WO2020179670A1 - 車輪用軸受装置の予圧検査方法及び組立方法 - Google Patents

車輪用軸受装置の予圧検査方法及び組立方法 Download PDF

Info

Publication number
WO2020179670A1
WO2020179670A1 PCT/JP2020/008355 JP2020008355W WO2020179670A1 WO 2020179670 A1 WO2020179670 A1 WO 2020179670A1 JP 2020008355 W JP2020008355 W JP 2020008355W WO 2020179670 A1 WO2020179670 A1 WO 2020179670A1
Authority
WO
WIPO (PCT)
Prior art keywords
preload
rotational torque
bearing device
ring
wheel
Prior art date
Application number
PCT/JP2020/008355
Other languages
English (en)
French (fr)
Inventor
田窪 孝康
貴之 小和田
昭彦 片山
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US17/434,793 priority Critical patent/US11959519B2/en
Priority to BR112021016800-1A priority patent/BR112021016800A2/pt
Priority to MX2021010456A priority patent/MX2021010456A/es
Priority to CA3131504A priority patent/CA3131504A1/en
Priority to EP20766480.6A priority patent/EP3936847B1/en
Priority to CN202080010960.XA priority patent/CN113366292B/zh
Publication of WO2020179670A1 publication Critical patent/WO2020179670A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0089Hubs characterised by the fixation of bearings caulking to fix outer race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/26Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining the characteristic of torque in relation to revolutions per unit of time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/52Positive connections with plastic deformation, e.g. caulking or staking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7873Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a single sealing ring of generally L-shaped cross-section
    • F16C33/7876Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a single sealing ring of generally L-shaped cross-section with sealing lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft

Definitions

  • the present invention relates to a preload inspection method and an assembly method for a wheel bearing device.
  • a wheel bearing device that rotatably supports a wheel in a suspension device such as an automobile is known.
  • a preload is applied between the rolling elements constituting the bearing device and the raceway wheels.
  • the rigidity of the bearing device can be increased and vibration and noise can be suppressed.
  • an excessive preload it may cause an increase in rotational torque and a decrease in life, so it is important to confirm whether an appropriate preload is applied to the bearing device.
  • an outer member having a double row of outer raceway surfaces on the inner circumference, a hub ring having a small diameter step portion extending in the axial direction on the outer circumference, and the hub.
  • An inner member composed of an inner ring press-fitted into a small-diameter step portion of the ring and having a double-row inner raceway surface facing the outer raceway surface of the double-row, and both raceway surfaces of the outer member and the inner member.
  • a preload inspection method for a wheel bearing device including a double-row rolling element rotatably accommodated in between, wherein the inner ring is axially opposed to the small-diameter step portion of the hub wheel.
  • the first bearing of the wheel bearing device is based on a press-fitting step of press-fitting the inner ring to a position where it abuts on the hub ring and a first axial negative gap between the inner ring and the hub ring after the press-fitting step.
  • the first bearing preload value calculation step for calculating the preload value and the first rotational torque of the wheel bearing device when the inner member and the outer member are relatively rotated after the press-fitting step.
  • the first rotational torque measuring step to be measured, the crimping step of crimping the inner end of the small diameter step portion to the inner ring after the first rotational torque measuring step, and the inner ring after the crimping step.
  • the third bearing preload value is calculated by adding the amount of change in preload between after the press-fitting step and after the crimping step, which is obtained based on the difference torque between the above and the bearing, to the first bearing preload value.
  • the preload applied to the wheel bearing device depends on whether or not the difference between the bearing preload calculation step 3 and the difference between the second bearing preload value and the third bearing preload value is equal to or less than a predetermined threshold value. It is a preload inspection method of a bearing device for wheels, which comprises a determination step of determining suitability.
  • the present invention it is possible to verify the preload value of the wheel bearing device with higher accuracy than when only the preload value calculated based on the axial clearance is used.
  • the wheel bearing device 1 shown in FIG. 1 rotatably supports wheels in a suspension device for a vehicle such as an automobile.
  • the wheel bearing device 1 has a configuration called a third generation, and has an outer ring 2 which is an outer member, a hub ring 3 and an inner ring 4 which are inner members, and two rows of inner rings which are rolling rows. It includes a side ball row 5 and an outer side ball row 6, an inner side seal member 9 and an outer side seal member 10.
  • the inner side refers to the vehicle body side of the wheel bearing device 1 when attached to the vehicle body
  • the outer side refers to the wheel side of the wheel bearing device 1 when attached to the vehicle body.
  • the axial direction represents a direction along the rotation axis of the wheel bearing device 1.
  • An inner side opening 2a into which the inner side sealing member 9 can be fitted is formed at the inner side end of the outer ring 2.
  • An outer side opening 2b into which the outer side sealing member 10 can be fitted is formed at the outer side end of the outer ring 2.
  • An outer raceway surface 2c on the inner side and an outer raceway surface 2d on the outer side are formed on the inner peripheral surface of the outer ring 2.
  • a vehicle body mounting flange 2e for attaching the outer ring 2 to the vehicle body side member is integrally formed.
  • the vehicle body mounting flange 2e is provided with a bolt hole 2g into which a fastening member (here, a bolt) for fastening the vehicle body side member and the outer ring 2 is inserted.
  • a small diameter step portion 3a having a diameter smaller than that of the outer end portion is formed on the outer peripheral surface of the inner side end portion of the hub ring 3.
  • a shoulder portion 3e is formed at the outer side end portion of the small diameter step portion 3a in the hub ring 3.
  • a wheel mounting flange 3b for mounting a wheel is integrally formed at the outer end of the hub wheel 3.
  • the wheel mounting flange 3b is provided with a bolt hole 3f into which a hub bolt for fastening the hub wheel 3 to the wheel or a brake component is press-fitted.
  • the hub ring 3 is provided with an inner raceway surface 3c on the outer side so as to face the outer raceway surface 2d on the outer side of the outer ring 2.
  • the outer side seal member 10 is fitted to the outer end of the annular space formed by the outer ring 2 and the hub ring 3.
  • the hub wheel 3 has an outer end surface 3g at an end on the outer side of the wheel mounting flange 3b.
  • An inner ring 4 is provided on the small diameter step portion 3a of the hub ring 3.
  • the inner ring 4 is fixed to the small diameter step portion 3a of the hub ring 3 by press fitting and crimping.
  • the inner ring 4 applies preload to the inner ball row 5 and the outer ball row 6 which are rolling rows.
  • the inner ring 4 has an inner side end surface 4b at the inner side end portion and an outer side end surface 4c at the outer side end portion.
  • a crimping portion 3h that is crimped to the inner side end surface 4b of the inner ring 4 is formed at the inner side end portion of the hub ring 3.
  • An inner raceway surface 4a is formed on the outer peripheral surface of the inner ring 4. That is, on the inner side of the hub ring 3, the inner raceway surface 4a is formed by the inner ring 4.
  • the inner raceway surface 4a of the inner ring 4 faces the outer raceway surface 2c on the inner side of the outer ring 2.
  • the inner side ball row 5 and the outer side ball row 6 which are rolling rows are configured by holding a plurality of balls 7 which are rolling bodies by a cage 8.
  • the inner ball row 5 is rotatably sandwiched between the inner raceway surface 4a of the inner ring 4 and the outer raceway surface 2c on the inner side of the outer ring 2.
  • the outer ball row 6 is rotatably sandwiched between the inner raceway surface 3c of the hub ring 3 and the outer raceway surface 2d on the outer side of the outer ring 2.
  • a double row angular contact ball bearing is composed of an outer ring 2, a hub ring 3, an inner ring 4, an inner ball row 5, and an outer ball row 6.
  • the wheel bearing device 1 may be configured by a double row tapered roller bearing.
  • the preload inspection method includes a temporary press-fitting process (S01), a press-fitting process (S02), a first bearing preload value calculation process (S03), a familiar process (S04), and a first rotational torque measuring process (S05). ), Crying step (S06), second bearing preload value calculation step (S07), second rotational torque measurement step (S08), third bearing preload value calculation step (S09), determination step (S10), It also includes an inner side seal member mounting step (S11). Each step of the preload inspection method will be described below.
  • the hub wheel 3 is mounted on the support base 11 in a posture in which the axial direction is vertical and the outer side end surface 3g is located below.
  • the outer end surface 3g of the hub wheel 3 is in contact with the support base 11.
  • An outer ring 2 is rotatably mounted on a hub wheel 3 mounted on a support 11 via an inner ball row 5 and an outer ball row 6.
  • An outer side seal member 10 is fitted to the outer side end portion of the outer ring 2. Grease is filled between the hub ring 3 and the outer ring 2.
  • the inner ring 4 is temporarily press-fitted into the small diameter step portion 3a of the hub ring 3 mounted on the support base 11.
  • Temporary press-fitting of the inner ring 4 is performed by press-fitting the inner ring 4 into the small diameter step portion 3a from above and stopping the press-fitting before the outer end surface 4c of the inner ring 4 comes into contact with the shoulder portion 3e of the hub ring 3.
  • the press-fitting operation of the inner ring 4 is performed in a state where a predetermined pressure is applied by using a pushing device such as a hydraulic cylinder or an air cylinder.
  • a positive axial gap G0 exists between the outer end surface 4c of the inner ring 4 and the shoulder 3e of the hub wheel 3.
  • the axial positive gap G0 is a predetermined value set in advance before the inner ring 4 is temporarily press-fitted using the pushing device.
  • the axial positive gap G0 and the axial dimension H0 between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the temporary press-fitting of the inner ring 4 are obtained. taking measurement.
  • the axial dimension H0 can be measured by a measuring instrument 12 such as a dial gauge.
  • the press-fitting step (S02) is performed after the temporary press-fitting step (S01).
  • the inner ring 4 is press-fitted into the small diameter step portion 3a until the outer end surface 4c of the inner ring 4 comes into contact with the shoulder portion 3e of the hub ring 3.
  • the axial dimension H1 between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the press-fitting of the inner ring 4 is measured.
  • First bearing preload value calculation step After the press-fitting step (S02), the first bearing preload value calculating step (S03) is performed.
  • the first bearing preload value P1 given to the bearing after the press-fitting step is calculated based on the first negative axial gap G1.
  • the first bearing preload value P1 the relationship between the axial negative clearance and the bearing preload value in the wheel bearing device 1 is obtained in advance by an experiment or the like, and the first axial negative clearance G1 is applied to this relationship. Calculated by The relationship between the axial negative clearance and the bearing preload value can be obtained for each specification of the wheel bearing device 1.
  • the familiarizing step (S04) is performed.
  • the hub ring 3 into which the inner ring 4 is press-fitted and the outer ring 2 are relatively rotated to apply grease filled between the hub ring 3 and the outer ring 2 to the inner ball. Familiarize with the ball 7 in the row 5 and the outer ball row 6.
  • the outer ring 2 may be fixed and the hub ring 2 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated.
  • first rotational torque measuring step After the familiarizing step (S04), the first rotational torque measuring step (S05) is performed.
  • the first rotational torque measuring step (S05) the first rotational torque Ta when the hub ring 3 in which the inner ring 4 is press-fitted into the small diameter step portion 3a and the outer ring 2 are relatively rotated is torqued. It is measured by the measuring device 13.
  • the outer ring 2 may be fixed and the hub ring 3 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated. ..
  • the hub wheel 3 When the hub wheel 3 is rotated, the revolving speed of the balls 7 in the inner ball row 5 and the outer ball row 6 is slower than when the outer ring 2 is rotated, and the rotation speed of the hub wheel 3 changes. It is preferable to rotate the hub wheel 3 in the rotational torque measuring step because the variation in the rotational torque value measured in 1 is small. When rotating the hub wheel 3, the hub wheel 3 can be rotated by rotating the support base 11 on which the hub wheel 3 is placed.
  • the rotational torque is measured instead of the starting torque of the bearing.
  • the starting torque is the peak value of the initial torque when the bearing starts to rotate, but it decreases with the passage of time and changes greatly with time. Therefore, reproducibility is poor.
  • the rotational torque is the torque after the bearing starts rotating, and shows a constant value with almost no change over time. Therefore, in the first rotation torque measuring step (S05), the torque value of the bearing can be measured with high accuracy by measuring the first rotation torque Ta which is the rotation torque.
  • the rotational torque of the bearing when the hub wheel 3 and the outer ring 2 are relatively rotated increases in the range where the rotational speed of the hub wheel 3 or the outer ring 2 is a certain value or more.
  • the rotation speed of the hub wheel 3 or the outer ring 2 is extremely small, the rotation speed increases as the rotation speed increases, and then increases. That is, the rotational torque of the bearing has a region where the rotational torque changes from decreasing to increasing as the rotational speed increases, and in that region, the degree of fluctuation of the rotational torque with respect to the change in the rotational speed is small.
  • the hub wheel 3 or the outer ring 2 is rotated at a constant rotational speed so that the measured rotational torque does not vary. Further, the rotation speed of the hub wheel 3 or the outer ring 2 is set in the range of rotation speeds N1 to N2 in the region where the rotation torque changes from decrease to increase. As a result, even if the rotation speed changes during the measurement of the first rotational torque Ta, it is possible to reduce the fluctuation of the rotational torque.
  • the rotational torque is measured in a state where a dynamic friction force is generated between the inner members 3 and 4 and the outer member 2. Specifically, a dynamic frictional force is applied between the inner members 3 and 4 and the rolling element 7, between the hub ring 3 and the outer side sealing member 10, and between the outer ring 2 and the rolling element 7 and the outer side sealing member 10. The rotational torque is measured in the state where is generated.
  • the dynamic friction coefficient is smaller than the static friction coefficient and the variation is small, so that the rotational torque can be measured with high accuracy.
  • the rotation speed N1 which is the lower limit value of the rotation speed range, is set to 2 rotations/min, which makes it possible to measure the rotation torque in the state where the dynamic friction force is generated.
  • the rotation speed of the hub wheel 3 or the outer ring 2 is preferably set to about 10 rotations/min in the range of 2 rotations/min to 60 rotations/min, which minimizes the fluctuation of the rotation torque with respect to the change of the rotation speed.
  • the hub wheel 3 or the outer ring 2 is rotated in a small range of rotational torques N1 to N2 in which the degree of variation of the rotational torque with respect to the change in rotational torque is small. Even if the rotation speed of the hub wheel 3 or the outer ring 2 changes, the fluctuation of the rotation torque can be minimized, and the rotation torque can be measured with high accuracy.
  • the wheel bearing is in a state where the outer side seal member 10 is fitted to the outer side opening end of the annular space formed by the outer ring 2 and the hub ring 3.
  • the rotational torque of the device 1 is measured.
  • the outer side seal member 10 is located on the side opposite to the small diameter step portion 3a of the hub wheel 3 to be crimped for fixing the inner ring 4, the crimping step (S06) described below.
  • the caulking step (S06) is performed after the first rotational torque measuring step (S05).
  • caulking is performed by caulking the inner side end of the small diameter stepped portion 3a of the hub wheel 3 to the inner side end surface 4b of the inner ring 4.
  • the crimping process can be performed by, for example, a swing crimping process.
  • the shaft between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the crimping process is completed.
  • the directional dimension H2 is measured. Further, a value obtained by subtracting the axial dimension H1 from the axial dimension H2, which indicates the amount of movement of the inner ring 4 in the axial direction from the completion of press fitting of the inner ring 4 to the completion of the crimping process of the small diameter step portion 3a (H2-H1). To calculate. From this value (H2-H1) and the first axial negative clearance G1, the second axial negative clearance G2 between the inner ring 4 and the hub ring 3 after the crimping process is obtained.
  • the relationship between the amount of movement of the inner ring 4 in the axial direction and the amount of change in the axial negative gap between the inner ring 4 and the hub ring 3 is determined in advance by experiments or the like. It can be calculated by applying the value (H2-H1) and the first axial negative gap G1 to this relationship. The relationship between the amount of movement of the inner ring 4 in the axial direction and the amount of change in the axial negative clearance between the inner ring 4 and the hub ring 3 can be obtained for each specification of the wheel bearing device 1.
  • the second bearing preload value calculating step (S07) is performed.
  • the second bearing preload value P2 applied to the bearing after caulking is calculated based on the second axial negative gap G2.
  • the relationship between the axial negative clearance and the bearing preload value in the wheel bearing device 1 is obtained in advance by an experiment or the like, and the second axial negative clearance G2 is applied to this relationship. Calculate by The relationship between the axial negative clearance and the bearing preload value can be obtained for each specification of the wheel bearing device 1.
  • the second rotational torque measuring step (S08) is performed.
  • the rotational torque is generated while the dynamic friction force is generated between the inner members 3 and 4 and the outer member 2. Is being measured.
  • the torque measuring device is used to obtain the second rotational torque Tb when the hub ring and the outer ring, in which the small diameter step portion 3a is crimped to the inner ring 4, are relatively rotated. 13 is measured.
  • the outer ring 2 may be fixed and the hub ring 3 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated. Good.
  • the rotation of the hub wheel 3 reduces the variation in the rotation torque value measured when the rotation speed of the hub wheel 3 changes. Therefore, it is preferable.
  • the rotational torque is measured instead of the starting torque of the bearing, and the hub wheel 3 or the outer ring 2 is measured. By measuring the second rotation torque Tb while rotating at a constant rotation speed at low speed rotation speeds N1 to N2, it is possible to measure the rotation torque with high accuracy.
  • the third bearing preload value calculation step (S09) is carried out.
  • the difference torque ⁇ T between the first rotational torque Ta and the second rotational torque Tb is calculated.
  • the preload change amount ⁇ P between the press-fitting process and the crimping process is obtained based on the differential torque ⁇ T, and the preload change amount ⁇ P is added to the first bearing preload value P1 to obtain the third bearing preload value. Calculate P3.
  • the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing is obtained in advance by an experiment or the like, and the differential torque ⁇ T is applied to this relationship. Calculated by The relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1.
  • the determination step (S10) is performed after the third bearing preload value calculation step (S09).
  • the suitability of the preload applied to the wheel bearing device 1 depends on whether or not the difference between the second bearing preload value P2 and the third bearing preload value P3 is equal to or less than a predetermined threshold value. To judge.
  • the determination step (S10) if the difference between the second bearing preload value P2 and the third bearing preload value P3 is equal to or less than a predetermined threshold value, it is determined that the preload applied to the wheel bearing device 1 is appropriate. If the difference between the second bearing preload value P2 and the third bearing preload value P3 exceeds a predetermined threshold value, it is determined that the preload applied to the wheel bearing device 1 is not appropriate.
  • the second bearing preload value P2 calculated based on the axial clearance between the inner ring 4 and the hub wheel 3, the axial clearance between the inner ring 4 and the hub wheel 3, and the axial clearance between the inner ring 4 and the hub wheel 3
  • the wheel bearing device It is possible to verify the preload value applied to the first bearing with high accuracy.
  • the bearing preload value before and after the crimping process in other words, the second bearing preload value P2 calculated before the crimping process. Since it is determined whether or not the preload range of the wheel bearing device 1 is appropriate by using the third bearing preload value P3 which is incremented from the preload value P2 after the crimping process, the accuracy is higher than before. Can be verified. As a result, it is possible to stably supply the bearing device for a wheel whose bearing life is secured.
  • the inner seal member mounting step (S11) is part of the method of assembling the wheel bearing device 1. As shown in FIG. 9, in the inner ring member mounting step (S11), by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion and the inner ring 4 of the outer ring 2 are fitted. The inner side seal member 9 is attached between the inner side end portion and the inner side seal member 9.
  • the inner side seal member 9 When the inner side seal member 9 is attached before the crimping step (S06), the inner ring 3 is slid between the outer ring 2 and the inner ring 4 depending on the degree of crimping of the hub ring 3 in the crimping step (S06). Dynamic resistance changes. Further, if the inner side seal member 9 is attached before the second rotational torque measurement step (S08) even after the crimping step (S06), the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 changes.
  • the inner side sealing member 9 is mounted before the crimping step (S06) or the second rotational torque measuring step (S08), the second rotational torque measured in the second rotational torque measuring step (S08) is performed. There is a risk of affecting the variation in Tb.
  • the inner side seal member 9 is attached before the first rotational torque measurement step (S05), it is measured in the first rotational torque measurement step (S05) depending on the attached state of the inner side seal member 9. There is a possibility that the variation of the first rotation torque Ta may be affected.
  • the inner side seal member mounting step (S11) is performed after the second rotational torque measurement step (S08), the first rotational torque measurement step (S05) and the first.
  • the rotational torque Ta and the second rotational torque Tb of the wheel bearing device 1 are measured in the rotational torque measuring step (S08) of 2, the rotational torque varies due to the influence of the inner side sealing member 9. It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the present preload inspection method can be applied to the wheel bearing device for the drive wheel having the specifications for caulking the hub wheel. it can.
  • the present invention can be used for a preload inspection method for a wheel bearing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

予圧をより高精度に確認できる車輪用軸受装置の予圧検査方法を提供する。内輪4を小径段部3aに圧入する圧入工程S02と、第1の軸方向負隙間G1に基づき第1の軸受予圧値P1を算出する第1の軸受予圧値算出工程S03と、圧入工程後に第1の回転トルクTaを測定する第1の回転トルク測定工程S05と、第1の回転トルク測定工程後に小径段部を内輪に加締める加締工程S06と、第2の軸方向負隙間G2に基づき第2の軸受予圧値P2を算出する第2の軸受予圧値算出工程S07と、加締工程後に第2の回転トルクTbを測定する第2の回転トルク測定工程S08と、第1の回転トルクと第2の回転トルクとの差分トルクΔTに基づいた予圧変化量ΔPを第1の軸受予圧値に加えて第3の軸受予圧値P3を算出する第3の軸受予圧値算出工程S09と、第2の軸受予圧値と第3の軸受予圧値とにより予圧の適否を判定する判定工程S10とを備える。

Description

車輪用軸受装置の予圧検査方法及び組立方法
 本発明は車輪用軸受装置の予圧検査方法及び組立方法に関する。
 従来、自動車等の懸架装置において車輪を回転自在に支持する車輪用軸受装置が知られている。このような車輪用軸受装置においては、軸受装置を構成する転動体と軌道輪との間に予圧が付与されている。
 軸受装置に予圧を付与することにより、軸受装置の剛性を高めるとともに振動および騒音を抑制することができる。しかし、予圧を過大に付与すると回転トルクの増加や寿命の低下を招く原因となり得るため、軸受装置に適正な予圧が付与されているかどうかを確認することが重要である。
 軸受装置に付与されている予圧を確認する方法としては、例えば特許文献1に開示されるように、複列に転動体が設けられた転がり軸受において、軸方向における予圧隙間を測定することによって、当該軸受に付与された予圧を測定する予圧測定方法が知られている。
特開平10-185717号公報
 特許文献1に開示される予圧測定方法においては軸受に付与された予圧を測定することが可能であるが、近年では、車輪用軸受装置が取り付けられる自動車等における低燃費化の要求が高まっていることから、軸受装置に付与されている予圧をより高精度に確認するために、更なる改良が望まれていた。
 そこで、本発明においては、車輪用軸受装置に付与されている予圧をより高精度に確認することができる車輪用軸受装置の予圧検査方法及び組立方法を提供することを目的とする。
 即ち、本発明の車輪用軸受装置の予圧検査方法においては、内周に複列の外側軌道面を有する外方部材と、外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、を備えた車輪用軸受装置の予圧検査方法であって、前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、前記圧入工程後における前記内輪と前記ハブ輪との第1の軸方向負隙間に基づいて前記車輪用軸受装置の第1の軸受予圧値を算出する第1の軸受予圧値算出工程と、前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の第1の回転トルクを測定する第1の回転トルク測定工程と、前記第1の回転トルク測定工程後に、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、前記加締工程後における前記内輪と前記ハブ輪との第2の軸方向負隙間に基づいて前記車輪用軸受装置の第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の第2の回転トルクを測定する第2の回転トルク測定工程と、前記第1の回転トルクと前記第2の回転トルクとの差分トルクに基づいて求められた前記圧入工程後と前記加締工程後との間の予圧変化量を、前記第1の軸受予圧値に加えることにより第3の軸受予圧値を算出する第3の軸受予圧値算出工程と、前記第2の軸受予圧値と前記第3の軸受予圧値との差分が所定の閾値以下であるか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法である。
 本発明の効果として、以下に示すような効果を奏する。
 即ち、本発明によれば、軸方向隙間に基づいて算出した予圧値のみを用いた場合に比べて、車輪用軸受装置の予圧値を高精度に検証することができる。
予圧検査方法が実施される車輪用軸受装置を示す側面断面図である。 予圧検査方法のフローを示す図である。 内輪がハブ輪の小径段部に仮圧入された状態の車輪用軸受装置を示す側面断面図である。 内輪がハブ輪の小径段部に圧入された状態の車輪用軸受装置を示す側面断面図である。 ハブ輪と外輪とを相対的に回転させたときの時間とトルクとの関係を示す図である。 ハブ輪と外輪とを相対的に回転させたときの回転数とトルクとの関係を示す図である。 ハブ輪の小径段部を内輪に加締めた状態の車輪用軸受装置を示す側面断面図である。 軸受予圧と回転トルクとの関係を示す図である。 第2の回転トルク測定工程後に外輪のインナー側端部にインナー側シール部材を装着する様子を示す側面断面図である。
[車輪用軸受装置]
 以下に、図1を用いて、本発明に係る予圧検査方法が実施される車輪用軸受装置の第一実施形態である車輪用軸受装置1について説明する。
 図1に示す車輪用軸受装置1は、自動車等の車両の懸架装置において車輪を回転自在に支持するものである。車輪用軸受装置1は第3世代と称呼される構成を備えており、外方部材である外輪2と、内方部材であるハブ輪3および内輪4と、転動列である二列のインナー側ボール列5およびアウター側ボール列6と、インナー側シール部材9およびアウター側シール部材10とを具備する。ここで、インナー側とは、車体に取り付けた際の車輪用軸受装置1の車体側を表し、アウター側とは、車体に取り付けた際の車輪用軸受装置1の車輪側を表す。また、軸方向とは、車輪用軸受装置1の回転軸に沿った方向を表す。
 外輪2のインナー側端部には、インナー側シール部材9が嵌合可能なインナー側開口部2aが形成されている。外輪2のアウター側端部には、アウター側シール部材10が嵌合可能なアウター側開口部2bが形成されている。外輪2の内周面には、インナー側の外側軌道面2cと、アウター側の外側軌道面2dとが形成されている。外輪2の外周面には、外輪2を車体側部材に取り付けるための車体取り付けフランジ2eが一体的に形成されている。車体取り付けフランジ2eには、車体側部材と外輪2とを締結する締結部材(ここでは、ボルト)が挿入されるボルト孔2gが設けられている。
 ハブ輪3のインナー側端部には、外周面にアウター側端部よりも縮径された小径段部3aが形成されている。ハブ輪3における小径段部3aのアウター側端部には肩部3eが形成されている。ハブ輪3のアウター側端部には、車輪を取り付けるための車輪取り付けフランジ3bが一体的に形成されている。車輪取り付けフランジ3bには、ハブ輪3と車輪又はブレーキ部品とを締結するためのハブボルトが圧入されるボルト孔3fが設けられている。
 ハブ輪3には、外輪2のアウター側の外側軌道面2dに対向するようにアウター側の内側軌道面3cが設けられている。ハブ輪3における車輪取り付けフランジ3bの基部側には、アウター側シール部材10が摺接するリップ摺動面3dが形成されている。アウター側シール部材10は、外輪2とハブ輪3とによって形成された環状空間のアウター側開口端に嵌合している。ハブ輪3は、車輪取りつけフランジ3bよりもアウター側の端部にアウター側端面3gを有している。
 ハブ輪3の小径段部3aには、内輪4が設けられている。内輪4は、圧入および加締加工によりハブ輪3の小径段部3aに固定されている。内輪4は、転動列であるインナー側ボール列5およびアウター側ボール列6に予圧を付与している。内輪4は、インナー側端部にインナー側端面4bを有しており、アウター側端部にアウター側端面4cを有している。ハブ輪3のインナー側端部には、内輪4のインナー側端面4bに加締められた加締部3hが形成されている。
 内輪4の外周面には、内側軌道面4aが形成されている。つまり、ハブ輪3のインナー側には、内輪4によって内側軌道面4aが構成されている。内輪4の内側軌道面4aは、外輪2のインナー側の外側軌道面2cと対向している。
 転動列であるインナー側ボール列5とアウター側ボール列6とは、転動体である複数のボール7が保持器8によって保持されることにより構成されている。インナー側ボール列5は、内輪4の内側軌道面4aと、外輪2のインナー側の外側軌道面2cとの間に転動自在に挟まれている。アウター側ボール列6は、ハブ輪3の内側軌道面3cと、外輪2のアウター側の外側軌道面2dとの間に転動自在に挟まれている。
 車輪用軸受装置1においては、外輪2と、ハブ輪3および内輪4と、インナー側ボール列5と、アウター側ボール列6とによって複列アンギュラ玉軸受が構成されている。なお、車輪用軸受装置1は複列円錐ころ軸受によって構成されていてもよい。
[予圧検査方法]
 次に車輪用軸受装置1の予圧検査方法について説明する。図2に示すように、本実施形態における予圧検査方法は、車輪用軸受装置1の組立を行う途中で行っている。具体的には、予圧検査方法は、仮圧入工程(S01)、圧入工程(S02)、第1の軸受予圧値算出工程(S03)、なじみ工程(S04)、第1の回転トルク測定工程(S05)、加締工程(S06)、第2の軸受予圧値算出工程(S07)、第2の回転トルク測定工程(S08)、第3の軸受予圧値算出工程(S09)、判定工程(S10)、およびインナー側シール部材装着工程(S11)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 図3に示すように、ハブ輪3は、軸方向が垂直方向となり、アウター側端面3gが下方に位置する姿勢で、支持台11に載置されている。支持台11にはハブ輪3のアウター側端面3gが接地している。支持台11に載置されたハブ輪3には、外輪2がインナー側ボール列5およびアウター側ボール列6を介して回転可能に装着されている。外輪2のアウター側端部には、アウター側シール部材10が嵌合されている。ハブ輪3と外輪2との間にはグリースが充填されている。
 仮圧入工程(S01)においては、まず支持台11に載置されたハブ輪3の小径段部3aに、内輪4を仮圧入する。内輪4の仮圧入は、内輪4を上方から小径段部3aに圧入し、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する手前で圧入を停止することにより行われる。ここで、内輪4の圧入作業は、例えば、油圧シリンダ又はエアシリンダ等の押込装置を用いて所定の圧力を作用させた状態で行われる。内輪4の仮圧入が完了した時点では、内輪4のアウター側端面4cとハブ輪3の肩部3eとの間には軸方向正隙間G0が存在している。なお、軸方向正隙間G0は、押込装置を用いて内輪4を仮圧入する前に、予め設定しておく所定の値である。
 仮圧入工程(S01)においては、軸方向正隙間G0と、内輪4の仮圧入後における、ハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法H0とを測定する。軸方向寸法H0は、ダイヤルゲージ等の計測器12により測定することができる。
(圧入工程)
 仮圧入工程(S01)の後に圧入工程(S02)を実施する。図4に示すように、圧入工程(S02)においては、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する位置まで、内輪4を小径段部3aに圧入する。内輪4の小径段部3aへの圧入が完了した後に、内輪4の圧入後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法H1を測定する。また、軸方向寸法H0から軸方向寸法H1を引いた値を、軸方向正隙間G0から引くことで、内輪4の圧入後における内輪4とハブ輪3との第1の軸方向負隙間G1を求める(G1=G0-(H0-H1))。
(第1の軸受予圧値算出工程)
 圧入工程(S02)の後に第1の軸受予圧値算出工程(S03)を実施する。第1の軸受予圧値算出工程(S03)においては、第1の軸方向負隙間G1に基づいて、圧入工程後の軸受に付与されている第1の軸受予圧値P1を算出する。第1の軸受予圧値P1は、車輪用軸受装置1における軸方向負隙間と軸受予圧値との関係を、予め実験等により求めておき、この関係に第1の軸方向負隙間G1を当て嵌めることにより算出する。なお、この軸方向負隙間と軸受予圧値との関係は、車輪用軸受装置1の仕様毎に求めることができる。
(なじみ工程)
 第1の軸受予圧値算出工程(S03)の後になじみ工程(S04)を実施する。なじみ工程(S04)においては、内輪4が圧入されたハブ輪3と、外輪2とを相対的に回転させることにより、ハブ輪3と外輪2との間に充填されているグリースをインナー側ボール列5およびアウター側ボール列6のボール7になじませる。なじみ工程(S04)においては、外輪2を固定しておいて、ハブ輪2を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 なじみ工程(S04)を実施することで、ハブ輪3と外輪2とを相対的に回転させたときに、グリースとボール7との間に生じる抵抗を一定にすることができる。これにより、後に実施される第1の回転トルク測定工程(S05)および第2の回転トルク測定工程(S08)において車輪用軸受装置1の回転トルクを測定したときに、測定した回転トルクにばらつきが生じることを抑制することが可能となる。
(第1の回転トルク測定工程)
 なじみ工程(S04)の後に第1の回転トルク測定工程(S05)を実施する。第1の回転トルク測定工程(S05)においては、小径段部3aに内輪4が圧入されたハブ輪3と、外輪2とを相対的に回転させたときの第1の回転トルクTaを、トルク測定器13により測定する。第1の回転トルク測定工程(S05)においては、外輪2を固定しておいて、ハブ輪3を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 ハブ輪3を回転させた場合は、外輪2を回転させた場合よりもインナー側ボール列5およびアウター側ボール列6におけるボール7の公転速度が遅くなり、ハブ輪3の回転速度が変化したときに測定される回転トルク値のばらつきが小さくなるため、回転トルク測定工程では、ハブ輪3を回転させるほうが好ましい。なお、ハブ輪3を回転させる場合には、ハブ輪3が載置されている支持台11を回転させることにより、ハブ輪3を回転させることができる。
 また、第1の回転トルク測定工程(S05)においては、軸受の起動トルクではなく、回転トルクを測定している。図5に示すように、起動トルクは軸受の回転を開始したときの初動トルクのピーク値であるが、時間の経過に伴って低下していき、経時的な変化が大きい。よって、繰り返し再現性に乏しい。これに対し、回転トルクは軸受が回転を開始した後のトルクであり、経時的な変化が殆どなく一定の値を示す。従って、第1の回転トルク測定工程(S05)においては、回転トルクである第1の回転トルクTaを測定することにより、軸受のトルク値を高精度に測定することが可能となっている。
 図6に示すように、ハブ輪3と外輪2とを相対的に回転させたときの軸受の回転トルクは、ハブ輪3または外輪2の回転数が一定値以上の範囲においては回転数が増えるに従って増加していくが、ハブ輪3または外輪2の回転数が極小さいときには回転数が上昇するにつれて減少し、その後に増加転じている。つまり、軸受の回転トルクは、回転数の上昇に伴って減少から増加に転じる領域があり、その領域においては、回転数の変化に対する回転トルクの変動度合いが小さくなっている。
 第1の回転トルク測定工程(S05)においては、ハブ輪3または外輪2は、測定される回転トルクにばらつきが生じないように一定回転数で回転させている。また、ハブ輪3または外輪2の回転数は、回転トルクが減少から増加に転じる領域における回転数N1~N2の範囲に設定している。これにより、第1の回転トルクTaの測定中に仮に回転数が変化したとしても、回転トルクの変動を小さくすることが可能である。
 第1の回転トルク測定工程(S05)においては、内方部材3,4と外方部材2との間に動摩擦力が発生している状態で回転トルクを測定している。具体的には、内方部材3、4と転動体7との間、ハブ輪3とアウター側シール部材10との間及び外輪2と転動体7、アウター側シール部材10との間に動摩擦力が発生している状態で、回転トルクの測定を行っている。一般的に、動摩擦係数は、静摩擦係数と比較して小さく、かつ、ばらつきが小さいので、回転トルクを高精度に測定することができる。
 本実施形態では、回転数の範囲の下限値となる回転数N1は、動摩擦力が生じている状態で回転トルクの測定が可能となる2回転/minに設定される。回転数の範囲の上限値となる回転数N2は、ハブ輪3と外輪2との間に充填されるグリースの撹拌抵抗が極力小さくなる回転数である60回転/minに設定される。ハブ輪3または外輪2の回転数は、2回転/min~60回転/minの範囲の中でも、回転数の変化に対する回転トルクの変動が最も小さくなる10回転/min程度に設定することが好ましい。
 第1の回転トルク測定工程(S05)においては、ハブ輪3または外輪2を、回転数の変化に対する回転トルクの変動度合いが小さくなる、小さな回転数N1~N2の範囲にて回転させることで、仮にハブ輪3または外輪2の回転数が変化した場合でも、回転トルクの変動を最小限に抑えることができ、回転トルクを高精度で測定することが可能となっている。
 また、第1の回転トルク測定工程(S05)においては、外輪2とハブ輪3とによって形成された環状空間のアウター側開口端にアウター側シール部材10が嵌合された状態で、車輪用軸受装置1の回転トルクが測定されている。ここで、アウター側シール部材10は、内輪4の固定のために加締められるハブ輪3の小径段部3aとは軸方向反対側に位置しているため、次に述べる加締工程(S06)において、仮に内輪軌道面4a等に異常が生じても、アウター側シール部材10のシールトルクに影響が生じ難く、車輪用軸受装置1の回転トルクにも変化が生じ難い。
(加締工程)
 第1の回転トルク測定工程(S05)の後に加締工程(S06)を実施する。加締工程(S06)においては、ハブ輪3における小径段部3aのインナー側端部を内輪4のインナー側端面4bに加締める加締加工を行う。加締加工は、例えば揺動加締め加工により行うことができる。
 図7に示すように、小径段部3aの内輪4に対する加締加工が完了した後に、加締加工完了後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法H2を測定する。また、内輪4の圧入完了後から小径段部3aの加締加工完了後までの内輪4の軸方向の移動量を示す、軸方向寸法H2から軸方向寸法H1を引いた値(H2-H1)を算出する。この値(H2-H1)および第1の軸方向負隙間G1から、加締加工後における内輪4とハブ輪3との第2の軸方向負隙間G2を求める。
 具体的には、第2の軸方向負隙間G2は、例えば内輪4の軸方向における移動量と、内輪4とハブ輪3との軸方向負隙間の変化量との関係を予め実験等により求めておき、この関係に値(H2-H1)および第1の軸方向負隙間G1を当て嵌めることにより算出することができる。なお、この内輪4の軸方向における移動量と、内輪4とハブ輪3との軸方向負隙間の変化量との関係は、車輪用軸受装置1の仕様毎に求めることができる。
(第2の軸受予圧値算出工程)
 加締工程(S06)の後に第2の軸受予圧値算出工程(S07)を実施する。第2の軸受予圧値算出工程(S07)においては、第2の軸方向負隙間G2に基づいて、加締加工後の軸受に付与されている第2の軸受予圧値P2を算出する。第2の軸受予圧値P2は、車輪用軸受装置1における軸方向負隙間と軸受予圧値との関係を予め実験等により求めておき、この関係に第2の軸方向負隙間G2を当て嵌めることにより算出する。なお、この軸方向負隙間と軸受予圧値との関係は、車輪用軸受装置1の仕様毎に求めることができる。
(第2の回転トルク測定工程)
 第2の軸受予圧値算出工程(S07)の後に第2の回転トルク測定工程(S08)を実施する。第2の回転トルク測定工程(S08)においては、第1の回転トルク測定工程と同様に、内方部材3、4と外方部材2との間に動摩擦力が発生している状態で回転トルクを測定している。第2の回転トルク測定工程(S08)においては、小径段部3aが内輪4に加締められたハブ輪と外輪とを相対的に回転させたときの第2の回転トルクTbを、トルク測定器13により測定する。第2の軸受予圧値算出工程(S07)においては、外輪2を固定しておいて、ハブ輪3を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 但し、第1の回転トルク測定工程(S05)の場合と同様に、ハブ輪3を回転させた方が、ハブ輪3の回転速度が変化したときに測定される回転トルク値のばらつきが小さくなるため好ましい。また、第2の軸受予圧値算出工程(S07)においても、第1の回転トルク測定工程(S05)の場合と同様に、軸受の起動トルクではなく回転トルクを測定し、ハブ輪3または外輪2を低速の回転数N1~N2において一定回転数で回転させながら第2の回転トルクTbを測定することで、回転トルクを高精度で測定することが可能となっている。
(第3の軸受予圧値算出工程)
 第2の回転トルク測定工程(S08)の後に第3の軸受予圧値算出工程(S09)を実施する。第3の軸受予圧値算出工程(S09)においては、第1の回転トルクTaと第2の回転トルクTbとの差分トルクΔTを算出する。また、差分トルクΔTに基づいて圧入工程後と加締加工後との間の予圧変化量ΔPを求め、さらに第1の軸受予圧値P1に予圧変化量ΔPを加えることにより第3の軸受予圧値P3を算出する。
 この場合、予圧変化量ΔPは、図8に示すように、車輪用軸受装置1の軸受予圧と軸受の回転トルクとの関係を予め実験等により求めておき、この関係に差分トルクΔTを当て嵌めることにより算出する。なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
(判定工程)
 第3の軸受予圧値算出工程(S09)の後に判定工程(S10)を実施する。判定工程(S10)においては、第2の軸受予圧値P2と第3の軸受予圧値P3との差分が所定の閾値以下であるか否かによって、車輪用軸受装置1に付与された予圧の適否を判定する。判定工程(S10)においては、第2の軸受予圧値P2と第3の軸受予圧値P3との差分が所定の閾値以下であれば車輪用軸受装置1に付与されている予圧が適正であると判断し、第2の軸受予圧値P2と第3の軸受予圧値P3との差分が所定の閾値を超えていれば、車輪用軸受装置1に付与されている予圧が適正でないと判定する。
 このように、判定工程(S10)においては、内輪4とハブ輪3との軸方向隙間に基づいて算出された第2の軸受予圧値P2と、内輪4とハブ輪3との軸方向隙間および車輪用軸受装置1の回転トルクに基づいて算出された第3の軸受予圧値P3とを照合して、両者が予め設定した相対差の範囲内に収まることを確認することで、車輪用軸受装置1の軸受に付与されている予圧値を高精度に検証することが可能となっている。
 ここで、ハブ輪の小径段部を加締加工した場合、加締荷重の大小によっては、車輪用軸受装置の軸受寿命確保のために適正な予圧範囲を外れる可能性がある。しかし、本実施形態に係る車輪用軸受装置1の予圧検査方法によれば、加締加工工程前後の軸受予圧値、言い変えると、加締加工前に算出された第2の軸受予圧値P2と、加締加工工程後に当該予圧値P2から増分した第3の軸受予圧値P3とを用いて、車輪用軸受装置1の予圧範囲が適正か否か判定しているので、従来よりも高精度に検証することができる。その結果、軸受寿命が確保された車輪用軸受装置を安定的に供給することができる。
(インナー側シール部材装着工程)
 第3の軸受予圧値算出工程(S09)の後にインナー側シール部材装着工程(S11)を実施することで、車輪用軸受装置1の組立工程が完了する。すなわち、インナー側シール部材装着工程(S11)は、車輪用軸受装置1の組立方法の一部である。図9に示すように、インナー側シール部材装着工程(S11)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S06)の前に装着すると、加締工程(S06)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S06)の後であっても第2の回転トルク測定工程(S08)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S06)または第2の回転トルク測定工程(S08)の前に装着すると、第2の回転トルク測定工程(S08)において測定される第2の回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、第1の回転トルク測定工程(S05)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、第1の回転トルク測定工程(S05)において測定される第1の回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、第2の回転トルク測定工程(S08)の後にインナー側シール部材装着工程(S11)を実施するようにしているので、第1の回転トルク測定工程(S05)および第2の回転トルク測定工程(S08)おいて車輪用軸受装置1の第1の回転トルクTaおよび第2の回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
 なお、本実施形態においては従動輪用の車輪用軸受装置1について説明したが、本予圧検査方法は、ハブ輪を加締加工する仕様の駆動輪用の車輪用軸受装置にも適用することができる。
 以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
 本発明は、車輪用軸受装置の予圧検査方法に利用可能である。
  1  車輪用軸受装置
  2  外輪
  2c (インナー側の)外側軌道面
  2d (アウター側の)外側軌道面
  3  ハブ輪
  3a 小径段部
  3c 内側軌道面
  4  内輪
  4a 内側軌道面
  5  インナー側ボール列
  6  アウター側ボール列
  7  ボール
  9  インナー側シール部材
  G1 第1の軸方向負隙間
  G2 第2の軸方向負隙間
  P1 第1の軸受予圧値
  P2 第2の軸受予圧値
  P3 第3の軸受予圧値
 S02 圧入工程
 S03 第1の軸受予圧値算出工程
 S04 なじみ工程
 S05 第1の回転トルク測定工程
 S06 加締工程
 S07 第2の軸受予圧値算出工程
 S08 第2の回転トルク測定工程
 S09 第3の軸受予圧値算出工程
 S10 判定工程
 S11 インナー側シール部材装着工程
  Ta 第1の回転トルク
  Tb 第2の回転トルク
  ΔT 差分トルク
  ΔP 予圧変化量

Claims (5)

  1.  内周に複列の外側軌道面を有する外方部材と、
     外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、
     前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、
     を備えた車輪用軸受装置の予圧検査方法であって、
     前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、
     前記圧入工程後における前記内輪と前記ハブ輪との第1の軸方向負隙間に基づいて前記車輪用軸受装置の第1の軸受予圧値を算出する第1の軸受予圧値算出工程と、
     前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の第1の回転トルクを測定する第1の回転トルク測定工程と、
     前記第1の回転トルク測定工程後に、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、
     前記加締工程後における前記内輪と前記ハブ輪との第2の軸方向負隙間に基づいて前記車輪用軸受装置の第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、
     前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の第2の回転トルクを測定する第2の回転トルク測定工程と、
     前記第1の回転トルクと前記第2の回転トルクとの差分トルクに基づいて求められた前記圧入工程後と前記加締工程後との間の予圧変化量を、前記第1の軸受予圧値に加えることにより第3の軸受予圧値を算出する第3の軸受予圧値算出工程と、
     前記第2の軸受予圧値と前記第3の軸受予圧値との差分が所定の閾値以下であるか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法。
  2.  前記ハブ輪と前記外方部材との間にはグリースが充填されており、
     前記圧入工程と第1の回転トルク測定工程との間において実施され、前記内方部材と前記外方部材とを相対的に回転させることにより、前記グリースを前記転動体になじませるなじみ工程を、さらに備える請求項1に記載の車輪用軸受装置の予圧検査方法。
  3.  前記第1の回転トルク測定工程および前記第2の回転トルク測定工程においては、前記外方部材と前記内方部材とによって形成された環状空間のアウター側開口端にアウター側シール部材が嵌合している請求項1または請求項2に記載の車輪用軸受装置の予圧検査方法。
  4.  前記第1の回転トルク測定工程および前記第2の回転トルク測定工程においては、前記内方部材と前記外方部材とを2回転/min~60回転/minの回転数で相対回転させて前記回転トルクを測定する請求項1~請求項3の何れか一項に記載の車輪用軸受装置の予圧検査方法。
  5.  請求項1~請求項4の何れか一項に記載の車輪用軸受装置の予圧検査方法のうち前記第2の回転トルク測定工程後に実施され、前記外方部材のインナー側端部にインナー側シール部材を装着するインナー側シール部材装着工程を、備える車輪用軸受装置の組立方法。
PCT/JP2020/008355 2019-03-04 2020-02-28 車輪用軸受装置の予圧検査方法及び組立方法 WO2020179670A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/434,793 US11959519B2 (en) 2019-03-04 2020-02-28 Preload inspection method and assembly method for bearing device for vehicle wheel
BR112021016800-1A BR112021016800A2 (pt) 2019-03-04 2020-02-28 Método de inspeção de pré-carga e método de montagem para dispositivo de rolamento para roda de veículo
MX2021010456A MX2021010456A (es) 2019-03-04 2020-02-28 Metodo de inspeccion de precarga y metodo de montaje de dispositivo de cojinete para rueda de vehiculo.
CA3131504A CA3131504A1 (en) 2019-03-04 2020-02-28 Preload inspection method and assembly method for bearing device for vehicle wheel
EP20766480.6A EP3936847B1 (en) 2019-03-04 2020-02-28 Preload inspection method and assembly method for bearing device for vehicle wheel
CN202080010960.XA CN113366292B (zh) 2019-03-04 2020-02-28 车轮用轴承装置的预压检查方法及组装方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038630 2019-03-04
JP2019038630A JP6806827B2 (ja) 2019-03-04 2019-03-04 車輪用軸受装置の予圧検査方法及び組立方法

Publications (1)

Publication Number Publication Date
WO2020179670A1 true WO2020179670A1 (ja) 2020-09-10

Family

ID=72337765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008355 WO2020179670A1 (ja) 2019-03-04 2020-02-28 車輪用軸受装置の予圧検査方法及び組立方法

Country Status (8)

Country Link
US (1) US11959519B2 (ja)
EP (1) EP3936847B1 (ja)
JP (1) JP6806827B2 (ja)
CN (1) CN113366292B (ja)
BR (1) BR112021016800A2 (ja)
CA (1) CA3131504A1 (ja)
MX (1) MX2021010456A (ja)
WO (1) WO2020179670A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498622B2 (ja) * 2020-08-19 2024-06-12 Ntn株式会社 車輪用軸受装置の回転トルク検査方法、および車輪用軸受装置の回転トルク検査装置
EP4202243A4 (en) * 2020-08-19 2024-01-24 Ntn Toyo Bearing Co Ltd PRELOAD INSPECTION METHOD FOR WHEEL BEARING DEVICE
CN116583363A (zh) * 2020-12-18 2023-08-11 日本精工株式会社 轴承单元的生产方法、机械的生产方法及车辆的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185717A (ja) 1996-11-05 1998-07-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JPH1144319A (ja) * 1997-07-29 1999-02-16 Nippon Seiko Kk 軸受の予圧付与装置
JP2002333016A (ja) * 2001-05-10 2002-11-22 Nsk Ltd 車輪支持用転がり軸受ユニットの製造方法
US20040177509A1 (en) * 2003-03-14 2004-09-16 Russell Daniel T. Process for setting bearings and verifying force preload
JP2006052801A (ja) * 2004-08-12 2006-02-23 Ntn Corp 車輪用軸受装置のすきま測定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217649A (ja) * 1994-02-04 1995-08-15 Nippon Seiko Kk 複列転がり軸受の予圧隙間を測定する方法と装置
JP3633961B2 (ja) * 1994-08-31 2005-03-30 Ntn株式会社 車軸用軸受装置の予圧測定方法及び装置
US6070325A (en) 1996-11-05 2000-06-06 Koyo Seiko Co., Ltd. Method for measuring a pre-load applied to a double-row rolling bearing
US6491440B1 (en) * 1999-09-22 2002-12-10 Ntn Corporation Wheel bearing apparatus
JP4408251B2 (ja) * 2004-09-08 2010-02-03 Ntn株式会社 車輪用軸受装置の軸受すきま測定方法
EP1970586B1 (en) * 2005-12-22 2011-11-30 NTN Corporation Joint assembly and vehicle-use bearing unit, and axle module provided with them
KR20100016484A (ko) * 2007-05-14 2010-02-12 엔티엔 가부시키가이샤 베어링 장치 및 베어링 예압 검출 장치
JP2009248595A (ja) * 2008-04-01 2009-10-29 Jtekt Corp 車輪用転がり軸受装置の予圧すきま測定方法
JP5506420B2 (ja) * 2010-01-20 2014-05-28 Ntn株式会社 4点接触玉軸受のトルク計算方法・計算装置・および計算プログラム
US8342039B2 (en) * 2010-03-12 2013-01-01 Wickens Jeffrey S Process for measuring preloading of low-rolling resistance bearings
JP5644679B2 (ja) * 2011-06-01 2014-12-24 日本精工株式会社 複列アンギュラ玉軸受の予圧測定方法、その方法を実施する装置、及び予圧保証がなされた複列アンギュラ玉軸受
JP6009149B2 (ja) * 2011-06-14 2016-10-19 Ntn株式会社 車輪用軸受装置の製造方法
JP5928144B2 (ja) * 2012-05-09 2016-06-01 株式会社ジェイテクト 車輪用ハブユニットの検査方法
JP6114556B2 (ja) * 2013-01-09 2017-04-12 Ntn株式会社 車輪用軸受装置
JP2014206191A (ja) * 2013-04-11 2014-10-30 Ntn株式会社 車輪用軸受装置の軸受すきま管理方法
JP6128191B2 (ja) * 2015-11-19 2017-05-17 株式会社ジェイテクト 車輪用ハブユニットの検査方法
US10087985B2 (en) * 2016-09-29 2018-10-02 Jtekt Corporation Rolling device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185717A (ja) 1996-11-05 1998-07-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JPH1144319A (ja) * 1997-07-29 1999-02-16 Nippon Seiko Kk 軸受の予圧付与装置
JP2002333016A (ja) * 2001-05-10 2002-11-22 Nsk Ltd 車輪支持用転がり軸受ユニットの製造方法
US20040177509A1 (en) * 2003-03-14 2004-09-16 Russell Daniel T. Process for setting bearings and verifying force preload
JP2006052801A (ja) * 2004-08-12 2006-02-23 Ntn Corp 車輪用軸受装置のすきま測定方法

Also Published As

Publication number Publication date
CA3131504A1 (en) 2020-09-10
BR112021016800A2 (pt) 2021-10-26
EP3936847B1 (en) 2023-11-08
CN113366292A (zh) 2021-09-07
JP6806827B2 (ja) 2021-01-06
JP2020143919A (ja) 2020-09-10
US11959519B2 (en) 2024-04-16
EP3936847A1 (en) 2022-01-12
CN113366292B (zh) 2024-05-03
MX2021010456A (es) 2021-09-21
US20220136562A1 (en) 2022-05-05
EP3936847A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2020179670A1 (ja) 車輪用軸受装置の予圧検査方法及び組立方法
US6460423B1 (en) Method of measuring preload in a multirow bearing assembly
JP2018021613A (ja) ハブユニット軸受の隙間測定方法
JP7413311B2 (ja) 車輪用軸受装置の軸方向隙間測定方法
JP2001225606A (ja) 車輪軸受装置およびその軸受すきま管理方法
JP5644679B2 (ja) 複列アンギュラ玉軸受の予圧測定方法、その方法を実施する装置、及び予圧保証がなされた複列アンギュラ玉軸受
JP7483556B2 (ja) 車輪用軸受装置の予圧検査方法
WO2021059865A1 (ja) 車輪用軸受装置の予圧検査方法
WO2022039204A1 (ja) 車輪用軸受装置の回転トルク検査方法、および車輪用軸受装置の回転トルク検査装置
JP7421451B2 (ja) 車輪用軸受装置の予圧検査方法
JP2022034925A (ja) 車輪用軸受装置の予圧検査方法
JP7406473B2 (ja) 車輪用軸受装置の予圧検査方法
JP2022034924A (ja) 車輪用軸受装置の予圧検査方法
JP7483553B2 (ja) 車輪用軸受装置の予圧検査方法
JP7290086B2 (ja) ハブユニット軸受およびその製造方法
JP2000087976A (ja) 軸受装置
JP2022134633A (ja) 車輪用軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3131504

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016800

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020766480

Country of ref document: EP

Effective date: 20211004

ENP Entry into the national phase

Ref document number: 112021016800

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210825