)のように、第1塗布液AAは第2塗布液BBと内接することなく収納される。このため第2塗布液BBを第1塗布液AA上に滴下する際における第1塗布液AAの崩壊が抑制できる。式(2)が成立すれば、図8中の(B)のように、第1塗布液AAは第2塗布液BBと全く接触しないため、第2塗布液BBを第1塗布液AA上に滴下する際における第1塗布液AAの崩壊が抑制できる。このため寸法および中心位置を考慮しつつ塗布液を高い位置精度で供給することにより、小スケールかつハイスループットで作用を再現性高く高精度に評価可能な細胞組織の製造方法を提供できる。
 上記細胞組織の製造方法において、N個の第1塗布液AAのうち第2塗布液BBと重なる1個以上の第1塗布液AAの第1図心G1を中心とし1個以上の第1塗布液AAを全て覆い1個以上の第1塗布液AAのいずれかと内接するよう求められた第1仮想曲線A’の最大寸法である第1仮想寸法r1v以上の基準寸法よりも、第2寸法r2mの方が大きい。第1図心G1は、第2塗布液BBと重なる1個以上の第1塗布液AAのそれぞれの中心位置から求められる。
 いずれかの第1塗布液AAと第1仮想曲線A’とが内接し得る最大寸法が第1仮想寸法r1vであるため、それよりも第2寸法r2mを大きくすれば、第1塗布液AAと重なる第2塗布液BBは第1塗布液AAと内接しない。このため第2塗布液BBを第1塗布液AA上に滴下する際における第1塗布液AAの崩壊が抑制できる。
 上記細胞組織の製造方法において、M個の第2塗布液BBの第2図心G2を中心とし、M個の第2塗布液BBを全て覆いM個の第2塗布液のいずれかと内接するよう求められた第2仮想曲線B’の最大寸法である第2仮想寸法r2v以上の基準寸法よりも、ウェル12の第3寸法rの方が大きい。第2図心G2は、M個の第2塗布液BBのそれぞれの中心位置から求められる。
 いずれかの第2塗布液BBと第2仮想曲線B’とが内接し得る最大寸法が第2仮想寸法r2vであるため、それよりも第3寸法rを大きくすれば、第2塗布液BBはウェル12の内壁面に付着しない。このため第2塗布液BBを第1塗布液AA上に滴下する際における第1塗布液AAの崩壊が抑制できる。
 (塗布液供給方法の変形例)
 本実施の形態の細胞組織の製造方法において、図1、図2の塗布装置を用いて上記の塗布工程(塗布液の供給)を行なう場合、第1塗布液AAを供給する工程において塗布針方式が用いられる。これにより、第1塗布液AAをウェル12内に微小量、すなわち非常に小さい寸法となるように塗布することができる。また塗布針方式によれば、第1塗布液AAが高粘度であっても塗布可能である。
 上記細胞組織の製造方法では、第2塗布液BBを供給する工程において、塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択されるいずれかが用いられてもよい。第2塗布液BBの粘度が高い(高粘度溶液である)場合には、塗布針方式が用いられてもよい。ただし第2塗布液BBは塗布針方式以外の、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式が用いられることにより、第2塗布液BBは滴下により第1塗布液AA上に供給される。このためたとえば塗布針を有する塗布装置の第2塗布液BBを収納する塗布材料容器内に、第1塗布液AAが混入し汚染されるなどの不具合を抑制できる。
 上記細胞組織の製造方法では、第2塗布液BBをM個供給する工程において、M個のうち少なくとも1個の第2塗布液BBは塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択される第1方式により供給され、M個のうち少なくとも1個とは異なる他の第2塗布液BBは第1方式とは異なる第2方式により供給されてもよい。つまり第1塗布液AAは塗布針方式により、第2塗布液BBはインクジェット方式により供給されてもよい。あるいは第1塗布液AAは塗布針方式により、第2塗布液BBはディスペンサ方式により供給されてもよい。このように、塗布される塗布液の性質および順序に応じて適宜好ましい方式を用いることで、塗布工程の効率および形成される塗布液の品質を高めることができる。
 なお塗布針方式以外の方式を用いる場合には、図1、図2の塗布装置に、方式に応じたインクジェット方式用の装置、ディスペンサ方式用の装置等が組み合わされることが好ましい。あるいはたとえば第1塗布液AAが塗布針方式、第2塗布液BBがディスペンサ方式により供給される場合、第1塗布液AAは図1、図2の塗布装置により供給され、第2塗布液BBはこれとは異なるディスペンサ方式用の塗布装置により供給されてもよい。さらに、たとえば図1、図2の塗布装置においては単一の塗布機構4のみを有するが、複数の塗布機構4を有する塗布装置が用いられることにより、複数の塗布液のすべてが単一の塗布装置内の異なる塗布機構4により供給されてもよい。
 (細胞組織)
 形成される細胞組織の第1例は次の通りである。第1塗布液AAは培養すべき細胞とゲル化剤とを含み、第2塗布液BBは高粘度溶液である。高粘度溶液とはゲル化剤よりも粘度の高い溶液である。これにより、ウェル12内への第2塗布液BBおよび培地の添加時に第1塗布液の保形性が向上するという効果が得られる。さらに細胞組織としては、コラーゲンゲルのスキャホールドを含む細胞組織を構築することができる効果が得られる。具体的には、第1塗布液AAとして、細胞と、ゲル化剤としてのコラーゲン溶液とを混合したものが準備され、ウェル12内に供給される。第2塗布液BBとして、コラーゲン溶液よりも粘度が高いメチルセルロースが用いられ、第1塗布液AAを覆うように供給される。さらに、ウェル12内の第1塗布液AAおよび第2塗布液BBの上に培地を滴下することにより、細胞組織が形成される。細胞組織においては、培地の中に第1塗布液AAおよび第2塗布液BBが浸漬される。
 上記細胞組織は、たとえば37℃、5%COの環境下で培養される。これによりコラーゲン溶液がゲル化し、塗布した組織がウェル12内に固定される。また、第2塗布液BBとしての高粘度溶液は培地交換をすることにより除去が可能である。
 形成される細胞組織の第2例は次の通りである。第1塗布液AAは培養すべき細胞を含み、第2塗布液BBはゲル化剤を含む。これにより、ゲル化剤は第1塗布液AAと第2塗布液BBとの界面でゲル化し、ゲルドーム内にスキャホールドフリーの細胞組織を形成することができるという効果が得られる。具体的には、第1塗布液AAとして、細胞と、ゲル化開始剤であるトロンビンと、高粘度高分子であるヒアルロン酸ナトリウムとが混合される。ゲル化剤であるフィブリノゲンを含有する第2塗布液BBが第1塗布液AAを覆うように滴下される。これにより第1塗布液AAと第2塗布液BBとの界面がゲル化され、いわゆるゲルドームが形成される。やがて第2塗布液BBは全体がゲル化される。ゲルドーム内で第1塗布液AA内の細胞が沈殿することで、細胞組織が形成される。その後、第1例と同様に培地が滴下され、第1例と同様の環境下で培養される。第1塗布液AAを供給する工程以降にゲル化剤を用いて、ウェル12内に供給された細胞から細胞組織が形成される。ただし仮に第1塗布液AAにフィブリノゲンが含まれれば、ゲルドームは形成されない。
 以上をまとめると、第1塗布液AAおよび第2塗布液BBの少なくともいずれかに、ゲル化剤としてのコラーゲンとフィブリノゲンとの少なくともいずれかが含まれる。つまり第1塗布液AAおよび第2塗布液BBの少なくともいずれかに、ゲル化剤としてのコラーゲンとフィブリノゲンとの一方が含まれてもよい。あるいは上記しないが、第1塗布液AAおよび第2塗布液BBの少なくともいずれかに、ゲル化剤としてのコラーゲンとフィブリノゲンとの双方が含まれてもよい。
 (ゲル化剤について)
 上記の細胞組織の第2例のように、本実施の形態において、2液混合方式によりウェル12内に第1塗布液AAおよび第2塗布液BBが供給されてもよい。なお2液混合方式とは、第1塗布液と第2塗布液との双方がゲル化剤およびゲル化開始剤の少なくともいずれかを含むことである。すなわち第1塗布液AAは細胞とゲル化開始剤とを含み、第2塗布液BBはゲル化剤を含んでもよい。この場合、スキャホールドフリーの細胞組織を構築することができる。第1塗布液AAは細胞とゲル化剤とを含み、第2塗布液BBはゲル化開始剤を含んでもよい。この場合、スキャホールドを含む細胞組織を構築することができる。あるいは第1塗布液AAと第2塗布液BBとの双方がゲル化剤を含んでもよい。
 ゲル化剤は特に限定されるものではなく、2液混合方式に用いられるゲル化剤の他に、温度応答性のゲル化剤を用いることができる。たとえばゲル化剤に、タンパク質、糖鎖、天然高分子、合成高分子、ペプチド等が含まれてもよい。より具体的には、ゲル化剤に、コラーゲン、フィブリノゲン、ゼラチン、GelMA、アルギン酸ナトリウム、ポリアミノ酸、ポリエチレングリコール、感熱応答性高分子、マトリゲル等が含まれてもよい。また、上記のゲル化剤から適宜選ばれた複数種を組み合わせて細胞組織を構築することができる。
 2液混合方式においてゲル化剤が用いられる場合、ゲル化剤に対応したゲル化開始剤が含まれる必要がある。たとえば、ゲル化剤がフィブリノゲンであればゲル化開始剤はトロンビンが用いられる。またゲル化剤がアルギン酸ナトリウムであればゲル化開始剤は塩化カルシウムである。
 ゲル化剤よりも粘度の高い高粘度溶液は特に限定されるものではない。具体的には、高粘度溶液は、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、メチルセルロース、ヒドロキシブチルセルロース、セルロースナノファイバーからなる群から選択されるいずれかが用いられる。また、上記の高粘度溶液から適宜選ばれた複数種を組み合わせて用いることができる。
 (ゲル化剤以外の材料について)
 本実施の形態で使用できる細胞は特に限定されるものではない。ただし当該細胞は、たとえば心筋細胞、神経細胞、肝細胞、癌細胞、血管内皮細胞、線維芽細胞からなる群から選択されるいずれかであってもよい。より詳しくは、当該細胞は、心筋細胞、神経細胞、肝細胞、血管内皮細胞、線維芽細胞、表皮細胞、平滑筋細胞、消化管細胞、腎細胞、膵細胞などの各種初代細胞、幹細胞由来(iPSおよびES等)の分化細胞、および各種癌細胞等のうちのいずれかであってもよい。
 細胞は、疾患様のものであるか、正常様のものであるかを問わず、複数の細胞を混合したものが培養されてもよい。つまり、N個の第1塗布液AAのうち1個の第1塗布液AA中に、細胞として、第3細胞と、当該第3細胞とは異なる第4細胞とが含まれるように共培養されてもよい。第3細胞は次に述べる第1細胞と同一でもよいし異なってもよい。第4細胞は次に述べる第2細胞と同一でもよいし異なってもよい。
 第1塗布液AA中に含まれる細胞の体積の割合を第1塗布液AAの細胞体積濃度とする。つまり細胞体積濃度は、第1塗布液AA全体の体積に対する細胞の体積の割合を示すものである。第1塗布液AAの細胞体積濃度は0.001vol%以上50vol%以下であることが好ましい。本明細書では細胞体積濃度は体積百分率(単位vol%)で表記される。たとえば50vol%は50v/v%に等しい。また50vol/%は体積の割合が50%であることとも等しい。このため体積百分率は単位v/v%で表記されてもよい。あるいは体積百分率は本明細書では単位%で表記されてもよい。つまり単位vol%で表される体積百分率の数値は、単位v/v%で表される体積百分率の数値、および単位%で表される百分率の数値に等しい。上記の中でも第1塗布液AAの細胞体積濃度は1vol%以上30vol%以下であることがより好ましい。その中でも第1塗布液AAの細胞体積濃度は25vol%であることが最も好ましい。
 ウェル12内に第1塗布液AAがN個(N≧2の自然数)供給されるとき、ウェル12内に供給されるN個の第1塗布液AAのうち少なくとも1個に細胞が含まれ、上記少なくとも1個とは異なる他の少なくとも1個の第1塗布液AAには細胞を含まずサイトカイン、薬剤、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれてもよい。つまり第1塗布液AAにサイトカイン、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれてもよいし、これらのうち複数が混合されてもよい。上記サイトカイン、薬剤、ECM、添加因子は、少なくとも1個の第1塗布液AAに含まれる細胞に作用する。
 さらに、1つのウェル12内に第1塗布液AAを複数個塗布する場合に、たとえばそのうちの1個が心筋細胞であり、他の1個が癌細胞であるように、第1塗布液AA間で異なる種類の細胞が含まれてもよい。あるいは複数個の第1塗布液AAのうちの1個に心筋細胞が含まれ、他の1個にも同種の心筋細胞が含まれてもよい。つまりウェル12内に供給されるN個の第1塗布液AAのうち少なくとも1個に含まれる細胞は第1細胞であり、少なくとも1個とは異なる他の少なくとも1個の第1塗布液AAに含まれる細胞は第2細胞である。第2細胞は第1細胞と同種でも異種でもよい。なお、第1細胞または第2細胞を含む第1塗布液AAには、フィブロネクチン、ゼラチン、コラーゲン、ラミニン、エラスチン、マトリゲルなどの細胞外マトリックス成分、線維芽細胞増殖因子、血小板由来成長因子などの細胞増殖因子等の添加剤が含まれてもよい。これにより、当該第1塗布液AAに内包される細胞が安定して接着および増殖できる環境が与えられる。
 培地は特に限定されるものではない。培地として、DMEM、RPMI1640、M199、MEMからなる群から選択されるいずれかを用いることができる。培地には、抗生物質、FBS、各種成長因子等、特に限定されるものではなく種々の添加物を添加できる。また培地と第2塗布液BBとは同じ溶液を使用することができる。ただし培地と第2塗布液BBとに同じ溶液を用いる場合には、培地は高粘度溶液とする必要がある。
 培地を滴下する位置は、第2塗布液BBの中心と平面的に重なる位置であることが好ましいが、これに限られない。培地は第2塗布液BBと同じ溶液としてもよい。ただし培地を形成するための溶液は第2塗布液BBとは独立に、第2塗布液BBを浸漬するように供給される。
 さらに、たとえば上記の細胞組織の第1例または第2例において、第1塗布液AAおよび第2塗布液BBの少なくともいずれかに増粘多糖類が混合されてもよい。増粘多糖類として、具体的にはアルギン酸ナトリウム、ヒアルロン酸ナトリウム、メチルセルロース、ヒドロキシブチルセルロース、セルロースナノファイバーからなる群から選択されるいずれかが用いられてもよい。増粘多糖類の混合により、第1塗布液AAの保形性の向上という効果が得られる。
 第1塗布液AAが1個のみ形成され、ゲル化剤が第1塗布液AAに含まれる実施例について説明する。
 第1塗布液として、iPS心筋細胞(iCell cardiomyocyte2)と心臓線維芽細胞とが4:1の個数比で含まれたものに、1.05mg/mLのコラーゲン溶液が混合されたものが用いられた。iPS心筋細胞と心臓線維芽細胞とが4:1の個数比で含まれたものの細胞体積濃度は25vol%であった。第2塗布液として、溶液100mL中に0.75gのメチルセルロースが溶解され、カルシウムイオンおよびマグネシウムイオンを含むPBS(+)の溶液が用いられた。培地として、iCell播種培地が用いられた。塗布対象物は、96個のウェル12を有する試料塗布セット11(図3参照。96ウェルプレートと称する)に含まれる1つのウェル12が用いられた。96ウェルプレートの直径6.5mmの円形のウェルの中心に、針径が700μmの塗布針を用いて、第1塗布液が供給された。第1塗布液の中心の真上に、直径4.5mmの第2塗布液が、ディスペンサにより滴下された。さらに、ピペットを用いて、100μLの培地が、第1塗布液および第2塗布液の上に滴下された。
 図13は、実施例1における位相差顕微鏡像である。図13を参照して、第1塗布液が崩壊することなく組織を形成できた。なお、本実施例における上記の各パラメータの数値は以下の通りであり、上記の数式を全て満足する。
11=r1v=0.7mm、L1=0mm、r21=r2v=4.5mm、L2=0mm、Dn,m=0mm、r=6.5mm、L3=0mm。
 第1塗布液AAが1個のみ形成され、ゲル化剤が第2塗布液BBに含まれる実施例について説明する。
 第1塗布液として、iPS心筋細胞(iCell cardiomyocyte2)と心臓線維芽細胞とが4:1の個数比で含まれたものに、3mg/mLのヒアルロン酸ナトリウム溶液と、260unit/mLのトロンビン溶液とが混合されたものが用いられた。iPS心筋細胞と心臓線維芽細胞とが4:1の個数比で含まれたものの細胞体積濃度は10vol%であった。第2塗布液として、5mg/mLのヒアルロン酸ナトリウム溶液と、5mg/mLのフィブリノゲン溶液とが混合され、カルシウムイオンおよびマグネシウムイオンを含むPBS(+)の溶液が準備された。培地として、iCell播種培地が用いられた。塗布対象物は、96ウェルプレートの1つのウェルが用いられた。96ウェルプレートの直径6.5mmの円形のウェルの中心に、針径が700μmの塗布針を用いて、第1塗布液が供給された。第1塗布液の中心の真上に、直径3.5mmの第2塗布液が、ディスペンサにより滴下された。さらに、ピペットを用いて、100μLの培地が、第1塗布液および第2塗布液の上に滴下された。
 図14は、実施例2における位相差顕微鏡像である。図14を参照して、第1塗布液が崩壊することなく組織を形成できた。なお、本実施例における上記の各パラメータの数値は以下の通りであり、上記の数式を全て満足する。
11=r1v=0.7mm、L1=0mm、r21=r2v=3.5mm、L2=0mm、D1,1=0mm、r=6.5mm、L3=0mm。
 第1塗布液AAが2個形成され、第2塗布液BBが1個形成され、ゲル化剤が第1塗布液AAに含まれる実施例について説明する。
 第1塗布液として、iPS心筋細胞(iCell cardiomyocyte2)と心臓線維芽細胞とが4:1の個数比で含まれたものに、1.05mg/mLのコラーゲン溶液が混合されたものが用いられた。iPS心筋細胞と心臓線維芽細胞とが4:1の個数比で含まれたものの細胞体積濃度は25vol%であった。第2塗布液として、溶液100mL中に0.75gのメチルセルロースが溶解され、カルシウムイオンおよびマグネシウムイオンを含むPBS(+)の溶液が用いられた。培地として、iCell播種培地が用いられた。塗布対象物は、96ウェルプレートの1つのウェルが用いられた。
 図15は、実施例3において供給された各塗布液の位置および寸法を示す概略平面図である。図16は、図15と同一の各塗布液の中心位置および中心間の距離を示す概略平面図である。図15および図16を参照して、96ウェルプレートの直径6.5mmの円形のウェルの中心から1.0mmずれた位置に、針径1000μmの塗布針を用いて、1個目の第1塗布液A1oが供給された。第1塗布液A1oの中心から2.0mmずれた位置に、針径700μmの塗布針を用いて、2個目の第1塗布液A2oが供給された。2個の第1塗布液A1o,A2oの中心を結んだ直線上における、第1塗布液A1oの中心から0.5mmずれた位置(第1塗布液A1oの外縁)を中心として、直径4.5mmの第2塗布液BBが、ディスペンサにより滴下された。さらに、ピペットを用いて、100μLの培地が、第1塗布液および第2塗布液の上に滴下された。
 図17は、実施例3における位相差顕微鏡像である。図17を参照して、2個の第1塗布液が崩壊することなく組織を形成できた。なお、本実施例における上記の各パラメータの数値は以下の通りであり、上記の数式を全て満足する。
11=0.7mm、r12=1.0mm、d1,1=2.0mm、r1v=1.425mm、r21=r2v=4.5mm、L2=0mm、D1,1=0mm、P1,1=0mm、r=6.5mm、L3=0.5mm。
 第1塗布液AAが多数個(3個以上)形成され、第2塗布液BBが1個形成され、ゲル化剤が第2塗布液BBに含まれる実施例について説明する。
 第1塗布液として、iPS心筋細胞(iCell cardiomyocyte2)と心臓線維芽細胞とが4:1の個数比で含まれたものに、3mg/mLのヒアルロン酸ナトリウム溶液と、260unit/mLのトロンビン溶液とが混合されたものが用いられた。iPS心筋細胞と心臓線維芽細胞とが4:1の個数比で含まれたものの細胞体積濃度は10vol%であった。第2塗布液として、5mg/mLのヒアルロン酸ナトリウム溶液と、5mg/mLのフィブリノゲン溶液とが混合され、カルシウムイオンおよびマグネシウムイオンを含むPBS(+)の溶液が準備された。培地として、iCell播種培地が用いられた。塗布対象物は、96ウェルプレートの1つのウェルが用いられた。
 図18は、実施例4における位相差顕微鏡像である。図18を参照して、図中の丸印はいずれも第1塗布液の外縁を示す。すなわち図18の左上の写真は互いに接触しないように間隔をあけて4個の第1塗布液が塗布された細胞組織である。図18の右上の写真は部分的に接触するように5個の第1塗布液が一直線状に塗布された細胞組織である。図18の左下の写真は部分的に接触するように8個の第1塗布液が四角形の周を形成するように並べられた細胞組織である。図18の右下の写真は部分的に接触するように6個の第1塗布液が中実の三角形を形成するように並べられた細胞組織である。
 図18に示されないが、第1塗布液と内接も外接もせず、第1仮想曲線の第1仮想寸法r1vよりも十分に大きい第2寸法r2mを有する第2塗布液が供給された。このため第1塗布液が崩壊することなく組織を形成できた。いずれの写真の例も、第1塗布液の寸法r1nは0.2mmである。dn,mの値は、左上の写真のみ0.3mm、左上以外の写真はいずれも0.15mmである。
 塗布位置を変えながら、第2塗布液BBのみをウェル12内に塗布する実施例について説明する。
 図19は、第2塗布液のウェル内における塗布位置を変化させたときの、塗布されると想定される位置と、実際に塗布された位置とを示す模式図および写真である。図19の上段は塗布されると想定される位置を示す模式図である。図19の中段は実際に塗布された位置を示す模式図である。図19の下段は図19の中段に示す模式図についての実際の写真である。第2塗布液としては、溶液100mL中に0.75gのメチルセルロースが溶解され、カルシウムイオンおよびマグネシウムイオンを含むPBS(+)の溶液が用いられた。第2塗布液の寸法は4.5mmであり、ウェルの直径は6.5mmである。
 図19を参照して、左列のようにウェルの中心を狙って第2塗布液が塗布された場合には、想定通りの結果となった。中列のようにウェルの中心から0.5mm上側に離れた位置を狙って第2塗布液が塗布された場合にも、想定通りの塗布結果が得られた。しかし右列のようにウェルの中心から1.0mm上側に離れた位置を狙って第2塗布液が塗布された場合、想定模式図とは異なり、ウェルの上側の内壁に第2塗布液が付着し、楕円形の第2塗布液となった。このことから、第2塗布液がウェルの内壁に内接するように塗布されれば、第2塗布液の位置および形状が想定とは異なり、第1塗布液に対してずれた位置に配置される可能性がある。このため第1塗布液が崩壊する可能性が高くなる。したがって第2塗布液はウェルの内壁に接しないように供給することが求められる。
 (実施の形態2)
 本実施の形態の技術分野は、塗布装置(バイオプリンター)を用いて心筋細胞から心筋組織を製造する方法(心筋組織の製造方法)に関する。具体的には、実施の形態1の塗布装置と同一の塗布装置を用いた心筋組織の作製に関するものである。
 図20は、実施の形態2における第1塗布液が塗布される前の態様を示す概略図である。図20を参照して、まずバイオプリンターを構成する塗布針24の先端が、第1塗布液AA(第1バイオインク)に浸漬され、第1塗布液AAが塗布針24の先端に付着される。図21は、実施の形態2における第1塗布液の組成を示す概略図である。図21を参照して、第1塗布液AAは、培養すべき細胞Cと、ゲル化剤としてのコラーゲンと、第1溶媒mとの混合により得られる。図21の細胞CはC1とC2とを含むが、これらについては後述する。図22は、実施の形態2における第1塗布液が塗布される工程を示す概略図である。図22を参照して、第1塗布液AAが付着された塗布針24の先端が、ウェル12(図3参照)のたとえば底部(ウェル底部12a)に接触する。これは第1塗布液AAが付着された塗布針24が図20の矢印M1に示すように下方に移動することによりなされる。これによりウェル底部12aに第1塗布液AAが塗布される。図23は、実施の形態2における第1塗布液が塗布された後の態様を示す概略図である。図23を参照して、その後塗布針24が矢印M2に示すように上方に移動する。このように、第1塗布液AAはいわゆるピン方式のバイオプリンターを用いてウェル12などの容器に塗布される。
 図24は、実施の形態2における第2塗布液が供給される工程を示す概略図である。図25は、図24の工程がなされた後のウェル内の態様を示す概略図である。図24および図25を参照して、ウェル12内に塗布された第1塗布液AAを覆うように、ウェル12内に第2塗布液BB(第2バイオインク)が供給される。第2塗布液BBはたとえばディスペンサにより滴下されてもよいが、第2塗布液BBの供給方法はこれに限られない。第2塗布液BBは、ピン方式、インクジェット方式、ディスペンサ方式、ピペットを用いた手動からなる群から選択されるいずれかにより供給されてもよい。
 図26は、実施の形態2における培地が供給される工程を示す概略図である。図26を参照して、第2塗布液BBを供給する工程の後に、培地Mがウェル12内に供給される。培地Mは第1塗布液AAおよび第2塗布液BBが浸され覆われるように供給される。培地Mの滴下方法は特に限定されない。培地Mは、ピン方式、インクジェット方式、ディスペンサ方式、ピペットを用いた手動からなる群から選択されるいずれかにより供給されてもよい。あるいは培地Mは、分注機またはマイクロポンプにより供給されてもよい。
 図27は、培養前の第1塗布液内の細胞の態様を示す概略図である。図28は、培養後の第1塗布液内の細胞の態様を示す概略図である。図27、図28(および図21)を参照して、培養前の第1塗布液AA内の細胞Cは、心筋細胞C1と、心臓線維芽細胞C2とを含んでいる。細胞C中の心筋細胞C1の個数の比率は75%以上であるが、80%以上であることが好ましい。細胞C中の心臓線維芽細胞C2の個数の比率は20%以下である。したがって、最も心筋細胞C1の個数の比率が低い場合はC1:C2=80:20であり、最も心筋細胞C1の個数の比率が高い場合はC1:C2=100:0である。言い換えれば、上記の比例式において、細胞C中の個数比率(%)は80≦C1≦100(または75≦C1≦100)であり、0≦C2≦20である。第1塗布液AA中に含まれる心筋細胞C1と心臓線維芽細胞C2との細胞体積濃度は0.001vol%以上50vol%以下であることが好ましい。その中でも細胞体積濃度は1vol%以上30vol%以下であることがより好ましい。その中でも細胞体積濃度は25vol%であることが最も好ましい。心筋細胞C1と心臓線維芽細胞C2との個数の比率および細胞体積濃度を上記のようにすることにより、後述の実施例6のように、細胞を培養させることによる細胞組織を安定的に形成できる。培養により、心筋細胞C1および心臓線維芽細胞C2はいずれも図27の状態から図28のように成長し、心筋組織が形成される。
 (材料)
 ここで、本実施の形態にて各塗布液などに使用可能な材料について説明する。
 第1塗布液AA(第1バイオタンク)は、上記のように細胞Cと、コラーゲンと、第1溶媒mとが混合される。第1塗布液AAは、上記の混合液に各種添加物が加えられてもよい。
 細胞Cに含まれる心筋細胞C1は、正常心筋細胞および疾患由来の心筋細胞の少なくともいずれかであってもよい。正常心筋細胞はたとえばヒトiPS細胞由来心筋細胞であり、疾患由来の心筋細胞はたとえば疾患由来ヒトiPS細胞由来心筋細胞である。また心筋細胞C1は、初代心筋細胞および幹細胞由来心筋細胞のいずれかであってもよい。初代心筋細胞は、ヒト、マウス、ラットなど各種動物種由来であってもよい。幹細胞由来心筋細胞としては、(上記の)iPS細胞由来心筋細胞、ES細胞由来心筋細胞、ダイレクトリプログラミング細胞由来心筋細胞などが挙げられる。疾患由来の心筋細胞としては、疾患を有する動物種から採取した細胞、疾患を発症した動物種から採取した細胞から作製した幹細胞を分化誘導した細胞、および遺伝子改変が行なわれた細胞などが挙げられる。また細胞Cには心筋細胞C1以外に、心臓線維芽細胞C2、血管内皮細胞、神経細胞などが混合されてもよい。心筋細胞以外の上記細胞についても、心筋細胞と同様に動物由来のものまたは疾患由来のものなどを用いることができる。これらを用いれば、培養により得られる細胞組織をより心筋組織に酷似したものにできる。
 ゲル化剤としてのコラーゲンは、コラーゲンtypeI、typeII、typeIII、typeVが用いられる。しかし本実施の形態ではコラーゲンtypeIが用いられることが好ましく、コラーゲンtypeI-Aが用いられることが特に好ましい。コラーゲンの中でもコラーゲンtypeI-Aは心臓に最も多く発現するためである。コラーゲンtypeI-Aの濃度は0.01mg/mL以上2.1mg/mL以下であり、その中でも0.1mg/mL以上2.1mg/mL以下が好ましい。さらにその中でも0.5mg/mL以上2.1mg/mL以下が特に好ましい。第1塗布液AA内のコラーゲンのゲルには、フィブリンゲル、マトリゲル、ゼラチン、GelMA(ゼラチンメタクリロイル)などが任意に比率で混合されてもよい。
 第1塗布液AA中の第1溶媒mの材料は特に限定されるものではない。ただし第1溶媒mには培地または緩衝液を用いることが好ましい。たとえば第1溶媒mとしての培地は、DMEM、DMEM/Ham F-12、αMEM、RPMI1640(たとえばLonza製、Thermo製、ナカライテスク製、Wako製の培地。型番はたとえば30264-85(ナカライテスク株式会社))、ウィリアム培地、M199、市販の心筋細胞専用培地(iCell心筋細胞解凍用培地、iCell心筋細胞維持培地など)および市販の線維芽細胞専用培地(FGM-3)からなる群から選択される少なくともいずれかを用いることが好ましい。また第1溶媒mの緩衝液は、PBS(+/-)、トリス緩衝液およびタイロード緩衝液からなる群から選択される少なくともいずれかを用いることが好ましい。第1溶媒mとして、上記の各種培地および各種緩衝液の少なくともいずれかから2種類以上が選択されそれらが混合されたものが用いられてもよく、その場合に2種類以上が混合される比率は任意であってもよい。
 第1塗布液AA中の各種添加物は特に限定されるものではない。ただし第1塗布液AA中の各種添加物として、増粘剤、細胞成長因子、タンパク質、薬剤などが添加されてもよい。第1塗布液AAの増粘剤は、セルロース、セルロースナノファイバー、キチン、キトサン、キチンナノファイバー、キトサンナノファイバー、メチルセルロース、カルボキシメチルセルロース、ヒドロキシブチルセルロース、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、ポリエチレングリコール、ジェランガム、カラギーナン、ペクチン、キサンタンガム、ゼラチン、アガロース、ポリビニルアルコールからなる群から選択される1つ以上の物質を含んでもよい。
 第1塗布液AA中の各種添加物としての細胞成長因子、タンパク質、薬剤などは、FGF(線維芽細胞増殖因子)、B27(登録商標)サプリメント、トリヨードチロニン、デキサメタゾン、インシュリン用成長因子(IGF-I)、インシュリン、神経成長因子(NGF)、イソプロテレノール、上皮成長因子(EGF)、肝細胞増殖因子(HGF)、ラミニン、フィブロネクチン、コラーゲン、ゼラチン、ヒアルロン酸ナトリウム、プロテオグリカン、ニドゲン、Rhoキナーゼ阻害物質(Rock Inhibitor)、マトリゲルからなる群から選択されてもよい。
 第2塗布液BB(第2バイオタンク)は、増粘剤と第2溶媒との混合溶液として構成される。第2塗布液BBは、上記の混合液に各種添加物が加えられてもよい。
 第2塗布液BBの増粘剤は、セルロース、セルロースナノファイバー、キチン、キトサン、キチンナノファイバー、キトサンナノファイバー、メチルセルロース、カルボキシメチルセルロース、ヒドロキシブチルセルロース、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、ポリエチレングリコール、ジェランガム、カラギーナン、ペクチン、キサンタンガム、ゼラチン、アガロース、ポリビニルアルコールからなる群から選択される1つ以上の物質を含んでもよい。これらを用いれば、第1塗布液AAを覆う第2塗布液BBの保形性を向上でき、第2塗布液BBが第1塗布液AAを覆う位置以外のずれた位置に配置される不具合を抑制できる。
 第2溶媒の材料は特に限定されるものではない。ただし当該溶媒には培地または緩衝液を用いることが好ましい。第2溶媒としての培地、緩衝液は、上記の第1溶媒mとしての培地、緩衝液と同様の材料群から選択され、第1溶媒mと同様の比率で混合使用されてもよいため、その説明を繰り返さない。第2溶媒(第2塗布液BB)への各種添加物は、上記の第1塗布液AA(第1溶媒m)への各種添加物と同様の材料群から選択されてもよいため、その説明を繰り返さない。
 第2塗布液BBの後に供給される培地Mは、上記第1溶媒m、第2溶媒に用いられる培地と同様の材料群から選択され、第1溶媒m、第2溶媒と同様の比率で混合使用されてもよいため、その説明を繰り返さない。また培地Mに追加される各種添加物は、上記第1塗布液AA、第2塗布液BBへの各種添加物と同様の材料群から選択されてもよいため、その説明を繰り返さない。ただし一例として、後述の実施例6のように、培地MはRPMI1640であり、培地Mへの添加因子(添加物)は、B27(登録商標)サプリメント、トリヨードチロニン、デキサメタゾン、インシュリン様成長因子からなる群から選択される1つ以上(これら4種すべて)であることが好ましい。これにより後述の実施例6のように、細胞を培養させることによる細胞組織を安定的に形成できる。
 (実施の形態2の背景技術および解決しようとする課題)
 国際公開第2019/088224号には、ピン方式のバイオプリンターを用いて細胞含有溶液を塗布する技術が開示されている。ただし国際公開第2019/088224号の技術によれば、塗布針等のバイオプリンティング技術における塗布工程において、塗布工程を実行する前の塗布液容器内部にて、塗布液が意図せずゲル化および目詰まりを起こす可能性がある。このような現象は、特に心筋細胞をフィブリノゲンに分散させた塗布液において起こりやすい。そこで特開2020-141599号公報には、そのような塗布工程を実行する前の塗布溶液の意図しないゲル化を抑制する技術が開示されている。具体的には、特開2020-141599号公報では、細胞とゲル化開始剤と増粘剤とが第1塗布液として塗布され、ゲル化剤が第2塗布液として滴下されることによりいわゆるゲルドームが形成される。
 特開2020-141599号公報では第1塗布液が塗布前から意図せずゲル化する不具合を抑制する技術が提案されるが、いわゆる2液混合方式により塗布液が供給されるため、塗布後は細胞組織が収容される塗布液の外殻としてゲルドームが存在する。このため塗布液の外部から供給される薬剤およびタンパク等が、当該外殻としてのゲルドームの網目を通り抜けることが困難となる。その結果、薬剤およびタンパク等が細胞組織に浸透および作用しにくくなるという課題がある。また特開2020-141599号公報には、成体の心臓に最も多く存在するタンパク質をゲル化剤として用いた例が開示されていない。このためにより構築される心筋組織は、成体の心臓を高機能に再現できていない可能性がある。
 本開示は上記の課題に鑑みなされたものである。本開示の目的は、外部から細胞組織への薬剤などの浸透および作用が阻害されず、より成体の心臓に近く高機能な心筋組織を形成可能な心筋組織の製造方法を提供することである。
 そこで本開示に従った心筋組織の製造方法では、塗布装置に含まれる塗布針24の先端を第1塗布液AAに浸漬させることにより、第1塗布液AAが塗布針24の先端に付着される。塗布針24の先端に付着された第1塗布液AAが塗布対象物であるウェル12内に塗布される。第1塗布液AAは、培養すべき細胞と、ゲル化剤としてのコラーゲンと、第1溶媒mの混合溶液である。
 本開示の心筋組織の製造方法によれば、いわゆる2液混合方式を適用しないため、2液混合方式にて生じるゲルドームが形成されない。このため、ゲルドームに起因する細胞組織への薬剤およびタンパクなどの浸透および作用の阻害が起こりにくくなる。したがって、薬剤およびタンパクを容易に浸透および作用させることが可能な細胞組織を構築できる。またコラーゲン(特にコラーゲンtypeI-A)は成体の心臓に最も多く存在するタンパク質である。このため第1塗布液AAにゲル化剤としてのコラーゲンを含めることで、より成体の心臓に近い高機能な心筋組織を構築できる。さらに上記の心筋組織の製造方法によれば、第2塗布液BBおよび培地(RPMI1640など)が供給され、塗布液がゲル化可能な温度(たとえば37℃)に制御されない限り、コラーゲンはゲル化されない。このため塗布液の供給が完了する前の時点での、第1塗布液AAの意図せぬゲル化を防ぐことができる。
 (心筋組織の形成)
 実施の形態2の心筋組織の製造方法に基づき実際に心筋組織を形成する実験がなされた。当該実験では、塗布装置(図1参照)を用いて、次のように塗布液が準備された。第1塗布液AAに含まれる細胞Cは、心筋細胞C1としてのiPS心筋細胞(iCell Cardiomyocyte2)と、心臓線維芽細胞C2としての正常ヒト心臓線維芽細胞とが、個数の比率で4:1とされた。第1塗布液AA中の細胞Cの細胞体積濃度は25vol%とされた。
 第1塗布液AAに含まれるゲル化剤はコラーゲンとし、濃度が0.7mg/mLのコラーゲンtypeI-Aとされた。第1塗布液AAに含まれる第1溶媒mは、RPMI1640とされた。
 次に、第2塗布液BBは増粘剤と第2溶媒との混合溶液とされた。具体的には、第2塗布液BBの保形成を向上するための増粘剤としてメチルセルロースが用いられた。第2溶媒はリン酸緩衝生理食塩水(+)(PBS(+))とされた。
 第2塗布液BBの供給後に供給された培地はRPMI1640とされた。当該培地への添加因子は、B27(登録商標)サプリメントと、75nMのトリヨードチロニンと、1μMのデキサメタゾンと、100ng/mLのインシュリン様成長因子(IGF-I)とからなるものとされた。
 本実施例において、図20の工程では、先端部以外の針径が一定である領域の、延在方向に直交するよう切られた断面が直径1000μmの円形である塗布針24が用いられた。第1塗布液AAが96ウェルプレートの1つのウェル12(図3参照)に塗布された。第1塗布液AAを覆うように、ディスペンサーを用いて第2塗布液BBが滴下された。さらに当該ウェル12内に添加された培地RPMI1640は、2,3日に一度培地交換され、6日間~7日間培養することにより細胞組織すなわち心筋組織が構築された。培養日数は6日以上が好ましい。培養日数は2週間以上であってもよい。
 図29は、ウェル内に塗布液が供給された直後の位相差顕微鏡像(左)、および6日間培養後の位相差顕微鏡像(右)である。図29を参照して、56個の第2塗布液BBの塗布直径は1095±42μmであった。このように、安定的に心筋組織が形成できた。
 (Ca2+トランジエント測定)
 7日間の培養後の心筋組織が染色された後、心筋収縮の機能を調査する観点から、Ca2+トランジエント測定がなされた。測定は、本実施例の図29に示す培養後の心筋組織(以下「塗布組織」と記す)と、比較例としての平面培養された組織(以下「2D組織」と記す)とについてなされた。比較例の心筋組織は、iPS心筋細胞(iCell Cardiomyocyte2)と、正常ヒト心臓線維芽細胞とが個数の比率で4:1とされた。比較例の心筋組織は、1ウェルあたり50000個の細胞が播種され、実施の形態2と同じ塗布装置で得られた塗布組織と同様の培地で平面培養された。その結果を次の表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、得られた心筋組織の拍動数(BPM)は、塗布組織の方が2D組織の約2倍であった。また心筋組織の収縮により検出されるCa2+トランジエント波形の蛍光強度のピーク幅は、塗布組織が2D組織の約半分であった。なお蛍光強度のピーク幅とは、次の図30に示すCa2+トランジエント波形の時間幅を意味する。このことから、塗布組織の方が2D組織よりも安定した組織であることが確認できた。
 図30は、塗布組織の実験におけるCa2+トランジエント波形を示すグラフである。図30の横軸は経過時間を示し、縦軸は検出される蛍光強度を示している。図30を参照して、塗布組織における蛍光強度のピーク幅は945msec程度であることがわかる。なお図30のグラフ中、Ca2+トランジエント波形の蛍光強度はAMPで示され、蛍光強度のピーク幅はPWD90で示される。
 次に、βアドレナリン受容体アゴニストであるイソプロテレノールを添加した際のCa2+トランジエント波形の変化が評価された。イソプロテレノールは一般的に心筋細胞の拍動数と収縮力を上昇させる。心筋細胞の収縮力はCa2+トランジエント測定の蛍光強度(AMP)と相関がある。つまり成熟した心筋細胞であれば蛍光強度が上昇するのに対し、未成熟な心筋細胞では蛍光強度が上昇しない。
 図31は、塗布組織および2D組織のそれぞれにイソプロテレノールを添加した際のBPMの変化を示すグラフである。図31の横軸はイソプロテレノールの添加量を単位nMで示し、縦軸はBPMの変化量を単位%で示す。図31を参照して、BPMの値は塗布組織、2D組織ともにイソプロテレノール濃度の増加に伴い上昇した。
 図32は、塗布組織および2D組織のそれぞれにイソプロテレノールを添加した際のAMPの変化を示すグラフである。図32の横軸はイソプロテレノールの添加量を単位nMで示し、縦軸はAMPの変化量を単位%で示す。図32を参照して、AMPの値は塗布組織においてはイソプロテレノールの濃度に依存して上昇したが、2D組織においてはイソプロテレノールの濃度が増加してもあまり上昇しなかった。この結果より、塗布組織は2D組織と比較して心筋細胞が成熟化すなわち高機能化している可能性が示された。
 以上を総合的に考察して、ゲルが混ざらず細胞だけが平面培養された比較例に比べて、ゲル化剤としてのコラーゲンが細胞に混合された溶液が塗布装置で供給された本実施例の方が優れた効果が得られた。
 (実施の形態3)
 以降において、培養容器を「プレート」、そこに形成される個々のウェルを「容器」と記載する場合がある。
 最初に本実施の形態の特徴について簡単に説明する。図39を参照して、塗布材料を受け入れ可能な複数の容器112Aを有するプレート111に含まれる第1容器112A-1に、第1塗布機構104を用いて塗布材料としての第1塗布材料A1を供給する工程を備える。図33および図40を参照して、プレート111を載置するステージ101が移動する工程を備える。図40を参照して、プレート111の第1容器112A-1に隣接する第2容器112A-2に第1塗布機構104を用いて第1塗布材料A1を供給すると同時に、第1容器112A-1に、第1塗布機構104に隣接する第2塗布機構105を用いて塗布材料としての第2塗布材料Bを供給する工程とを備える。以下にこれについて詳細に説明する。
 (塗布装置の構成)
 図33は、実施の形態3に係る塗布装置の第1例を示す概略正面図である。なお説明の便宜上、X方向、Y方向およびZ方向が導入される。図33を参照して、塗布装置100は、塗布されるべき塗布材料を供給可能な塗布機構107として、針塗布機構104と、滴下機構105とを備えている。このように本明細書では「塗布」とは、後述する塗布針を用いた塗布材料の供給と、塗布材料の滴下による供給との双方を含めるものとする。このため前者の塗布針を用いた供給を本明細書では「針塗布」と称する場合がある。図33の塗布装置100は、1つの針塗布機構104と、2つの滴下機構105とを備えている。2つの滴下機構105は、滴下機構105-1と、滴下機構105-2とであり、X方向に間隔をあけて並んでいる。また針塗布機構104と滴下機構105とは、X方向に間隔をあけて並んでいる。これらの相互のX方向間隔は一定であり変化しない。
 X軸ステージ101(ステージ)は、水平方向であるX方向に沿って移動可能である。またY軸ステージ102は、水平方向であるY方向に沿って移動可能である。具体的には、たとえばX軸ステージ101またはY軸ステージ102の下面にガイド部が設置されている。当該ガイド部は、図示されないガイドレールに摺動可能に接続されている。たとえばX軸ステージ101の上側の表面は、プレート111を載置可能な搭載面となっている。図33ではY軸ステージ102の上にX軸ステージ101が配置され、X軸ステージ101の上にプレート111が載置される。しかし逆に、Y軸ステージ102の上にX軸ステージ101が配置され、X軸ステージ101の上にプレート111が載置されてもよい。
 針塗布機構104、滴下機構105および観察光学系106は、Z方向に移動可能な部材であるたとえばZ軸テーブルに接続されている。つまり針塗布機構104、滴下機構105および観察光学系106は、塗布装置100内において、Z方向に移動可能に保持されている。観察光学系106はプレート111上の塗布材料を塗布すべき位置などを観察し測定する。観察光学系106には、観察した画像を電気信号に変換するCCDカメラが設置されていてもよい。観察光学系106によるプレート111などの観察は、可視光によりなされてもよい。しかしプレート111などの観察は、可視光に限らず、赤外線、X線、超音波などによりなされてもよく、プレート111の材質によっては磁気を用いてプレート111の観察が可能である。可視光以外の手段により観察されるプレート111は、透明または半透明である必要はなく、不透明であってもよい。
 図34は、実施の形態3に係る塗布装置の第2例を示す概略正面図である。図34を参照して、第2例に係る塗布装置100は、第1例に係る塗布装置100と基本的に同様の構成を備えるため、同一の構成要素には同一の符号を付し、機能等が同一である限り説明を繰り返さない。図34の塗布装置100は、3つの針塗布機構104と、2つの滴下機構105とを備えている。3つの針塗布機構104は、針塗布機構104-1と、針塗布機構104-2と、針塗布機構104-3とである。これら3つの針塗布機構は、X方向に間隔をあけて並んでいるが、相互のX方向間隔は一定であり変化しない。たとえばこれらの3つの針塗布機構104-1~104-3と、2つの滴下機構105-1,105-2とのそれぞれの互いに隣り合う機構間(貫通孔の中心間)のX方向間隔は、全て後述の容器112A間の第1間隔D1に等しくてもよい。以降の実施の形態3の説明では、図33の単一の針塗布機構104のみを有する塗布装置100が用いられる。
 図35は、図33に示した塗布装置の針塗布機構を示す模式図である。図35を参照して、本実施の形態の針塗布機構104(図34の針塗布機構104-1、針塗布機構104-2もこれと同じ)は、サーボモータ41、カム43、当該カム43のカム面に接触した状態で保持されている軸受44、カム連結板45、可動部46、塗布針ホルダ20を保持する可動ベース35、および塗布材料容器21を主に含む。塗布針ホルダ20は可動ベース35と着脱可能になっている。言い換えれば、ベース体としての可動ベース35は、塗布針ホルダ20を着脱可能に保持する。
 図36は、プレートの概略斜視図である。図36を参照して、本実施の形態では、液体材料としての塗布材料は、プレート111に複数形成された容器112Aの内部に塗布供給される。ただし塗布材料が供給される塗布対象物はこれに限られない。プレート111はZ軸方向に厚みを有し、その最上面に複数の容器112Aが形成されている。複数の容器112Aは、プレート111の上面がくぼんだ凹形状の部分である。複数の容器112Aは互いに間隔をあけて、たとえば図36のY軸方向に8列、X軸方向に12列で合計96個形成されてもよい。容器112Aの平面形状はたとえば円形など任意である。
 (塗布方法)
 図37は、実施の形態3の塗布方法を示すフローチャートである。図37を参照して、まず塗布機構107のZ軸が下降される(S1)。
 図38は、実施の形態3の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。図38を参照して、工程(S1)により、図38の針塗布機構104(第1塗布機構)と、これとのX方向の間隔が第1間隔D1である滴下機構105(第2塗布機構)とが下降される。針塗布機構104(図33での針塗布機構104)には第1塗布材料A1が入った第1塗布材料容器21A-1が含まれる。滴下機構105(図33での滴下機構105-1)には第2塗布材料Bが入った第2塗布材料容器21Bが含まれる。これらの各塗布材料容器21の底部には、塗布材料を供給するための貫通孔25が形成されている。これらの貫通孔25の中心間の間隔が、針塗布機構104と滴下機構105との第1間隔D1である。
 再度図37を参照して、次に、第1塗布針24A-1が下降される(S2)。第1塗布針24A-1の下降は、塗布装置100に含まれるZ軸ステージ103(図33参照)を動作させることによりなされる。これにより、シンプルな制御によるステージの移動が可能となる。
 図39は、実施の形態3の塗布方法の第1工程を示す概略断面図である。図37および図39を参照して、工程(S2)では、針塗布機構104に含まれる塗布針24(図35参照)としての第1塗布針24A-1が図中矢印の方向に下降する。
 第1塗布針24A-1は、第1塗布材料容器21A-1内に少なくとも先端部(最下部)が収まっている。第1塗布材料容器21A-1内には、塗布材料としての第1塗布材料A1が配置されている。このため第1塗布針24A-1の少なくとも先端部は第1塗布材料A1内に浸漬している。
 塗布装置100(図33参照)に設置されたプレート111(図36参照)には、複数の容器112Aが形成される。図39には容器112Aとして容器112A-1と、それのX方向左側に隣接する容器112A-2と、容器112A-2のX方向左側に隣接する容器112A-3とが示される。これらのX方向に沿う第1間隔は、針塗布機構104と滴下機構105との第1間隔D1に等しい。なお第1間隔D1は、X方向について互いに隣り合う容器112Aのそれぞれの中心間の距離である。初期状態では、たとえば図39のように、第1塗布針24A-1と平面的に重なる位置に、容器112A-1が配置される。
 次に、第1塗布針24A-1(第1塗布機構の一部)により第1塗布材料A1(第1塗布材料)が塗布される(S3)。具体的には、図39に示すように、第1塗布針24A-1の下降により、容器112A-1(第1容器)内に、第1塗布針24A-1の先端部に付着した第1塗布材料A1が供給される。
 その後、第1塗布針24A-1が上昇する(S4)。次に、プレート111が第1間隔D1だけ移動する(S5)。
 図40は、実施の形態3の塗布方法の第2工程を示す概略断面図である。図37および図40を参照して、工程(S5)では、プレート111を載置するたとえばX軸ステージ101が、矢印Mに示すように、X方向のたとえば右側に移動する、同時供給前移動工程がなされる。これによりX軸ステージ101およびその上のプレート111がX方向のたとえば右側に移動する。ただし後述のようにY軸ステージ102をY方向に移動させてもよい。このときはY軸ステージ102、X軸ステージ101およびプレート111がY方向に移動する。以上により、シンプルな制御によるステージの移動が可能となる。
 図40にてX軸ステージ101がX方向の右側に移動する距離は、第1間隔D1に等しい。また上記のように、針塗布機構104と滴下機構105-1の貫通孔25の中心間の距離は第1間隔D1に等しい。したがって針塗布機構104と滴下機構105-1との第1間隔D1は、X軸ステージ101の移動量に等しい。このため図40では、第1塗布針24A-1と平面的に重なる位置に、容器112A-2が配置される。また図40では、滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-1が配置される。
 次に図40では、図39と同様に工程(S2)~(S4)が繰り返される。つまり容器112A-2(第2容器)内に、第1塗布針24A-1の先端部に付着した第1塗布材料A1が供給される。これと同時に、容器112A-1(第1容器)内には、第2塗布材料容器21Bの貫通孔25から滴下される第2塗布材料Bが供給される、同時供給工程がなされる(S21)。第2塗布材料Bは第1塗布材料A1を覆うように供給される。
 図41は、実施の形態3の塗布方法の第3工程を示す概略断面図である。図37および図41を参照して、第1塗布材料A1を供給すべき領域のすべてに供給し終えたか否かが判定される(S100)。図41においては容器112A-3において未だ第1塗布材料A1が供給されていない。そこで(S100)からNの方へ進行し、再度、図中の矢印Mに示すように、プレート111が第1間隔D1だけ移動する(S5)。これにより、第1塗布針24A-1と平面的に重なる位置に、容器112A-3が配置される。また図41では、滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-2が配置される。その後、図39、図40と同様に、容器112A-3内に、第1塗布針24A-1の先端部に付着した第1塗布材料A1が供給される。これと同時に、容器112A-2内には、図40と同様に、第2塗布材料容器21Bの貫通孔25から滴下される第2塗布材料Bが供給される、同時供給工程がなされる(S21)。図41の同時供給工程は、たとえばX方向に1列に並ぶ、第1塗布材料A1を供給すべき容器112Aが存在しなくなるまで繰り返される。Y軸ステージ102がY方向に移動することにより、図33にてその上にあるX軸ステージ101およびプレート111もY方向に移動する。その後、Y方向に隣り合い1列に並ぶ容器112Aにも上記と同様の供給がなされてもよい。
 図40の工程では、容器112A-2が第1容器であり、容器112A-1が第2容器である。これに対し、図41の工程では、容器112A-3が第1容器であり、容器112A-2が第2容器である。このように、同時供給前移動工程および同時供給工程がなされる毎に、第1容器および第2容器に相当する容器は、X軸ステージ101の移動方向(X方向)に沿ってたとえば1つずつずれるように変更される。
 図42は、実施の形態3の塗布方法の第4工程を示す概略断面図である。図37および図42を参照して、第1塗布材料A1を供給すべき領域のすべてに供給し追えたか否かが判定される(S100)。図42においては容器112A-1から容器112A-3までの全てに第1塗布材料A1が塗布され終えている。そこで(S100)からYの方へ進行し、再度、プレート111が第1間隔D1だけ図中の矢印Mのように移動する(S5)。これにより、図42では、滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-3が配置される。その後、図40、図41と同様に、容器112A-3(第2容器)内に、第2塗布材料容器21Bの貫通孔25から第2塗布材料Bが滴下される(S21)。その後、塗布機構107のZ軸が上昇し(S22)、工程が終了する。
 なお第1塗布材料A1および第2塗布材料Bを供給し終えた後の適切なタイミングで、滴下機構105-2から培地が、各容器112A内に供給される。培地は、容器112A内の大部分を占め、第1塗布材料A1および第2塗布材料Bが浸漬されるように供給される。
 (供給される塗布材料について)
 第1塗布材料A1は、培養すべき細胞と、ゲル化開始剤であるトロンビンとが混合されている。一例として、第1塗布材料A1には、8×10-7cells/mLの濃度で、たとえばiPS細胞由来の心筋細胞と、ヒト心臓繊維芽細胞とが3:1の個数比で混合される。トロンビンの濃度は、たとえば800unit/mLである。また第1塗布材料A1には、13mg/mLのヒアルロン酸ナトリウムが混合されてもよい。さらに第1塗布材料A1には、PBS溶液が混合されてもよい。最終的に得られる第1塗布材料の粘度は、たとえば1.5×10-4mPa・sであってもよい。
 第2塗布材料Bは、ゲル化剤であるフィブリノーゲンを主成分とするが、ヒアルロン酸ナトリウムおよびPBS溶液が混合されてもよい。一例として、第2塗布材料Bには、10mg/mLのフィブリノーゲンと、0.5mg/mLのヒアルロン酸ナトリウムとが混合される。これらにより、第1塗布材料A1に含まれる細胞Cの培養ができる。
 (三次元細胞組織の作製方法)
 図43は、三次元細胞組織の作製方法の一例を示す概略図である。図43を参照して、(A)(B)のように、培養すべき細胞Cがトロンビンを含むPBS溶液などに懸濁された第1塗布材料A(第1塗布材料A1と同じ)が準備される。これが(C)のようにたとえば塗布装置の塗布材料容器21内に配置され、塗布針24により基板112Bなどの上に供給される。その後、(E)のように、たとえばマイクロピペット18による手動で、第1塗布材料Aを覆うように第2塗布材料Bが供給される。これにより、第1塗布材料Aと第2塗布材料Bとの接触面からその外周(第2塗布材料B)がゲル化(固化)される。これが(F)のように容器112A内に設置され、容器112A内にはこれらを浸漬する培地Mが供給される。すると時間の経過に伴い、第1塗布材料A内の細胞Cが沈殿し堆積する。これにより高密度の三次元細胞組織が得られる。第1塗布材料A内は液体の状態で保持されるため、第1塗布材料A内の細胞Cの乾燥が抑制される。図44は、図43の作製方法により得られた三次元細胞組織の写真である。図44を参照して、得られた三次元細胞組織は、50μm~200μm程度の厚みを有し、細胞が密に積層されている。さらに、細胞核、アクチン、トロポニン染色の結果、図44の三次元細胞組織には細胞が生存していることが確認され、心筋細胞に特徴的なアクチンとトロポニンの発現が確認された。
 図45は、プレートに含まれる1つの容器内に細胞組織が作製された結果を示す概略図である。図45を参照して、(A)に示すように、従来のマイクロピペットを用いた細胞播種方法では、容器112A内の全体に細胞Cが拡がる。しかし図43に示す方法を用いれば、(B)に示すように、たとえば直径が6.5mmの容器112Aのうち直径が1.0mmの範囲内に第1塗布材料Aおよび第2塗布材料Bを供給し、細胞組織を作製できる。さらに(C)のように、(B)のような細胞組織を容器112A内に複数、互いに間隔をあけて形成することもできる。図46は、図45中の(C)のように単一の容器内に複数形成された細胞組織の例を示す概略図である。図46を参照して、たとえば(A)のように円形の容器112A内に、周方向に沿って複数(たとえば8つ)の細胞Cを含む組織を得ることもできる。たとえば(B)のように正方形の容器112A内の各角部に複数(たとえば4つ)の細胞Cを含む組織を得ることもできる。(C)のように、いっそう多数の細胞組織を得ることもできる。
 図46のように、単一の容器112A内の複数箇所に独立して細胞Cの組織を作製することにより、創薬プロセスにおける薬効薬理評価、および安全性評価における薬剤評価が効率的に行なえる。図46のような手法を用いず、たとえば図45(A)のように形成した場合、当該容器112A内の細胞組織からは単一の解析結果しか取得できない。しかし図46の手法により、容器112A内の複数の細胞組織から複数の解析結果を取得できる。このためハイスループットで評価効率の高い細胞組織が得られる。
 図47は、直径が330μmである塗布針を用いた細胞組織の作製例である。図47を参照して、(A)は塗布直後の態様であり、(B)は塗布の6日後の態様である。図47に示すように、太い塗布針を用いても、写真のように互いに間隔をあけて細胞組織を作製可能である。
 (作用効果)
 本実施の形態に係る塗布方法によれば、塗布材料を受け入れ可能な複数の容器112Aを有するプレート111に含まれる第1容器に、第1塗布機構(針塗布機構104)を用いて塗布材料としての第1塗布材料A1を供給する工程がなされる。プレート111を載置するステージ(たとえばX軸ステージ101)が移動する同時供給前移動工程(S5)がなされる。プレート111の第1容器と間隔をあけて配置される第2容器に第1塗布機構(針塗布機構104)を用いて第1塗布材料A1を供給すると同時に、第1容器(たとえば容器112A-1)に、第1塗布機構(針塗布機構104)と間隔をあけて配置される第2塗布機構(滴下機構105-1)を用いて塗布材料としての第2塗布材料Bを供給する同時供給工程(S3,S21)とを備える。同時供給前移動工程および同時供給工程がなされる毎に、第1容器および第2容器に相当する容器がステージの移動方向(X方向)に沿って変更される。つまり第1容器、第2容器のいずれも、容器112A-1から容器112A-2、容器112A-3へと順次移動する。
 図48は、実施の形態3の塗布方法と比較例の塗布方法との塗布がなされるタイミングを比較するための概略図である。図48を参照して、比較例においては、たとえば容器112A-1に第1塗布材料A1を供給した後、X軸ステージ101が移動し、容器112A-1の真上に滴下機構105が設置され、容器112A-1に第2塗布材料Bが供給される。その後、X軸ステージ101が再度移動して容器112A-2の真上に針塗布機構104が設置され、容器112A-2に第1塗布材料A1が供給される。その後、上記と同様に移動工程と供給工程が繰り返される。すなわち、容器112A-2に第2塗布材料Bが供給され、XYステージ101が移動し、容器112A-3に第1塗布材料A1が供給され、XYステージ101が移動し、容器112A-3に第2塗布材料Bが供給される。この場合、全ての容器112Aに塗布材料を供給し終えるのに要する時間T1が長くなる。
 そこで本実施の形態の方法を適用すれば、たとえば容器112A-1に第1塗布材料A1を供給した後、同時供給前移動工程により、容器112A-1の真上に滴下機構105-1が設置され、容器112A-2の真上に針塗布機構104が設置される。そして、容器112A-1に第2塗布材料Bが、容器112A-2に第1塗布材料A1が、同時に供給される。その後、同時供給前移動工程と同時供給工程とが繰り返され、第1塗布材料A1と第2塗布材料Bとが繰り返し同時に供給される。このように、大部分の塗布工程において、複数箇所への同時供給が可能である。このため、全ての容器112Aに塗布材料を供給し終えるのに要する時間T2が比較例での時間T1よりも大幅に短縮できる。たとえば、第1塗布材料A1の塗布時間を1秒、第2塗布材料Bの滴下時間を1秒、XYステージ101の移動時間を2秒とする。このとき、5つの容器112Aに塗布材料の供給をし終えるのに要する時間は、比較例では30秒であるのに対し、本実施の形態では18秒である。
 上記塗布方法では、第2塗布材料Bは第1塗布材料Aを覆うように供給される。第1塗布機構(針塗布機構104)と第2塗布機構(滴下機構105-1)との間隔(それぞれの貫通孔25の中心の間隔:第1間隔D1)は、プレート111の第1容器(たとえば容器112A-1)と、第1容器112A-1と隣り合う隣接容器との(X方向の中心間の)第1間隔D1の自然数n倍(n≧1)に等しい。実施の形態3では容器112A-1の隣接容器は容器112A-2であり、X方向について隣り合う容器の双方に塗布材料が供給されるため、n=1である。このような特徴を有するため、上記のように、針塗布機構104で容器112A-1に第1塗布材料A1を供給後、XYステージ101を第1間隔D1だけ移動させることで、容器112A-2と容器112A-1とへの同時供給工程が可能となる。このため全体の細胞組織作製時間を短縮し、ハイスループットで細胞組織を作製できる。
 本実施の形態に係る塗布装置100は、塗布されるべき塗布材料(第1塗布材料A1および第2塗布材料B)を供給可能な塗布機構107と、塗布材料が供給されるべきプレート111を載置可能なステージ(XYステージ101)とを備える。塗布機構107は、第1塗布機構(針塗布機構104)と、第1塗布機構に隣接する第2塗布機構(滴下機構105-1)とを含む。第1塗布機構(針塗布機構104)と第2塗布機構(滴下機構105-1)との間隔(第1間隔D1)は、塗布機構107による1回目の塗布時(上記での容器112A-1への第1塗布材料A1の塗布時)と2回目の塗布時(上記での容器112A-2への第1塗布材料A1の塗布と容器112A-1への第2塗布材料Bの滴下との同時供給工程時)との間でのXYステージ101の移動量に等しい(第1間隔D1)。このような特徴を有するため、上記のように、針塗布機構104で容器112A-1に第1塗布材料A1を供給後、XYステージ101を第1間隔D1だけ移動させることで、容器112A-2と容器112A-1とへの同時供給工程が可能となる。
 (実施の形態4)
 (塗布装置の構成)
 図49は、実施の形態4に係る塗布装置の例を示す概略正面図である。図49を参照して、実施の形態4に係る塗布装置100は、実施の形態3の各例に係る塗布装置100と基本的に同様の構成を備えるため、同一の構成要素には同一の符号を付し、機能等が同一である限り説明を繰り返さない。図49の塗布装置100は、2つの針塗布機構104と、2つの滴下機構105とを備えている。2つの針塗布機構104は、針塗布機構104-1と、針塗布機構104-2とである。これら2つの針塗布機構104と2つの滴下機構105とのそれぞれは、X方向に間隔をあけて並んでいるが、相互のX方向間隔は一定であり変化しない。当該X方向間隔は図34の塗布装置100におけるX方向間隔に等しい。このような構成であってもよい。
 図50は、実施の形態4の塗布方法を示すフローチャートである。図50を参照して、まず塗布機構のZ軸が下降される(S1)。
 図51は、実施の形態4の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。図51を参照して、図38と同様事項については説明を繰り返さない。工程(S1)により、図51の針塗布機構104-1(第1塗布機構)、針塗布機構104-2(他の第1塗布機構)と、滴下機構105(第2塗布機構)とが下降される。針塗布機構104-2は針塗布機構104-1と滴下機構105(105-1)との間に配置される。針塗布機構104-2には他の第1塗布材料A2が入った他の第1塗布材料容器21A-2が含まれ、初期状態にて第2塗布針24A-2の先端部が他の第1塗布材料A2に浸漬される。他の第1塗布材料A2は、第1塗布材料容器21A-1内の第1塗布材料A1とは、懸濁される細胞の種類が異なってもよい。他の第1塗布材料容器21A-2の底部には、塗布材料を供給するための貫通孔25が形成されている。各塗布機構の貫通孔25の中心間の間隔が、各塗布機構間の間隔である。
 再度図50を参照して、次に、第1塗布針24A-1が下降される(S2)。図52は、実施の形態4の塗布方法の第1工程を示す概略断面図である。図50および図52を参照して、工程(S2)~工程(S4)については基本的に図39の工程と同様である。
 図53は、実施の形態4の塗布方法の第2工程を示す概略断面図である。図50および図53を参照して、工程(S5)についても基本的に図40の工程と同様である。つまりプレート111を載置するXYステージ101が、図中の矢印Mに示すようにD1だけX方向の右側に移動する工程がなされる。
 ここで、再度図51を参照して、針塗布機構104-1(の貫通孔25の中心)と針塗布機構104-2(の貫通孔25の中心)との間隔は、容器112A-1と容器112A-2との第1間隔D1と、容器112A-1内に供給される第1塗布材料A1(第1塗布材料)と他の第1塗布材料A2(他の第1塗布材料)との第2間隔D2との和D1+D2に等しい。このため図53では、第1塗布針24A-1と平面的に重なる位置に容器112A-2が配置され、第2塗布針24A-2と平面的に重なる位置に、容器112A-1が配置される。また図51では、針塗布機構104-1(の貫通孔25の中心)と滴下機構105(の貫通孔25の中心)との間隔は、第1間隔D1の2倍と第2間隔D2の1/2倍との和、すなわち2D1+D2/2に等しい。
 第2間隔D2は、第1塗布材料A1と他の第1塗布材料A2とのたとえばX方向の中心間の塗布間隔である。ただし第2間隔D2は、第1塗布材料A1のX方向の中心位置に対する他の第1塗布材料A2のX方向の相対位置を示すものでもある。したがって、たとえば図53では第1塗布材料A1よりも他の第1塗布材料A2が右側(X方向の正側)にあるためD2の値は正である。しかしたとえば図示されないが第1塗布材料A1よりも他の第1塗布材料A2が左側(X方向の負側)にある場合はD2の値は負となる。
 次に図53では、図52と同様に工程(S2)~(S4)が繰り返される。つまり容器112A-2内に第1塗布材料A1が供給される。これと同時に、容器112A-1内には他の第1塗布材料A2が供給される。このとき第1塗布針24A-1と同様に第2塗布針24A-2が動作する。すなわち第2塗布針24A-2が図中矢印の方向に下降する(S11)。第2塗布針24A-2により他の第1塗布材料A2が塗布される(S12)。その後、第2塗布針24A-2が上昇する(S13)。ここで容器112A-1内に供給される他の第1塗布材料A2は、容器112A-1内に供給される第1塗布材料A1との塗布間隔がD2となる。
 図54は、実施の形態4の塗布方法の第3工程を示す概略断面図である。図50および図54を参照して、再度、プレート111を載置するXYステージ101が、図中の矢印Mに示すようにD1だけX方向の右側に移動する、同時供給前移動工程(S5)がなされる。これにより、第1塗布針24A-1と平面的に重なる位置に、容器112A-3が配置される。第2塗布針24A-2と平面的に重なる位置に、容器112A-2が配置される。滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-1が配置される。
 その後、図54では、図52、図53と同様に工程(S2)~(S4)が繰り返される。つまり容器112A-3(第1容器)内に第1塗布材料A1が供給される。これと同時に、図53と同様に工程(S11)~(S13)が繰り返される。つまり容器112A-2内(第3容器)に他の第1塗布材料A2が供給される。さらにこれらと同時に、図40と同様に工程(S21)がなされる。つまり容器112A-1(第2容器)内に第2塗布材料Bが滴下される。図54に示すように、他の第1塗布材料A2は容器112A-2内にて既に供給された第1塗布材料A1と間隔D2をあけて隣接するように供給される。第2塗布材料Bは容器112A-1内にて第1塗布材料A1および他の第1塗布材料A2を覆うように供給される。
 図55は、実施の形態4の塗布方法の第4工程を示す概略断面図である。図50および図55を参照して、第1塗布材料A1を供給すべき領域のすべてに供給し追えたか否かが判定される(S100)。仮に未だ第1塗布材料A1が供給されていない場合には(S100)からNの方へ進行し、プレート111が第1間隔D1だけ移動した(S5)上で再度、図54と同様の工程が繰り返される。図55においては容器112A-1から容器112A-3までのすべてに第1塗布材料A1が塗布され終えている。そこで(S100)からYの方へ進行し、再度、プレート111が第1間隔D1だけ図中の矢印Mのように移動する(S5)。これにより、図55では、第2塗布針24A-2と平面的に重なる位置に、容器112A-3が配置される。また図41では、滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-2が配置される。
 その後、図55では、図53、図54と同様に工程(S11)~(S13)が繰り返される。つまり容器112A-3内に他の第1塗布材料A2が供給される。これと同時に、図54と同様に工程(S21)が繰り返される。つまり容器112A-2内に第2塗布材料Bが滴下される。
 図56は、実施の形態4の塗布方法の第5工程を示す概略断面図である。図50および図56を参照して、再度、プレート111が第1間隔D1だけ図中の矢印Mのように移動する(S5)。これにより、図56では、滴下機構105の貫通孔25と平面的に重なる位置に、容器112A-3が配置される。その後、図54、図55と同様に、容器112A-3内に第2塗布材料Bが滴下される(S21)。その後、塗布機構107のZ軸が上昇し(S22)、工程が終了する。
 なお第1塗布材料A1および第2塗布材料Bを供給し終えた後の適切なタイミングで、滴下機構105-2から培地が、各容器112A内に供給される。培地は、容器112A内の大部分を占め、第1塗布材料A1および第2塗布材料Bが浸漬されるように供給される。
 (作用効果)
 本実施の形態に係る塗布方法によれば、同時供給工程においては、第1塗布材料A1および第2塗布材料Bと同時に、塗布材料としての他の第1塗布材料A2を供給する工程がなされる。他の第1塗布材料A2を供給する工程は、第1容器と第2容器との間に配置される第3容器に、第1塗布機構(針塗布機構104-1)および第2塗布機構(滴下機構105)の間に配置される他の第1塗布機構(針塗布機構104-2)を用いてなされる。他の第1塗布材料A2は、第3容器に第1塗布材料A1と隣接するように供給される。第2塗布材料Bは第1塗布材料A1および他の第1塗布材料A2を覆うように供給される。上記のように第1容器および第2容器は都度X方向に移動するため、それらの間に配置される第3容器も同様にX方向に移動する。
 図57は、実施の形態4の塗布方法と比較例の塗布方法との塗布がなされるタイミングを比較するための概略図である。図57を参照して、比較例においては、たとえば容器112A-1に第1塗布材料A1を供給した後、XYステージ101が移動し、容器112A-1の真上に針塗布機構104-2が設置され、容器112A-1に他の第1塗布材料A2が供給される。その後、XYステージ101が再度移動して容器112A-1の真上に滴下機構105が設置され、容器112A-1に第2塗布材料Bが供給される。その後、上記と同様に移動工程と供給工程が繰り返される。すなわち、容器112A-2に第1塗布材料A1が供給され、XYステージ101が移動し、容器112A-2に他の第1塗布材料A2が供給され、XYステージ101が移動し、容器112A-2に第2塗布材料Bが供給される。この場合、全ての容器112Aに塗布材料を供給し終えるのに要する時間T1が長くなる。
 そこで本実施の形態の方法を適用すれば、たとえば容器112A-1に第1塗布材料A1を供給した後、同時供給前移動工程により、容器112A-1の真上に針塗布機構104-2が設置され、容器112A-2の真上に針塗布機構104-1が設置される。そして、容器112A-1に他の第1塗布材料A2が、容器112A-2に第1塗布材料A1が、同時に供給される。次に、同時供給前移動工程と同時供給工程とにより、容器112A-1に第2塗布材料Bが、容器112A-2に他の第1塗布材料A2が、容器112A-3に第1塗布材料A1が、同時に供給される。その後、同時供給前移動工程と同時供給工程とが繰り返され、第1塗布材料A1と第2塗布材料Bとが繰り返し同時に供給される。このように、大部分の塗布工程において、複数箇所への同時供給が可能である。このため、全ての容器112Aに塗布材料を供給し終えるのに要する時間T2が比較例での時間T1よりも大幅に短縮できる。たとえば、第1塗布材料A1および他の第1塗布材料A2の塗布時間を1秒、第2塗布材料Bの滴下時間を1秒、XYステージ101の移動時間を2秒とする。このとき、5つの容器112Aに塗布材料の供給をし終えるのに要する時間は、比較例では45秒であるのに対し、本実施の形態では21秒である。
 上記塗布方法では、第1塗布機構(針塗布機構104-1)と他の第1塗布機構(針塗布機構104-2)との間隔は、プレート111の第1容器と、第1容器に隣り合う隣接容器との第1間隔D1の自然数n倍(n≧1)と、第1容器内に供給される第1塗布材料と他の第1塗布材料との第2間隔D2との和に等しい。実施の形態4では容器112A-1の隣接容器は容器112A-2であり、X方向について隣り合う容器の双方に塗布材料が供給されるため、n=1である。このような特徴を有するため、上記のように、同時供給前移動工程と、同時供給工程とを繰り返すことが可能となる。
 本実施の形態では、塗布機構107の各針塗布機構104と滴下機構105との間隔が、容器112Aの間隔D1と、実際に塗布しようとする第1塗布材料A1と他の第1塗布材料A2とのX方向の間隔D2を考慮して決定(設計)されている。このため図52~図56の実動作時に容器112Aのステージを容器112Aの間隔D1分ずつ移動させるだけで、容易に所望の位置に塗布材料を塗布することができる。
 (実施の形態5)
 図58は、実施の形態5の第1例に係る塗布方法を示すフローチャートである。図58を参照して、まず塗布機構107のZ軸が下降される(S1)。
 図59は、実施の形態5の第1例に係る塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部を示す概略断面図である。図59を参照して、本実施の形態で用いられる塗布装置100は、基本的に実施の形態4で用いられる塗布装置100と同様である。すなわち、本実施の形態の塗布装置100は、2つの針塗布機構104と、2つの滴下機構105とを備えている。2つの針塗布機構104は、針塗布機構104-1と、針塗布機構104-2とである。これら2つの針塗布機構104と2つの滴下機構105とのそれぞれのX方向の間隔は、実施の形態4のそれと同様である。つまり図59では図51と同様に、針塗布機構104-1(の貫通孔25の中心)と針塗布機構104-2(の貫通孔25の中心)との間隔はD1+D2である。また図59では図51と同様に、針塗布機構104-1(の貫通孔25の中心)と滴下機構105(の貫通孔25の中心)との間隔は、第1間隔D1の2倍と第2間隔D2の1/2倍との和、すなわち2D1+D2/2に等しい。また本実施の形態においても他の実施の形態と同様に、隣り合う1対の容器112Aの間隔はD1である。
 ただし図59に示すように、本実施の形態では、第1塗布材料A1と他の第1塗布材料A2との(X方向の中心間の)塗布間隔が、実施の形態4でのD2とは異なり、D3である。この場合、塗布工程は次のようになる。
 図60は、実施の形態5の第1例に係る塗布方法の第1工程を示す概略断面図である。図58および図60を参照して、最初の工程(S2)~(S4)により、図52と同様に、容器112A-1に第1塗布材料A1が供給される。次に工程(S5)により、図53と同様に、プレート111を載置するXYステージ101が、図中の矢印Mに示すようにD1だけX方向の右側に移動する工程がなされる。その後、再度工程(S2)~(S4)がなされ、容器112A-2に第1塗布材料A1が供給される。
 図61は、実施の形態5の第1例に係る塗布方法の第2工程を示す概略断面図である。図58および図61を参照して、次に、プレート111がX方向の右側に、(D2-D3)だけ移動する(S6)。これは実施の形態4のように塗布間隔がD2となるように他の第1塗布材料A2を塗布する場合と、本実施の形態のように塗布間隔がD3となるように他の第1塗布材料A2を塗布する場合との他の第1塗布材料A2の距離の差に基づく。その後、第2塗布針24A-2が下降し(S11)、第1塗布材料A2が塗布され(S12)、第2塗布針24A-2が上昇する(S13)。これにより、中心間のX方向の間隔が第3間隔D3となるように、第3間隔D3は、たとえば実施の形態4の第2間隔D2よりも小さい正の値とされる。
 また第3間隔D3は第2間隔D2と同様に、第1塗布材料A1のX方向の中心位置に対する他の第1塗布材料A2のX方向の相対位置を示すものでもある。したがって、たとえば図61では第3間隔D3は正の値であるが、たとえば図示されないが第1塗布材料A1よりも他の第1塗布材料A2が左側(X方向の負側)にある場合はD3の値は負となる。またD3がD2よりも大きい正の値となる場合もある。以上のように第3間隔D3は任意に選択可能な値である。このため各図ではプレート111の移動方向はX方向右向きであるが、これがX方向左向きとなる場合もある。
 図62は、実施の形態5の第1例に係る塗布方法の第3工程を示す概略断面図である。図58および図62を参照して、次にプレート111が(D1-D2+D3)だけX方向の右側に移動する(S7)。これは以下の理由に基づく。容器112A-2内と容器112A-3内との双方にて、X方向についての同じ位置に第1塗布材料A1を供給する必要がある。このため本来、容器112A-2への第1塗布材料A1の塗布工程から容器112A-3への第1塗布材料A1の塗布工程までの間に、D1だけプレート111が移動すべきである。しかし図61において既に(D2-D3)だけ移動しているため、これらの差分であるD1-(D2-D3)だけ移動すべきであるためである。
 その後、図62では、図40と同様に、工程(S2)~(S4)と、工程(S21)とが同時になされる。これにより、第1塗布材料A1と第2塗布材料Bとが同時に供給される。具体的には、容器112A-3に第1塗布材料A1が、容器112A-1に第2塗布材料Bが供給される。第2塗布材料Bは第1塗布材料A1および他の第1塗布材料A2を覆うように供給される。
 図63は、実施の形態5の第1例に係る塗布方法の第4工程を示す概略断面図である。図58および図63を参照して、次に図61と同様に、プレート111が(D2-D3)だけX方向の右側に移動し(S6)、工程(S11)~(S13)により他の第1塗布材料A2が容器112A-2に供給される。
 図58を参照して、上記実施の形態と同様に、工程(S100)での判定により、ステージが移動しながら図62および図63の工程が、第1塗布材料A1を塗布すべき容器112Aが存在しなくなるまで繰り返される。
 図64は、実施の形態5の第2例に係る塗布方法を示すフローチャートである。図64を参照して、この例では、最初に実施の形態4の図50の最初に示す工程(S1)~(S4)および図52と同様に、第1塗布材料A1が供給される。次に、図50の続く工程(S5)、工程(S2)~(S4)、工程(S11)~(S13)、および図53と同様に、第1塗布材料A1と他の第1塗布材料A2とが同時に供給される。その後、たとえばプレート111が距離D4だけ移動され(S8)、その後第2塗布材料Bがたとえば図53の容器112A-1に供給される(S21)。これはたとえば、第1塗布材料A1および他の第1塗布材料A2については実施の形態4と同様に同時に供給するが、第2塗布材料Bのみ実施の形態4における供給位置からX方向に第4間隔D4だけずれた位置に供給したい場合に用いられる方法である。プレート111が(D1-D4)だけX方向の右側に移動した(S9)後、工程(S100)にてNの方へ進んだ場合には、上記の工程が繰り返される。
 図64の第2例は、以上のように、第2塗布材料Bのみ、第1塗布材料A1および他の第1塗布材料A2とは異なるタイミングで供給される。第2例はこの点において、他の第1塗布材料A2のみ第1塗布材料A1および第2塗布材料Bとは異なるタイミングで供給される図58~図63の第1例とは異なる。図64のように、第2塗布材料Bのみ、実施の形態4とは異なる位置に滴下する場合にも、上記のようにプレート111の移動量を制御することで、任意の位置への滴下が可能となる。また上記していないが、たとえば他の第1塗布材料A2と第2塗布材料Bとを同時に供給し、第1塗布材料A1のみを任意の位置に供給することも、第1塗布材料A1の供給時に別途、任意の移動量だけプレート111を移動させることで可能となる。
 (作用効果)
 本実施の形態に係る塗布方法によれば、第2塗布材料Bは第1塗布材料(第1塗布材料A1および他の第1塗布材料A2)を覆うように供給される。同時供給前移動工程(図58の工程(S6)、(S7))においては、第1容器内に供給されるべき第1塗布材料A1と、他の第1塗布機構(針塗布機構104-2)から供給される他の第1塗布材料A2との第3間隔D3を考慮して、任意のXYステージ101の移動量を選択可能である。すなわち図58の工程(S6)および図61での(D2-D3)、および図58の工程(S7)および図62での(D1-D2+D3)は、第1塗布材料A1と他の第1塗布材料A2との容器112A内での任意の間隔D3に応じて選択された値である。
 本実施の形態では、塗布機構107の各針塗布機構104と滴下機構105との間隔が、実際に塗布しようとする第1塗布材料A1と他の第1塗布材料A2とのX方向の間隔D3とは無関係な値D2となるように決定(設計)されている。このため図58~図63のように、第1塗布材料A1と第2塗布材料Bとのみ同時に供給され、他の第1塗布材料A2については、別途位置を調整する必要があるため、第1塗布材料A1および第2塗布材料Bとは別のタイミングで供給される。しかし少しの時間を用いてXYステージ101で塗布位置を調整すれば、少なくとも第1塗布材料A1および第2塗布材料Bが同時に供給されることによる時間短縮の効果は期待できる。また少しの時間を用いて塗布位置を調整すれば、第1塗布材料A1と他の第1塗布材料A2との距離をたとえばD3のように任意の値とすることができる。
 実施の形態4では第2塗布材料Bは、第1塗布材料A1と他の第1塗布材料A2との中央の位置に供給される。塗布機構107における針塗布機構104-1と滴下機構105との間隔4D1+D2/2のうちD2/2の項は、そのことを考慮して決められている。しかし実施の形態5では図62のように第2塗布材料Bは、第1塗布材料A1と他の第1塗布材料A2との中央からやや右側にずれた位置に供給される。実施の形態5では実施の形態4とは第1塗布材料A1と他の第1塗布材料A2との中央の位置が異なるが、実施の形態5の塗布機構107は実施の形態4のものと同一であるためである。ただし第2塗布材料Bは第1塗布材料Aの全体を覆うように広範囲に供給されるため、図62のように中央の位置がずれても大きな問題は生じない。
 なお塗布装置100において、塗布機構107における針塗布機構104-1と滴下機構105との間隔を、4D1+D2/2から変更可能な間隔調整機構を有する場合には、図62において第2塗布材料Bを第1塗布材料A1と他の第1塗布材料A2との中央に供給可能となる。具体的には、間隔調整機構は、電動であってもよく、手動であってもよい。手動の間隔調整機構としては、たとえばベース板材にねじで位置をずらしながら固定可能なスライド機構が用いられてもよい。あるいは手動の間隔調整機構としては、ストッパ付きの直動案内(転がり案内、滑り案内など)が用いられてもよい。また電動の間隔調整機構としては、たとえば直動案内、またはボールネジが組み込まれた小型電動ステージが用いられてもよい。
 上記塗布方法では、第1塗布機構(針塗布機構104-1)と他の第1塗布機構(針塗布機構104-2)との間隔は、プレート111の第1容器と、第1容器に隣り合う隣接容器との第1間隔D1の自然数n倍(n≧1)以上であり、第3間隔D3の想定し得る最大値と上記第1間隔D1の自然数n倍との和以下の任意の値である。第3間隔D3の想定し得る最大値は、たとえば個々の容器112AのX方向寸法である。実施の形態5では容器112A-1の隣接容器は容器112A-2であり、X方向について隣り合う容器の双方に塗布材料が供給されるため、n=1である。このようにすれば、第3間隔D3を任意に決定すれば、それに応じてXYステージ101の移動量を任意に決めることで、任意の第3間隔D3を有する三次元細胞組織を作製できる。
 (実施の形態6)
 図65は、実施の形態6における一の容器内に形成される塗布材料の態様を示す平面図である。図65を参照して、ここでは容器112A内に第1塗布材料として、第1塗布材料A1、他の第1塗布材料A2、およびさらに他の第1塗布材料A3が塗布されている。これらの各第1塗布材料が第2塗布材料Bに覆われている。
 上記の実施の形態3~3においては、XYステージ101が、図33などに示されないX軸ステージ(X方向にXYステージ101を移動させる機構)によりX方向に移動することを想定して説明がなされている。しかし実際には、プレート111のX方向のみならずY方向にも複数の容器112Aが並んでいる。このため実施の形態3~3に示すプレート111のX方向の動作に、Y軸ステージによるXYステージ101のY方向の動作を組み合わせることがより好ましい。このようにすれば、図65のように、1つの容器112A内においてX方向のみならずY方向に並ぶように第1塗布材料が塗布された三次元細胞組織を形成できる。図65において、第1塗布材料A1、他の第1塗布材料A2および第2塗布材料Bは、実施の形態4,3と同様にXYステージ101のX方向移動のみにより供給されている。このためこれらの各塗布材料の中心はX方向に沿って一直線上に並んでいる。これに対し、他の第1塗布材料A3のみ他の各塗布材料よりもY方向の正の側に塗布されている。これは他の第1塗布材料A3は、XYステージ101を、第1塗布材料A1などの供給時に対してY方向に移動させた際に供給されたためである。
 (実施の形態7)
 図66は、実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第1例を示す概略断面図である。図66を参照して、実施の形態7の第1例における塗布装置100の塗布機構107は、図38に示す塗布装置100の塗布機構107とすべて同様である。ただし図66では、用いられるプレート111に形成された容器112Aの間隔が異なっている。具体的には、液体材料が供給されるべき容器112A-1と容器112A-2とは隣り合っておらず、それらの間に容器112A-1に隣接する、液体材料が供給されない容器が1つ配置される。隣接する容器同士の中心間のX方向に沿う第1間隔D1は、針塗布機構104と滴下機構105との(貫通孔25の中心間の)間隔の1/2である。つまり図66での容器の中心間距離は図38よりも小さい。このため図38と比較する観点から実際には、針塗布機構104と滴下機構105との間隔がD1であり、容器112Aの中心間の間隔がD1/2である。しかしここでは説明の便宜上、前者を2D1、後者をD1と示す(後述の図67,36についても同様)。
 図67は、実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第2例を示す概略断面図である。図67を参照して、実施の形態7の第2例における塗布装置100の塗布機構107は、図51に示す塗布装置100の塗布機構107とすべて同様である。ただし図67では、図66と同様に、液体材料が供給されるべき容器112A-1と容器112A-2とは隣り合わず、両者間に液体材料が供給されない容器を1つ有する。つまり図67での容器の中心間距離は図51よりも小さい。このため容器112Aの中心間距離をD1とすれば、針塗布機構104-1(の貫通孔25の中心)と針塗布機構104-2(の貫通孔25の中心)との間隔は、D1の2倍とD2との和、すなわち2D1+D2に等しい。これにより図67では、針塗布機構104-1(の貫通孔25の中心)と滴下機構105(の貫通孔25の中心)との間隔は、第1間隔D1の4倍と第2間隔D2の1/2倍との和、すなわち4D1+D2/2に等しい。
 図68は、実施の形態7の塗布方法に用いられる塗布装置の、塗布機構および設置されるプレートの一部の第3例を示す概略断面図である。図68を参照して、実施の形態7の第3例における塗布装置100の塗布機構107およびプレート111は、図59に示すそれらと全く同一である。ただし図68では、図66と同様に、液体材料が供給されるべき容器112A-1と容器112A-2とは隣り合わず、両者間に液体材料が供給されない容器を1つ有する。つまり図68での容器の中心間距離は図59よりも小さい。また図68では、図59(実施の形態5)と同様に、各容器112A内に塗布される第1塗布材料A1と他の第1塗布材料A2との間隔D3が、塗布機構107における各機構間の距離とは無関係に任意に定められたものである。
 (作用効果)
 本実施の形態の第1例(図66)の塗布方法では、第2塗布材料Bは第1塗布材料Aを覆うように供給される。第1塗布機構(針塗布機構104)と第2塗布機構(滴下機構105-1)との間隔(それぞれの貫通孔25の中心の間隔:第1間隔D1)は、プレート111の第1容器(たとえば容器112A-1)と、第1容器112A-1と隣り合う隣接容器との(X方向の中心間の)第1間隔D1の自然数n倍(n≧1)に等しい。実施の形態7の第1例では容器112A-1の隣接容器は容器112A-2ではなく、X方向に並ぶ容器112Aは1つずつ間欠的に塗布材料が供給されるため、n=2である。したがって、たとえば容器112Aの2つずつ間欠的に塗布材料が供給される場合には、n=3であり、以下(k-1)個ずつ間欠的に供給される場合、n=kである。このような特徴を有するため、上記のように、針塗布機構104で容器112A-1に第1塗布材料A1を供給後、XYステージ101を第1間隔D1のたとえば2倍だけ移動させることで、容器112A-2と容器112A-1とへの同時供給工程が可能となる。
 本実施の形態の第2例(図67)の塗布方法では、第1塗布機構(針塗布機構104-1)と他の第1塗布機構(針塗布機構104-2)との間隔は、プレート111の第1容器と、第1容器に隣り合う隣接容器との第1間隔D1の自然数n倍(n≧1)と、第1容器内に供給される第1塗布材料と他の第1塗布材料との第2間隔D2との和に等しい。実施の形態7の第2例では容器112A-1の隣接容器は容器112A-2ではなく、X方向に並ぶ容器112Aは1つずつ間欠的に塗布材料が供給されるため、n=2である。上記第1例と同様に、(k-1)個ずつ間欠的に塗布材料が供給される場合、n=kである。このような特徴を有するため、上記のように、同時供給前移動工程と、同時供給工程とを繰り返すことが可能となる。
 本実施の形態の第3例(図68)の塗布方法では、第1塗布機構(針塗布機構104-1)と他の第1塗布機構(針塗布機構104-2)との間隔は、プレート111の第1容器と、第1容器に隣り合う隣接容器との第1間隔D1の自然数n倍(n≧1)以上であり、第3間隔D3の想定し得る最大値と上記第1間隔D1の自然数n倍との和以下の任意の値である。図66、図67と同様に図68ではn=2であるが、(k-1)個ずつ間欠的に塗布材料が供給される場合、n=kである。第3間隔D3の想定し得る最大値は、たとえば個々の容器112AのX方向寸法である。このようにすれば、第3間隔D3を任意に決定すれば、それに応じてXYステージ101の移動量を任意に決めることで、任意の第3間隔D3を有する三次元細胞組織を作製できる。
 プレート111には、96個の容器112Aが形成されたもの(96ウェル:8×12ウェル)の他に、容器112Aが6個(6ウェル:2×3ウェル)、12個(12ウェル:3×4ウェル)、24個(24ウェル:4×6ウェル)、48個(48ウェル:6×8ウェル)、384個(384ウェル:16×24ウェル)、1536個(1536ウェル:32×48ウェル)形成されたものがある。それぞれの一般的な隣接する容器112A間の第1間隔D1は、6ウェルで39mm、12ウェルで26mm、24ウェルで18mm、48ウェルで13mm、96ウェルで9mm、384ウェルで4.5mm、1536ウェルで2.25mmである。このように、プレート111のウェル数が増えるほどその間隔D1が小さくなる。このため間隔D1が小さくなれば、非常にスペースが狭いためにそのスペース内に針塗布機構104および滴下機構105を設置できない場合がある。この場合、本実施の形態のように、ウェル間の間隔D1の自然数倍を新たなスペースとすることが好ましい。このようにすれば、その新たなスペース内に針塗布機構104および滴下機構105を設置できる。
 特に本実施の形態では、容器112AのX方向の幅が他の実施の形態に比べて狭い。このため、図67の様に1つの容器内にて間隔D2を有するように2つの塗布材料を塗布することができない場合がある。このような場合、図68のように、D2より小さい間隔D3となるように塗布する方法が有用である。
 (各実施の形態に対するその他の変形例)
 上記の各実施の形態3~7においては、以下のような変形例が適用されてもよい。
 1)本実施の形態3~7では、第1塗布材料A(A1,A2)の塗布には塗布針24が用いられ、第2塗布材料Bの滴下には滴下機構105(エアー式またはシリンダ式のディスペンサ)が用いられる。しかし逆に、第1塗布材料A(A1,A2)が滴下機構により、第2塗布材料Bが塗布針24により供給されてもよい。あるいは第1塗布材料Aおよび第2塗布材料Bの少なくともいずれかが、インクジェット装置またはマイクロポンプにより供給されてもよい。インクジェット装置は微細な滴下が可能であり、高速性に優れる。一方、マイクロポンプは装置が安価で、大量の滴下に優れる。一方で塗布針24を用いた塗布は、インクジェット装置を用いた場合に懸念されるノズル詰まりを排除でき、広範な種類の液体材料に適用可能である。さらに塗布針24によれば微細な塗布が可能である。またディスペンサはインクジェット装置よりも広範な種類の液体材料に適用可能であり、比較的量の多い滴下に適する。以上のように各種の液体材料供給装置の特徴を生かして、適宜使い分けたり組み合わせたりされることが好ましい。そのようにすれば、品質の良い細胞組織が効率的に生産される。
 2)本実施の形態3~7では、塗布針24(24A-1,24A-2)で塗布材料を供給する場合、塗布針24の先端部と、容器112A内の平坦な培養面(各容器112Aの底面)とのZ方向の距離を一定に保つ必要がある。当該距離が、供給された塗布材料の液量および直径に影響するためである。このため、塗布工程の前に、プレート111の多数の容器112Aのうち少なくとも一部の容器112Aの培養面と、初期状態での塗布針24の先端部とのZ方向の距離を測定して塗布装置100に記憶させることが好ましい。その上で、当該測定がなされた容器112A内に塗布する際には、Z軸ステージを調整して、培養面と塗布針24先端との距離を一定に保つことが好ましい。なお上記の培養面と塗布針24の先端部とのZ方向の距離の測定は、レーザまたは赤外線によりなされてもよいし、実体顕微鏡または位相差顕微鏡によりなされてもよい。レーザまたは赤外線を出力する装置、実体顕微鏡、位相差顕微鏡などが塗布装置100内に組み込まれてもよい。
 3)本実施の形態3~7では、各塗布材料には細胞を含む細胞組織が用いられる。しかしこれに限らず、たとえば一般的な生体材料または化学材料が各塗布材料に用いられてもよい。
 4)本実施の形態3~7では、第1塗布材料A1に含まれる細胞の種類として、iPS細胞由来の心筋細胞と、ヒト心臓繊維芽細胞とが3:1の個数比で混合されたものが用いられる。しかし他の細胞が用いられてもよい。他の細胞についても、塗布装置100を用いて、個々の容器112Aの平坦な培養面上の複数箇所に塗布される。これにより、全体の細胞数を低減しつつ、独立して存在し、大きさのばらつきの少ない細胞組織が、簡単な工程で作製される(図45(C)参照)。
 5)第1塗布材料A(第1塗布材料A1,A2。以下同じ)に含まれるゲル化開始剤と、第2塗布材料Bに含まれるゲル化剤との組合せは、上述したトロンビンおよびフィブリノーゲンの他に、塩化カルシウムおよびアルギン酸ナトリウム、塩化カルシウムおよびカラギーナン、アルコール類およびタマリンドシードガムなどが用いられてもよい。なお上記と逆に、本実施の形態では、第1塗布材料Aにゲル化剤が含まれ、第2塗布材料Bにゲル化開始剤が含まれてもよい。
 6)本実施の形態3~7では、第1塗布材料A1(または第1塗布材料A2。以下同じ)として培養すべき細胞とゲル化開始剤とを含み、第2塗布材料Bとしてゲル化剤を含む例を示している。しかし代替例として、第1塗布材料A1に細胞とゲル化剤とを含み、第2塗布材料Bとしてゲル化開始剤を含んでもよい。代替例のようにすれば、短時間で細胞を包埋した固体のゲルが形成される。このため形状安定性が高く、より目的の形状(特に目的の平面形状)に近い形状の細胞組織を作製できる。
 7)また、第1塗布材料A1としていわゆる2液混合式のゲル化剤が用いられてもよい。なお2液混合式のゲル化剤とは、たとえばゲル化剤であるフィブリノーゲンにゲル化開始剤であるトロンビンを混合したうえでゲル化される液剤を意味する。しかし第1塗布材料A1には、2液混合式の代わりに、温度依存方式または光硬化方式などが用いられてもよい。温度依存方式のゲル化剤には、コラーゲン、ゼラチン、ジェランガム、アガロース、キトサンなどがある。また光硬化方式のゲル化剤には、光架橋ゼラチンなどがある。塗布材料に用いられるゲル化剤の種類は、細胞および塗布材料の特性に応じて適切に選択される。特に温度依存方式または光硬化方式のゲル化剤を用いる場合には、第2塗布材料Bが使用されなくてもよい。あるいは第2塗布材料Bとして、メチルセルロース、ヒアルロン酸ナトリウム、アルギン酸ナトリウムなどの増粘多糖類に代表される生体適合性を示す材料が用いられてもよい。これにより塗布後の保形性が確保される。
 以上に述べた各実施の形態(各実施例)に記載した特徴を、技術的に矛盾のない範囲で適宜組み合わせるように適用してもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以下、本開示の諸態様を付記としてまとめて記載する。
 (付記1)
塗布対象物内に第1塗布液をN個(N≧1の自然数)供給し、細胞を配置する工程と、前記N個の第1塗布液のうち少なくとも1個を覆うように、前記塗布対象物内に第2塗布液をM個(M≧1の自然数)供給する工程とを備え、前記第2塗布液を供給する工程においては、前記N個の第1塗布液のそれぞれの中心から外縁までの寸法の最大値である第1寸法をr1n(1≦n≦Nの自然数)、前記M個の第2塗布液のそれぞれの中心から外縁までの寸法の最大値である第2寸法をr2m(1≦m≦Mの自然数)とし、N個の中から選択された任意の前記第1寸法がr1nの前記第1塗布液の中心と、M個の中から選択された任意の前記第2寸法がr2mの前記第2塗布液の中心との距離をDn,mとすれば、任意の前記第1塗布液と任意の前記第2塗布液との間で
(数1)Dn,m<r2m-r1n・・・(1)
および
(数2)Dn,m>r2m+r1n・・・(2)
のいずれかが成立するように供給される、細胞組織の製造方法。
 (付記2)
前記N個の第1塗布液のうち前記第2塗布液と重なる1個以上の前記第1塗布液の第1図心を中心とし前記1個以上の第1塗布液を全て覆い前記1個以上の前記第1塗布液のいずれかと内接するよう求められた第1仮想曲線の最大寸法である第1仮想寸法r1v以上の基準寸法よりも、前記第2寸法r2mの方が大きく、前記第1図心は、前記第2塗布液と重なる1個以上の前記第1塗布液のそれぞれの中心位置から求められる、付記1に記載の細胞組織の製造方法。
 (付記3)
前記M個の第2塗布液の第2図心を中心とし、前記M個の第2塗布液を全て覆い前記M個の第2塗布液のいずれかと内接するよう求められた第2仮想曲線の最大寸法である第2仮想寸法r2v以上の基準寸法よりも、前記塗布対象物の第3寸法rの方が大きく、前記第2図心は、前記M個の前記第2塗布液のそれぞれの中心位置から求められる、付記1または2に記載の細胞組織の製造方法。
 (付記4)
前記塗布対象物内に供給される前記N個の第1塗布液のうち少なくとも1個に含まれる前記細胞は第1細胞であり、前記少なくとも1個とは異なる他の少なくとも1個の前記第1塗布液に含まれる前記細胞は第2細胞である、付記1~3のいずれか1項に記載の細胞組織の製造方法。
 (付記5)
前記塗布対象物内に供給される前記N個の第1塗布液のうち少なくとも1個に前記細胞が含まれ、前記少なくとも1個とは異なる他の少なくとも1個の前記第1塗布液には前記細胞を含まずサイトカイン、薬剤、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれる、付記1~4のいずれか1項に記載の細胞組織の製造方法。
 (付記6)
前記第1塗布液にサイトカイン、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれる、付記1~5のいずれか1項に記載の細胞組織の製造方法。
 (付記7)
前記第1塗布液を供給する工程以降にゲル化剤を用いて、前記塗布対象物内に供給された前記細胞から細胞組織が形成される、付記1~6のいずれか1項に記載の細胞組織の製造方法。
 (付記8)
前記第1塗布液は前記細胞とゲル化剤とを含み、前記第2塗布液は前記ゲル化剤よりも粘度の高い溶液である、付記7に記載の細胞組織の製造方法。
 (付記9)
前記第1塗布液は前記細胞を含み、前記第2塗布液はゲル化剤を含む、付記7に記載の細胞組織の製造方法。
 (付記10)
2液混合方式により前記塗布対象物内に前記第1塗布液および前記第2塗布液が供給される、付記1~9のいずれか1項に記載の細胞組織の製造方法。
 (付記11)
前記第1塗布液は前記細胞とゲル化開始剤とを含み、前記第2塗布液はゲル化剤を含む、付記10に記載の細胞組織の製造方法。
 (付記12)
前記第1塗布液は前記細胞とゲル化剤とを含み、前記第2塗布液はゲル化開始剤を含む、付記10に記載の細胞組織の製造方法。
 (付記13)
前記第1塗布液および前記第2塗布液の少なくともいずれかに、ゲル化剤としてのコラーゲンとフィブリノゲンとの少なくともいずれかが含まれる、付記1~12のいずれか1項に記載の細胞組織の製造方法。
 (付記14)
前記第1塗布液および前記第2塗布液の少なくともいずれかに増粘多糖類が混合された、付記1~13のいずれか1項に記載の細胞組織の製造方法。
 (付記15)
前記細胞は心筋細胞、神経細胞、肝細胞、癌細胞、血管内皮細胞および線維芽細胞からなる群から選択されるいずれかである、付記1~14のいずれか1項に記載の細胞組織の製造方法。
 (付記16)
前記第1塗布液の細胞体積濃度が1vol%以上30vol%以下である、付記1~15のいずれか1項に記載の細胞組織の製造方法。
 (付記17)
前記N個の第1塗布液のうち1個の前記第1塗布液中に、前記細胞として、第3細胞と、前記第3細胞とは異なる第4細胞とが含まれるように共培養される、付記1~16のいずれか1項に記載の細胞組織の製造方法。
 (付記18)
前記第1塗布液を供給する工程において塗布針方式が用いられる、付記1~17のいずれか1項に記載の細胞組織の製造方法。
 (付記19)
前記第2塗布液を供給する工程において、塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択されるいずれかが用いられる、付記1~18のいずれか1項に記載の細胞組織の製造方法。
 (付記20)
前記第2塗布液をM個供給する工程において、前記M個のうち少なくとも1個の前記第2塗布液は塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択される第1方式により供給され、前記M個のうち少なくとも1個とは異なる他の前記第2塗布液は前記第1方式とは異なる第2方式により供給される、付記1~19のいずれか1項に記載の細胞組織の製造方法。
 (付記21)
塗布装置に含まれる塗布針の先端を第1塗布液に浸漬させることにより、前記第1塗布液を前記塗布針の先端に付着させる工程と、
前記塗布針の先端に付着された前記第1塗布液を塗布対象物内に塗布する工程とを備え、
前記第1塗布液は、培養すべき細胞と、ゲル化剤としてのコラーゲンと、第1溶媒との混合溶液である、心筋組織の製造方法。
 (付記22)
前記第1塗布液を覆うように、前記塗布対象物内に第2塗布液を供給する工程をさらに備え、
前記第2塗布液は、増粘剤と第2溶媒との混合溶液である、付記21に記載の心筋組織の製造方法。
 (付記23)
前記増粘剤は、セルロース、セルロースナノファイバー、キチン、キトサン、キチンナノファイバー、メチルセルロース、ヒドロキシブチルセルロース、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、ポリエチレングリコール、ジェランガム、カラギーナン、ペクチン、キサンタンガム、ゼラチン、アガロース、ポリビニルアルコールからなる群から選択される1つ以上の物質を含む、付記22に記載の心筋組織の製造方法。
 (付記24)
前記第2塗布液を供給する工程の後に、前記細胞を培養させるための培地を前記塗布対象物内に供給する工程をさらに備え、
前記培地はRPMI1640であり、
前記培地への添加因子は、B27(登録商標)サプリメント、トリヨードチロニン、デキサメタゾン、インシュリン様成長因子からなる群から選択される1つ以上である、付記22または23に記載の心筋組織の製造方法。
 (付記25)
前記コラーゲンはコラーゲンtypeI-Aである、付記21~24のいずれか1項に記載の心筋組織の製造方法。
 (付記26)
前記第1塗布液の細胞体積濃度が1vol%以上30vol%以下である、付記21~25のいずれか1項に記載の細胞組織の製造方法。
 (付記27)
前記細胞は少なくとも心筋細胞を含み、
前記細胞を構成する前記心筋細胞の個数の比率は80%以上であり、
前記細胞を構成する心臓線維芽細胞の個数の比率は20%以下である、付記21~26のいずれか1項に記載の心筋組織の製造方法。
 (付記28)
前記心筋細胞は、正常ヒトiPS細胞由来心筋細胞および疾患由来ヒトiPS細胞由来心筋細胞の少なくともいずれかを有する、付記27に記載の心筋組織の製造方法。
 (付記101)
塗布材料を受け入れ可能な複数の容器を有するプレートに含まれる第1容器に、第1塗布機構を用いて前記塗布材料としての第1塗布材料を供給する工程と、
前記プレートを載置するステージが移動する同時供給前移動工程と、
前記プレートの前記第1容器と間隔をあけて配置される第2容器に前記第1塗布機構を用いて前記第1塗布材料を供給すると同時に、前記第1容器に、前記第1塗布機構と間隔をあけて配置される第2塗布機構を用いて前記塗布材料としての第2塗布材料を供給する同時供給工程とを備え、
前記同時供給前移動工程および前記同時供給工程がなされる毎に、前記第1容器および前記第2容器に相当する前記容器が前記ステージの移動方向に沿って変更される、塗布方法。
 (付記102)
前記第2塗布材料は前記第1塗布材料を覆うように供給され、
前記第1塗布機構と前記第2塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器と隣り合う隣接容器との第1間隔の自然数n倍(n≧1)に等しい、付記101に記載の塗布方法。
 (付記103)
前記同時供給工程においては、前記第1塗布材料および前記第2塗布材料と同時に、前記塗布材料としての他の第1塗布材料を供給する工程がなされ、
前記他の第1塗布材料を供給する工程は、前記第1容器と前記第2容器との間に配置される第3容器に、前記第1塗布機構および前記第2塗布機構の間に配置される他の第1塗布機構を用いてなされ、
前記他の第1塗布材料は、前記第3容器に前記第1塗布材料と隣接するように供給され、
前記第2塗布材料は前記第1塗布材料および前記他の第1塗布材料を覆うように供給される、付記101に記載の塗布方法。
 (付記104)
前記第1塗布機構と前記他の第1塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器に隣り合う隣接容器との第1間隔の自然数n倍(n≧1)と、前記第1容器内に供給される前記第1塗布材料と前記他の第1塗布材料との第2間隔との和に等しい、付記103に記載の塗布方法。
 (付記105)
前記第2塗布材料は前記第1塗布材料を覆うように供給され、
前記同時供給前移動工程においては、前記第1容器内に供給されるべき前記第1塗布材料と、他の第1塗布機構から供給される前記塗布材料としての他の第1塗布材料との第3間隔を考慮して、任意の前記ステージの移動量を選択可能である、付記101に記載の塗布方法。
 (付記106)
前記第1塗布機構と前記他の第1塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器に隣り合う隣接容器との第1間隔の自然数n倍(n≧1)以上であり、前記第3間隔の想定し得る最大値と前記第1間隔の自然数n倍との和以下の任意の値である、付記105に記載の塗布方法。
 (付記107)
前記同時供給前移動工程は、前記ステージを動作させることによりなされる、付記101~106のいずれか1項に記載の塗布方法。
 (付記108)
前記供給する工程および前記同時供給工程は、Z軸ステージを動作させることによりなされる、付記101~107のいずれか1項に記載の塗布方法。
 (付記109)
前記塗布材料は培養すべき細胞を含む、付記101~108のいずれか1項に記載の塗布方法。
 (付記110)
塗布されるべき塗布材料を供給可能な塗布機構と、
前記塗布材料が供給されるべきプレートを載置可能なステージとを備える塗布装置であって、
前記塗布機構は、第1塗布機構と、前記第1塗布機構に隣接する第2塗布機構とを含み、
前記第1塗布機構と前記第2塗布機構との間隔は、前記塗布機構による1回目の塗布時と2回目の塗布時との間での前記ステージの移動量に等しい、塗布装置。
 1 X軸テーブル、2 Y軸テーブル、3 Z軸テーブル、4,107 塗布機構、6,106 観察光学系、7 CCDカメラ、8 操作パネル、9 モニタ、10 制御用コンピュータ、11 試料塗布セット、12 ウェル、12a ウェル底部、18 マイクロピペット、20 塗布針ホルダ、21 塗布材料容器、21A-1 第1塗布材料容器、21A-2 他の第1塗布材料容器、21B 第2塗布材料容器、24 塗布針、24A-1 第1塗布針、24A-2 第2塗布針、35 可動ベース、41 サーボモータ、43 カム、44 軸受、45 カム連結板、46 可動部、100 塗布装置、101 X軸ステージ、102 Y軸ステージ、103 Z軸ステージ、104,104-1,104-2,104-3 針塗布機構、105,105-1,105-2 滴下機構、106 観察光学系、107 塗布機構、111 プレート、112A,112A-1,112A-2,112A-3 容器、112B 基板、AA,A1o,A2o 第1塗布液、A,A1 第1塗布材料、A2,A3 他の第1塗布材料、BB,B1o,B2o 第2塗布液、B 第2塗布材料、C 細胞、C1 心筋細胞、C2 心臓線維芽細胞、G1 第1図心、G2 第2図心、m 第1溶媒、M 培地。

Claims (30)

  1.  塗布対象物内に第1塗布液をN個(N≧1の自然数)供給し、細胞を配置する工程と、
     前記N個の第1塗布液のうち少なくとも1個を覆うように、前記塗布対象物内に第2塗布液をM個(M≧1の自然数)供給する工程とを備え、
     前記第2塗布液を供給する工程においては、前記N個の第1塗布液のそれぞれの中心から外縁までの寸法の最大値である第1寸法をr1n(1≦n≦Nの自然数)、前記M個の第2塗布液のそれぞれの中心から外縁までの寸法の最大値である第2寸法をr2m(1≦m≦Mの自然数)とし、N個の中から選択された任意の前記第1寸法がr1nの前記第1塗布液の中心と、M個の中から選択された任意の前記第2寸法がr2mの前記第2塗布液の中心との距離をDn,mとすれば、任意の前記第1塗布液と任意の前記第2塗布液との間で
      (数1)Dn,m<r2m-r1n・・・(1)
    および
      (数2)Dn,m>r2m+r1n・・・(2)
    のいずれかが成立するように供給される、細胞組織の製造方法。
  2.  前記N個の第1塗布液のうち前記第2塗布液と重なる1個以上の前記第1塗布液の第1図心を中心とし前記1個以上の第1塗布液を全て覆い前記1個以上の前記第1塗布液のいずれかと内接するよう求められた第1仮想曲線の最大寸法である第1仮想寸法r1v以上の基準寸法よりも、前記第2寸法r2mの方が大きく、
     前記第1図心は、前記第2塗布液と重なる1個以上の前記第1塗布液のそれぞれの中心位置から求められる、請求項1に記載の細胞組織の製造方法。
  3.  前記M個の第2塗布液の第2図心を中心とし、前記M個の第2塗布液を全て覆い前記M個の第2塗布液のいずれかと内接するよう求められた第2仮想曲線の最大寸法である第2仮想寸法r2v以上の基準寸法よりも、前記塗布対象物の第3寸法rの方が大きく、
     前記第2図心は、前記M個の前記第2塗布液のそれぞれの中心位置から求められる、請求項1に記載の細胞組織の製造方法。
  4.  前記塗布対象物内に供給される前記N個の第1塗布液のうち少なくとも1個に含まれる前記細胞は第1細胞であり、前記少なくとも1個とは異なる他の少なくとも1個の前記第1塗布液に含まれる前記細胞は第2細胞である、請求項1または2に記載の細胞組織の製造方法。
  5.  前記塗布対象物内に供給される前記N個の第1塗布液のうち少なくとも1個に前記細胞が含まれ、前記少なくとも1個とは異なる他の少なくとも1個の前記第1塗布液には前記細胞を含まずサイトカイン、薬剤、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれる、請求項1または2に記載の細胞組織の製造方法。
  6.  前記第1塗布液にサイトカイン、ECMおよび添加因子からなる群から選択される少なくともいずれかが含まれる、請求項1または2に記載の細胞組織の製造方法。
  7.  前記第1塗布液を供給する工程以降にゲル化剤を用いて、前記塗布対象物内に供給された前記細胞から細胞組織が形成される、請求項1または2に記載の細胞組織の製造方法。
  8.  前記第1塗布液は前記細胞とゲル化剤とを含み、前記第2塗布液は前記ゲル化剤よりも粘度の高い溶液である、請求項7に記載の細胞組織の製造方法。
  9.  前記第1塗布液は前記細胞を含み、前記第2塗布液はゲル化剤を含む、請求項7に記載
    の細胞組織の製造方法。
  10.  2液混合方式により前記塗布対象物内に前記第1塗布液および前記第2塗布液が供給される、請求項1または2に記載の細胞組織の製造方法。
  11.  前記第1塗布液は前記細胞とゲル化開始剤とを含み、前記第2塗布液はゲル化剤を含む、請求項10に記載の細胞組織の製造方法。
  12.  前記第1塗布液は前記細胞とゲル化剤とを含み、前記第2塗布液はゲル化開始剤を含む、請求項10に記載の細胞組織の製造方法。
  13.  前記第1塗布液および前記第2塗布液の少なくともいずれかに、ゲル化剤としてのコラーゲンとフィブリノゲンとの少なくともいずれかが含まれる、請求項1または2に記載の細胞組織の製造方法。
  14.  前記第1塗布液および前記第2塗布液の少なくともいずれかに増粘多糖類が混合された、請求項1または2に記載の細胞組織の製造方法。
  15.  前記細胞は心筋細胞、神経細胞、肝細胞、癌細胞、血管内皮細胞および線維芽細胞からなる群から選択されるいずれかである、請求項1または2に記載の細胞組織の製造方法。
  16.  前記第1塗布液の細胞体積濃度が1vol%以上30vol%以下である、請求項1または2に記載の細胞組織の製造方法。
  17.  前記N個の第1塗布液のうち1個の前記第1塗布液中に、前記細胞として、第3細胞と、前記第3細胞とは異なる第4細胞とが含まれるように共培養される、請求項1または2に記載の細胞組織の製造方法。
  18.  前記第1塗布液を供給する工程において塗布針方式が用いられる、請求項1または2に記載の細胞組織の製造方法。
  19.  前記第2塗布液を供給する工程において、塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択されるいずれかが用いられる、請求項1または2に記載の細胞組織の製造方法。
  20.  前記第2塗布液をM個供給する工程において、前記M個のうち少なくとも1個の前記第2塗布液は塗布針方式、インクジェット方式、ディスペンサ方式、レーザープリント方式、ピペット方式からなる群から選択される第1方式により供給され、前記M個のうち少なくとも1個とは異なる他の前記第2塗布液は前記第1方式とは異なる第2方式により供給される、請求項19に記載の細胞組織の製造方法。
  21.  塗布材料を受け入れ可能な複数の容器を有するプレートに含まれる第1容器に、第1塗布機構を用いて前記塗布材料としての第1塗布材料を供給する工程と、
     前記プレートを載置するステージが移動する同時供給前移動工程と、
     前記プレートの前記第1容器と間隔をあけて配置される第2容器に前記第1塗布機構を用いて前記第1塗布材料を供給すると同時に、前記第1容器に、前記第1塗布機構と間隔をあけて配置される第2塗布機構を用いて前記塗布材料としての第2塗布材料を供給する同時供給工程とを備え、
     前記同時供給前移動工程および前記同時供給工程がなされる毎に、前記第1容器および前記第2容器に相当する前記容器が前記ステージの移動方向に沿って変更される、塗布方法。
  22.  前記第2塗布材料は前記第1塗布材料を覆うように供給され、
     前記第1塗布機構と前記第2塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器と隣り合う隣接容器との第1間隔の自然数n倍(n≧1)に等しい、請求項21に記載の塗布方法。
  23.  前記同時供給工程においては、前記第1塗布材料および前記第2塗布材料と同時に、前記塗布材料としての他の第1塗布材料を供給する工程がなされ、
     前記他の第1塗布材料を供給する工程は、前記第1容器と前記第2容器との間に配置される第3容器に、前記第1塗布機構および前記第2塗布機構の間に配置される他の第1塗布機構を用いてなされ、
     前記他の第1塗布材料は、前記第3容器に前記第1塗布材料と隣接するように供給され、
     前記第2塗布材料は前記第1塗布材料および前記他の第1塗布材料を覆うように供給される、請求項21に記載の塗布方法。
  24.  前記第1塗布機構と前記他の第1塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器に隣り合う隣接容器との第1間隔の自然数n倍(n≧1)と、前記第1容器内に供給される前記第1塗布材料と前記他の第1塗布材料との第2間隔との和に等しい、請求項23に記載の塗布方法。
  25.  前記第2塗布材料は前記第1塗布材料を覆うように供給され、
     前記同時供給前移動工程においては、前記第1容器内に供給されるべき前記第1塗布材料と、他の第1塗布機構から供給される前記塗布材料としての他の第1塗布材料との第3間隔を考慮して、任意の前記ステージの移動量を選択可能である、請求項21に記載の塗布方法。
  26.  前記第1塗布機構と前記他の第1塗布機構との間隔は、前記プレートの前記第1容器と、前記第1容器に隣り合う隣接容器との第1間隔の自然数n倍(n≧1)以上であり、前記第3間隔の想定し得る最大値と前記第1間隔の自然数n倍との和以下の任意の値である、請求項25に記載の塗布方法。
  27.  前記同時供給前移動工程は、前記ステージを動作させることによりなされる、請求項21~26のいずれか1項に記載の塗布方法。
  28.  前記供給する工程および前記同時供給工程は、Z軸ステージを動作させることによりなされる、請求項21または22に記載の塗布方法。
  29.  前記塗布材料は培養すべき細胞を含む、請求項21または22に記載の塗布方法。
  30.  塗布されるべき塗布材料を供給可能な塗布機構と、
     前記塗布材料が供給されるべきプレートを載置可能なステージとを備える塗布装置であって、
     前記塗布機構は、第1塗布機構と、前記第1塗布機構に隣接する第2塗布機構とを含み、
     前記第1塗布機構と前記第2塗布機構との間隔は、前記塗布機構による1回目の塗布時と2回目の塗布時との間での前記ステージの移動量に等しい、塗布装置。
PCT/JP2023/032319 2022-09-27 2023-09-05 細胞組織の製造方法、塗布方法および塗布装置 WO2024070524A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022153774 2022-09-27
JP2022-153774 2022-09-27
JP2022-166456 2022-10-17
JP2022166456A JP2024058995A (ja) 2022-10-17 2022-10-17 塗布方法および塗布装置
JP2022-206880 2022-12-23
JP2022206880A JP2024048319A (ja) 2022-09-27 2022-12-23 細胞組織の製造方法

Publications (1)

Publication Number Publication Date
WO2024070524A1 true WO2024070524A1 (ja) 2024-04-04

Family

ID=90477287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032319 WO2024070524A1 (ja) 2022-09-27 2023-09-05 細胞組織の製造方法、塗布方法および塗布装置

Country Status (1)

Country Link
WO (1) WO2024070524A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209301A (ja) * 2018-06-08 2019-12-12 国立大学法人大阪大学 塗布ユニットおよび微細塗布装置
WO2020179929A1 (ja) * 2019-03-06 2020-09-10 国立大学法人大阪大学 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209301A (ja) * 2018-06-08 2019-12-12 国立大学法人大阪大学 塗布ユニットおよび微細塗布装置
WO2020179929A1 (ja) * 2019-03-06 2020-09-10 国立大学法人大阪大学 細胞組織の作製方法、細胞組織作製セット、および該作製方法により作製された細胞組織を含む培養容器

Similar Documents

Publication Publication Date Title
Kingsley et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies
US9874552B2 (en) Engineering individually addressable cellular spheroids using aqueous two-phase systems
KR102156310B1 (ko) 바이오잉크를 이용한 세포 스페로이드 제조 방법
US20130084449A1 (en) Viscoelastic ink for direct writing of hydrogel structures
Liu et al. An integrated cell printing system for the construction of heterogeneous tissue models
CN103249567A (zh) 用于制造组织的装置、系统和方法
JP7333543B2 (ja) 細胞チップおよび三次元組織チップ、およびその製造方法
Ma et al. The construction of in vitro tumor models based on 3D bioprinting
CN109477071A (zh) 细胞化支架的3d打印
JP4632400B2 (ja) 細胞培養用基板、その製造方法、それを用いた細胞スクリーニング法
Kwak et al. Microfabrication of custom collagen structures capable of guiding cell morphology and alignment
WO2024070524A1 (ja) 細胞組織の製造方法、塗布方法および塗布装置
US20230203417A1 (en) Microfluidic device
KR102489607B1 (ko) 3차원 바이오프린팅 기술을 이용한 세포 스페로이드 제조방법
CN110938585B (zh) 基于细胞团簇3d打印的血管化组织构建方法及其应用
US20240158727A1 (en) Cell tissue production method, cell tissue production set, and cultivation container containing cell tissue produced by said production method
JP2024048319A (ja) 細胞組織の製造方法
JP7142841B2 (ja) 細胞チップおよび細胞組織チップの製造方法
CN110511905A (zh) 肝单元支架的构建方法、肝单元支架及在药物检测领域的应用
US20200131471A1 (en) Method of manufacturing cell spheroid using three-dimensional printing method
JP7340185B2 (ja) 細胞組織作製方法および該作製方法により作製された細胞組織を含む培養容器
JP6937382B2 (ja) カラムアレイ、及びカラムアレイを作成する方法
CN106754669B (zh) 基于反应-扩散模型的多细胞结构的制备方法及制备系统
US20220389373A1 (en) Methods and systems for generating three-dimensional biological structures
JP2024058995A (ja) 塗布方法および塗布装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871764

Country of ref document: EP

Kind code of ref document: A1