WO2020179725A1 - 脚揚降用ehaシステム - Google Patents

脚揚降用ehaシステム Download PDF

Info

Publication number
WO2020179725A1
WO2020179725A1 PCT/JP2020/008625 JP2020008625W WO2020179725A1 WO 2020179725 A1 WO2020179725 A1 WO 2020179725A1 JP 2020008625 W JP2020008625 W JP 2020008625W WO 2020179725 A1 WO2020179725 A1 WO 2020179725A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
pressure
electric hydraulic
hydraulic
electric
Prior art date
Application number
PCT/JP2020/008625
Other languages
English (en)
French (fr)
Inventor
孝明 大西
正悟 萩原
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to US17/435,675 priority Critical patent/US11614103B2/en
Priority to JP2021504073A priority patent/JP7345540B2/ja
Priority to EP20767361.7A priority patent/EP3912906B1/en
Publication of WO2020179725A1 publication Critical patent/WO2020179725A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/22Operating mechanisms fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/24Operating mechanisms electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0426Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling the number of pumps or parallel valves switched on
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/007Overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31594Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/782Concurrent control, e.g. synchronisation of two or more actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8633Pressure source supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/865Prevention of failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the technology disclosed here relates to the EHA (Electro Hydrostatic Actuator) system for lifting and lowering the legs of an aircraft.
  • EHA Electro Hydrostatic Actuator
  • Patent Document 1 describes an EHA system for lifting and lowering the legs of an aircraft.
  • the EHA system includes a hydraulic actuator and an electro-hydraulic pump.
  • the electric hydraulic pump supplies hydraulic oil to the hydraulic actuator.
  • the hydraulic actuator receives the supply of hydraulic oil to lift and lower the leg.
  • the EHA system makes it possible to eliminate the hydraulic system installed in conventional aircraft.
  • the EHA system is advantageous for improving the fuel efficiency of aircraft.
  • the load on the hydraulic actuator may increase due to the aerodynamic force acting on the legs, for example.
  • the hydraulic system mounted on a conventional aircraft even if the load of the hydraulic actuator for raising and lowering the legs becomes high, the hydraulic pressure can be continuously supplied to the hydraulic actuator.
  • the hydraulic pump if the hydraulic pump is continuously operated under a high load of the hydraulic actuator, the hydraulic pump may be seized. On the other hand, there is a demand to complete landing quickly.
  • the technology disclosed here provides an EHA system for leg lifting and lowering that completes leg lifting quickly while suppressing seizure of the electric hydraulic pump.
  • the technology disclosed here relates to the EHA system for landing and landing.
  • the EHA system for lifting and lowering a leg includes a hydraulic actuator that is mounted on a leg of an aircraft and that lifts and lowers the leg, and at least one electric hydraulic pump that supplies hydraulic oil to the hydraulic actuator when the leg is lifted and lowered.
  • a hydraulic path that connects the hydraulic actuator and the electric hydraulic pump, a pressure sensor that is attached to the hydraulic actuator or the hydraulic path, and that outputs a measurement signal corresponding to the hydraulic pressure, and a pressure sensor that receives the measurement signal and that includes the hydraulic pressure.
  • a control unit that outputs a control signal based on the control signal to the electro-hydraulic pump is provided.
  • the control unit stops the electric hydraulic pump in operation and stops the electric hydraulic pump when the state in which the hydraulic pressure exceeds a set pressure continues for a set time while the legs are being lifted. After the stop, the operation of the electrohydraulic pump is restarted after the hydraulic pressure drops below the second set pressure.
  • the control unit stops the electric hydraulic pump, so that seizure of the electric hydraulic pump is suppressed. Further, when a specific restart condition is satisfied, the leg lifting is restarted by the control unit restarting the operation of the electrohydraulic pump, so that the leg lifting is completed promptly.
  • the second set pressure may be the same as the set pressure related to the stop of the electric hydraulic pump.
  • the second set pressure may be set to a pressure lower than the set pressure.
  • the control unit when the rotation speed of the electric hydraulic pump is equal to or lower than a set rotation speed and the state in which the hydraulic pressure exceeds a set pressure continues for a set time, stops the electric hydraulic pump in operation. Good.
  • the electric hydraulic pump is prone to seizure if the low flow rate and high pressure conditions continue.
  • the control unit stops the electric hydraulic pump, so that seizure of the electric hydraulic pump is more appropriately suppressed.
  • the leg lifting / lowering EHA system may be provided in the hydraulic passage and provided with a check valve for stopping the backflow of the hydraulic oil to the electric hydraulic pump.
  • the pressure sensor is arranged in the hydraulic actuator or between the hydraulic actuator and the check valve, and the control unit is based on the measurement signal while the electric hydraulic pump is stopped. It may be determined that the hydraulic pressure has dropped below the second set pressure.
  • control unit can measure the oil pressure of the hydraulic actuator based on the measurement signal of the pressure sensor while the electric hydraulic pump is stopped.
  • the pressure sensor is arranged between the check valve and the electro-hydraulic pump, and the control unit temporarily operates the electro-hydraulic pump and the electric motor while the electro-hydraulic pump is stopped. It may be determined that the hydraulic pressure has dropped to the second set pressure or lower based on the measurement signal when the hydraulic pump is temporarily operated.
  • the check valve opens, allowing the pressure sensor to output a measurement signal corresponding to the hydraulic pressure of the hydraulic actuator. Further, since the operation time of the electro-hydraulic pump is short, seizure of the electro-hydraulic pump is suppressed when measuring the hydraulic pressure of the hydraulic actuator.
  • the control unit may intermittently repeat the operation of the electric hydraulic pump until the hydraulic pressure drops below the second set pressure.
  • the control unit can quickly determine that the hydraulic pressure has dropped below the second set pressure. By restarting the operation of the electro-hydraulic pump at an early stage, the leg lifting is completed promptly.
  • the electro-hydraulic pump includes a first electro-hydraulic pump and a second electro-hydraulic pump, and the hydraulic path connects the first electro-hydraulic pump and the second electro-hydraulic pump in parallel with the hydraulic actuator.
  • a check valve is provided between the first electric hydraulic pump and the first electric hydraulic pump, and a check valve is provided between the first electric hydraulic pump and the second electric hydraulic pump.
  • a second check valve is provided between the two electric hydraulic pumps, and the control unit receives the first electric hydraulic pump, the second electric hydraulic pump, or any of the two when the legs are raised and lowered. You may drive one of them.
  • both the first electro-hydraulic pump and the second electro-hydraulic pump may supply hydraulic oil to the hydraulic actuator.
  • the other electro-hydraulic pump can supply hydraulic oil to the hydraulic actuator.
  • the check valve stops the hydraulic oil from flowing back into the other electro-hydraulic pump. Further, as described above, the check valve holds the legs even if the electric hydraulic pump is stopped during the leg lifting.
  • the pressure sensor is arranged in the hydraulic actuator or between the hydraulic actuator and the confluence, and is provided between the first electric hydraulic pump and the check valve, and the second electric hydraulic pump.
  • a second pressure sensor is provided between the second check valve and the second check valve, respectively, and the control unit is based on the measurement signal of the second pressure sensor during the operation of the electro-hydraulic pump. It is determined that the hydraulic pressure has exceeded the set pressure, and that the hydraulic pressure has dropped to the second set pressure or lower based on the measurement signal of the pressure sensor while the electric hydraulic pump is stopped. May be
  • the two second pressure sensors output measurement signals corresponding to the respective discharge pressures of the first electric hydraulic pump and the second electric hydraulic pump (and the hydraulic pressure of the hydraulic actuator). can do. While the electro-hydraulic pump is stopped, the pressure sensor can output a measurement signal corresponding to the hydraulic pressure of the hydraulic actuator.
  • the pressure sensor is arranged between the first electro-hydraulic pump and the check valve, and between the second electro-hydraulic pump and the second check valve, and the control unit is provided. While operating the electric hydraulic pump, it is determined that the hydraulic pressure exceeds the set pressure based on the measurement signal, and the electric hydraulic pump is temporarily operated while the electric hydraulic pump is stopped. At the same time, it may be determined that the hydraulic pressure has dropped to the second set pressure or lower based on the measurement signal when the electric hydraulic pump is temporarily operated.
  • the pressure sensor can output the measurement signal corresponding to the hydraulic pressure of the hydraulic actuator. ..
  • seizure of the electric hydraulic pump is suppressed when measuring the hydraulic pressure of the hydraulic actuator.
  • the same pressure sensor outputs a measurement signal while the electrohydraulic pump is in operation or stopped, so that the number of sensors required for the EHA system is small.
  • the control unit intermittently repeats the temporary operation of the electric hydraulic pump until the hydraulic pressure falls below the second set pressure, and the control unit controls the first electric hydraulic pump and the second electric hydraulic pump.
  • the hydraulic pumps may be alternately operated temporarily.
  • seizure of the electro-hydraulic pumps is suppressed when measuring the hydraulic pressure of the hydraulic actuator. Further, the alternating operation can shorten the pause time of the electric hydraulic pump in the intermittent operation. Since the hydraulic pressure is measured more frequently, the control unit can quickly determine that the hydraulic pressure has dropped below the second set pressure. The early resumption of operation of the electro-hydraulic pump accelerates the completion of leg lifting.
  • leg lifting / lowering EHA system disclosed here can quickly complete the leg lifting while suppressing the seizure of the electric hydraulic pump.
  • FIG. 1 is a perspective view illustrating an aircraft landing gear.
  • FIG. 2 is a circuit diagram illustrating an EHA system for landing and landing.
  • FIG. 3 is a diagram showing the operation of the EHA system of FIG. 2 when lifting a leg.
  • FIG. 4 is a flowchart relating to the operation of the EHA system of FIG. 2 when the legs are lifted.
  • FIG. 5 is a diagram illustrating a change between the oil pressure of the EHA system and the measured pressure of the pressure sensor.
  • FIG. 6 is a circuit diagram illustrating an EHA system for lifting and lowering legs, which is different from that of FIG.
  • FIG. 7 is a flowchart relating to the operation of the EHA system of FIG. 6 when the legs are lifted.
  • FIG. 8 is a diagram illustrating a change between the oil pressure of the EHA system and the measured pressure of the pressure sensor.
  • FIG. 1 is a diagram illustrating an aircraft landing gear 1.
  • the landing gear 1 is the main landing gear.
  • the landing gear 1 stores the legs 11 in the airframe 12 and deploys the legs 11 from the airframe 12. Wheels 15 are attached to the tips of the legs 11.
  • the landing gear 1 includes a gear cylinder 21, a door cylinder 22, a down lock release cylinder 23, a door up lock release cylinder 26, and a gear up lock release cylinder 27.
  • the gear cylinder 21 lifts and lowers the leg 11.
  • the door cylinder 22 opens and closes the door 14 of the storage chamber 13.
  • the storage chamber 13 accommodates the legs 11.
  • the down lock release cylinder 23 releases the down lock mechanism for fixing the leg down state.
  • the door-up lock release cylinder 26 releases the door-up lock mechanism that fixes the door in the pulled-up state.
  • the gear-up lock release cylinder 27 releases the gear-up lock mechanism that fixes the leg 11 in the pulled-up state.
  • Each cylinder 21, 22, 23, 26, 27 is a hydraulic telescopic cylinder.
  • Each cylinder 21, 22, 23, 26, 27 is an example of a hydraulic actuator.
  • the landing gear 1 may have only a part of these cylinders.
  • FIG. 2 is a circuit diagram illustrating the configuration of the EHA system 10 of the landing gear 1.
  • the EHA system 10 shown in FIG. 2 includes the gear cylinder 21, the door cylinder 22, and the downlock release cylinder 23 described above.
  • the EHA system 10 may include a door up lock release cylinder 26 and a gear up lock release cylinder 27.
  • the EHA system 10 may include only some of these cylinders 21, 22, 23, 26, 27.
  • the gear cylinder 21, the door cylinder 22, and the downlock release cylinder 23 are collectively referred to as the hydraulic cylinder 2.
  • the hydraulic path 101 is shown by a solid line
  • the pilot hydraulic path is shown by a broken line
  • the electric signal path is shown by a two-dot chain line.
  • the hydraulic cylinder 2 has a bore side oil chamber 24 and an annulus side oil chamber 25.
  • the piston head separates the bore side oil chamber 24 and the annulus side oil chamber 25 in the cylinder.
  • the first port of the hydraulic cylinder 2 communicates with the bore side oil chamber 24, and the second port communicates with the annulus side oil chamber 25.
  • the hydraulic oil flows in and out of the bore side oil chamber 24 through the first port, and flows in and out of the annulus side oil chamber 25 through the second port.
  • the gear cylinder 21 lifts the leg 11 against the load when it extends, releases the load when it contracts, and lowers the leg 11.
  • the door cylinder 22 releases the load when it extends to open the door, and closes the door against the load when it contracts.
  • the downlock release cylinder 23 is loaded with a biasing member (not shown) in the extending direction. The down lock release cylinder 23 releases the mechanism for fixing the leg-lowered state by contracting.
  • the configurations of the gear cylinder 21, the door cylinder 22, and the downlock release cylinder 23 are not limited to the above configurations.
  • the EHA system 10 includes two first and second electric hydraulic pumps 31 and 32.
  • the first electric hydraulic pump 31 and the second electric hydraulic pump 32 supply hydraulic oil to each hydraulic cylinder 2.
  • the first electro-hydraulic pump 31 and the second electro-hydraulic pump 32 are provided in parallel with the hydraulic cylinder 2.
  • the electric hydraulic pump 3 when the first electro-hydraulic pump 31 and the second electro-hydraulic pump 32 are generically referred to without distinction, they are referred to as the electric hydraulic pump 3.
  • the first electric hydraulic pump 31 includes one hydraulic pump 33 and one electric motor 34.
  • the hydraulic pump 33 and the electric motor 34 are connected to each other.
  • the second electric hydraulic pump 32 also includes one hydraulic pump 33 and one electric motor 34.
  • the hydraulic pump 33 and the electric motor 34 are connected to each other.
  • the hydraulic pump 33 is a one-sided rotation type that can rotate in only one direction.
  • the hydraulic pump 33 may be, for example, a gear pump.
  • the type of the hydraulic pump 33 is not limited to this.
  • the electric motor 34 starts, operates, and stops in response to a control signal of the controller 9, which will be described later.
  • a check valve 35 is provided between the confluence portion 37 of the first electric hydraulic pump 31 and the second electric hydraulic pump 32 and the hydraulic pump 33 of the first electric hydraulic pump 31.
  • a check valve 35 (that is, a second check valve) is also provided between the merging point 37 and the hydraulic pump 33 of the second electric hydraulic pump 32. As will be described later, in these check valves 35, when one of the first and second electric hydraulic pumps 31 and 32 fails and is stopped, the hydraulic oil discharged by the other electric hydraulic pump 3 is discharged. Stop reverse flow to the stopped electric hydraulic pump 3.
  • the hydraulic path 101 downstream of the first electric hydraulic pump 31 is branched. This branch path is connected to the reservoir 81 via a relief valve 36 and a filter 82. Similarly, the hydraulic path 101 downstream of the second electric hydraulic pump 32 is branched. This branch path is connected to the reservoir 81 via a relief valve 36 and a filter 82.
  • the reservoir 81 absorbs that the total volume of the bore side oil chamber 24 and the annulus side oil chamber 25 of the hydraulic cylinder 2 fluctuates as the hydraulic cylinder 2 expands and contracts.
  • a suction port of the first electric hydraulic pump 31 and a suction port of the second electric hydraulic pump 32 are connected to the reservoir 81.
  • the merging point 37 between the first electric hydraulic pump 31 and the second electric hydraulic pump 32 is connected to the gear selector valve 41 and the door selector valve 42.
  • the gear selector valve 41 is a 4-port 3-position switching valve having four ports of P port, T port, A port and B port.
  • the gear selector valve 41 selectively supplies hydraulic oil to the gear cylinder 21 and the downlock release cylinder 23.
  • the P port is connected to a merging point 37 of the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the T port is connected to the reservoir 81.
  • the A port is connected to the bore side oil chamber 24 of the gear cylinder 21 and the annulus side oil chamber 25 of the downlock release cylinder 23, respectively.
  • the B port is connected to the oil chamber 25 on the annulus side of the gear cylinder 21.
  • the bore side oil chamber 24 of the down lock release cylinder 23 is connected to the reservoir 81.
  • the gear selector valve 41 is also a hydraulic pilot type solenoid valve.
  • the spool moves by receiving pilot hydraulic pressure.
  • the spool is biased to the center position by a spring.
  • the gear selector valve 41 communicates the A port and the B port with the T port, respectively.
  • the gear selector valve 41 also communicates between the A port and the P port and communicates with the B port and the T port at the first offset position (that is, the position on the left side in FIG. 2).
  • the gear selector valve 41 communicates between the A port and the T port and communicates with the B port and the T port at the second offset position (that is, the position on the right side in FIG. 2).
  • the controller 9 selectively supplies the working oil to the bore side oil chamber 24 or the annulus side oil chamber 25 of the gear cylinder 21 through the switching of the gear selector valve 41, and at the same time, the annulus side oil chamber 25 of the downlock release cylinder 23. Switch the supply and stop of hydraulic oil to.
  • a check valve 44 and an orifice 45 are interposed in parallel between the A port of the gear selector valve 41 and the oil chamber 24 on the bore side of the gear cylinder 21.
  • the check valve 44 and the orifice 45 limit the speed at which the gear cylinder 21 contracts.
  • the door selector valve 42 is a 4-port 2-position switching valve having four ports of P port, T port, A port and B port.
  • the door selector valve 42 selectively supplies hydraulic oil to the door cylinder 22.
  • the P port is connected to the confluence 37 of the first electrohydraulic pump 31 and the second electrohydraulic pump 32.
  • the T port is connected to the reservoir 81.
  • the A port is connected to the bore side oil chamber 24 of the door cylinder 22.
  • the B port is connected to the oil chamber 25 on the annulus side of the door cylinder 22.
  • the door selector valve 42 is also a hydraulic pilot type solenoid valve.
  • the spool moves under the pilot hydraulic pressure.
  • the spool is biased to the normal position by a spring.
  • the door selector valve 42 communicates the A port and the B port with the P port, respectively.
  • the door selector valve 42 communicates between the A port and the T port and communicates with the B port and the P port.
  • the controller 9 selectively supplies hydraulic oil to the bore side oil chamber 24 or the annulus side oil chamber 25 of the door cylinder 22 through the switching of the door selector valve 42.
  • a check valve 46 and an orifice 47 are interposed in parallel between the B port of the door selector valve 42 and the oil chamber 25 on the annulus side of the door cylinder 22.
  • the check valve 46 and the orifice 47 limit the speed at which the door cylinder 22 extends.
  • a dump valve 43 is interposed between the gear cylinder 21, the door cylinder 22, and the reservoir 81.
  • the dump valve 43 is a 5-port 2-position switching valve having A, B, C, and D ports and a T port.
  • the A port of the dump valve 43 is connected to the oil chamber 25 on the annulus side of the gear cylinder 21.
  • the B port is connected to the bore side oil chamber 24 of the gear cylinder 21.
  • the C port is connected to the oil chamber 25 on the annulus side of the door cylinder 22.
  • the D port is connected to the bore side oil chamber 24 of the door cylinder 22.
  • the T port is connected to the reservoir 81.
  • the dump valve 43 is a solenoid valve provided with a spool directly driven by a solenoid.
  • the spool is biased to the normal position by a spring. In the normal position, the dump valve 43 communicates all the A, B, C, D ports with the T port. The dump valve 43 shuts off each of the ports A to D and the T port at the offset position.
  • the controller 9 switches the dump valve 43.
  • a pressure sensor 38 is attached to the branch path of the first electrohydraulic pump 31 described above.
  • the pressure sensor 38 outputs a measurement signal corresponding to the discharge pressure of the first electrohydraulic pump 31 to the controller 9.
  • a pressure sensor 38 is also attached to the branch path of the second electric hydraulic pump 32.
  • the pressure sensor 38 outputs a measurement signal corresponding to the discharge pressure of the second electric hydraulic pump 32 to the controller 9.
  • the two pressure sensors 38 allow the controller 9 to individually measure the discharge pressure of the first electro-hydraulic pump 31 and the discharge pressure of the second electro-hydraulic pump 32.
  • These pressure sensors 38 are an example of a second pressure sensor.
  • the EHA system 10 illustrated in FIG. 2 has another pressure sensor 39.
  • the pressure sensor 39 is attached to the hydraulic passage 101 that connects the confluence point 37 of the first electric hydraulic pump 31 and the second electric hydraulic pump 32 and the bore side oil chamber 24 of the gear cylinder 21.
  • the pressure sensor 39 outputs a measurement signal corresponding to the pressure in the oil chamber 24 on the bore side of the gear cylinder 21 to the controller 9.
  • the pressure sensor 39 may be attached to the gear cylinder 21.
  • reference numeral 310 in FIG. 2 is a sensor that detects that the landing of the landing gear 1 has been completed. The sensor 310 outputs a detection signal to the controller 9.
  • the controller 9 outputs a control signal to the first electro-hydraulic pump 31 and the second electro-hydraulic pump 32.
  • the first electric hydraulic pump 31 and the second electric hydraulic pump 32 receive the control signal and start, operate, and stop.
  • the controller 9 also outputs a control signal to the gear selector valve 41, the door selector valve 42, and the dump valve 43.
  • the gear selector valve 41, the door selector valve 42, and the dump valve 43 receive the control signal and switch the position of the spool.
  • the controller 9 outputs the control signal to the first electric hydraulic pump 31, the second electric hydraulic pump 32, the gear selector valve 41, the door selector valve 42, and the dump valve 43 to store the leg 11 in the body 12. , Deploy the legs 11 from the body 12.
  • the controller 9 is an example of a control unit.
  • FIG. 3 shows the operation of the EHA system 10 when the door is opened and the leg is lifted. Note that FIG. 3 omits the illustration of the controller 9, the electric motor 34, and the electric signal path. Further, FIG. 3 shows the hydraulic path to which the hydraulic oil is supplied by a thick solid line, the pilot hydraulic path by a broken line, and the hydraulic path 101 connected to the reservoir 81 by a solid line.
  • the controller 9 sets the gear selector valve 41 to the first offset position.
  • the A port and P port of the gear selector valve 41 communicate with each other, and the B port and the T port communicate with each other. Further, the controller 9 operates the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the controller 9 individually feeds back and controls each of the first electrohydraulic pump 31 and the second electrohydraulic pump 32 based on the measurement signals of the two pressure sensors 38.
  • the hydraulic oil is supplied to the annulus side oil chamber 25 of the down lock release cylinder 23 via the gear selector valve 41 as shown by an arrow in the figure.
  • the downlock release cylinder 23 contracts as shown by the arrow in FIG. The mechanism for fixing the landing position is released.
  • the hydraulic oil is supplied to the bore side oil chamber 24 of the gear cylinder 21 via the check valve 44.
  • the gear cylinder 21 extends as shown by the arrow in FIG. This raises the leg 11.
  • the hydraulic oil discharged from the annulus side oil chamber 25 as the gear cylinder 21 extends returns to the reservoir 81 through the gear selector valve 41 and the filter 82.
  • the controller 9 determines that the leg lifting is completed based on the detection signal of the sensor 310.
  • the controller 9 operates only the other electro-hydraulic pump 3.
  • the EHA system 10 is made redundant by providing the first electric hydraulic pump 31 and the second electric hydraulic pump 32 in parallel with each hydraulic cylinder 2. Therefore, hydraulic oil can be supplied to each hydraulic cylinder 2 with only one electric hydraulic pump 3.
  • the controller 9 is configured to suppress seizure of the hydraulic pump 33 when the legs are lifted. Specifically, while the leg 11 is being lifted, the controller 9 keeps the hydraulic pump 33 at a low rotation speed equal to or lower than the set rotation speed and the hydraulic pressure exceeds the first set pressure for a set time. Judge whether or not.
  • the controller 9 may detect the rotation speed of the hydraulic pump 33 based on the control signal output to the electric motor 34. Further, a sensor that outputs a measurement signal corresponding to the rotation speed of the hydraulic pump 33 and / or the electric motor 34 to the controller 9 may be attached to the hydraulic pump 33 and / or the electric motor 34.
  • the controller 9 may also detect the hydraulic pressure in the bore side oil chamber 24 of the gear cylinder 21 based on the measurement signals of the two pressure sensors 38.
  • the controller 9 may detect the oil pressure in the bore side oil chamber 24 of the gear cylinder 21 based on the measurement signal of the pressure sensor 39.
  • the controller 9 causes the first electric hydraulic pump 31 and the second electric hydraulic pump 31 to operate.
  • the hydraulic pump 32 is stopped.
  • the controller 9 may stop the first electric hydraulic pump 31 and the second electric hydraulic pump 32. Good.
  • the controller 9 starts the first electric hydraulic pump 31 and the second electric hydraulic pump 32 when the oil pressure in the bore side oil chamber 24 of the gear cylinder 21 drops.
  • a check valve 35 is arranged between the two pressure sensors 38 and the gear cylinder 21. Therefore, the two pressure sensors 38 cannot detect the oil pressure in the bore side oil chamber 24 of the gear cylinder 21 while the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are stopped. Therefore, the controller 9 detects the hydraulic pressure of the bore side oil chamber 24 of the gear cylinder 21 based on the measurement signal of the pressure sensor 39 while the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are stopped. When the oil pressure in the bore side oil chamber 24 of the gear cylinder 21 becomes equal to or lower than the second set pressure, the controller 9 restarts the operation of the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the first set pressure may be set in advance as a pressure at which seizure occurs when the hydraulic pump 33 continues to operate at the first set pressure for a long time.
  • the first set pressure may be a pressure lower than the valve opening pressure of the relief valve 36.
  • the second set pressure may be lower than the first set pressure. By doing so, the operation of the electric hydraulic pump 3 can be restarted in a stable manner. Further, the second set pressure may be the same as the first set pressure.
  • FIG. 4 is a flowchart showing a control procedure executed by the controller 9 at the time of landing
  • FIG. 5 shows a change in the hydraulic pressure of the EHA system 10 and a change in the pressure (that is, the measured pressure) based on the measurement signal of the pressure sensor 38.
  • the solid line in FIG. 5 shows the change in the hydraulic pressure of the EHA system 10.
  • the oil pressure of the EHA system 10 can be measured based on the measurement signal of the pressure sensor 39.
  • the thick solid line in FIG. 5 shows the change in the measured pressure of the pressure sensor 38. Note that in FIG. 5, the solid line and the thick solid line are deviated from each other for easy viewing of the drawing.
  • step S11 the controller 9 determines whether or not it is time for landing. If the determination in step S11 is NO, the process repeats step S11. If the determination in step S11 is YES, the process proceeds to step S12.
  • step S12 the controller 9 determines whether or not the flag F, which will be described later, is zero. If the flag F is zero, the process proceeds to step S13. If flag F is not zero, the process proceeds to step S110. Here, the description will be continued assuming that the flag F is zero.
  • step S13 the controller 9 operates the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the hydraulic oil is supplied to the gear cylinder 21, and the leg 11 moves up.
  • step S14 the controller 9 determines whether or not the hydraulic pump 33 has a low rotation speed of the set rotation speed or less and the hydraulic pressure exceeds the first set pressure. If the determination in step S14 is NO, the process proceeds to step S18. If the determination in step S14 is YES, the process proceeds to step S15.
  • the hydraulic pressure exceeds the first set pressure at time t11.
  • step S15 the controller 9 determines whether or not the state in which the hydraulic pump 33 has a low rotation speed of the set rotation speed or less and the hydraulic pressure exceeds the set pressure continues for the set time. If the determination in step S15 is no, the process returns to step S14. If the determination in step S15 is YES, the process proceeds to step S16.
  • step S16 the controller 9 stops the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the controller 9 stops the first electric hydraulic pump 31 and the second electric hydraulic pump 32 on the assumption that the set time has elapsed at the time t12. The pressure measured by the pressure sensor 38 becomes substantially zero.
  • the controller 9 determines whether or not the stop condition relating to the determination in steps S15 and S16 is satisfied for the first electric hydraulic pump 31, and the second electric hydraulic pump 31 is provided separately from the first electric hydraulic pump 31. For the pump 32, it may be determined whether or not the stop condition relating to the determination in steps S15 and S16 is satisfied.
  • the controller 9 also stops the first electric hydraulic pump 31 when the stop condition is satisfied for the first electric hydraulic pump 31, and when the stop condition for the second electric hydraulic pump 32 is satisfied, the controller 9 stops the first electric hydraulic pump 31. 2
  • the electric hydraulic pump 32 may be stopped.
  • the controller 9 uses both the first electric hydraulic pump 31 and the second electric hydraulic pump 32 when the stop condition is satisfied for either the first electric hydraulic pump 31 or the second electric hydraulic pump 32. May be stopped.
  • step S17 the controller 9 sets the flag F to 1.
  • This flag F is a flag indicating that the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are stopped in order to suppress seizure during leg lifting. The process then returns.
  • step S11 after return, since the stepping is not completed, the determination in step S11 becomes YES, and the process proceeds to step S12. Since the flag F is 1, the determination in step S12 is NO. The process proceeds to step S110.
  • step S110 the controller 9 determines whether or not the oil pressure of the EHA system 10 has dropped to the second set pressure or less based on the measurement signal of the pressure sensor 39. If the determination in step S110 is no, the process returns to step S11. If the determination in step S110 is yes, the process proceeds to step S111.
  • step S111 the controller 9 sets the flag F to zero, and the process then proceeds to step S13.
  • the controller 9 restarts the operation of the first electro-hydraulic pump 31 and the second electro-hydraulic pump. That is, the operation of the electric hydraulic pump 3 is restarted after the hydraulic pressure drops below the second set pressure.
  • the controller 9 may restart the operation of the electric hydraulic pump 3 as soon as the hydraulic pressure of the EHA system 10 drops below the second set pressure, or may restart the operation of the electric hydraulic pump 3 after a while.
  • step S18 while the electrohydraulic pump 3 is operating, the controller 9 determines whether or not the leg lifting is completed.
  • the controller 9 can determine that the leg lifting is completed based on the detection signal of the sensor 310. If the determination in step S18 is NO, the process returns to step S11 and continues to lift the leg. If the determination in step S18 is yes, the process proceeds to step S19.
  • step S19 the controller 9 stops the first electrohydraulic pump 31 and the second electrohydraulic pump 32, and the process returns.
  • the controller 9 stops the electric hydraulic pump 3, so that seizure of the electric hydraulic pump 3 is suppressed. Further, when a specific restart condition is satisfied, the leg lifting is restarted by the controller 9 restarting the operation of the electrohydraulic pump 3, so that the leg lifting is completed promptly.
  • the controller 9 can measure the hydraulic pressure of the hydraulic cylinder 2 even while the electric hydraulic pump 3 is stopped. The controller 9 can restart the operation of the electro-hydraulic pump 3 at an appropriate timing.
  • the steps can be replaced to the extent possible. Also, some of the steps can be omitted.
  • FIG. 6 shows a circuit diagram of the EHA system 100 having a configuration different from that of FIG.
  • the EHA system 100 omits the pressure sensor 39.
  • the same components are designated by the same reference numerals.
  • the controller 9 stops the first electric hydraulic pump 31 and the second electric hydraulic pump 32 when a specific stop condition is satisfied during leg lifting.
  • the pressure sensor 38 cannot measure the oil pressure of the EHA system 100 while the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are stopped. Therefore, the controller 9 temporarily operates the first electric hydraulic pump 31 or the second electric hydraulic pump 32 while the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are stopped.
  • the check valve 35 opens, so that the pressure sensor 38 can output a measurement signal corresponding to the hydraulic pressure of the EHA system 100.
  • the controller 9 can determine that the hydraulic pressure of the EHA system 100 has dropped below the second set pressure even after the first electrohydraulic pump 31 and the second electrohydraulic pump 32 are stopped.
  • the operating time of the electric hydraulic pump 3 when measuring the hydraulic pressure of the EHA system 100 is short. Therefore, seizure of the electric hydraulic pump 3 is suppressed.
  • FIG. 7 is a flowchart showing a control procedure executed by the controller 9 when the legs are lifted.
  • FIG. 8 is a diagram illustrating a change between the oil pressure of the EHA system 100 and the pressure based on the measurement signal of the pressure sensor 38 when the legs are lifted.
  • the solid line in FIG. 8 shows the change in hydraulic pressure of the EHA system 100.
  • the thick solid line in FIG. 8 shows the change in the measured pressure of the pressure sensor 38.
  • Steps S21 to S29 of the flow of FIG. 7 correspond to steps S11 to 19 of the flow of FIG.
  • the controller 9 causes the first electric hydraulic pump 31 and the second electric hydraulic pump 31 to operate.
  • the electric hydraulic pump 32 is stopped (step S26).
  • the hydraulic pressure exceeds the first set pressure at time t21, and the controller 9 stops the first electric hydraulic pump 31 and the second electric hydraulic pump 32 at time t22.
  • the controller 9 also stops the first electric hydraulic pump 31 and the second electric hydraulic pump 32 when the leg raising is completed (step S29).
  • step S210 the controller 9 activates the first electric hydraulic pump 31 or the second electric hydraulic pump 32. At this time, the controller 9 activates only one of the first electric hydraulic pump 31 and the second electric hydraulic pump 32. Since the check valve 35 is opened by starting the electric hydraulic pump 3, the pressure sensor 38 can output a measurement signal corresponding to the hydraulic pressure of the EHA system 100.
  • step S211 the controller 9 determines whether or not the measured pressure based on the measurement signal of the pressure sensor 38 is equal to or less than the second set pressure. If the determination in step S211 is NO, the process proceeds to step S212.
  • step S212 the controller 9 stops the activated electro-hydraulic pump 3.
  • the operation of the electric hydraulic pump 3 is temporary.
  • the operating time of the electric hydraulic pump 3 may be, for example, about 2 to 3 seconds. By operating the electric hydraulic pump 3 for a short time, seizure of the electric hydraulic pump 3 is suppressed.
  • the electric hydraulic pump 3 is started at time t23. Since the measured pressure of the pressure sensor 38 was not equal to or lower than the second set pressure, the controller 9 stopped the electric hydraulic pump 3.
  • step S213 the controller 9 determines whether or not a preset down time has elapsed. The process repeats step S213 until the determination in step S213 is YES. If the determination in step S213 is yes, the process returns to step S210.
  • the controller 9 starts an electric hydraulic pump 3 different from the previously started electric hydraulic pump 3. Then, in step S211 the controller 9 determines whether or not the measured pressure has dropped to the second set pressure or less based on the measurement signal of the pressure sensor 38. In the example of FIG. 8, the controller 9 starts the electric hydraulic pump 3 for the second time at time t24. Even when the electric hydraulic pump 3 is activated for the second time, the hydraulic pressure of the EHA system 100 does not decrease, so the electric hydraulic pump 3 is stopped.
  • the controller 9 intermittently operates the electric hydraulic pump 3 until the measured pressure of the pressure sensor 38 becomes equal to or lower than the second set pressure.
  • the controller 9 also operates the first electro-hydraulic pump 31 and the second electro-hydraulic pump 32 alternately.
  • the controller 9 can quickly determine that the oil pressure has dropped. Further, by alternately starting the first electric hydraulic pump 31 and the second electric hydraulic pump 32, seizure of the first electric hydraulic pump 31 and the second electric hydraulic pump 32 can be suppressed. Further, the pause time can be shortened by alternately starting the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the rest time may be appropriately set, for example, about 1 to 3 seconds. As a result, it can be determined more quickly that the oil pressure of the EHA system 100 has decreased. Since the operation of the electric hydraulic pump 3 can be restarted at an early stage, the leg lifting is completed earlier. The electric hydraulic pump 3 may not be activated alternately. Further, both the first electric hydraulic pump 31 and the second electric hydraulic pump 32 may be temporarily operated.
  • step S215 the controller 9 sets flag F to zero and the process proceeds to step S23.
  • the controller 9 operates both the first electric hydraulic pump 31 and the second electric hydraulic pump 32, and restarts leg lifting.
  • the controller 9 starts the electric hydraulic pump 3 for the third time at time t25. Since the measured pressure based on the measurement signal of the pressure sensor 38 drops below the second set pressure, the controller 9 restarts the operation of the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the pressure sensor 38 measures the oil pressure while the electric hydraulic pump 3 is operating or stopped.
  • the EHA system 100 can reduce the number of pressure sensors as compared with the EHA system 10 of FIG.
  • the EHA systems 10 and 100 shown in FIGS. 2 and 6 are examples, respectively.
  • the circuit constituting the EHA system for raising and lowering the legs can adopt an appropriate circuit configuration.
  • the above-mentioned EHA systems 10 and 100 are made redundant by including the first electric hydraulic pump 31 and the second electric hydraulic pump 32.
  • the technique disclosed herein can also be applied to a non-redundant EHA system for lifting and lowering legs.
  • the EHA systems 10 and 100 shown in FIGS. 2 and 6 are EHA systems of the landing gear 1 on the starboard or port side of the aircraft.
  • the techniques disclosed herein may be applied to an EHA system that combines a starboard landing gear and a left landing gear of an aircraft.
  • the first electric hydraulic pump 31 and the second electric hydraulic pump 32 are used to hydraulic oil in each hydraulic cylinder 2 of the right-side landing device.
  • the hydraulic path downstream of the selector valve may be branched into a right-side landing device and a left-side landing device so as to supply hydraulic oil to each hydraulic cylinder 2 of the left-side landing device. Good.
  • the gear cylinder 21 is the control target, but the technology disclosed here may be applied to the door cylinder 22 as the control target.

Abstract

脚揚降用EHAシステム(10)は、航空機の脚を揚降する油圧アクチュエータ(2)と、少なくとも一の電動油圧ポンプ(31、32)と、油圧路(101)と、油圧アクチュエータ又は油圧路に取り付けられかつ、油圧に対応する計測信号を出力する圧力センサ(38、39)と、制御信号を電動油圧ポンプに出力する制御部(コントローラ9)と、を備える。制御部は、油圧が設定圧力を超えた状態が、設定時間継続した場合に、運転中の電動油圧ポンプを停止させかつ、電動油圧ポンプを停止した後、油圧が第2設定圧力以下に低下した以降に、電動油圧ポンプの運転を再開させる。

Description

脚揚降用EHAシステム
 ここに開示する技術は、航空機の脚の揚降を行う脚揚降用EHA(Electro Hydrostatic Actuator)システムに関する。
 特許文献1には、航空機の脚の揚降を行うEHAシステムが記載されている。EHAシステムは、油圧アクチュエータと電動油圧ポンプとを備えている。電動油圧ポンプは、油圧アクチュエータに作動油を供給する。油圧アクチュエータは、作動油の供給を受けて脚を揚降する。EHAシステムは、従来の航空機に搭載されていた油圧システムを廃止することを可能にする。EHAシステムは、航空機の燃費の向上に有利である。
特開2014-132189号公報
 ところで、脚を揚げている最中に、例えば脚に作用する空力によって油圧アクチュエータの負荷が高くなる場合がある。従来の航空機に搭載されていた油圧システムであれば、脚揚降用の油圧アクチュエータの負荷が高くなっても、油圧アクチュエータへ継続して油圧を供給することができる。しかしながら、EHAシステムは、油圧アクチュエータの負荷が高い状態で油圧ポンプを運転し続けると、油圧ポンプが焼き付く恐れがある。その一方で、脚揚げは速やかに完了したいという要求がある。
 ここに開示する技術は、電動油圧ポンプの焼き付きを抑制しながら、脚揚げが速やかに完了する脚揚降用EHAシステムを提供する。
 ここに開示する技術は、脚揚降用EHAシステムに係る。脚揚降用EHAシステムは、航空機の脚に取り付けられかつ、前記脚を揚降する油圧アクチュエータと、前記脚の揚降時に前記油圧アクチュエータに作動油を供給する、少なくとも一の電動油圧ポンプと、前記油圧アクチュエータと前記電動油圧ポンプとをつなぐ油圧路と、前記油圧アクチュエータ又は前記油圧路に取り付けられかつ、油圧に対応する計測信号を出力する圧力センサと、前記計測信号を受けかつ、前記油圧に基づく制御信号を前記電動油圧ポンプに出力する制御部と、を備える。
 前記制御部は、前記脚を揚げている最中に、前記油圧が設定圧力を超えた状態が、設定時間継続した場合に、運転中の前記電動油圧ポンプを停止させかつ、前記電動油圧ポンプを停止した後、前記油圧が第2設定圧力以下に低下した以降に、前記電動油圧ポンプの運転を再開させる。
 この構成によると、脚揚げ中に特定の停止条件が成立すると、制御部が電動油圧ポンプを停止させるから、電動油圧ポンプの焼き付きが抑制される。また、特定の再開条件が成立すると、制御部が電動油圧ポンプの運転を再開することによって脚揚げが再開されるから、脚揚げが速やかに完了する。
 ここで、第2設定圧力は、電動油圧ポンプの停止に係る設定圧力と同じにしてもよい。第2設定圧力は、設定圧力よりも低い圧力に設定してもよい。第2設定圧力が設定圧力よりも低いと、電動油圧ポンプが安定的に運転再開する。
 前記制御部は、前記電動油圧ポンプの回転数が設定回転数以下でかつ、前記油圧が設定圧力を超えた状態が、設定時間継続した場合に、運転中の前記電動油圧ポンプを停止させる、としてもよい。
 電動油圧ポンプは、低流量かつ高圧力の状態が継続すると焼き付きやすい。電動油圧ポンプの低流量かつ高圧力の状態が継続した場合に、制御部が電動油圧ポンプを停止することによって、電動油圧ポンプの焼き付きが、より適切に抑制される。
 前記脚揚降用EHAシステムは、前記油圧路に設けられかつ、前記電動油圧ポンプへの前記作動油の逆流を止める逆止弁を備えている、としてもよい。
 こうすることで、脚揚げの最中に電動油圧ポンプが停止しても、脚は降りずに保持される。
 前記圧力センサは、前記油圧アクチュエータに、又は、前記油圧アクチュエータと前記逆止弁との間に、配設され、前記制御部は、前記電動油圧ポンプの停止中に、前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する、としてもよい。
 こうすることで、制御部は、電動油圧ポンプが停止している間に、圧力センサの計測信号に基づいて油圧アクチュエータの油圧を計測することが可能になる。
 前記圧力センサは、前記逆止弁と前記電動油圧ポンプとの間に配設され、前記制御部は、前記電動油圧ポンプの停止中に、前記電動油圧ポンプを一時的に運転すると共に、前記電動油圧ポンプを一時的に運転した時の前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する、としてもよい。
 電動油圧ポンプが起動すると逆止弁が開弁するため、圧力センサは油圧アクチュエータの油圧に対応する計測信号を出力可能になる。また、電動油圧ポンプの運転時間は短いため、油圧アクチュエータの油圧を計測する際に電動油圧ポンプが焼き付くことが抑制される。
 前記制御部は、一時的な電動油圧ポンプの運転を、前記油圧が前記第2設定圧力以下に低下するまで、間欠的に繰り返す、としてもよい。
 電動油圧ポンプの運転を間欠的に行うことにより、電動油圧ポンプの焼き付きが抑制される。また、油圧の計測を繰り返し行うことによって、制御部は、油圧が第2設定圧力以下に低下したことを速やかに判断することができる。電動油圧ポンプが早期に運転を再開することによって、脚揚げが速やかに完了する。
 前記電動油圧ポンプは、第1電動油圧ポンプと第2電動油圧ポンプとを含み、前記油圧路は、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプを、前記油圧アクチュエータに対して並列に接続し、前記油圧路において、前記第1電動油圧ポンプと前記第2電動油圧ポンプとの合流箇所と前記第1電動油圧ポンプとの間には逆止弁が設けられると共に、前記合流箇所と前記第2電動油圧ポンプとの間には第2の逆止弁が設けられ、前記制御部は、前記脚の揚降時に、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプの両方、又は、いずれか一方を運転する、としてもよい。
 これにより、EHAシステムが冗長化する。正常時は、第1電動油圧ポンプ、及び、第2電動油圧ポンプの両方が、油圧アクチュエータに作動油を供給してもよい。第1電動油圧ポンプ、及び、第2電動油圧ポンプのいずれか一方がフェイルした場合には、他方の電動油圧ポンプが、油圧アクチュエータに作動油を供給することができる。一方の電動油圧ポンプが運転している時に、逆止弁は、他方の電動油圧ポンプに作動油が逆流することを止める。また、前述したように、逆止弁によって、脚揚げの最中に電動油圧ポンプが停止しても、脚は保持される。
 前記圧力センサは、前記油圧アクチュエータに、又は、前記油圧アクチュエータと前記合流箇所との間に、配設され、前記第1電動油圧ポンプと前記逆止弁の間、及び、前記第2電動油圧ポンプと前記第2の逆止弁との間にはそれぞれ、第2の圧力センサが設けられ、前記制御部は、前記電動油圧ポンプの運転中に、前記第2の圧力センサの計測信号に基づいて前記油圧が前記設定圧力を超えたことを判断しかつ、前記電動油圧ポンプの停止中に、前記圧力センサの計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する、としてもよい。
 電動油圧ポンプが運転している間は、二つの第2の圧力センサが、第1電動油圧ポンプ及び第2電動油圧ポンプのそれぞれの吐出圧力(及び油圧アクチュエータの油圧)に対応する計測信号を出力することができる。電動油圧ポンプが停止している間は、圧力センサが、油圧アクチュエータの油圧に対応する計測信号を出力することができる。
 前記圧力センサは、前記第1電動油圧ポンプと前記逆止弁との間、及び、前記第2電動油圧ポンプと前記第2の逆止弁との間のそれぞれに配設され、前記制御部は、前記電動油圧ポンプの運転中に、前記計測信号に基づいて前記油圧が前記設定圧力を超えたことを判断しかつ、前記電動油圧ポンプの停止中に、前記電動油圧ポンプを一時的に運転すると共に、前記電動油圧ポンプを一時的に運転した時の前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する、としてもよい。
 第1及び/又は第2電動油圧ポンプが起動することによって逆止弁及び/又は第2の逆止弁が開弁するから、圧力センサは油圧アクチュエータの油圧に対応する計測信号を出力可能になる。また、油圧アクチュエータの油圧を計測する際に電動油圧ポンプが焼き付くことが抑制される。さらに、この構成は、同じ圧力センサが、電動油圧ポンプの運転中も停止中も計測信号を出力するため、EHAシステムに必要なセンサの数が少ない。
 前記制御部は、一時的な電動油圧ポンプの運転を、前記油圧が前記第2設定圧力以下に低下するまで、間欠的に繰り返し、前記制御部は、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプを交互に、一時的に運転する、としてもよい。
 二つの電動油圧ポンプを間欠的にかつ交互に運転することによって、油圧アクチュエータの油圧を計測する際に電動油圧ポンプが焼き付くことが抑制される。また、交互運転によって、間欠運転における電動油圧ポンプの休止時間を短くすることができる。油圧の計測頻度が高くなるから、制御部は油圧が第2設定圧力以下に低下したことを速やかに判断することができる。電動油圧ポンプが早期に運転を再開することによって、脚揚げの完了が早まる。
 以上説明したように、ここに開示する脚揚降用EHAシステムは、電動油圧ポンプの焼き付きを抑制しながら、脚揚げを速やかに完了させることができる。
図1は、航空機の降着装置を例示する斜視図である。 図2は、脚揚降用EHAシステムを例示する回路図である。 図3は、図2のEHAシステムが脚を揚げる際の動作を示す図である。 図4は、図2のEHAシステムが脚を揚げる際の動作に係るフローチャートである。 図5は、EHAシステムの油圧と圧力センサの計測圧力との変化を例示する図である。 図6は、図2とは異なる脚揚降用EHAシステムを例示する回路図である。 図7は、図6のEHAシステムが脚を揚げる際の動作に係るフローチャートである。 図8は、EHAシステムの油圧と圧力センサの計測圧力との変化を例示する図である。
 以下、航空機の脚揚降用の電動油圧アクチュエータ(EHA)システムの実施形態を、図面を参照しながら説明する。以下において説明するEHAシステムは例示である。図1は、航空機の降着装置1を例示する図である。降着装置1は主脚である。
 降着装置1は、脚11を機体12に格納しかつ、脚11を機体12から展開する。脚11の先端には、車輪15が取り付けられている。降着装置1は、ギアシリンダ21、ドアシリンダ22、ダウンロックリリースシリンダ23、ドアアップロックリリースシリンダ26、及び、ギアアップロックリリースシリンダ27を有している。
 ギアシリンダ21は、脚11を揚降する。ドアシリンダ22は、格納室13のドア14を開閉する。格納室13は脚11を収容する。ダウンロックリリースシリンダ23は、脚降ろし状態を固定するダウンロック機構を解除する。ドアアップロックリリースシリンダ26は、ドアを引き上げ状態に固定するドアアップロック機構を解除する。ギアアップロックリリースシリンダ27は、脚11を引き上げ状態に固定するギアアップロック機構を解除する。各シリンダ21、22、23、26、27は、油圧式の伸縮シリンダである。各シリンダ21、22、23、26、27は、油圧アクチュエータの一例である。尚、降着装置1は、これらのシリンダの内の、一部のみを有していてもよい。
 (EHAシステムの構成)
 図2は、降着装置1のEHAシステム10の構成を例示する回路図である。図2に示すEHAシステム10は、前述したギアシリンダ21、ドアシリンダ22、ダウンロックリリースシリンダ23を含んでいる。EHAシステム10は、ドアアップロックリリースシリンダ26及びギアアップロックリリースシリンダ27を含んでもよい。また、EHAシステム10は、これらのシリンダ21、22、23、26、27の内の一部のシリンダのみを含んでもよい。以下の説明においては、ギアシリンダ21、ドアシリンダ22、及び、ダウンロックリリースシリンダ23を総称して、油圧シリンダ2と呼ぶ。尚、図2において油圧路101は実線、パイロット油圧路は破線、電気信号路は二点鎖線で示す。
 油圧シリンダ2は、ボア側油室24とアニュラス側油室25とを有している。ピストンヘッドは、シリンダ内で、ボア側油室24とアニュラス側油室25とを隔てている。油圧シリンダ2の第1ポートはボア側油室24に連通し、第2ポートはアニュラス側油室25に連通している。作動油は、第1ポートを介して、ボア側油室24に流入及び流出し、第2ポートを介して、アニュラス側油室25に流入及び流出する。
 ギアシリンダ21は、図2の構成例においては、伸びる際に負荷に抗して脚11を揚げ、縮む際に負荷を開放して脚11を降ろす。ドアシリンダ22は、図2の構成例においては、伸びる際に負荷を開放してドアを開け、縮む際に負荷に抗してドアを閉める。ダウンロックリリースシリンダ23は、図2の構成例においては、伸びる方向に、図示を省略する付勢部材によって負荷が付与されている。ダウンロックリリースシリンダ23は、縮むことによって脚降ろし状態を固定する機構を解除する。尚、ギアシリンダ21、ドアシリンダ22及びダウンロックリリースシリンダ23の構成は、前記の構成に限定されない。
 EHAシステム10は、第1及び第2の二つの電動油圧ポンプ31、32を備えている。第1電動油圧ポンプ31及び第2電動油圧ポンプ32は、各油圧シリンダ2に作動油を供給する。第1電動油圧ポンプ31及び第2電動油圧ポンプ32は、油圧シリンダ2に対して、並列に設けられている。尚、以下の説明において、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を区別せずに総称する場合は、電動油圧ポンプ3と呼ぶ。
 第1電動油圧ポンプ31は、一つの油圧ポンプ33及び一つの電動モータ34を含んでいる。油圧ポンプ33と電動モータ34とは、互いに連結されている。第2電動油圧ポンプ32も、一つの油圧ポンプ33及び一つの電動モータ34を含んでいる。油圧ポンプ33と電動モータ34とは、互いに連結されている。油圧ポンプ33は、この構成例では一方向にのみ回転可能な片回転式である。油圧ポンプ33は、例えばギアポンプとしてもよい。但し、油圧ポンプ33の形式は、これに限定されない。電動モータ34は、後述するコントローラ9の制御信号を受けて、起動、運転及び停止する。
 第1電動油圧ポンプ31と第2電動油圧ポンプ32との合流箇所37と、第1電動油圧ポンプ31の油圧ポンプ33との間には、逆止弁35が配設されている。合流箇所37と、第2電動油圧ポンプ32の油圧ポンプ33との間にも、逆止弁35(つまり、第2の逆止弁)が配設されている。これらの逆止弁35は、後述するように、第1及び第2電動油圧ポンプ31、32の一方がフェイルして停止している場合に、他方の電動油圧ポンプ3が吐出した作動油が、停止中の電動油圧ポンプ3に逆流することを止める。
 第1電動油圧ポンプ31の下流の油圧路101は分岐している。この分岐路は、リリーフ弁36及びフィルタ82を介してリザーバ81に接続されている。同様に、第2電動油圧ポンプ32の下流の油圧路101は分岐している。この分岐路は、リリーフ弁36及びフィルタ82を介してリザーバ81に接続されている。リザーバ81は、油圧シリンダ2のボア側油室24とアニュラス側油室25との合計容積が、油圧シリンダ2の伸縮に伴い変動することを吸収する。リザーバ81には、第1電動油圧ポンプ31の吸込口、及び、第2電動油圧ポンプ32の吸込口が接続されている。
 第1電動油圧ポンプ31と第2電動油圧ポンプ32との合流箇所37は、ギアセレクタ弁41及びドアセレクタ弁42に接続されている。
 ギアセレクタ弁41は、Pポート、Tポート、Aポート及びBポートの四つのポートを有する4ポート3位置の切換弁である。ギアセレクタ弁41は、ギアシリンダ21及びダウンロックリリースシリンダ23に対して作動油を選択的に供給する。Pポートは、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の合流箇所37に接続されている。Tポートは、リザーバ81に接続されている。Aポートは、ギアシリンダ21のボア側油室24及びダウンロックリリースシリンダ23のアニュラス側油室25にそれぞれ接続されている。Bポートは、ギアシリンダ21のアニュラス側油室25に接続されている。尚、ダウンロックリリースシリンダ23のボア側油室24は、リザーバ81に接続されている。
 ギアセレクタ弁41はまた、油圧パイロット式のソレノイド弁である。スプールは、パイロット油圧を受けて動く。スプールは、スプリングによってセンター位置に付勢されている。ギアセレクタ弁41は、センター位置では、Aポート及びBポートをそれぞれTポートに連通する。ギアセレクタ弁41はまた、第1オフセット位置(つまり、図2の左側の位置)では、AポートとPポートとを連通しかつ、BポートとTポートとを連通する。ギアセレクタ弁41は、第2オフセット位置(つまり、図2の右側の位置)では、AポートとTポートとを連通しかつ、BポートとTポートとを連通する。コントローラ9は、ギアセレクタ弁41の切り換えを通じて、ギアシリンダ21のボア側油室24又はアニュラス側油室25に、作動油を選択的に供給すると共に、ダウンロックリリースシリンダ23のアニュラス側油室25への作動油の供給及び停止を切り換える。
 ギアセレクタ弁41のAポートとギアシリンダ21のボア側油室24との間には、逆止弁44とオリフィス45とが並列に介設している。逆止弁44及びオリフィス45は、ギアシリンダ21が縮む速度を制限する。
 ドアセレクタ弁42は、Pポート、Tポート、Aポート及びBポートの四つのポートを有する4ポート2位置の切換弁である。ドアセレクタ弁42は、ドアシリンダ22に対して作動油を選択的に供給する。Pポートは、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の合流箇所37に接続されている。Tポートは、リザーバ81に接続されている。Aポートは、ドアシリンダ22のボア側油室24に接続されている。Bポートは、ドアシリンダ22のアニュラス側油室25に接続されている。
 ドアセレクタ弁42も、油圧パイロット式のソレノイド弁である。スプールはパイロット油圧を受けて動く。スプールは、スプリングによってノーマル位置に付勢されている。ドアセレクタ弁42は、ノーマル位置では、Aポート及びBポートをそれぞれPポートに連通する。ドアセレクタ弁42は、オフセット位置では、AポートとTポートとを連通しかつ、BポートとPポートとを連通する。コントローラ9は、ドアセレクタ弁42の切り換えを通じて、ドアシリンダ22のボア側油室24又はアニュラス側油室25に作動油を選択的に供給する。
 ドアセレクタ弁42のBポートとドアシリンダ22のアニュラス側油室25との間には、逆止弁46とオリフィス47とが並列に介設している。逆止弁46及びオリフィス47はドアシリンダ22が伸びる速度を制限する。
 ギアシリンダ21及びドアシリンダ22とリザーバ81との間には、ダンプ弁43が介設している。ダンプ弁43は、A、B、C、Dポートと、Tポートとを有する5ポート2位置の切換弁である。ダンプ弁43のAポートは、ギアシリンダ21のアニュラス側油室25に接続されている。Bポートは、ギアシリンダ21のボア側油室24に接続されている。Cポートは、ドアシリンダ22のアニュラス側油室25に接続されている。Dポートは、ドアシリンダ22のボア側油室24に接続されている。Tポートは、リザーバ81に接続されている。
 ダンプ弁43は、ソレノイドによって直接駆動されるスプールを備えたソレノイド弁である。スプールは、スプリングによってノーマル位置に付勢されている。ダンプ弁43は、ノーマル位置では、A、B、C、Dポートを全てTポートに連通する。ダンプ弁43は、オフセット位置では、A~Dの各ポートとTポートとを遮断する。コントローラ9は、ダンプ弁43の切り換えを行う。
 前述した第1電動油圧ポンプ31の分岐路には圧力センサ38が取り付けられている。圧力センサ38は、第1電動油圧ポンプ31の吐出圧力に対応する計測信号を、コントローラ9に出力する。また、第2電動油圧ポンプ32の分岐路にも圧力センサ38が取り付けられている。圧力センサ38は、第2電動油圧ポンプ32の吐出圧力に対応する計測信号を、コントローラ9に出力する。二つの圧力センサ38によって、コントローラ9は、第1電動油圧ポンプ31の吐出圧力及び第2電動油圧ポンプ32の吐出圧力を、個別に計測することができる。これらの圧力センサ38は、第2の圧力センサの一例である。
 また、図2に例示するEHAシステム10は、もう一つの圧力センサ39を有している。圧力センサ39は、第1電動油圧ポンプ31と第2電動油圧ポンプ32との合流箇所37と、ギアシリンダ21のボア側油室24とをつなぐ油圧路101に取り付けられている。圧力センサ39は、ギアシリンダ21のボア側油室24の圧力に対応する計測信号を、コントローラ9に出力する。尚、圧力センサ39は、ギアシリンダ21に取り付けてもよい。さらに、図2の符号310は、降着装置1の脚揚げが完了したことを検知するセンサである。センサ310はコントローラ9に検知信号を出力する。
 (脚揚げ時のEHAシステムの動作)
 次に、脚を揚げる際のEHAシステム10の動作を説明する。降着装置1は、脚11を機体12に格納する際には、先ず閉じているドアを開けた後に、脚揚げを行い、脚揚げの完了後にドアを閉じる動作を順に行う。また、脚11を機体12から展開する際には、先ず閉じているドアを開けた後に、脚降ろしを行い、脚降ろしの完了後にドアを閉じる動作を順に行う。
 コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32に制御信号を出力する。第1電動油圧ポンプ31及び第2電動油圧ポンプ32は、制御信号を受けて、起動、運転及び停止する。コントローラ9はまた、ギアセレクタ弁41、ドアセレクタ弁42、及びダンプ弁43に制御信号を出力する。ギアセレクタ弁41、ドアセレクタ弁42、及びダンプ弁43は、制御信号を受けてスプールの位置を切り換える。コントローラ9は、第1電動油圧ポンプ31、第2電動油圧ポンプ32、ギアセレクタ弁41、ドアセレクタ弁42、及びダンプ弁43に制御信号を出力することを通じて、脚11を機体12に格納したり、脚11を機体12から展開したりする。コントローラ9は制御部の一例である。
 図3はドアが開いて脚揚げを行う際の、EHAシステム10の動作を示している。尚、図3は、コントローラ9、電動モータ34及び電気信号路の図示を省略している。また、図3は、作動油が供給されている油圧路を太実線で、パイロット油圧路を破線で、リザーバ81に接続されている油圧路101を実線で、それぞれ示している。
 コントローラ9は、ギアセレクタ弁41を第1オフセット位置にする。ギアセレクタ弁41のAポートとPポートとが連通しかつ、BポートとTポートとが連通する。また、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を運転させる。コントローラ9は、二つの圧力センサ38の計測信号に基づいて、第1電動油圧ポンプ31及び第2電動油圧ポンプ32のそれぞれを個別にフィードバック制御する。作動油は、同図に矢印で示すように、ギアセレクタ弁41を介して、ダウンロックリリースシリンダ23のアニュラス側油室25に供給される。ダウンロックリリースシリンダ23は、図3に矢印で示すように縮む。脚降ろし状態を固定する機構が解除される。また、作動油は、逆止弁44を介してギアシリンダ21のボア側油室24に供給される。ギアシリンダ21は、図3に矢印で示すように伸びる。これにより、脚11が上昇する。尚、ギアシリンダ21が伸びることに伴いアニュラス側油室25から排出される作動油は、ギアセレクタ弁41及びフィルタ82を通って、リザーバ81に戻る。コントローラ9は、センサ310の検出信号に基づいて、脚揚げが完了したことを判断する。
 尚、第1電動油圧ポンプ31及び第2電動油圧ポンプ32のいずれか一方がフェイルした場合に、コントローラ9は、他方の電動油圧ポンプ3のみを運転させる。EHAシステム10は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を、各油圧シリンダ2に対して並列に設けることによって冗長化している。このため、一つの電動油圧ポンプ3のみでも、各油圧シリンダ2に作動油を供給することができる。
 (電動油圧ポンプの焼き付き抑制制御)
 脚11を揚げている最中に、例えば脚11に作用する空力によってギアシリンダ21の負荷が高くなる場合がある。EHAシステム10は、油圧ポンプ33の熱容量が小さいため、ギアシリンダ21の負荷が高い状態で油圧ポンプ33を運転し続けると、油圧ポンプ33が焼き付いてしまう恐れがある。ギアポンプは特に、低流量かつ高圧力での運転が継続すると、焼き付きやすい。
 そこで、コントローラ9は、脚揚げ時に、油圧ポンプ33の焼き付きを抑制するよう構成されている。具体的にコントローラ9は、脚11を揚げている最中に、油圧ポンプ33の回転数が、設定回転数以下の低回転でかつ、油圧が第1設定圧力を超えた状態が、設定時間継続したか否かを判断する。コントローラ9は、電動モータ34に出力する制御信号に基づいて、油圧ポンプ33の回転数を検出してもよい。また、油圧ポンプ33及び/又は電動モータ34の回転数に対応する計測信号をコントローラ9に出力するセンサを、油圧ポンプ33及び/又は電動モータ34に取り付けてもよい。コントローラ9はまた、二つの圧力センサ38の計測信号に基づいて、ギアシリンダ21のボア側油室24の油圧を検出してもよい。また、コントローラ9は、圧力センサ39の計測信号に基づいて、ギアシリンダ21のボア側油室24の油圧を検出してもよい。油圧ポンプ33の回転数が、設定回転数以下の低回転でかつ、油圧が第1設定圧力を超えた状態が、設定時間継続した場合、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止する。尚、コントローラ9は、EHAシステム10の油圧が第1設定圧力を超えた状態が、設定時間継続した場合、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止してもよい。
 ギアシリンダ21と第1電動油圧ポンプ31及び第2電動油圧ポンプ32との間には、逆止弁35、35が介設している。脚揚げ中に第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止しても作動油は逆流しない(図3参照)。上昇途中の脚11は、そのままの位置に保持される。脚11を降ろさないため、電動油圧ポンプ3の運転を再開すれば脚揚げを速やかに完了することができる。
 コントローラ9は、ギアシリンダ21のボア側油室24の油圧が低下すると、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を起動する。ここで、二つの圧力センサ38とギアシリンダ21との間には、逆止弁35が配設されている。このため、二つの圧力センサ38は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の停止中に、ギアシリンダ21のボア側油室24の油圧を検出することができない。そこで、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の停止中は、圧力センサ39の計測信号に基づいて、ギアシリンダ21のボア側油室24の油圧を検出する。コントローラ9は、ギアシリンダ21のボア側油室24の油圧が第2設定圧力以下になると、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の運転を再開する。
 ここで、第1設定圧力は、油圧ポンプ33が、当該第1設定圧力で長時間運転を継続すると、焼き付きが生じる圧力として、予め設定すればよい。第1設定圧力は、リリーフ弁36の開弁圧力よりも低い圧力としてもよい。第2設定圧力は、第1設定圧力よりも低い圧力としてもよい。こうすることで、電動油圧ポンプ3の運転再開を、安定して行うことができる。また、第2設定圧力は、第1設定圧力と同じ圧力としてもよい。
 次に、図4及び図5を参照しながら、前述した制御手順を説明する。図4は、脚揚げ時にコントローラ9が実行する制御手順を示すフローチャートであり、図5は、EHAシステム10の油圧の変化と、圧力センサ38の計測信号に基づく圧力(つまり、計測圧力)の変化とを例示する図である。図5の実線は、EHAシステム10の油圧の変化を示している。EHAシステム10の油圧は、圧力センサ39の計測信号に基づいて計測することができる。図5の太実線は、圧力センサ38の計測圧力の変化を示している。尚、図5は、図の見やすさのために、実線と太実線とをずらして描いている。
 先ずスタート後のステップS11において、コントローラ9は脚揚げ時であるか否かを判断する。ステップS11の判断がNOの場合、プロセスはステップS11を繰り返す。ステップS11の判断がYESの場合、プロセスはステップS12に進む。
 ステップS12においてコントローラ9は、後述するフラグFがゼロであるか否かを判断する。フラグFがゼロである場合、プロセスはステップS13に進む。フラグFがゼロでない場合、プロセスはステップS110に進む。ここでは、フラグFがゼロであるとして説明を続ける。
 ステップS13においてコントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を運転させる。ギアシリンダ21に作動油が供給され、脚11が上昇する。その後、ステップS14においてコントローラ9は、油圧ポンプ33が設定回転数以下の低回転でかつ、油圧が第1設定圧力を超える状態であるか否かを判断する。ステップS14の判断がNOの場合、プロセスはステップS18に進む。ステップS14の判断がYESの場合、プロセスはステップS15に進む。ここで、図5の例では、時刻t11に、油圧が第1設定圧力を超えている。
 ステップS15においてコントローラ9は、油圧ポンプ33が設定回転数以下の低回転でかつ、油圧が設定圧力を超える状態が、設定時間継続したか否かを判断する。ステップS15の判断がNOの場合、プロセスはステップS14に戻る。ステップS15の判断がYESの場合、プロセスはステップS16に進む。
 ステップS16においてコントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止する。図5の例では、時刻t12に、設定時間が経過したとして、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止している。圧力センサ38の計測圧力は、実質的にゼロになる。
 ここで、コントローラ9は、第1電動油圧ポンプ31について、ステップS15及びS16の判断に係る停止条件が成立したか否かを判断すると共に、第1電動油圧ポンプ31とは別に、第2電動油圧ポンプ32について、ステップS15及びS16の判断に係る停止条件が成立したか否かを判断してもよい。コントローラ9はまた、第1電動油圧ポンプ31について停止条件が成立した場合には、当該第1電動油圧ポンプ31を停止し、第2電動油圧ポンプ32について停止条件が成立した場合には、当該第2電動油圧ポンプ32を停止してもよい。これとは異なり、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32のいずれかについて停止条件が成立した場合には、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の両方を停止してもよい。
 続くステップS17においてコントローラ9は、フラグFを1にする。このフラグFは、脚揚げの最中に、焼き付き抑制のために第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止したことを表すフラグである。プロセスはその後、リターンする。
 リターン後のステップS11において、脚揚げが完了していないため、ステップS11の判断はYESとなり、プロセスはステップS12に進む。フラグFが1であるため、ステップS12の判断はNOとなる。プロセスは、ステップS110に進む。
 ステップS110においてコントローラ9は、圧力センサ39の計測信号に基づいて、EHAシステム10の油圧が第2設定圧力以下に低下したか否かを判断する。ステップS110の判断がNOの場合には、プロセスはステップS11に戻る。ステップS110の判断がYESの場合には、プロセスはステップS111に進む。
 ステップS111においてコントローラ9は、フラグFをゼロにし、プロセスはその後ステップS13に進む。コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプの運転を再開する。つまり、電動油圧ポンプ3の運転は、油圧が第2設定圧力以下に低下した以降に再開する。コントローラ9は、EHAシステム10の油圧が第2設定圧力以下に低下すると直ちに電動油圧ポンプ3の運転を再開してもよいし、時間を空けて電動油圧ポンプ3の運転を再開してもよい。
 ここで、図5の例では、時刻t13に、EHAシステム10の油圧が第2設定圧力以下に低下しており、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の運転が再開している。
 電動油圧ポンプ3が運転中のステップS18において、コントローラ9は、脚揚げが完了したか否かを判断する。コントローラ9は、センサ310の検出信号に基づいて脚揚げが完了したことを判断することができる。ステップS18の判断がNOの場合は、プロセスはステップS11に戻り、脚揚げを続ける。ステップS18の判断がYESの場合は、プロセスはステップS19に進む。
 ステップS19においてコントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止し、プロセスはリターンする。
 この制御によると、脚揚げ中に特定の停止条件が成立すると、コントローラ9が電動油圧ポンプ3を停止させるから、電動油圧ポンプ3の焼き付きが抑制される。また、特定の再開条件が成立すると、コントローラ9が電動油圧ポンプ3の運転を再開することによって脚揚げが再開されるから、脚揚げが速やかに完了する。
 油圧シリンダ2と逆止弁35との間の油圧路101に圧力センサ39を取り付けているため、コントローラ9は、電動油圧ポンプ3の停止中も、油圧シリンダ2の油圧を計測することができる。コントローラ9は、電動油圧ポンプ3を、適切なタイミングで運転再開させることができる。
 尚、図4に示すフローチャートにおいて、ステップは可能な範囲で入れ替えることが可能である。また、ステップの一部は省略することが可能である。
 (EHAシステムの他の構成例)
 図6は、図2とは異なる構成のEHAシステム100の回路図を示している。このEHAシステム100は、圧力センサ39を省略している。図2のEHAシステム10及び図6のEHAシステム100において、同じ構成要素には同じ符号を付している。
 コントローラ9は、前記と同様に、脚揚げの最中に特定の停止条件が成立すると、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止する。圧力センサ38は、前述したように、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の停止中は、EHAシステム100の油圧を計測することができない。そこで、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の停止中に、第1電動油圧ポンプ31又は第2電動油圧ポンプ32を、一時的に運転する。第1電動油圧ポンプ31又は第2電動油圧ポンプ32が運転すると、逆止弁35が開弁するから、圧力センサ38は、EHAシステム100の油圧に対応する計測信号を出力することができる。コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止した後も、EHAシステム100の油圧が第2設定圧力以下に低下したことを判断することができる。
 ここで、EHAシステム100の油圧を計測する際の、電動油圧ポンプ3の運転時間は短い。このため、電動油圧ポンプ3が焼き付くことが抑制される。
 次に、図7及び図8を参照しながら、前述した制御手順を説明する。図7は、脚揚げ時にコントローラ9が実行する制御手順を示すフローチャートである。図8は、脚揚げ時に、EHAシステム100の油圧と、圧力センサ38の計測信号に基づく圧力との変化を例示する図である。図8の実線は、EHAシステム100の油圧の変化を示している。図8の太実線は、圧力センサ38の計測圧力の変化を示している。
 図7のフローのステップS21~S29は、図5のフローのステップS11~19に対応する。コントローラ9は、脚揚げ時に、油圧ポンプ33が、設定回転数以下の低回転でかつ、油圧が第1設定圧力を超える状態が、設定時間継続した場合は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止する(ステップS26)。図8の例では、時刻t21に油圧が第1設定圧力を超え、時刻t22に、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止している。
 コントローラ9はまた、脚上げが完了した場合に、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を停止する(ステップS29)。
 ステップS27においてフラグFが1になった後、プロセスはステップS22からステップS210に進む。ステップS210においてコントローラ9は、第1電動油圧ポンプ31又は第2電動油圧ポンプ32を起動する。このときにコントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32のいずれか一方の電動油圧ポンプ3のみを起動する。電動油圧ポンプ3を起動することによって逆止弁35が開くから、圧力センサ38は、EHAシステム100の油圧に対応する計測信号を出力することができる。
 ステップS210に続くステップS211において、コントローラ9は、圧力センサ38の計測信号に基づく計測圧力が、第2設定圧力以下であるか否かを判断する。ステップS211の判断がNOの場合には、プロセスはステップS212に進む。ステップS212においてコントローラ9は、起動した電動油圧ポンプ3を停止する。電動油圧ポンプ3の運転は、一時的である。電動油圧ポンプ3の運転時間は、例えば2~3秒程度としてもよい。電動油圧ポンプ3を短時間だけ運転することにより、電動油圧ポンプ3の焼き付きが抑制される。図8の例では、時刻t23に電動油圧ポンプ3が起動している。圧力センサ38の計測圧力が第2設定圧力以下ではなかったため、コントローラ9は、電動油圧ポンプ3を停止している。
 電動油圧ポンプ3を停止させた後、ステップS213においてコントローラ9は、予め設定した休止時間が経過したか否かを判断する。ステップS213の判断がYESになるまで、プロセスはステップS213を繰り返す。ステップS213の判断がYESになると、プロセスはステップS210に戻る。
 二回目のステップS210において、コントローラ9は、前回起動した電動油圧ポンプ3とは別の電動油圧ポンプ3を起動する。そして、ステップS211においてコントローラ9は、圧力センサ38の計測信号に基づいて、計測圧力が第2設定圧力以下に低下したか否かを判断する。図8の例で、コントローラ9は、時刻t24に、電動油圧ポンプ3の二回目の起動を行っている。電動油圧ポンプ3の二回目の起動時も、EHAシステム100の油圧が低下していないため、電動油圧ポンプ3を停止している。
 コントローラ9は、圧力センサ38の計測圧力が第2設定圧力以下になるまで、電動油圧ポンプ3を間欠的に運転する。コントローラ9はまた、第1電動油圧ポンプ31と第2電動油圧ポンプ32とを交互に運転する。
 電動油圧ポンプ3を間欠的に起動して、EHAシステム100の油圧を計測することにより、コントローラ9は、油圧が低下したことを速やかに判断することができる。また、第1電動油圧ポンプ31と第2電動油圧ポンプ32とを交互に起動することにより、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の焼き付きを抑制することができる。また、第1電動油圧ポンプ31と第2電動油圧ポンプ32とを交互に起動することにより、休止時間を短くすることができる。休止時間は、例えば1~3秒程度で適宜設定すればよい。これにより、EHAシステム100の油圧が低下したことを、より速やかに判断することができる。電動油圧ポンプ3の運転再開を早期に行うことができるから、脚揚げの完了が早まる。尚、電動油圧ポンプ3の起動は交互で無くてもよい。また、第1電動油圧ポンプ31と第2電動油圧ポンプ32との両方を、一時的に運転してもよい。
 そして、EHAシステム100の油圧が低下して、ステップS212の判断がYESになれば、プロセスはステップS215に進む。ステップS215においてコントローラ9は、フラグFをゼロにし、プロセスはステップS23に進む。コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を共に運転し、脚揚げを再開する。図8の例で、コントローラ9は、時刻t25に、電動油圧ポンプ3の三回目の起動を行っている。圧力センサ38の計測信号に基づく計測圧力が第2設定圧力以下に低下したため、コントローラ9は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32の運転を再開する。
 尚、図7に示すフローチャートにおいて、ステップは可能な範囲で入れ替えることが可能である。また、ステップの一部は省略することが可能である。
 このEHAシステム100は、電動油圧ポンプ3の運転中も停止中も、圧力センサ38が油圧を計測している。このEHAシステム100は、図2のEHAシステム10と比べて、圧力センサの数を削減することができる。
 尚、図2及び図6に示すEHAシステム10、100はそれぞれ例示である。脚揚降用のEHAシステムを構成する回路は、適宜の回路構成を採用することが可能である。
 例えば、前述したEHAシステム10、100は、第1電動油圧ポンプ31及び第2電動油圧ポンプ32を備えることによって、冗長化している。ここに開示する技術は、図示は省略するが、冗長化していない脚揚降用のEHAシステムに適用することも可能である。
 また、図2及び図6に示すEHAシステム10、100は、航空機の右舷又は左舷の降着装置1のEHAシステムである。これとは異なり、航空機の右舷の降着装置と、左舷の降着装置とを組み合わせたEHAシステムに、ここに開示する技術を適用してもよい。右舷の降着装置と左舷の降着装置とを組み合わせたEHAシステムは、図示は省略するが、第1電動油圧ポンプ31及び第2電動油圧ポンプ32が、右舷の降着装置の各油圧シリンダ2に作動油を供給すると共に、左舷の降着装置の各油圧シリンダ2に作動油を供給するよう、例えばセレクタ弁の下流の油圧路を、右舷の降着装置と左舷の降着装置とに分岐して構成してもよい。
 また、前記の説明では、ギアシリンダ21を制御対象としているが、ドアシリンダ22を制御対象として、ここに開示する技術を適用してもよい。
10、100 EHAシステム
101 油圧路
21 ギアシリンダ(油圧アクチュエータ)
22 ドアシリンダ(油圧アクチュエータ)
3 電動油圧ポンプ
31 第1電動油圧ポンプ
32 第2電動油圧ポンプ
33 油圧ポンプ
34 電動モータ
35 逆止弁
38 圧力センサ
39 圧力センサ
9 コントローラ(制御部)
 

Claims (10)

  1.  航空機の脚に取り付けられかつ、前記脚を揚降する油圧アクチュエータと、
     前記脚の揚降時に前記油圧アクチュエータに作動油を供給する、少なくとも一の電動油圧ポンプと、
     前記油圧アクチュエータと前記電動油圧ポンプとをつなぐ油圧路と、
     前記油圧アクチュエータ又は前記油圧路に取り付けられかつ、油圧に対応する計測信号を出力する圧力センサと、
     前記計測信号を受けかつ、前記油圧に基づく制御信号を前記電動油圧ポンプに出力する制御部と、を備え、
     前記制御部は、前記脚を揚げている最中に、前記油圧が設定圧力を超えた状態が、設定時間継続した場合に、運転中の前記電動油圧ポンプを停止させかつ、前記電動油圧ポンプを停止した後、前記油圧が第2設定圧力以下に低下した以降に、前記電動油圧ポンプの運転を再開させる脚揚降用EHAシステム。
  2.  請求項1に記載の脚揚降用EHAシステムにおいて、
     前記制御部は、前記電動油圧ポンプの回転数が設定回転数以下でかつ、前記油圧が設定圧力を超えた状態が、設定時間継続した場合に、運転中の前記電動油圧ポンプを停止させる脚揚降用EHAシステム。
  3.  請求項1又は2に記載の脚揚降用EHAシステムにおいて、
     前記油圧路に設けられかつ、前記電動油圧ポンプへの前記作動油の逆流を止める逆止弁を備えている脚揚降用EHAシステム。
  4.  請求項3に記載の脚揚降用EHAシステムにおいて、
     前記圧力センサは、前記油圧アクチュエータに、又は、前記油圧アクチュエータと前記逆止弁との間に、配設され、
     前記制御部は、前記電動油圧ポンプの停止中に、前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する脚揚降用EHAシステム。
  5.  請求項3に記載の脚揚降用EHAシステムにおいて、
     前記圧力センサは、前記逆止弁と前記電動油圧ポンプとの間に配設され、
     前記制御部は、前記電動油圧ポンプの停止中に、前記電動油圧ポンプを一時的に運転すると共に、前記電動油圧ポンプを一時的に運転した時の前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する脚揚降用EHAシステム。
  6.  請求項5に記載の脚揚降用EHAシステムにおいて、
     前記制御部は、一時的な電動油圧ポンプの運転を、前記油圧が前記第2設定圧力以下に低下するまで、間欠的に繰り返す脚揚降用EHAシステム。
  7.  請求項1又は2に記載の脚揚降用EHAシステムにおいて、
     前記電動油圧ポンプは、第1電動油圧ポンプと第2電動油圧ポンプとを含み、
     前記油圧路は、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプを、前記油圧アクチュエータに対して並列に接続し、
     前記油圧路において、前記第1電動油圧ポンプと前記第2電動油圧ポンプとの合流箇所と前記第1電動油圧ポンプとの間には逆止弁が設けられると共に、前記合流箇所と前記第2電動油圧ポンプとの間には第2の逆止弁が設けられ、
     前記制御部は、前記脚の揚降時に、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプの両方、又は、いずれか一方を運転する脚揚降用EHAシステム。
  8.  請求項7に記載の脚揚降用EHAシステムにおいて、
     前記圧力センサは、前記油圧アクチュエータに、又は、前記油圧アクチュエータと前記合流箇所との間に、配設され、
     前記第1電動油圧ポンプと前記逆止弁の間、及び、前記第2電動油圧ポンプと前記第2の逆止弁との間にはそれぞれ、第2の圧力センサが設けられ、
     前記制御部は、前記電動油圧ポンプの運転中に、前記第2の圧力センサの計測信号に基づいて前記油圧が前記設定圧力を超えたことを判断しかつ、前記電動油圧ポンプの停止中に、前記圧力センサの計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する脚揚降用EHAシステム。
  9.  請求項7に記載の脚揚降用EHAシステムにおいて、
     前記圧力センサは、前記第1電動油圧ポンプと前記逆止弁との間、及び、前記第2電動油圧ポンプと前記第2の逆止弁との間のそれぞれに配設され、
     前記制御部は、前記電動油圧ポンプの運転中に、前記計測信号に基づいて前記油圧が前記設定圧力を超えたことを判断しかつ、前記電動油圧ポンプの停止中に、前記電動油圧ポンプを一時的に運転すると共に、前記電動油圧ポンプを一時的に運転した時の前記計測信号に基づいて前記油圧が前記第2設定圧力以下に低下したことを判断する脚揚降用EHAシステム。
  10.  請求項9に記載の脚揚降用EHAシステムにおいて、
     前記制御部は、一時的な電動油圧ポンプの運転を、前記油圧が前記第2設定圧力以下に低下するまで、間欠的に繰り返し、
     前記制御部は、前記第1電動油圧ポンプ及び前記第2電動油圧ポンプを交互に、一時的に運転する脚揚降用EHAシステム。
     
PCT/JP2020/008625 2019-03-05 2020-03-02 脚揚降用ehaシステム WO2020179725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/435,675 US11614103B2 (en) 2019-03-05 2020-03-02 Landing gear lifting/lowering EHA system
JP2021504073A JP7345540B2 (ja) 2019-03-05 2020-03-02 脚揚降用ehaシステム
EP20767361.7A EP3912906B1 (en) 2019-03-05 2020-03-02 Landing gear lifting/lowering eha system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039959 2019-03-05
JP2019039959 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179725A1 true WO2020179725A1 (ja) 2020-09-10

Family

ID=72337763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008625 WO2020179725A1 (ja) 2019-03-05 2020-03-02 脚揚降用ehaシステム

Country Status (4)

Country Link
US (1) US11614103B2 (ja)
EP (1) EP3912906B1 (ja)
JP (1) JP7345540B2 (ja)
WO (1) WO2020179725A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132189A (ja) 2012-12-04 2014-07-17 Sumitomo Precision Prod Co Ltd 脚揚降用電動油圧アクチュエータシステム
JP2016150632A (ja) * 2015-02-17 2016-08-22 住友精密工業株式会社 航空機の脚揚降用電動油圧アクチュエータシステム
US20170233064A1 (en) * 2016-02-16 2017-08-17 The Boeing Company Hydraulic system and method for an aircraft flight control system
WO2018011975A1 (ja) * 2016-07-15 2018-01-18 住友精密工業株式会社 電動油圧アクチュエータシステム
JP2018094969A (ja) * 2016-12-08 2018-06-21 住友精密工業株式会社 航空機の降着装置のehaシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067387A (ja) * 2008-11-27 2009-04-02 Sumitomo Precision Prod Co Ltd 移動体の脚揚降システムとステアリングシステム。
JP6170755B2 (ja) * 2013-06-18 2017-07-26 住友精密工業株式会社 電動油圧アクチュエータ
EP3036437A4 (en) * 2013-08-19 2017-09-20 Purdue Research Foundation Miniature high pressure pump and electrical hydraulic actuation system
US10464663B2 (en) * 2016-08-09 2019-11-05 Goodrich Corporation Remote hydraulic utility system for an aircraft
US10233951B2 (en) * 2016-10-05 2019-03-19 Caterpillar Inc. Method to detect uncommanded spool valve positioning and stop fluid flow to hydraulic actuators
CN108071620A (zh) * 2016-11-16 2018-05-25 丹佛斯动力系统(浙江)有限公司 电控阀、液压泵、和具备可切换控制功能的液压泵系统
US11619311B2 (en) * 2020-06-08 2023-04-04 The Boeing Company Flow control valve, a method of assembly, and a hydraulic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132189A (ja) 2012-12-04 2014-07-17 Sumitomo Precision Prod Co Ltd 脚揚降用電動油圧アクチュエータシステム
JP2016150632A (ja) * 2015-02-17 2016-08-22 住友精密工業株式会社 航空機の脚揚降用電動油圧アクチュエータシステム
US20170233064A1 (en) * 2016-02-16 2017-08-17 The Boeing Company Hydraulic system and method for an aircraft flight control system
WO2018011975A1 (ja) * 2016-07-15 2018-01-18 住友精密工業株式会社 電動油圧アクチュエータシステム
JP2018094969A (ja) * 2016-12-08 2018-06-21 住友精密工業株式会社 航空機の降着装置のehaシステム

Also Published As

Publication number Publication date
US11614103B2 (en) 2023-03-28
JP7345540B2 (ja) 2023-09-15
EP3912906A4 (en) 2022-03-23
EP3912906A1 (en) 2021-11-24
EP3912906B1 (en) 2023-05-24
JPWO2020179725A1 (ja) 2020-09-10
US20220136532A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US9422052B2 (en) Electro hydrostatic actuator system for retracting/extending landing gear
JP4898652B2 (ja) 流体圧アクチュエータシステム及び流体圧アクチュエータシステムの制御方法
JP2007046790A (ja) アクチュエーションシステム
JP2003172314A (ja) 再生機能を備えた油圧制御システム
ITMI991046A1 (it) Sistemi idraulici a pressione variabile particolarmente per meccanismi selettori e simili
JP3382981B2 (ja) 舵面の制御装置
WO2020179725A1 (ja) 脚揚降用ehaシステム
JP3563365B2 (ja) 航空機の舵面駆動用アクチュエータ装置
JP5699767B2 (ja) 内燃機関の燃料供給装置
JP2004100727A (ja) サーボアクチュエータの制御回路
US20230174222A1 (en) Eha system for lifting/lowering landing gear
JP2010121595A (ja) 内燃機関の制御装置
US20230090110A1 (en) Electro-hydrostatic circuit and aircraft
WO2018011975A1 (ja) 電動油圧アクチュエータシステム
JP2007040534A (ja) アクチュエーションシステム
JP4674563B2 (ja) 動弁装置
JP3187196B2 (ja) アクチュエータ制御装置
JP3892456B2 (ja) アクチュエーションシステム
JP3892455B2 (ja) アクチュエーションシステム
KR20040094150A (ko) 엘리베이터용 로프 제동장치의 유압회로 이상유무 감지장치
JP2002013502A (ja) 油圧システムの制御弁
JP4190790B2 (ja) アクチュエーションシステム
JP3591987B2 (ja) 応急作動用油圧ユニット
JPH09175747A (ja) 油圧エレベータ用弁装置
JP2002349513A (ja) アクチュエーションシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504073

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020767361

Country of ref document: EP

Effective date: 20210818

NENP Non-entry into the national phase

Ref country code: DE