WO2020175569A1 - 光学異方性膜、積層体、円偏光板、表示装置 - Google Patents

光学異方性膜、積層体、円偏光板、表示装置 Download PDF

Info

Publication number
WO2020175569A1
WO2020175569A1 PCT/JP2020/007805 JP2020007805W WO2020175569A1 WO 2020175569 A1 WO2020175569 A1 WO 2020175569A1 JP 2020007805 W JP2020007805 W JP 2020007805W WO 2020175569 A1 WO2020175569 A1 WO 2020175569A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically anisotropic
anisotropic film
absorption
wavelength
Prior art date
Application number
PCT/JP2020/007805
Other languages
English (en)
French (fr)
Inventor
西川 秀幸
亮司 後藤
雄太 藤野
美玲 新安
祐貴 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021502331A priority Critical patent/JP7182686B2/ja
Publication of WO2020175569A1 publication Critical patent/WO2020175569A1/ja
Priority to US17/400,752 priority patent/US11353750B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133632Birefringent elements, e.g. for optical compensation with refractive index ellipsoid inclined relative to the LC-layer surface
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/083Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer infrared absorbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1

Definitions

  • the present invention relates to an optically anisotropic film, a laminate, a circularly polarizing plate, and a display device.
  • a retardation film (optically anisotropic film) having a refractive index anisotropy is applied to various applications such as an antireflection film of a display device and an optical compensation film of a liquid crystal display device.
  • the inverse wavelength dispersibility means a "negative dispersion" characteristic in which birefringence increases as the measurement wavelength becomes longer in at least a part of the visible light wavelength region.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 8 8-2 7 3 9 25
  • the reverse wavelength dispersibility of the retardation in the thickness direction which is exhibited by the conventional optically anisotropic film, is not necessarily sufficient, and further improvement is needed.
  • the ratio of the thickness direction retardation in the visible light region to the measurement wavelength is the same at each measurement wavelength.
  • the first embodiment of the present invention has an object to provide an optically anisotropic film exhibiting reverse wavelength dispersion with excellent retardation in the thickness direction.
  • Another object of the second embodiment of the present invention is to provide an optically anisotropic film exhibiting reverse wavelength dispersion with excellent retardation in the in-plane direction.
  • Another object of the present invention is to provide a laminate, a circularly polarizing plate and a display device.
  • optically anisotropic film according to (1) which is formed by using a composition containing a liquid crystal compound or polymer and an infrared absorbing dye.
  • composition contains a liquid crystal compound
  • optically anisotropic film according to any one of (1) to (3), which is obtained by vertically aligning and fixing a liquid crystal compound.
  • a laminate comprising the optically anisotropic film according to any one of (1) to (4) and another optically anisotropic film different from the optically anisotropic film.
  • a display device having a display element and the optically anisotropic film according to any one of (1) to (4) arranged on the display element.
  • Fig. 1 is a view showing a comparison between the wavelength dispersion of a conventional optically anisotropic film exhibiting reverse wavelength dispersion and the wavelength dispersion of an ideal phase difference.
  • FIG. 3 is a diagram showing absorption characteristics of an optically anisotropic film.
  • FIG. 4 A diagram showing wavelength dispersion characteristics of refractive index and absorption coefficient of organic molecules.
  • FIG. 5 is a diagram showing a comparison between the wavelength dispersion of an optical anisotropic film having a conventional inverse wavelength dispersion and the wavelength dispersion of an ideal phase difference.
  • FIG. 6 is a diagram showing a comparison of wavelength dispersion between the extraordinary ray refractive index n 6 and the ordinary ray refractive index n ⁇ depending on the presence or absence of a predetermined absorption characteristic.
  • FIG. 7 is an absorption spectrum diagram in the infrared region at a polar angle of 45 ° in the optically anisotropic film of Example 1.
  • FIG. 8 is an absorption spectrum diagram in the infrared region at a polar angle of 45 ° in the optically anisotropic film of Example 2.
  • 6 (s) and [3 ⁇ 4 1: (s) represent in-plane retardation and thickness-direction retardation at wavelengths, respectively. Unless otherwise specified, the wavelength is 550 1 ⁇ 111.
  • ⁇ ⁇ (s) and (s) are the values measured by the wavelength s in Yachibu ⁇ ⁇ 308 ⁇ 09 1 ⁇ /1 -1 (manufactured by Optoscience).
  • [3 ⁇ 40 (s) is displayed as the value calculated by Yachibu 0 030 3 ⁇ 0 1 ⁇ /1-1. (Su) means.
  • the refractive indices X, ny s and
  • a multi-wavelength Abbe refractometer aperture [3 ⁇ 4-1 ⁇ /12 (manufactured by Atago Co., Ltd.) in combination with an interference filter.
  • visible light means a wavelength of 400 n or more and 700 n or more. Intended for less than light.
  • infrared means light having a wavelength of 700 n or more
  • near infrared means light having a wavelength of 700 n or more and 2000 n or less
  • ultraviolet means a wavelength of 10 nm or more. Light less than 400 n is intended.
  • the angle for example, an angle such as “90°” and its relation (for example, “orthogonal” and “parallel”)
  • the range of error permissible in the technical field to which the present invention belongs Shall be included. For example, it means that the angle is within a range of the strict angle ⁇ 10 ° , and the error from the strict angle is preferably 5° or less, and more preferably 3° or less.
  • the orientation is not particularly limited.
  • the formula ( ⁇ ) described later If the position connected to the side is * 1, and the position connected to the 1 side is * 2, then mouth 1 is * 1-0 It may be * 2 or * 1-0, 101, * 2.
  • 1 shows the wavelength dispersion characteristics of II.
  • the ratio of the retardation in the thickness direction in the visible light region to the measurement wavelength is 1/4, as shown by the dotted line in Fig. 1, the birefringence is proportional to the measurement wavelength, so the measurement wavelength It has a reverse wavelength dispersion property in which the longer the length, the larger the phase difference.
  • the conventional optically anisotropic film exhibiting reverse wavelength dispersion has a position where it overlaps with the ideal curve shown by the dotted line in the short wavelength region as shown by the solid line in Fig. 1, but in the long wavelength region. Shows a tendency to deviate from the ideal curve.
  • optically anisotropic film of the present invention by controlling the optical characteristics, it is possible to bring the optical characteristics in the long wavelength region close to the ideal curve, as indicated by the outlined arrows.
  • the ratio of 1.02 or more means that the anisotropy of absorption is different between the thickness direction and the in-plane direction of the optically anisotropic film.
  • R e (800) ⁇ 10 nm means that the anisotropy of the refractive index is small in the in-plane direction of the optically anisotropic film. In other words, it means that the absorption anisotropy is small in the directions orthogonal to each other in the plane.
  • Optically anisotropic film which satisfies the requirements 1-3 is have you in the range of wavelength 7 0 0 ⁇ 9 0 0 n m , absorption in plane direction is greater than the absorption in the thickness direction. More specifically, as shown in FIG. 3, absorption characteristics in the in-plane X-axis direction and in the in-plane direction are almost the same, and absorption in the axial direction is greater than absorption in the X-axis direction and the so-axial direction. small.
  • the upper side shows the behavior of the refractive index with respect to the wavelength
  • the lower side shows the behavior of the absorption characteristic with respect to the wavelength (absorption spectrum).
  • the refractive index n in the region away from the intrinsic absorption wavelength decreases monotonically with increasing wavelength.
  • Such dispersion is called "normal dispersion”.
  • the index of refraction in the wavelength range including the intrinsic absorption increases rapidly with increasing wavelength.
  • Such dispersion is called "abnormal dispersion”.
  • the absorption in the in-plane direction is larger than that in the thickness direction.
  • absorption characteristics X are also referred to as absorption characteristics X.
  • the absorption characteristic X is achieved by arranging the infrared absorbing dye in the optically anisotropic film so that the axial direction in which the absorbance of the infrared absorbing dye is high is parallel to the in-plane direction.
  • optical anisotropic film X the configuration of the optically anisotropic film of the present invention (hereinafter also referred to as “optical anisotropic film X”) (corresponding to the first embodiment of the present invention) satisfying the above requirements 1 to 4 will be described in detail.
  • optically anisotropic film X satisfies the requirement 1.
  • Criterion 1 Are the linearly polarized lights that are orthogonal to each other from a direction inclined by 45 ° from the direction normal to the surface of the optically anisotropic film? Wavelength of 700 to 900 when polarized light and 3 polarized light are irradiated respectively In the absorption intensity at the wavelength with the largest absorption in the range? The ratio of the absorption intensity of the three polarized light to the absorption intensity of the polarized light is 1.02 or more.
  • the absorption intensity ratio may be 1.02 or more, and the retardation in the thickness direction of the optically anisotropic film X exhibits more excellent reverse wavelength dispersion (hereinafter, simply referred to as “the effect of the present invention It is also referred to as "excellent point.”), 1.05 or more is preferable, and 1.08 or more is more preferable.
  • the upper limit is not particularly limited, but it is preferably 1.1 or less, 1.
  • Requirement 1 is measured by using a spectrophotometer equipped with a polarizer for infrared rays (IV! ⁇ -3 100 (31 ⁇ 1 I 1//01 0211)) at a polar angle of 45°. There is a method of measuring absorption in the infrared region.
  • optically anisotropic film X satisfies the requirement 2.
  • (550) represents the in-plane retardation of the optically anisotropic film at a wavelength of 550 n.
  • (550) is preferably 5 n or less.
  • the lower limit is not particularly limited, The above is mentioned.
  • optically anisotropic film X satisfies the requirement 3.
  • (800) represents the in-plane retardation of the optically anisotropic film at a wavelength of 800 n.
  • (800) is preferably 5 n or less.
  • Lower limit is particularly limited ⁇ 2020/175 569 8 ⁇ (:171? 2020 /007805
  • the optically anisotropic film X satisfies the requirement 4. It represents the retardation in the thickness direction of the film, and [3 ⁇ 4: (550) represents the retardation in the thickness direction of the optically anisotropic film at a wavelength of 550 n.
  • [3 ⁇ 4 1: (450) (550) is preferably 0.97 or less, more preferably 0.92 or less, and further preferably 0.97 or less.
  • the lower limit is not particularly limited, but is often 0.75 or more.
  • the optical anisotropic film X preferably satisfies the requirement 5.
  • [3 ⁇ 4 1: (650) /[3 ⁇ 4 1: (550) is ...! .05 or higher is preferable, 1.08 or higher is more preferable, and 1.10 or higher is further preferable.
  • the upper limit is not particularly limited, but 1.25 or less is preferable, and 1.20 or less is more preferable.
  • the thickness of the optically anisotropic film X is not particularly limited and is preferably 10 or less, more preferably 0.5 to 8. 0, and 0.5 to 6. 0 from the viewpoint of thinning. Is preferred.
  • the thickness of the optically anisotropic film X means the average thickness of the optically anisotropic film X.
  • the average thickness is obtained by measuring the thickness of the optically anisotropic film X at arbitrary 5 or more locations and arithmetically averaging them.
  • the material contained in the optically anisotropic film X is not particularly limited as long as it satisfies the above requirements 1 to 4.
  • the optically anisotropic film X preferably contains an infrared absorbing dye.
  • the optically anisotropic film X contains the infrared absorbing dye, it is easy to satisfy the requirement 1.
  • the optically anisotropic film X has an infrared absorbing dye dispersed in addition to the infrared absorbing dye. ⁇ 2020/175 569 9 ⁇ (: 171-1? 2020 /007805
  • Examples of the matrix material include a polymer compound obtained by polymerizing a polymerizable liquid crystal compound described below, and a polymer described below.
  • the optically anisotropic film X contains a polymer (hereinafter, also referred to as “specific polymer”) having a residue derived from an infrared absorption dye (hereinafter, simply referred to as “infrared absorption dye residue”). Is also preferable.
  • the optically anisotropic film X may contain the above matrix material.
  • the residue derived from the infrared absorbing dye means a group obtained by removing any hydrogen atom from the infrared absorbing dye.For example, when one hydrogen atom is removed, a monovalent infrared absorbing dye residue is left. It becomes a base and becomes a divalent infrared absorbing dye residue when two hydrogen atoms are removed.
  • the molecular weight of the specific polymer is not particularly limited, but the weight average molecular weight is preferably 500 or more, more preferably 100 or more.
  • the upper limit is not particularly limited, but is often 100 or less.
  • optically anisotropic film X is an optically anisotropic film X formed by using a composition containing a liquid crystal compound and an infrared absorbing dye.
  • an optically anisotropic film formed by vertically aligning and fixing a liquid crystal compound which is preferably an optically anisotropic film X containing an infrared absorbing dye.
  • the infrared absorbing dye is a dye having a maximum absorption wavelength in the infrared region.
  • the molecular weight of the infrared absorbing dye is not particularly limited, but it is preferably less than 500.
  • the lower limit is not particularly limited, but is often 500 or more.
  • the infrared absorbing dye is a so-called low molecular weight compound, and the infrared absorbing dye does not include a compound having a plurality of repeating units. That is, the specific polymer corresponds to a compound different from the infrared absorbing dye (in other words, the specific polymer is not included in the infrared absorbing dye).
  • infrared absorbing dyes include diketopyrrolopyrrole dyes, diimmonium dyes, phthalocyanine dyes, naphthalocyanine dyes, azo dyes, polymethine dyes, anthraquinone dyes, pyrylium dyes, squarylium dyes. System dyes, triphenylmethane dyes, cyanine dyes, and aminium dyes.
  • the infrared absorbing dyes may be used alone or in combination of two or more.
  • the infrared absorbing dye a dye having a maximum absorption wavelength in the near infrared region (near infrared absorbing dye) is preferable.
  • the maximum absorption wavelength of the infrared absorbing dye is preferably located in the wavelength range of 700 to 1200 n in order that the effect of the present invention is more excellent, and the wavelength of 70000 to 9001 ⁇ ! More preferably, it is located within the range.
  • Absorbance integrated values of the infrared absorbing dye Is preferably larger than.
  • the integrated value of the above-mentioned absorbance is a value obtained by summing the absorbances at the respective wavelengths in the range from to 001.
  • the above measurement is a spectrophotometer (3 1 ⁇ 1 ⁇ 1 ⁇ /1 made by 8 0 2 11)).
  • the infrared absorbing dye is preferably a dichroic dye.
  • the dichroic dye is a dye having a property that the absorbance in the long axis direction of a molecule and the absorbance in the short axis direction of the molecule are different from each other.
  • the infrared absorbing dye preferably has a mesogenic group.
  • the infrared absorbing dye has a mesogenic group, it can be easily aligned with the liquid crystal compound described later, and the predetermined absorption characteristics can be easily controlled.
  • the mesogenic group is a functional group having rigidity and orientation.
  • the structure of the mesogen group includes, for example, a plurality of groups selected from the group consisting of an aromatic ring group (aromatic hydrocarbon ring group and aromatic heterocyclic group) and an alicyclic group, a direct group or a linking group. ⁇ 2020/175 569 11 2020/007805
  • the compound represented by the formula (1) has less absorption in the visible light region, and the coloring of the obtained optically anisotropic film is further suppressed. Further, since this compound contains a group having a mesogenic group, it is easily aligned with the liquid crystal compound. At that time, since a group having a mesogenic group is arranged in a form extending laterally from the condensed ring portion containing a nitrogen atom in the center of the compound, the above condensed ring portion is aligned with the alignment direction of the liquid crystal compound. Easy to arrange in orthogonal directions.
  • the liquid crystal compound when aligned along the thickness direction of the optically anisotropic film X, it is derived from the condensed ring portion in the direction (in-plane direction) orthogonal to the thickness direction of the optically anisotropic film. Absorption in the near-infrared region (particularly, wavelength 700 to 900 nm) is easily obtained, and an optically anisotropic film exhibiting desired characteristics is easily obtained.
  • substituents include an alkyl group, an alkenyl group, an alkynyl group, Reel group, amino group, alkoxy group, aryloxy group, aromatic heterocyclic group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonyl group Amino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, aromatic heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, hydroxy group, mercapto group, Halogen atom, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino
  • R 1 1 and R 12 preferably a group other than a group having mesogenic groups, which will be described later.
  • the electron-withdrawing group represents a substituent having a positive CJ p value (sigma para value) of H a mm ett, such as a cyano group, an acyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, or a sulfamoyl group. , A sulfinyl group, and a heterocyclic group.
  • These electron-withdrawing groups may be further substituted.
  • Hammett's substituent constant C7 value is explained.
  • Hammett's rule is an empirical rule proposed by LP Hammett in 1993 to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives, which is widely accepted today. Is recognized.
  • Substituent constants determined by Hammett's law include CJ p values and crm values, and these values can be found in many common books. For example, J. A. Dean, “Lang e's H and book ⁇ f C hemistry”, 12th edition, 1979 (Me Gr aw-H il
  • the electron-withdrawing group is a Hammett substituent constant. ⁇ 2020/175569 13 ⁇ (: 171-1? 2020 /007805
  • Substituents having a £7 value of at least 0.20 are preferred.
  • the £7 value is preferably 0.25 or more, more preferably 0.30 or more, still more preferably 0.35 or more.
  • the upper limit is not particularly limited, but is preferably 0.80 or less.
  • Specific examples include a cyano group ( ⁇ 66.), A carboxyl group (one Rei_rei_rei_1 ⁇ 1:. ⁇ 45), an alkoxycarbonyl group (one Rei_rei_rei_1 ⁇ / 16:. ⁇ 45), aryloxy Carbonyl group : 0.44), carbamoyl group (10 ⁇ 1 ⁇ 11 to 12 2 : ⁇ .36), alkylcarbonyl group (10 ⁇ 1 ⁇ /16: ⁇ .50), arylcarbonyl group : 0.43), an alkylsulfonyl group (one
  • 1 ⁇ /16 represents a methyl group and II represents a phenyl group.
  • the values in parentheses are for typical substituents. [3 ⁇ 4 6 ., 1 99 1 year,
  • 5- to 6-membered ring those usually used as an acid nucleus in a merocyanine dye are preferable.
  • Examples of the ring formed are 1,3-dicarbonyl nucleus, pyrazolinone nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketone body), 2-thio_2,4-thiazolidinedione. Nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio _2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2,4-imidazolidynedione nucleus,
  • a 2-thio-2,4-imidazolidindione nucleus, a 2-imidazolin-5-one nucleus, a 3,5-pyrazolidinedione nucleus, a benzothiophen-3-one nucleus, or an indanone nucleus is preferable.
  • [0036] is preferably a heterocyclic group, and more preferably an aromatic heterocyclic group.
  • the heterocyclic group may be monocyclic or polycyclic.
  • Heterocyclic groups include pyrazole ring groups, thiazole ring groups, oxazole ring groups, imidazole ring groups, oxadiazole ring groups, thiadiazole ring groups, triazo ⁇ 2020/175569 14 ⁇ (: 171-1? 2020 /007805
  • Ring group pyridine ring group, pyridazine ring group, pyrimidine ring group, pyrazine ring group, these benzo-condensed ring groups (eg, benzothiazole ring group, benzopyrazine ring group) or naphtho-condensed ring group, or these condensed groups Ring complexes are preferred.
  • the heterocyclic group may be substituted with a substituent. As a substituent,
  • [0037] are each independently a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted boron (one 2 , R 3 represents a substituent) or a metal atom, You may have.
  • substituent It has the same meaning as the substituent and is preferably an alkyl group, an aryl group, or a heteroaryl group.
  • the substituent of the substituted boron (for example, the alkyl group, aryl group, or heteroaryl group described above) may be further substituted with a substituent.
  • substituent for example, the alkyl group, aryl group, or heteroaryl group described above.
  • a transition metal atom, a magnesium atom, an aluminum atom, a calcium atom, a barium atom, a zinc atom, or a tin atom is preferable, and an aluminum atom, a zinc atom, a tin atom, a vanadium atom, an iron atom, a cobalt atom, a nickel atom, a copper atom.
  • a palladium atom, an iridium atom, or a platinum atom is more preferable.
  • the definition of the mesogen group is as described above.
  • [ 14] is preferably a group represented by the formula (2).
  • the symbol represents the bonding position.
  • 1 represents a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • the arylene group include a phenylene group.
  • Heteroarylene groups include pyrazole ring, thiazole ring, 20/175569 15 ⁇ (: 171? 2020 /007805
  • _ ⁇ -1, — 0 ([3 ⁇ 4 ⁇ ) 2 _ , one 30 _ , 1 [3 ⁇ 4 0— , or a combination of these (for example, _ ⁇ ⁇ _ , _ ⁇ ⁇ [3 ⁇ 4. 1, _ ⁇ ⁇ ⁇ 1 to 1 2 ⁇ 1 to 1 2 —, - 0 0 nRCH 2 CH 2 _ , _ Rei_rei_rei_rei_1 ⁇ 1 Rei_1 _ 1 _ and _ ⁇ thirty _ ⁇ thirty _) represents a.
  • IV! 2 represents a substituted or unsubstituted arylene group, a substituted or unsubstituted heteroarylene group, or a substituted or unsubstituted cycloalkylene group.
  • arylene group include a phenylene group.
  • heteroarylene group examples include a pyrazole ring, a thiazole ring, an oxazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and these benzo-condensed rings ( Examples thereof include a benzothiazole ring, a benzopyrazine ring) or a naphtho-condensed ring, or a divalent group obtained by removing any two hydrogen atoms from a complex of these condensed rings.
  • the cycloalkylene group preferably has 5 to 7 carbon atoms.
  • X 2 represents a single bond or a divalent linking group.
  • the divalent linking group for example, a divalent hydrocarbon group (for example, an alkylene group having 1 to 10 carbon atoms, 1 to 10 carbon atoms
  • alkenylene groups divalent aliphatic hydrocarbon groups such as alkynylene groups having 1 to 10 carbon atoms, divalent aromatic hydrocarbon groups such as arylene groups), 2 ⁇ 2020/175569 16 ⁇ (: 171-1?2020/007805
  • represents a hydrogen atom or an alkyl group.
  • a door represents 1 to 10. Among them, 1 to 5 is preferable, and 2 to 4 is more preferable.
  • the definition of the polymerizable group is the same as the definition of the polymerizable group that the liquid crystal compound described later may have.
  • the infrared absorbing dye is more preferably a compound represented by the formula (3)
  • [3 ⁇ 4 2 2 each independently represent a cyano group, an acyl group, an alkoxycarbonyl group, an alkylsulfinyl group, an arylsulfinyl group, or Te Roariru group nitrogen-containing.
  • [3 ⁇ 4 15 and [3 ⁇ 4 16 are each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group, and [3 ⁇ 4 15 and [3 ⁇ 4 1 6 are bonded to form a ring. May be formed.
  • the ring formed include an alicyclic ring having 5 to 10 carbon atoms, an aromatic hydrocarbon ring having 6 to 10 carbon atoms, and an aromatic heterocyclic ring having 3 to 10 carbon atoms.
  • the ring formed by combining 6 may be further substituted with a substituent.
  • [3 ⁇ 4 17 and [3 ⁇ 4 18] each independently represent an alkyl group, an alkoxy group, an aryl group, or a heteroaryl group.
  • a substituent may be substituted.
  • a substituent And [it includes groups exemplified in the description of the substituents represented by 3 ⁇ 4 1 2.
  • the content of the infrared absorbing dye in the composition is not particularly limited, but is preferably 5 to 70 mass% with respect to the total mass of the liquid crystal compound, because the effect of the present invention is more excellent, ⁇ 50 mass% is more preferred.
  • the type of liquid crystal compound is not particularly limited, but it can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disc-shaped type (disc-shaped liquid crystal compound or discotic liquid crystal compound) based on its shape. Furthermore, there are low molecular type and high molecular type respectively.
  • a polymer generally means a polymer with a degree of polymerization of 100 or more (polymer physics/phase transition dynamics, Masao Doi, p. 2, Iwanami Shoten, 1 992). Two or more rod-shaped liquid crystal compounds, two or more discotic liquid crystal compounds, or a mixture of rod-shaped liquid crystal compounds and discotic liquid crystal compounds may be used.
  • the position of the maximum absorption wavelength of the liquid crystal compound is not particularly limited, but it is preferably located in the ultraviolet region because the effect of the present invention is more excellent.
  • the liquid crystal compound is preferably a reverse wavelength dispersion liquid crystal compound.
  • the reverse wavelength dispersion liquid crystal compound means a compound in which an optically anisotropic film formed by using the compound exhibits reverse wavelength dispersion.
  • the reverse wavelength dispersive liquid crystal compound means a compound in which the in-plane retardation of the optically anisotropic film formed using the compound increases as the measurement wavelength increases and approaches the ideal curve. To do.
  • Liquid crystal compounds can be used because they can reduce changes in optical characteristics with temperature and humidity. ⁇ 2020/175 569 18 ⁇ (: 171-1? 2020 /007805
  • a liquid crystal compound having a polymerizable group (hereinafter, also referred to as “polymerizable liquid crystal compound”) is preferable.
  • the liquid crystal compound may be a mixture of two or more kinds, and in that case, it is preferable that at least one has two or more polymerizable groups.
  • the optically anisotropic film is preferably a layer formed by fixing a composition containing a polymerizable liquid crystal compound by, for example, polymerization, and in this case, after it becomes a layer, it is no longer liquid crystalline. No need to show.
  • the type of the polymerizable group is not particularly limited, and a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • radically polymerizable group a known radically polymerizable group can be used, and an acryloyl group or a methacryloyl group is preferable.
  • a known cationically polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and Examples include vinyloxy groups. Of these, an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferable.
  • examples of preferable polymerizable groups include the following.
  • the liquid crystal compound is preferably a compound represented by the formula ().
  • Equation ( ⁇ ) 1 - eight 1 - 0 3 - ⁇ 1 -0 1 - eight 1-0 2 - ⁇ 2 -0 4 - eight 2 - 3 2 _ 2 above formula ( ⁇ ) ⁇ ⁇ And [) 4 are each independently a single bond,
  • ⁇ 2 each independently represents a divalent alicyclic hydrocarbon group having 5-8 carbon atoms, _ 01 ⁇ constituting the alicyclic hydrocarbon group 1 2 - of one or more one hundred and one , Or
  • 1 and 2 each independently represent a single bond, an aromatic ring having 6 or more carbon atoms, or a cycloalkylene ring having 6 or more carbon atoms.
  • 3 1 and 3 2 are each independently a single bond, a linear or branched alkylene group having 1 to 14 carbon atoms, or an alkyl group having 1 to 14 carbon atoms.
  • _ ⁇ 1 to 1 2 _ 1 or more which constitutes a straight-chain or branched alkylene group is _ ⁇ _, (0) — or, ⁇ represents a divalent linking group substituted with 1, and 0 represents a polymerizable group.
  • 1 1 and 1_ 2 each independently represent a monovalent organic group (e.g., alkyl group, or a polymerizable group).
  • the divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms represented by is preferably a 5-membered ring or a 6-membered ring.
  • the alicyclic hydrocarbon group may be a saturated alicyclic hydrocarbon group or an unsaturated alicyclic hydrocarbon group, but a saturated alicyclic hydrocarbon group is preferable.
  • Examples of the divalent alicyclic hydrocarbon group represented by 1 and (3 2, for example, can referred to the description of JP-201 2 2 1 068 JP paragraph 0078, the contents of which herein Incorporated.
  • aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, and phenanthroline ring
  • aromatic heterocycles such as furan ring, pyrrole ring, thiophenene ring, pyridin ring, thiazole ring, and benzothiazole ring. Ring
  • a benzene ring eg, 1,4-phenyl group
  • Examples of the above cycloalkylene ring include a cyclohexane ring and a cyclohexene ring. Among them, a cyclohexane ring (for example, a cyclohexane-1,4-diyl group) is preferable.
  • the linear or branched alkylene group having 1 to 14 carbon atoms represented by 3 1 and 3 2 is a methylene group, an ethylene group, a propylene group, or a ptyrene group. Is preferred.
  • Polymerizable group represented by _ 1 and 1_ 2 is not particularly limited, the radical polymerizable group (radical polymerizable group) or a cationically polymerizable group (cationically polymerizable group) is preferable.
  • the preferred range of the radically polymerizable group is as described above.
  • “8” represents an aromatic ring selected from the group consisting of groups represented by the following formulas (8 “_ 1) to (8 “_ 7).
  • *1 represents a bonding position with 0 1
  • *2 represents a bonding position with 0 2 .
  • alkyl group having 1 to 6 carbon atoms which is represented by an aromatic hydrocarbon ring group having 2 or an aromatic heterocyclic group having 3 to 12 carbon atoms include, for example, methyl group, ethyl group, propyl group and isopropyl group.
  • the aromatic hydrocarbon ring group number 6-1 2 carbon ⁇ 1 shows, for example, a phenyl group, 2, 6-GETS chill phenyl group, and, an aryl group such as a naphthyl group.
  • the aromatic heterocyclic group ⁇ 1 carbon number 3-1 2 showing, for example, thienyl group, thiazolyl group, furyl group, pyridyl group, and include F heteroaryl groups such as benzofuryl.
  • the aromatic heterocyclic group also includes a group in which a benzene ring and an aromatic heterocycle are condensed.
  • substituent which may be possessed ⁇ 1, for example, an alkyl group, alkoxy group, a nitro group, an alkylsulfonyl group, an alkyloxycarbonyl group, a cyano group, and, a halogen atom.
  • alkyl group for example, a linear, branched, or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group Base, _Butyl group, isoptyl group, 360-butyl group, 1_butyl group, and cyclohexyl group) are more preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group or an ethyl group is Particularly preferred.
  • an alkyl group having 1 to 8 carbon atoms for example, methyl group, ethyl group, propyl group, isopropyl group Base, _Butyl group, isoptyl group, 360-butyl group, 1_butyl group, and cyclohexyl group
  • an alkyl group having 1 to 4 carbon atoms is more preferable
  • an alkoxy group having 1 to 18 carbon atoms is preferable, and an alkoxy group having 1 to 8 carbon atoms (eg, methoxy group, ethoxy group, n-butoxy group, and methoxetoxy group) Is more preferable, an alkoxy group having 1 to 4 carbon atoms is further preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and ⁇ 2020/175569 23 ⁇ (: 171-1? 2020 /007805
  • an iodine atom, etc., and a fluorine atom or a chlorine atom is preferable.
  • 1 , 2, and 3 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon having 1 to 20 carbon atoms.
  • the ring may be any of an alicyclic group, a heterocyclic ring, and an aromatic ring, and is preferably an aromatic ring.
  • the formed ring may be substituted with a substituent.
  • the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, a methyl group, an ethyl group, an isopropyl group.
  • 6"-pentyl group (1, 1-dimethylpropyl group), I 6 "I-butyl group, or 1, 1-dimethyl-3,3-dimethylbutyl group is more preferable, and methyl group, ethyl group, or 1 6 “
  • the I-butyl group is particularly preferred.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, methylcyclohexyl group, and , A monocyclic saturated hydrocarbon group such as an ethyl cyclohexyl group; a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a cyclooctenyl group, a cyclodecenyl group, a cyclopentenyl group, a cyclohexagenyl group, a cyclooctagenenyl group Group and monocyclic unsaturated hydrocarbon group such as cyclodecadiene group; bicyclo [2.
  • Examples of the monovalent aromatic hydrocarbon ring group having 6 to 20 carbon atoms include a phenyl group, a 2,6-diethylphenyl group, a naphthyl group, a biphenyl group, and the like.
  • the aryl group of 2 (especially phenyl group) is preferable.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom, a chlorine atom or a bromine atom is preferable.
  • alkyl group having 1 to 6 carbon atoms examples include, for example, methyl group, ethyl group, propyl group, isopropyl group, _Butyl group, isoptyl group, 360-butyl group, ⁇ “-butyl group, And 11-hexyl group and the like.
  • 8 3 and 8 4 are independently 101, ([3 ⁇ 4 9) -, one 3, and represents a group selected from the group consisting of one thousand and one, 8 9 represents a hydrogen atom or a substituent.
  • X represents a hydrogen atom or a non-metal atom of Group 14 to Group 16 to which a substituent may be bonded.
  • examples of the non-metal atom of Groups 14 to 16 represented by X include an oxygen atom, a sulfur atom, a nitrogen atom having a substituent, and a carbon atom having a substituent.
  • the group, the formula (eight "one 1) those in ⁇ 1 is similar to the substituent which may have the like.
  • 3 3 and 34 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a carbon atom.
  • One or more of _ ⁇ ! ! 2 _ constituting the linear or branched alkylene group of the numbers 1 to 12 is _ ⁇ _ , (0) — or,
  • represents a divalent linking group substituted with 1, and 0 represents a polymerizable group.
  • !_ 3 and !_ 4 each independently represent a monovalent organic group (eg, an alkyl group or a polymerizable group), and like,
  • 8 fathers have at least one aromatic ring selected from the group consisting of aromatic hydrocarbon rings and aromatic heterocycles. Represents an organic group having 2 to 30 carbon atoms.
  • aromatic ring in X and SO may have a substituent
  • 8 fathers and 8 7 may combine to form a ring.
  • 0 3 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • Examples of 8X and 8SO include those described in paragraphs 0 0 3 9 to 0 0 9 5 of ⁇ 2 0 1 4/0 1 0 3 25.
  • alkyl group having 1 to 6 carbon atoms indicated by 0 3 for example, methyl group, ethyl group, propyl group, isopropyl group,
  • At least one of 8 1 and 8 2 is advantageous in that the effect of the present invention is more excellent. ⁇ 0 2020/175 569 26 (: 17 2020/007805
  • One is preferably a cycloalkylene ring having 6 or more carbon atoms, And eight second one is more preferably a number 6 or more cycloalkylene ring carbon
  • the content of the liquid crystal compound in the composition is not particularly limited, but is preferably 50% by mass or more, and more preferably 70% by mass or more, based on the total solid content in the composition.
  • the upper limit is not particularly limited, but it is often 90% by mass or less.
  • the solvent is not included in the total solid content in the composition. That is, the solid content means a component obtained by removing the solvent from the composition.
  • the composition may further contain a forward wavelength dispersible liquid crystal compound.
  • the normal wavelength dispersive liquid crystal compound means a compound in which an optically anisotropic film formed using the compound exhibits a normal wavelength dispersibility. That is, the forward wavelength dispersible liquid crystal compound means a compound in which the in-plane retardation of the optically anisotropic film formed using the compound decreases as the measurement wavelength increases.
  • the addition of the forward wavelength dispersive liquid crystal compound makes it possible to control the wavelength dispersion of the composition and to impart wavelength dispersibility closer to the ideal wavelength dispersion.
  • the above composition may contain the above-mentioned infrared absorbing dye and a component other than the liquid crystal compound.
  • the composition may include a polymerization initiator.
  • the polymerization initiator used is selected according to the type of polymerization reaction, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.
  • a thermal polymerization initiator for example, as the photopolymerization initiator, Carbonyl compound, acyloin ether, Examples thereof include hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimers and -aminophenyl ketones.
  • the content of the polymerization initiator in the composition is preferably 0.01 to 20% by mass, and more preferably 0.5 to 10% by mass, based on the total solid content of the composition.
  • the composition may include a polymerizable monomer.
  • polymerizable monomer examples include radically polymerizable or cationically polymerizable compounds. Of these, polyfunctional radically polymerizable monomers are preferable.
  • the polymerizable monomer is preferably a monomer copolymerizable with the above liquid crystal compound having a polymerizable group.
  • the polymerizable monomer described in paragraphs 0 0 1 8 to 0 0 20 of JP-A-2000-2 296 4 23 can be mentioned.
  • the content of the polymerizable monomer in the composition is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the composition may include a surfactant.
  • surfactant examples include conventionally known compounds, but fluorine compounds are preferable.
  • the composition may include a solvent.
  • a solvent an organic solvent is preferable.
  • Amides eg 1 ⁇ 1, 1 ⁇ 1-dimethylformamide as organic solvents
  • Sulfoxide eg: Dimethyl sulfoxide
  • Heterocyclic compound eg: Pyridine
  • Hydrocarbon eg: Benzene, Hexane
  • Alkyl halide eg: Chloroform, Dichloromethane
  • Ester eg: Methyl acetate, Ethyl acetate
  • Butyl acetate ketones (eg, acetone, methyl ethyl ketone), and ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane).
  • the composition may contain various alignment control agents such as a vertical alignment agent and a horizontal alignment agent.
  • the vertical alignment agent is a compound capable of vertically controlling the liquid crystal compound on the interface side.
  • the horizontal aligning agent is a compound capable of horizontally controlling the alignment of the liquid crystal compound on the interface side.
  • Examples of the vertical alignment agent include boronic acid compounds and onium salts.
  • the compound represented by the formula (20) is preferable.
  • (Meth) represents a substituent containing an acrylic group.
  • poronic acid compound examples include the poronic acid compound represented by the general formula ([]) described in paragraphs [0023] to [0032] of JP-A-2008-225281.
  • a compound represented by the formula (21) is preferable.
  • ring 8 represents a quaternary ammonium ion composed of a nitrogen-containing heterocycle.
  • X represents an anion.
  • !! _ 2 represents a single bond or a divalent linking group.
  • ⁇ 1 represents a divalent linking group having a 5 or 6-membered ring as a partial structure.
  • onium salt examples include the onium salts described in JP-A-2012-208397, paragraphs 0052 to 058, and the onium salts described in JP-A-2008-02673 ⁇ , paragraphs ⁇ 24 to 0055. And the onium salts described in JP-A-2002-37777. ⁇ 0 2020/175 569 29 ⁇ (: 17 2020 /007805
  • the content of the vertical alignment agent in the composition is preferably from 0.1 to 400% by mass, and more preferably from 0.5 to 350% by mass, based on the total mass of the liquid crystal compound.
  • the vertical aligning agent may be used alone or in combination of two or more kinds. When two or more kinds of vertical aligning agents are used, their total amount is preferably within the above range.
  • the composition preferably contains a leveling agent.
  • the leveling agent is not particularly limited, and a leveling agent containing a fluorine atom (fluorine-based leveling agent) or a leveling agent containing a silicon atom (silicon-based leveling agent) is preferable, and a fluorine-based leveling agent is preferable. Leveling agents are more preferred.
  • the fluorine-based leveling agent examples include fatty acid esters of polyvalent carboxylic acids in which a part of fatty acids are replaced with fluoroalkyl groups, and polyacrylates having a fluoro substituent.
  • a leveling agent containing a repeating unit derived from the compound represented by the formula (22) is preferable.
  • represents a hydrogen atom, a halogen atom, or a methyl group.
  • 1_ represents a divalent linking group.
  • the 1_ preferably an alkylene group having a carbon number of 2-1 6, any 10 1-1 not adjacent in the alkylene group 2 -, ten -, ten thousand and one, one thousand and one, or , 1001 ⁇ ! 1 to 1—may be substituted.
  • the symbol represents an integer of 1 to 18.
  • the leveling agent having a repeating unit derived from the compound represented by the formula (22) may further contain another repeating unit.
  • a repeating unit derived from the compound represented by the formula (23) is used as another repeating unit. ⁇ 2020/175 569 30 ⁇ (:171? 2020 /007805
  • the unit is mentioned.
  • [0090] represents a hydrogen atom, a halogen atom, or a methyl group.
  • X represents an oxygen atom, a sulfur atom, or one ([ ⁇ 3 )-. Represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the 8 12 represents a hydrogen atom, an alkyl group which may have a substituent, or an aromatic group which may have a substituent.
  • the alkyl group preferably has 1 to 20 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic.
  • Examples of the substituent that the alkyl group may have include a poly(alkyleneoxy) group and a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • the leveling agent contains a repeating unit derived from the compound represented by the formula (22) and a repeating unit derived from the compound represented by the formula (23),
  • the content of the repeating unit derived from the compound represented by the formula (1) is preferably 10 to 90 mol% and more preferably 15 to 95 mol% based on all the repeating units contained in the leveling agent.
  • the leveling agent contains a repeating unit derived from the compound represented by the formula (2 2) and a repeating unit derived from the compound represented by the formula (2 3), the leveling agent is represented by the formula (2 3)
  • the content of the repeating unit derived from the compound is preferably 10 to 90 mol% and more preferably 5 to 85 mol% based on all the repeating units contained in the leveling agent.
  • leveling agent a leveling agent containing a repeating unit derived from the compound represented by the formula (2 4) in place of the repeating unit derived from the compound represented by the formula (2 2) described above Can also be mentioned.
  • 8 2 represents a hydrogen atom, a halogen atom or a methyl group.
  • 1_ 2 represents a divalent linking group.
  • represents an integer of 1 to 18.
  • leveling agent examples include compounds exemplified in paragraphs 0 0 4 6 to 0 0 52 of JP-A-2000-4-331218, and Examples thereof include the compounds described in paragraphs 0 0 3 8 to 0 0 52 of Japanese Patent Laid-Open Publication No. 2000-205.
  • the content of the leveling agent in the composition is from 10 to 10 based on the total mass of the liquid crystal compound.
  • 80 mass% is preferable, and 20 to 60 mass% is more preferable.
  • the leveling agents may be used alone or in combination of two or more kinds. When two or more leveling agents are used, the total amount thereof is preferably within the above range.
  • composition may contain an adhesion improver and a plasticizer in addition to the above components.
  • the method for producing the optically anisotropic film X using the above composition is not particularly limited, and known methods can be mentioned.
  • a composition containing a polymerizable liquid crystal compound and an infrared absorbing dye is applied to form a coating film, and the coating film is subjected to alignment treatment to vertically align the polymerizable liquid crystal compound. Then, the obtained coating film is preferably subjected to a curing treatment (irradiation with ultraviolet rays (light irradiation treatment) or heat treatment) to form the optically anisotropic film X.
  • the optically anisotropic film X is a vertically aligned liquid crystal compound (especially, a polymerizable liquid crystal). ⁇ 2020/175 569 32 ⁇ (: 171-1? 2020 /007805
  • the film is formed by immobilizing a compound).
  • the composition is applied onto a support to form a coating film, and the coating film is subjected to an alignment treatment to align the polymerizable liquid crystal compound.
  • composition used comprises a polymerizable liquid crystal compound.
  • the definition of the polymerizable liquid crystal compound is as described above.
  • the support used is a member having a function as a base material for applying the composition.
  • the support may be a temporary support that is peeled off after applying and curing the composition.
  • a glass substrate may be used in addition to the plastic film.
  • Polyester resin such as polyethylene terephthalate, polycarbonate resin, (meth)acrylic resin, epoxy resin, polyurethane resin, polyamide resin, polyolefin resin, cellulose derivative, silicone resin, and polyvinyl alcohol And so on.
  • the thickness of the support may be about 5 to 100, preferably 10 to 250 ⁇ 01, and more preferably 15 to 90.
  • An alignment layer may be arranged on the support, if necessary.
  • the alignment layer generally contains a polymer as a main component.
  • the polymer for the alignment layer is described in many documents and many commercial products are available.
  • As the polymer for the alignment layer polyvinyl alcohol, polyimide or a derivative thereof is preferable.
  • the orientation layer is preferably subjected to a known rubbing treatment.
  • the thickness of the alignment layer is preferably 0.01 to 10 and more preferably 0.01 to 1.
  • the composition may be applied by a force coating method, a dip coating method, a spin coating method, a printing coating method, a spray coating method, a slot coating method, a mouth coating method, a slide coating method. ⁇ 2020/175569 33 ⁇ (: 171-1?2020/007805
  • the coating film formed on the support is subjected to alignment treatment to align the polymerizable liquid crystal compound and the infrared absorbing dye in the coating film.
  • the infrared absorbing dye With the alignment of the polymerizable liquid crystal compound, the infrared absorbing dye also tends to be aligned in a predetermined direction.
  • the orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film.
  • the liquid crystal phase formed by the alignment treatment can be generally transformed by a change in temperature or pressure.
  • the transition can also be performed depending on the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250 ° °, more preferably 60 to 230 ° °, and the heating time is 1 0 second to 10 minutes is preferable.
  • the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described later.
  • the cooling temperature 2 0 ⁇ 2 0 0 ° ⁇ virtuous preferred, more preferably 3 0 ⁇ 1 5 0 ° ⁇ .
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
  • the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable, from the viewpoint of manufacturing suitability.
  • the irradiation conditions of the light irradiation treatment are not particularly limited, but 50 to 1
  • the arrangement state of the infrared absorbing dye can be adjusted by adjusting various conditions, and as a result, the optical characteristics of the optically anisotropic film can be adjusted.
  • optically anisotropic film X is an optically anisotropic film X formed by using a composition containing a polymer and an infrared absorbing dye.
  • the type of polymer is not particularly limited, but a reverse wavelength dispersible polymer is preferable.
  • the reverse wavelength dispersible polymer means a polymer in which an optically anisotropic film formed using the polymer exhibits reverse wavelength dispersibility.
  • One of the preferred embodiments of the polymer is a polymer containing one or more oligofluorene units selected from the group consisting of the repeating unit represented by the formula (7) and the repeating unit represented by the formula (8). Can be mentioned.
  • 1 to [3 ⁇ 4 33 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms which may have a substituent. Represents.
  • a heteroaryl group having 4 to 10 carbon atoms which may have, an acyl group having 1 to 10 carbon atoms which may have a substituent, and a carbon number which may have a substituent of 1 to 10 10 alkoxy group, optionally substituted aryloxy group having 1 to 10 carbon atoms, optionally substituted aryloxy group having 1 to 10 carbon atoms, optionally substituted Optionally an amino group, optionally having a substituent ⁇ 2020/175 569 35
  • At least two groups adjacent to each other may combine with each other to form a ring. It is also included in equation (7) [3 ⁇ 435, [3 ⁇ 436, [3 ⁇ 437 , [3 ⁇ 438 and 3 9 can be the same or may be different from one another. Similarly, the two [3 ⁇ 4 3 4 , [3 ⁇ 4 3 5 , [3 ⁇ 4 3 6 , and [3 ⁇ 4 3 7 , They may be the same as or different from each other.
  • the content of the oligofluorene unit contained in the polymer is not particularly limited, but is preferably 1 to 70 mol% and more preferably 10 to 40 mol% based on all repeating units.
  • polystyrene resin examples include a polymer containing a repeating unit represented by the formula (9) and a repeating unit represented by the formula (11).
  • X represents a group represented by the formula (10).
  • the symbol represents the bonding position.
  • Or represents a hydrocarbon group having 1 to 22 carbon atoms.
  • is 10 ([3 ⁇ 4 61 ) ([3 ⁇ 4 62 )-, the group represented by the formula (1 2), 13 ⁇ ([3 ⁇ 4 67 )(8 68 ) —, -30 2 -, -3- , Divalent aliphatic hydrocarbon group, 10 ( ⁇ 1 ⁇ 1 3 ) 2 _ phenylene group (01 to 13) 2 _, or, representing the _ _ _ hundred ⁇ _! _ _ _ ⁇ hundred.
  • [3 ⁇ 4 61 , [3 ⁇ 4 62 , [3 ⁇ 4 67 and [3 ⁇ 4 68] are each independently a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 22 carbon atoms (for example, 6 to 1 carbon atoms). Represents 0 of 0.
  • [3 ⁇ 4 63 to [3 ⁇ 4 66 each independently represent a hydrogen atom or an alkyl group.
  • !_ represents a divalent aliphatic hydrocarbon group.
  • the content of the repeating unit represented by the formula (9) in the polymer is not particularly limited, but is preferably 30 to 90 mol% based on all repeating units.
  • the content of the repeating unit represented by the formula (11) in the polymer is not particularly limited, but is preferably 10 to 70 mol% with respect to all repeating units.
  • Another preferable embodiment of the polymer is cellulose acylate.
  • lower fatty acid esters of cellulose are preferred.
  • Lower fatty acid means a fatty acid having 6 or less carbon atoms. Fatty acid carbon ⁇ 2020/175 569 37 ⁇ (: 171-1? 2020 /007805
  • the number is preferably 2 (cellulose acetate), 3 (cellulose probionate), or 4 (cellulose butylate).
  • a mixed fatty acid ester such as cellulose acetate probionate and cellulose acetate butylate may be used.
  • the degree of acetylation of cellulose acetate is preferably 55.0 to 62.5%, more preferably 57.0 to 62.0%, and further preferably 58.5 to 61.5%. ..
  • the acetylation degree means the amount of bound acetic acid per unit mass of cellulose.
  • the degree of acetylation shall be in accordance with the measurement and calculation of the degree of acetylation in 8 3 1//1: 0-8 1 7-9 1 (Test method for cellulose acetate, etc.).
  • additives such as a plasticizer, a deterioration inhibitor, a retardation increasing agent, and an ultraviolet absorber may be used in combination.
  • the content of the polymer in the composition is not particularly limited, but is preferably 50% by mass or more, and more preferably 70% by mass or more based on the total solid content in the composition.
  • the upper limit is not particularly limited, but is often 97% by mass or less.
  • the solvent is not included in the total solid content in the composition.
  • the method for producing the optically anisotropic film X using the above composition is not particularly limited, and known methods can be mentioned.
  • an unstretched film is formed using a composition containing a polymer and an infrared absorbing dye, and the obtained unstretched film is stretched and oriented in the thickness direction to obtain a stretched film. And a method of forming an optically anisotropic film.
  • optically anisotropic film X is an optically anisotropic film X formed by using a composition containing a polymer (specific polymer) having an infrared absorbing dye residue. ⁇ 2020/175 569 38 ⁇ (:171? 2020 /007805
  • the infrared absorbing dye residue means a group obtained by removing any hydrogen atom from the infrared absorbing dye.
  • Examples of the infrared absorbing dye capable of forming an infrared absorbing dye residue include the infrared absorbing dyes described in (Preferred Mode 1) above.
  • composition may contain the polymer described in (Preferred Aspect 2) above.
  • the method for producing the optically anisotropic film X using the above composition is not particularly limited, and known methods can be mentioned.
  • an unstretched film is formed using a composition containing an infrared absorbing dye and a polymer, and the obtained unstretched film is stretched and oriented in the thickness direction and stretched.
  • the method of forming the optically anisotropic film X which is a film can be mentioned.
  • optically anisotropic film X can be applied to various uses.
  • the optically anisotropic film X may be used as a laminated body containing another optically anisotropic film.
  • the type of other optically anisotropic film is not particularly limited, and examples thereof include a s/2 plate and a s/4 plate.
  • the s/4 plate is a plate having a function of converting linearly polarized light of a certain specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a plate exhibiting an in-plane retardation at a predetermined wavelength of 01, where [6 is 4 (or an odd multiple of this).
  • In-plane lettering at a wavelength of 550! (5 50)) may have an error of about 25 n around the ideal value (1 3 7 5 n 0 0), for example, it is preferable that it is 1 10 to 160 n. , 120 to 1501 ⁇ 01 is more preferable.
  • a broadband S/4 plate in which a S/2 plate and a S/4 plate are laminated may be used. ⁇ 2020/175 569 39 ⁇ (:171? 2020 /007805
  • S/2 plate is an in-plane retardation at a specific wavelength of 01. ⁇ (S) (S) An optically anisotropic film that satisfies S/2. This formula is for any wavelength in the visible region (for example, Have been achieved in. Among them, It is preferable that (550) satisfy the following relationship.
  • an optically anisotropic film formed from a composition containing a liquid crystal compound and an ultraviolet ray absorbing dye (hereinafter, also referred to as “optical anisotropic film”).
  • the optical anisotropic film satisfies the relationship of the equation (1) described later, and the wavelength in the direction of the fast axis of the optically anisotropic film is 70 to 900 n.
  • the absorption in m is larger than the absorption at a wavelength of 70 to 900 n in the direction of the slow axis of the optically anisotropic film (the optically anisotropic film of the second embodiment of the present invention). It corresponds to one example).
  • the optically anisotropic film has a large in-plane retardation in the long wavelength region under the influence of absorption at the above wavelengths of 700 to 900 n , and has a reverse wavelength dispersion in the in-plane phase difference. Excel.
  • One of the characteristic points of the optically anisotropic film is that the absorption characteristics in the wavelength range of 700 to 900 n are controlled.
  • Fig. 5 shows the measurement wavelength.
  • the phase difference at each wavelength in the visible light region standardized with (5 5 0 1 ⁇ 0 1)) as 1.
  • (S) shows the chromatic dispersion characteristic of ().
  • the phase difference is proportional to the measurement wavelength, as shown by the dotted line in Fig. 5, so the longer the measurement wavelength is, the larger the phase difference becomes. It has characteristics.
  • the conventional optically anisotropic film exhibiting reverse wavelength dispersion has a position where it overlaps with the ideal curve shown by the dotted line in the short wavelength region as shown by the solid line in Fig. 5, but in the long wavelength region. In this case, it tends to deviate from the ideal curve.
  • the optical characteristics in the long wavelength region can be controlled as indicated by the white arrow. ⁇ 2020/175 569 40 ⁇ (:171? 2020 /007805
  • Sex can be approximated to an ideal curve.
  • the wavelength in the direction of the fast axis is from 700 to 900.
  • Absorption in the direction of the slow axis is larger than that at wavelengths of 700 to 900 nm.
  • absorption characteristics are also referred to as absorption characteristics.
  • one of the means for achieving the above absorption characteristics is, for example, in the optically anisotropic film, the axis of high absorption of the infrared absorbing dye is parallel to the fast axis direction. It can be cited as an arrangement.
  • the ordinary ray refractive index is lower than that in an optically anisotropic film having no absorption characteristics.
  • FIG. 6 is a diagram showing a comparison of the wavelength dispersion between the extraordinary ray refractive index 6 and the ordinary ray refractive index n 0 depending on the presence or absence of the absorption characteristic.
  • the thick line shows the curve of the extraordinary ray index of refraction 0 6 without the absorption characteristic
  • the solid line shows the curve of the ordinary ray index n 0 without the absorption characteristic.
  • the optically anisotropic film having an absorption characteristic as shown by the broken line, it is affected by the absorption at the wavelengths of 700 to 900 n as shown in Fig. 4 above.
  • the value of the ordinary ray refractive index is further decreased in the long wavelength region of the visible light region.
  • the birefringence ⁇ n which is the difference between the extraordinary ray refractive index ⁇ 6 and the ordinary ray refractive index n ⁇ , becomes larger in the long wavelength region of the visible light region, and the behavior of the arrow shown in Fig. 5 is achieved.
  • the optically anisotropic film satisfies the relationship of the formula (1).
  • (550) is preferably 0.97 or less
  • 0.92 or less is more preferable, and 0.88 or less is still more preferable.
  • the lower limit is not particularly limited, but is often 0.75 or more.
  • Optically anisotropic film (6 5 0 )/ ⁇ (5 5 0) is not particularly limited, ⁇ 2020/175569 41 ⁇ (: 171-1? 2020/007805
  • 1.05 or more is preferable, 1.08 or more is more preferable, and 1.10 or more is further preferable.
  • the upper limit is not particularly limited, but 1.25 or less is preferable, and 1.20 or less is more preferable.
  • (650) represents the in-plane retardation of the optically anisotropic film at a wavelength of 650 n.
  • optically anisotropic film (550) is not particularly limited, but it is useful as a quarter plate, Is preferred, and 120 to 150 nm is more preferred.
  • the thickness of the optically anisotropic film is not particularly limited, and from the viewpoint of thinning, it is preferably 10 or less, more preferably 0.5 to 8. ⁇ , further 0.5 to 6. Is preferred.
  • the thickness of the optically anisotropic film means the average thickness of the optically anisotropic film.
  • the average thickness is obtained by measuring the thickness of any 5 or more points on the optically anisotropic film and arithmetically averaging them.
  • the absorption (hereinafter, also referred to as "absorption”) at a wavelength of 70 ⁇ to 900 n in the fast axis direction of the optically anisotropic film is It is larger than the absorption at wavelengths 700 to 900 n in the direction of the slow axis (hereinafter also referred to as "absorption 3").
  • absorption is greater than absorption 3
  • absorption 3 means that the wavelength of the absorption spectrum obtained when the optically anisotropic film is irradiated with polarized light parallel to the fast axis of the optically anisotropic film.
  • the maximum absorbance at ⁇ 900 n is calculated from the maximum absorbance at wavelengths 700 ⁇ 900 n of the absorption spectrum obtained by irradiating the optically anisotropic film with polarized light parallel to the slow axis of the optically anisotropic film. Also intended to be great.
  • the above measurement is a spectrophotometer equipped with an infrared polarizer. 1 0 0 (31 ⁇ 1 ⁇ 1 ⁇ /1 made by 0211)).
  • the absorption can be made larger than the absorption 3. ..
  • orientational order parameter 3 0 of the optically anisotropic film ⁇ at the maximum absorption wavelength definitive in the wavelength 700 to 900 nm of the infrared absorbing dye is not particularly limited, _0. 50 superlinear ⁇ Often less than 10 Orientation order 3.
  • the reverse wavelength dispersion of the optically anisotropic film can be improved even if the amount of the infrared absorbing dye used is reduced. Therefore, when the optically anisotropic film is applied as an antireflection film of an organic light !_ (electroluminescence) display device, the brightness of the organic light !_ display device is more excellent. It is preferable to satisfy.
  • orientation order is 3. Is more preferably from 0.40 to 10.20, and even more preferably from 10.30 to 10.20.
  • 8[ 3 represents the absorbance for light polarized in the direction parallel to the slow axis direction of the optically anisotropic film. Indicates the absorbance for light polarized in the direction orthogonal to the slow axis direction of the optically anisotropic film.
  • Orientational order of optically anisotropic film 3. can be determined by measuring the polarization absorption of the optically anisotropic film. The above-mentioned measurement can be carried out using a spectrophotometer (1 ⁇ /1? ⁇ 3 1 00 (31 ⁇ 1 ⁇ 1 ⁇ /1 8 0211)) equipped with an infrared polarizer. Scan is a maximum absorption wavelength in our Keru absorption scan Bae spectrum in the wavelength 700 to 900 n m obtained in absorption measurement of the optical anisotropy Maku ⁇ .
  • an optically anisotropic film formed from a composition containing a liquid crystal compound and an ultraviolet ray absorbing dye (hereinafter, also referred to as “optical anisotropic film”). ) And the wavelength of the infrared absorbing dye is 700 to 900 n. ⁇ 2020/175 569 43
  • Is orientational order parameter 3 0 of the optically anisotropic film at the maximum absorption wavelength in satisfy the relationship of formula (1) described later, the wavelength 7 0 0-9 0 in the direction of the fast axis of the optically anisotropic film
  • the absorption at 0 n is the wavelength in the direction of the slow axis of the optically anisotropic film
  • optically anisotropic film has the above wavelength
  • the in-plane retardation in the long wavelength region increases due to the influence of absorption in 900, and the reverse wavelength dispersion is excellent in the retardation in the in-plane direction.
  • optically anisotropic film 2 exhibits excellent reverse wavelength dispersion is the same as in the case of the above-mentioned optically anisotropic film.
  • orientational order parameter 3 0 of the optically anisotropic film at the maximum absorption wavelength definitive in wavelength 7 0 0 to 9 0 0 nm of the infrared absorbing dye a relationship of Equation (1) Fulfill.
  • orientation order is 3. Is more preferably 1 0.40 to 1 0.20, still more preferably 10 0.30 to 10 0.20.
  • the method for measuring the orientation order degree 30 (s) of the optically anisotropic film is as described above for the optically anisotropic film.
  • the absorption (absorption) at a wavelength of 700 to 900 n in the fast axis direction of the optically anisotropic film is larger than that of the slow axis of the optically anisotropic film. Is greater than the absorption at wavelengths 700 to 900 n in the direction (Absorption 3).
  • absorption is greater than absorption 3
  • absorption 3 means that the wavelength of the absorption spectrum obtained when the optically anisotropic film is irradiated with polarized light parallel to the fast axis of the optically anisotropic film.
  • the maximum absorbance at 900 n is the wavelength of the absorption spectrum obtained when the optically anisotropic film is irradiated with polarized light parallel to the slow axis of the optically anisotropic film. It is intended to be greater than the maximum absorbance at.
  • the above measurement is a spectrophotometer equipped with an infrared polarizer. 1 0 (3 1 ⁇ 1 ⁇ 1 ⁇ /1 8 0 2 11 made)).
  • the absorption anisotropy as described above can be obtained by using an infrared absorbing dye. ⁇ 2020/175 569 44 ⁇ (:171? 2020 /007805
  • the absorption can be made larger than the absorption 3 by using a dichroic infrared absorbing dye and making the axis of the dye having a higher absorbance parallel to the fast axis of the optically anisotropic film.
  • the optically anisotropic film preferably satisfies the relationship of formula (2).
  • (550) is preferably 0.97 or less
  • 0.92 or less is more preferable, and 0.98 or less is still more preferable.
  • the lower limit is not particularly limited, but is often 0.75 or more.
  • Optically anisotropic film (650) XRe (550) is not particularly limited, but is preferably 1.05 or more, more preferably 1.08 or more, still more preferably 1.10 or more.
  • the upper limit is not particularly limited, but 1.25 or less is preferable, and 1.20 or less is more preferable.
  • (650) represents the in-plane retardation of the optically anisotropic film at a wavelength of 650 n.
  • optically anisotropic film 6 (550) is not particularly limited, but it is useful as a quarter plate, Is preferred, and 120 to 150 nm is more preferred.
  • the thickness of the optically anisotropic film is not particularly limited, and from the viewpoint of thinning, 10 or less is preferable, 0.5 to 8.0 is more preferable, and 0.5 to 6. preferable.
  • the method for measuring the thickness of the optically anisotropic film is as described in the above-mentioned optically anisotropic film.
  • Liquid crystal in composition used for forming optically anisotropic film and optically anisotropic film ⁇ 2020/175 569 45 ⁇ (:171? 2020 /007805
  • Examples of the compound and the infrared absorbing dye include a liquid crystal compound and an infrared absorbing dye used for forming the optically anisotropic film X, respectively.
  • the method for producing the optically anisotropic film and the optically anisotropic film is as follows.
  • a composition containing a liquid crystal compound having a polymerizable group and an infrared absorbing dye is applied to form a coating film.
  • An alignment treatment is performed to align the polymerizable liquid crystal compound, and the obtained coating film is subjected to a curing treatment (ultraviolet irradiation (light irradiation treatment) or heat treatment) to form an optically anisotropic film.
  • a curing treatment ultraviolet irradiation (light irradiation treatment) or heat treatment
  • optically anisotropic film and the optically anisotropic film an optically anisotropic film formed by horizontally aligning and fixing a liquid crystal compound, and an optically anisotropic film containing an infrared absorbing dye is preferable.
  • the composition is applied onto a support to form a coating film, and the coating film is subjected to alignment treatment to align the polymerizable liquid crystal compound.
  • composition used comprises a polymerizable liquid crystal compound.
  • the definition of the polymerizable liquid crystal compound is as described above.
  • Examples of the support used include the support used for forming the optically anisotropic film X described above.
  • an alignment layer may be arranged on the support.
  • the alignment layer include the alignment layer used for forming the optically anisotropic film X.
  • Examples of the coating method of the composition include the coating method used when forming the optically anisotropic film X.
  • the coating film formed on the support is subjected to an alignment treatment to align the polymerizable liquid crystal compound in the coating film.
  • an alignment treatment to align the polymerizable liquid crystal compound in the coating film.
  • the infrared absorbing dye With the alignment of the polymerizable liquid crystal compound, the infrared absorbing dye also tends to be aligned in a predetermined direction.
  • the orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film.
  • the liquid crystal phase formed by the alignment treatment is generally transformed by a change in temperature or pressure.
  • the transition can also be performed depending on the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250 ° °, more preferably 50 to 150 ° °, and the heating time is 1 0 second to 10 minutes is preferable.
  • the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described later.
  • cooling temperature lay is 2 0 ⁇ 2 0 0 ° ⁇ , more preferably 3 0 ⁇ 1 5 0 ° ⁇ .
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
  • the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable, from the viewpoint of manufacturing suitability.
  • the irradiation conditions of the light irradiation treatment are not particularly limited, but 50 to 1
  • the optically anisotropic film X can be applied to a circularly polarizing plate. More specifically, examples of the configuration of the circularly polarizing plate include an optically anisotropic film X, a quarter-strip plate, and a polarizer.
  • the stacking order of the optically anisotropic film X, the S/4 plate, and the polarizer is not particularly limited.
  • the optically anisotropic film X, the S/4 plate, and the The polarizer may be laminated in this order, or the s/4 plate, the optically anisotropic film X, and the polarizer may be laminated in this order.
  • optically anisotropic film and optically anisotropic film may be used as the above-mentioned S/4 plate.
  • the polarizer may be a member (linear polarizer) having a function of converting light into a specific linearly polarized light, and an absorption type polarizer can be mainly used.
  • the absorption-type polarizer examples include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers.
  • the material-based polarizer includes a coating-type polarizer and a stretching-type polarizer, both of which can be applied, but a polarizer prepared by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching is preferable. ..
  • the relationship between the absorption axis of the polarizer and the slow axis of the S/4 plate is not particularly limited, but the angle between the absorption axis of the polarizer and the slow axis of the S/4 plate is 45 ° ⁇ 10 ° Is preferred.
  • the optically anisotropic film X may be included in the display device.
  • more specific applications of the optically anisotropic film X include, for example, an optical compensation film for optically compensating a liquid crystal cell, and an antireflection film used for a display device such as an organic electroluminescence display device.
  • a circularly polarizing plate including the optically anisotropic film X and a polarizer can be mentioned.
  • This circularly polarizing plate can be suitably used as the antireflection film. That is, in a display device having a display element (for example, an organic electroluminescence display element) and a circularly polarizing plate arranged on the display element, the reflection tint can be further suppressed.
  • the optically anisotropic film X is preferably used as an optical compensation film of a PS (In Plane Switch Ing) liquid crystal display device, and shows a change in tint when viewed from an oblique direction and a black display. The light leakage can be improved.
  • PS In Plane Switch Ing
  • the organic layer was washed with distilled water (300 ml) and saturated aqueous sodium hydrogen carbonate (300 ml), and the obtained organic layer was dried over magnesium sulfate. Then, magnesium sulfate was removed from the obtained solution by filtration, and the solvent was distilled off from the solution under reduced pressure.
  • the structure of the compound a — 1 was identified by 1 H-NMR (Nuclear Magnetic Resonance).
  • Compound 3-3 can be prepared as described in paragraphs 0088 to ⁇ 09 of ⁇ / ⁇ 201 8/1 24 1 98.
  • Infrared absorbing dye 1 was synthesized according to the following scheme.
  • Cellulose acylate film 1 (“Cho 060111_” (manufactured by FUJIFILM Corporation) was continuously coated with the undercoat layer coating solution of the following composition with a wire bar of # 3.2. The supported substrate was dried with warm air at 40° ⁇ for 60 seconds, and then nitrogen purged so that the atmosphere had an oxygen concentration of ⁇ 0.01 volume% or less. ⁇ 2020/175 569 53 2020/0078 05
  • Fluorine compound _ 1 (hereinafter, “90” and “in the repeating unit in the chemical formula
  • the following liquid crystal compound _ 3 5.0 parts by mass Infrared absorbing dye _ 8 _ 1 1 0. 0 parts by mass
  • the following photopolymerization initiator I _ 1 5.0 parts by mass Fluorine-containing compound _ 1 0.3 parts by mass ⁇ 2020/175 569 54 ⁇ (: 171? 2020 /007805 Fluorine-containing compound below _ 2 ⁇ 0.3 parts by mass Single child 18.0 parts by mass Additives below _ 1 4.5 parts by mass Cyclopentanone 3 1 1. 1 part by weight methanol 9.7 parts by weight
  • the above-mentioned undercoat layer was coated with the coating liquid for an optically anisotropic film using a #5.0 wire bar to form a coating film, which was heated at 80 ° ⁇ for 1 minute and cooled to 25 ° ⁇ . did. After that, nitrogen purging was performed so that the oxygen concentration was less than 0.1% by volume, and the coating film was irradiated with ultraviolet rays with a dose of 500 ⁇ ”/ ⁇ 2 using a high-pressure silver lamp to produce an optically anisotropic film. (Corresponding to the first embodiment) was manufactured. The liquid crystal compound was vertically aligned by the above treatment and fixed by the curing treatment.
  • Infrared absorption dye An optically anisotropic film (corresponding to the first embodiment) was obtained by following the same procedure as in Example 1 except that the amount of was changed from 10 parts by mass to 5 parts by mass.
  • the infrared region at a polar angle of 45 ° was used.
  • the absorption in In it was confirmed that the absorption of 3 polarized light was larger than that of 3 polarized light.
  • the polarized light and the three-polarized light were measured using a film to which the infrared absorbing color element 1 was not added as a base line.
  • the ratio of the absorption intensity when using 3 polarized light to the absorption intensity when irradiating polarized light (3 polarized light intensity/polarized light intensity) at the wavelength of maximum absorption in the range was 1.1 1 (Fig. See 8).
  • the following coating liquid for optically anisotropic film was prepared.
  • a glass substrate with a rubbed polyimide alignment layer (Mitsumi 1 130, manufactured by Nissan Kagaku Co., Ltd.) was spin-coated with the coating liquid for the upper optically anisotropic film to form a coating film
  • the coating film was irradiated with the ultraviolet rays of to produce an optically anisotropic film (corresponding to the second embodiment).
  • the liquid crystal compound was horizontally aligned by the above treatment and fixed by the curing treatment.
  • optical properties of the obtained optically anisotropic film were measured using X o S can ⁇ 1 ⁇ /1 _ 1 (manufactured by Saito Science Co., Ltd.). 6 (550) is 1 40, (550) is ⁇ .83,
  • the absorption in the infrared region was confirmed using a spectrophotometer equipped with a polarizer for infrared rays (1 ⁇ /1? ⁇ _3 1 00 (31 ⁇ 1 ⁇ 1 ⁇ /1 811)). However, it was confirmed that a peak (maximum absorption wavelength: S 0! 3 X) derived from the near-infrared absorbing dye 0 _ 1 was expressed at 799 n. In addition, wavelengths 700 to 900 It was confirmed that the absorption in the direction parallel to the fast axis of the optically anisotropic film is larger than the absorption in the direction parallel to the slow axis.
  • optically anisotropic film obtained above and the optically anisotropic film obtained in Example 1 were laminated with an adhesive so that the longitudinal directions of the respective supports were aligned, and laminated. Body 1 was created.
  • a polyvinyl alcohol film having a thickness of 8001 was immersed in an aqueous iodine solution having an iodine concentration of 0.05% by mass at 30° for 60 seconds for dyeing.
  • the resulting film was longitudinally stretched to 5 times its original length while being immersed in an aqueous boric acid solution (boric acid concentration: 4% by mass) for 60 seconds, and then the longitudinally stretched film was A polarizer having a thickness of 20 was obtained by drying at 0°C for 4 minutes. ⁇ 2020/175 569 59 ⁇ (:171? 2020 /007805
  • a commercially available cellulose acylate film "Cho 080 II !_" (manufactured by FUJIFILM Corporation) was prepared and immersed in a sodium hydroxide aqueous solution of 55 ° at 1.5 mol/liter. After that, the obtained film was thoroughly washed with water to remove sodium hydroxide.
  • the polarizer protective film prepared above was attached to one surface of the polarizer prepared above by a polyvinyl alcohol adhesive to protect the polarizer and the polarizer disposed on one surface of the polarizer.
  • a polarizing plate including a film was produced.
  • the pressure-sensitive adhesive (3 ⁇ - 205 7, manufactured by Soken Chemical Co., Ltd.) was applied to the side of the polarizer (having no polarizer protective film) in the above-prepared polarizing plate to form a pressure-sensitive adhesive layer.
  • the laminated body 1 prepared above was laminated to prepare a circularly polarizing plate.
  • the angle between the slow axis of the laminate (in other words, the slow axis of the optically anisotropic film) and the transmission axis of the polarizer was 45°.
  • a polyimide alignment film 3M_130 manufactured by Nissan Chemical Industries, Ltd. was applied by spin coating. After drying the coating film, the coating film was sintered at 250 ° C. for 1 hour, and then the coating film was rubbed to form an alignment layer.
  • Liquid crystal compound below 1- _ 5 100 parts by mass Infrared absorbing dye 1 ⁇ parts by mass
  • Fluorine-containing compound _ 1 1. ⁇ parts by mass Chloroform 57 1.8 parts by mass
  • the following liquid crystal compound _ 5 and infrared absorbing dye I The group adjacent to the acryloyloxy group in the structural formula of _ 2 represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and the following liquid crystal compound!- _ 5 and an infrared absorbing dye I _ 2 represents a mixture of regioisomers having different methyl groups.
  • Liquid crystal compound _ 5 (hereinafter, structural formula)
  • Infrared absorbing dye (Hereinafter, structural formula)
  • optically anisotropic film coating solution on the orientation layer to form a coating film by spin coating, and heated for 1 minute at 1 20 ° ⁇ , cooled to 60 ° ⁇ .
  • a spectrophotometer equipped with an infrared polarizer (31 ⁇ 1 ⁇ 1 ⁇ /1 made by 811) was used to confirm the absorption in the infrared region.
  • infrared absorption dye Orientational order of optically anisotropic film at maximum absorption wavelength of 2. was 0.25.
  • liquid crystal compounds and infrared absorbing dyes in Table 1 are as follows.
  • Liquid crystal compound !__6 (hereinafter, structural formula)
  • the infrared absorbing dye [a group adjacent to the acryloyloxy group in the structural formula of 3 ⁇ 4_3 represents a propylene group (a group in which a methyl group is replaced with an ethylene group), 3 represents a mixture of regioisomers having different methyl groups.
  • Infrared absorbing dye _ 2 and infrared absorbing dye I _ 3 for each chloroform 1 It was dissolved at a concentration of ⁇ / ⁇ , and the obtained solution was used to measure the spectral characteristics.
  • a spectrophotometer (1 ⁇ /1? ⁇ 3 1 00 (31 ⁇ 1 ⁇ 1 ⁇ /1 880 II)) was used for the measurement.
  • the integrated value of absorbance at wavelengths of 700 to 900 n is Was larger than the integrated value of the absorbance at 400 to 700 n.
  • Infrared absorption dye The integrated value of absorbance at wavelengths of 700 to 900 n is Was larger than the integrated value of the absorbance at 400 to 700 n.
  • optically anisotropic film produced in the above Production Examples 2 to 4 and the optically anisotropic film obtained in Example 1 were bonded via an adhesive so that the longitudinal directions of the respective supports were aligned. And laminated together to produce a laminate.
  • the obtained laminated body was used in place of the laminated body 1 in ⁇ Production of organic semiconductor display device> to produce an organic semiconductor display device.

Abstract

本発明は、厚み方向の位相差が優れた逆波長分散性を示す光学異方性膜、積層体、円偏光板および表示装置を提供する。本発明の光学異方性膜は、以下の要件1~4を満たす。 要件1:光学異方性膜の膜表面の法線方向から45°傾けた方向から、互いに直交する直線偏光であるP偏光およびS偏光をそれぞれ照射した際に、波長700~900nmの範囲で最も吸収の大きい波長における吸収強度において、P偏光を照射した際の吸収強度に対するS偏光を照射した際の吸収強度の比が1.02以上である。 要件2:Re(550)<10nm 要件3:Re(800)<10nm 要件4:Rth(450)/Rth(550)<1

Description

\¥0 2020/175569 1 卩(:17 2020 /007805 明 細 書
発明の名称 : 光学異方性膜、 積層体、 円偏光板、 表示装置 技術分野
[0001 ] 本発明は、 光学異方性膜、 積層体、 円偏光板、 および、 表示装置に関する
背景技術
[0002] 屈折率異方性を持つ位相差膜 (光学異方性膜) は、 表示装置の反射防止膜 、 および、 液晶表示装置の光学補償フィルムなど種々の用途に適用されてい る。
近年、 逆波長分散性を示す光学異方性膜の検討がなされている (特許文献 1) 。 なお、 逆波長分散性とは、 可視光線領域の少なくとも一部の波長領域 において、 測定波長が長いほど複屈折が大きくなる 「負の分散」 特性を意味 する。
先行技術文献
特許文献
[0003] 特許文献 1 :特開 2 0 0 8— 2 7 3 9 2 5号公報
発明の概要
発明が解決しようとする課題
[0004] 一方で、 従来の光学異方性膜が示す厚み方向の位相差の逆波長分散性は必 ずしも十分ではなく、 更なる改良が必要であった。
より具体的には、 厚み方向に位相差を有する光学異方性膜の理想の 1つと しては、 測定波長に対する、 可視光線領域において厚み方向のレタデーシヨ ンの比が、 各測定波長で同じであることが好ましい。 例えば、 比 1 (波長 5 における厚み方向のレタデーシヨン/ 5 5 0 〇〇 と、 比 2 (波長
6 5 0 〇!における厚み方向のレタデーシヨン/ 6 5 0 1^ 111) とが同じであ ることが望ましい。 しかし、 従来の光学異方性膜においては、 可視光線領域 の長波長側において、 理想曲線から外れる傾向にあった。 なお、 本明細書で 〇 2020/175569 2 卩(:171? 2020 /007805
は、 光学特性が理想曲線に近づくことを、 逆波長分散性が優れるという。 本発明の第 1実施態様は、 上記実情に鑑みて、 厚み方向の位相差が優れた 逆波長分散性を示す光学異方性膜を提供することを目的とする。
また、 本発明の第 2実施態様は、 面内方向の位相差が優れた逆波長分散性 を示す光学異方性膜を提供することを目的とする。
また、 本発明は、 積層体、 円偏光板および表示装置を提供することも目的 とする。
課題を解決するための手段
[0005] 本発明者らは、 従来技術の問題点について鋭意検討した結果以下の構成に より上記目的を達成できることを見出した。
[0006] ( 1 ) 後述する要件 1〜 4を満たす光学異方性膜。
(2) 液晶化合物またはポリマー、 および、 赤外線吸収色素を含む組成物 を用いて形成された、 (1 ) に記載の光学異方性膜。
(3) 赤外線吸収色素が、 後述する式 (1 ) で表される化合物である、 ( 2) に記載の光学異方性膜。
(4) 組成物が液晶化合物を含み、
液晶化合物を垂直配向させて固定化してなる、 (1 ) 〜 (3) のいずれか に記載の光学異方性膜。
(5) (1 ) 〜 (4) のいずれかに記載の光学異方性膜と、 光学異方性膜 とは異なる他の光学異方性膜とを含む、 積層体。
(6) 他の光学異方性膜が、 ス /4板である、 (5) に記載の積層体。
(7) (1 ) 〜 (4) のいずれかに記載の光学異方性膜と、 ス /4板と、 偏光子とを有する、 円偏光板。
(8) 表示素子と、 表示素子上に配置された (1 ) 〜 (4) のいずれかに 記載の光学異方性膜とを有する、 表示装置。
発明の効果
[0007] 本発明の第 1実施態様によれば、 厚み方向の位相差が優れた逆波長分散性 を示す光学異方性膜を提供できる。 〇 2020/175569 3 卩(:171? 2020 /007805
また、 本発明の第 2実施態様によれば、 面内方向の位相差が優れた逆波長 分散性を示す光学異方性膜を提供できる。
また、 本発明によれば、 積層体、 円偏光板および表示装置を提供できる。 図面の簡単な説明
[0008] [図 1]従来の逆波長分散性を示す光学異方性膜の波長分散と理想の位相差の波 長分散との比較を示す図である。
[図 2]要件 1 を説明するための図である。
[図 3]光学異方性膜の吸収特性を示すための図である。
[図 4]有機分子の屈折率と吸収係数との波長分散特性を示す図である。
[図 5]従来の逆波長分散性を示す光学異方性膜の波長分散と理想の位相差の波 長分散との比較を示す図である。
[図 6]所定の吸収特性の有無による異常光線屈折率 n 6と常光線屈折率 n〇の 波長分散の比較を示す図である。
[図 7]実施例 1の光学異方性膜における極角 4 5 ° での赤外線領域での吸収ス ぺクトル図である。
[図 8]実施例 2の光学異方性膜における極角 4 5 ° での赤外線領域での吸収ス ぺクトル図である。
発明を実施するための形態
[0009] 以下、 本発明について詳細に説明する。 なお、 本明細書において 「〜」 を 用いて表される数値範囲は、 「〜」 の前後に記載される数値を下限値および 上限値として含む範囲を意味する。 まず、 本明細書で用いられる用語につい て説明する。
[0010] 本発明において、
Figure imgf000005_0001
6 (ス) および[¾ 1: (ス) は各々、 波長スにおける 面内のレタデーシヨンおよび厚み方向のレタデーシヨンを表す。 特に記載が ないときは、 波長スは、 5 5 0 1^ 111とする。
本発明において、 ^㊀ (ス) および (ス) は八父〇 3〇 8门 09 1\/1 ー 1 (オプトサイエンス社製) において、 波長スで測定した値である。 八父〇 3〇 3 11にて平均屈折率 (
Figure imgf000005_0002
/ 3) と膜厚 ( ( 〇 2020/175569 4 卩(:171? 2020 /007805
) ) を入力することにより、
遅相軸方向 (°
(ス) =[¾ 0 (ス)
(ス) = ( (1^父十 1·^) / 2— ^ 2.) X ¢1
が算出される。
なお、 [¾0 (ス) は、 八父〇 3〇 3门 〇 1\/1 ー 1で算出される数値と して表示されるものであるが、
Figure imgf000006_0001
(ス) を意味している。
[0011] 本明細書において、 屈折率 X、 n ys および、
Figure imgf000006_0002
åは、 アッベ屈折計 ( 八[¾-4丁、 アタゴ (株) 製) を使用し、 光源にナトリウムランプ (ス = 5891^ 01) を用いて測定する。 また、 波長依存性を測定する場合は、 多波 長アッベ屈折計口[¾-1\/12 (アタゴ (株) 製) にて、 干渉フィルタとの組み 合わせで測定できる。
また、 ポリマーハンドブック (」〇1~1 \^丨 1_巳丫&3〇 3, I N0) 、 および、 各種光学フィルムのカタログの値を使用できる。 主な光学フィル ムの平均屈折率の値を以下に例示する :セルロースアシレート (1. 48)
、 シクロオレフィンポリマー (1. 52) 、 ポリカーボネート (1. 59)
、 ポリメチルメタクリレート ( 1. 49) 、 および、 ポリスチレン (1. 5 9) 。
[0012] なお、 本明細書では、 「可視光線」 とは、 波長 400 n 以上 700 n
Figure imgf000006_0003
未満の光を意図する。 また、 「赤外線」 とは、 波長 700 n 以上の光を意 図し、 「近赤外線」 とは、 波長 700 n 以上 2000 n 以下の光を意図 し、 「紫外線」 とは、 波長 1 〇门 以上 400 n 未満の光を意図する。 また、 本明細書において、 角度 (例えば 「90° 」 などの角度) 、 および その関係 (例えば 「直交」 および 「平行」 など) については、 本発明が属す る技術分野において許容される誤差の範囲を含むものとする。 例えば、 厳密 な角度 ± 1 0° の範囲内であることなどを意味し、 厳密な角度との誤差は、 5° 以下であることが好ましく、 3° 以下であることがより好ましい。
[0013] 本明細書において表記される 2価の基 (例えば、 _〇_◦〇_) の結合方 〇 2020/175569 5 卩(:171? 2020 /007805
向は特に制限されず、 例えば、 後述する式 (丨)
Figure imgf000007_0001
が一〇_〇〇一であ る場合、 「側に結合している位置を* 1、 ◦ 1側に結合している位置を* 2 とすると、 口1は* 1 -〇一〇〇一 * 2であってもよく、 * 1 -〇〇一〇一* 2であってもよい。
[0014] 図 1 に、 測定波長 5 5 0 〇!での厚み方向のレタデーシヨン 1: II (5 5
0) を 1 として規格化した可視光線領域での各波長における
Figure imgf000007_0002
1 IIの波長分 散特性を示す。 例えば、 測定波長に対する、 可視光線領域において厚み方向 のレタデーシヨンの比が 1 / 4である場合、 図 1の点線に示すように、 複屈 折が測定波長に対し比例関係にあるため、 測定波長が長いほど位相差が大き くなる逆波長分散性を有する。 それに対して、 従来の逆波長分散性を示す光 学異方性膜は、 図 1の実線に示すように、 短波長領域においては点線で示す 理想曲線と重なる位置にもあるが、 長波長領域においては理想曲線から外れ る傾向を示す。
本発明の光学異方性膜においては、 光学特性を制御することにより、 白抜 き矢印で示すように、 長波長領域における光学特性を理想曲線に近づけるこ とができる。
[0015] 上記特性が得られる理由を以下に説明する。
まず、 後述する要件 1〜 3によって満たされる本発明の光学異方性膜の特 徴について説明する。
まず、 要件 1 について説明する。
図 2に示すように、 要件 1 においては、 光学異方性膜の膜表面の法線方向 から 4 5 ° 傾けた方向から、 互いに直交する直線偏光である 偏光および 3 偏光をそれぞれ照射する。 その際に、 波長 7 0 0〜 9 0 0 n の範囲で最も 吸収の大きい波長における吸収強度 (吸光度) において、 ?偏光を照射した 際の吸収強度に対する 3偏光を照射した際の吸収強度の比 (3偏光の吸収強 度/ ?偏光の吸収強度) を求め、 その比が 1 . 0 2以上である (具体的な吸 収スペクトル図は、 後述する図 7を参照) 。 上記のように比が 1 . 0 2以上 であることは、 光学異方性膜の厚み方向と面内方向とにおいて、 吸収の異方 〇 2020/175569 6 卩(:171? 2020 /007805
性があることを意味する。
さらに、 光学異方性膜は要件 2 (5 5 0) < 1 O n m) および要件
3 (R e (8 0 0) < 1 0 n m) は、 光学異方性膜の面内方向において、 屈 折率の異方性が小さいことを意味する。 言い換えれば、 面内の互いに直交す る方向における吸収の異方性が小さいことを意味する。
要件 1〜 3を満たす光学異方性膜は、 波長 7 0 0〜 9 0 0 n mの範囲にお いて、 面内方向における吸収が、 厚み方向の吸収よりも大きい。 より具体的 には、 図 3に示すように、 面内の X軸方向とソ軸方向とでは同程度の吸収特 性を示し、 å軸方向の吸収は X軸方向およびソ軸方向の吸収より小さい。
[0016] 次に、 一般的な有機分子の屈折率波長分散特性について図 4を参照しなが ら説明する。 図 4中、 上側は波長に対する屈折率の挙動を示し、 下側では波 長に対する吸収特性の挙動 (吸収スペクトル) を示す。
有機分子は、 固有吸収波長から離れた領域 (図 4の 3の領域) における屈 折率 nは波長が増すと共に単調に減少する。 このような分散は 「正常分散」 と言われる。 これに対して、 固有吸収を含む波長域 (図 4の 13の領域) にお ける屈折率门は、 波長が増すと共に急激に増加する。 このような分散は 「異 常分散」 と言われる。
つまり、 図 4に示すように、 吸収がある波長領域の直前においては屈折率 の増減が観察される。
[0017] 本発明の光学異方性膜においては、 上記要件 1〜 3で示される光学異方性 膜の特性によって、 波長 7 0 0〜 9 0 0
Figure imgf000008_0001
の範囲において、 面内方向にお ける吸収が、 厚み方向の吸収よりも大きい。 以後、 このような吸収特性を、 吸収特性 Xともいう。 後段で詳述するように、 上記吸収特性 Xは、 光学異方 性膜中において赤外線吸収色素の吸光度の高い軸方向を面内方向と平行にな るように配置することにより達成される。
吸収特性 Xを示す光学異方性膜においては、 吸収特性 Xの影響を受けて、 図 4で説明した挙動によって、 可視光線領域の長波長領域にて厚み方向のレ タデーシヨンが大きくなり、 図 1 に示す矢印の挙動が達成される。 〇 2020/175569 7 卩(:171? 2020 /007805
以下、 上記要件 1〜 4を満たす本発明の光学異方性膜 (以後、 「光学異方 性膜 X」 ともいう) (本発明の第 1実施態様に該当) の構成について詳述す る。
[0018] 光学異方性膜 Xは要件 1 を満たす。
要件 1 :光学異方性膜の膜表面の法線方向から 45° 傾けた方向から、 互い に直交する直線偏光である?偏光および 3偏光をそれぞれ照射した際に、 波 長 700〜 900
Figure imgf000009_0001
の範囲で最も吸収の大きい波長における吸収強度にお いて、 ?偏光を照射した際の吸収強度に対する 3偏光を照射した際の吸収強 度の比が 1. 02以上である。
上記吸収強度の比は 1. 02以上であればよく、 光学異方性膜 Xの厚み方 向の位相差がより優れた逆波長分散性を示す点 (以後、 単に 「本発明の効果 がより優れる点」 ともいう。 ) で、 1. 05以上が好ましく、 1. 08以上 がより好ましい。 上限は特に制限されないが 1. 1 7以下が好ましく、 1.
1 5以下がより好ましい。
要件 1の測定方法としては、 赤外線用偏光子を備えた分光光度計 (IV! 〇 -3 1 00 (31~1 I 1\/1八0211製) ) を用いて、 極角 45 ° での赤外線領域 での吸収を測定する方法が挙げられる。
[0019] 光学異方性膜 Xは、 要件 2を満たす。
要件 2 ^ 6 (550) <1 0门〇1
(550) は波長 550 n における光学異方性膜の面内レタデーシ ヨンを表す。
なかでも、
Figure imgf000009_0002
(550) は 5 n 以下が好ましい。 下限は特に制限 されないが、
Figure imgf000009_0003
以上が挙げられる。
[0020] 光学異方性膜 Xは、 要件 3を満たす。
要件 2 ^ 6 (800) <1 0门〇1
(800) は波長 800 n における光学異方性膜の面内レタデーシ ヨンを表す。
なかでも、
Figure imgf000009_0004
(800) は 5 n 以下が好ましい。 下限は特に制限 〇 2020/175569 8 卩(:171? 2020 /007805
されないが、 0门 01以上が挙げられる。
[0021] 光学異方性膜 Xは、 要件 4を満たす。
Figure imgf000010_0001
膜の厚み方向のレ タデーシヨンを表し、 [¾ 1: (550) は波長 550 n における光学異方 性膜の厚み方向のレタデーシヨンを表す。
なかでも、 [¾ 1: (450)
Figure imgf000010_0002
(550) は、 〇. 97以下が好ま しく、 〇. 92以下がより好ましく、 〇. 87以下がさらに好ましい。 下限 は特に制限されないが、 〇. 75以上の場合が多い。
[0022] 光学異方性膜 Xは、 要件 5を満たすことが好ましい。
要件 5 [¾ 1: (650) /[¾ 1: (550) > 1. 00
Figure imgf000010_0003
レタデーシヨンを表す。
なかでも、 [¾ 1: (650) /[¾ 1: (550) は、 ·! . 05以上が好ま しく、 1. 08以上がより好ましく、 1. 1 0以上がさらに好ましい。 上限 は特に制限されないが、 1. 25以下が好ましく、 1. 20以下がより好ま しい。
[0023] 光学異方性膜 Xの厚みは特に制限されず、 薄型化の点から、 1 0 以下 が好ましく、 〇. 5〜 8. 〇 がより好ましく、 〇. 5〜 6. 〇 がさ らに好ましい。
なお、 本明細書において、 光学異方性膜 Xの厚みとは、 光学異方性膜 Xの 平均厚みを意図する。 上記平均厚みは、 光学異方性膜 Xの任意の 5箇所以上 の厚みを測定して、 それらを算術平均して求める。
[0024] 光学異方性膜 Xに含まれる材料は、 上記要件 1〜 4を満たせば特に制限さ れない。
光学異方性膜 Xは、 赤外線吸収色素を含むことが好ましい。 光学異方性膜 Xが赤外線吸収色素を含むことにより、 要件 1 を満たしやすくなる。
光学異方性膜 Xは、 赤外線吸収色素以外にも、 赤外線吸収色素を分散させ 〇 2020/175569 9 卩(:171? 2020 /007805
るためのマトリックス材料を含んでいてもよい。
マトリックス材料としては、 例えば、 後述する重合性液晶化合物が重合し て得られる高分子化合物、 および、 後述するポリマーが挙げられる。
また、 光学異方性膜 Xは、 赤外線吸収色素由来の残基 (以後、 単に 「赤外 線吸収色素残基」 ともいう。 ) を有するポリマー (以後、 「特定ポリマー」 ともいう。 ) を含むことも好ましい。 光学異方性膜 Xが特定ポリマーを含む 場合、 光学異方性膜 Xは上記マトリックス材料を含んでいてもよい。
なお、 赤外線吸収色素由来の残基とは、 赤外線吸収色素から任意の水素原 子を除いて得られる基を意味し、 例えば、 1つの水素原子が除かれた場合は 1価の赤外線吸収色素残基となり、 2つの水素原子が除かれた場合は 2価の 赤外線吸収色素残基となる。
特定ポリマーの分子量は特に制限されないが、 重量平均分子量が 5 0 0 0 以上であることが好ましく、 1 0 0 0 0以上であることがより好ましい。 上 限は特に制限されないが、 1 0 0 0 0 0 0以下の場合が多い。
[0025] (好適態様 1)
光学異方性膜 Xの好適態様の一つとしては、 液晶化合物と、 赤外線吸収色 素とを含む組成物を用いて形成された光学異方性膜 Xが挙げられる。 特に、 液晶化合物を垂直配向させて固定化してなる光学異方性膜であって、 赤外線 吸収色素を含む光学異方性膜 Xが好ましい。
以下、 上記組成物に含まれる成分について説明する。
[0026] (赤外線吸収色素)
赤外線吸収色素とは、 赤外線領域に極大吸収波長を有する色素である。 赤外線吸収色素の分子量は特に制限されないが、 5 0 0 0未満が好ましい 。 下限は特に制限されないが、 5 0 0以上の場合が多い。
なお、 本明細書において、 赤外線吸収色素はいわゆる低分子化合物であり 、 赤外線吸収色素には、 複数の繰り返し単位を有する化合物は含まれない。 つまり、 特定ポリマーは、 赤外線吸収色素とは、 別化合物に該当する (言い 換えれば、 特定ポリマーは、 赤外線吸収色素には含まれない) 。 〇 2020/175569 10 卩(:171? 2020 /007805
[0027] 赤外線吸収色素としては、 例えば、 ジケトピロロピロール系色素、 ジイン モニウム系色素、 フタロシアニン系色素、 ナフタロシアニン系色素、 アゾ系 色素、 ポリメチン系色素、 アントラキノン系色素、 ピリリウム系色素、 スク アリリウム系色素、 トリフエニルメタン系色素、 シアニン系色素、 および、 アミニウム系色素などが挙げられる。
赤外線吸収色素は 1種単独で用いてもよいし、 2種類以上を組み合わせて 用いてもよい。
[0028] 赤外線吸収色素としては、 近赤外線領域に極大吸収波長を有する色素 (近 赤外線吸収色素) が好ましい。
赤外線吸収色素の極大吸収波長は、 本発明の効果がより優れる点で、 波長 7 0 0〜 1 2 0 0 n の範囲に位置することが好ましく、 波長 7 0 0〜 9 0 0 1^〇!の範囲に位置することがより好ましい。
本発明の効果がより優れる点で、 赤外線吸収色素の波長 7 0 0〜 9 0 0 n の吸光度の積算値は、 赤外線吸収色素の波長 4 0 0〜 7 0 0 n〇!の吸光度 の積算値よりも大きいことが好ましい。
上記吸光度の積算値とは、 乂〜丫〇 01におけるそれぞれの波長における吸 光度を合計した値である。
上記測定は、 分光光度計
Figure imgf000012_0001
(3 1~1 丨 1\/1八0 2 11製) ) を 用いて実施できる。
[0029] なお、 赤外線吸収色素は、 二色性色素であることが好ましい。 なお、 二色 性色素とは、 分子の長軸方向における吸光度と、 短軸方向における吸光度と が異なる性質を有する色素をいう。
[0030] 本発明の効果がより優れる点で、 赤外線吸収色素はメソゲン基を有するこ とが好ましい。 赤外線吸収色素がメソゲン基を有することにより、 後述する 液晶化合物と共に配向しやすく、 所定の吸収特性の制御がしやすい。
メソゲン基とは、 剛直かつ配向性を有する官能基である。 メソゲン基の構 造としては、 例えば、 芳香環基 (芳香族炭化水素環基および芳香族複素環基 ) および脂環基からなる群から選択される基が、 複数個、 直接または連結基 〇 2020/175569 11 2020 /007805
(例えば、 ___〇〇一、 — 0 ([¾〇) 2 _ CH = CH— % - 01~1 = 1^1—、 一 =1\1—、 一〇三〇一、 一 [¾。一、 または、 これらの組み合わせ ( 例えば、 一〇〇〇一、 一〇〇 [¾〇-、 一〇〇〇〇 1~12〇 1~12 -、 一〇〇 [¾〇 1~12〇 1~12 % _〇〇〇〇 1~1 =〇 1_1—、 および、 一〇三〇一〇三〇一) を表す 。 なお、
Figure imgf000013_0001
。は、 水素原子または炭素数 1 〜 6のアルキル基を表す。 ) を介し て連なつた構造が挙げられる。
[0031] 赤外線吸収色素の好適態様としては、 式 ( 1 ) で表される化合物が挙げら れる。
式 ( 1 ) で表される化合物は、 可視光線領域の吸収が少なく、 得られる光 学異方性膜の着色がより抑制される。 また、 この化合物はメソゲン基を有す る基を含むことから、 液晶化合物と共に配向しやすい。 その際、 化合物の中 心にある窒素原子を含む縮合環部分から横方向に延びる形でメソゲン基を有 する基が配置されているため、 液晶化合物の配向方向に対して、 上記縮合環 部分が直交する方向に配列しやすい。 従って、 例えば、 液晶化合物が光学異 方性膜 Xの厚み方向に沿って配向する場合には、 光学異方性膜の厚み方向に 直交する方向 (面内方向) に、 縮合環部分に由来する近赤外線領域 (特に、 波長 700〜 900 n m) における吸収が得られやすく、 所望の特性を示す 光学異方性膜が得られやすい。
[0032] [化 1]
Figure imgf000013_0002
[0033] [¾ および は、 それぞれ独立に、 水素原子または置換基を表し、 少な くとも一方は電子吸引性基であり、
Figure imgf000013_0003
もよい。
置換基としては、 例えば、 アルキル基、 アルケニル基、 アルキニル基、 ア リール基、 アミノ基、 アルコキシ基、 アリールオキシ基、 芳香族へテロ環才 キシ基、 アシル基、 アルコキシカルボニル基、 アリールオキシカルボニル基 、 アシルオキシ基、 アシルアミノ基、 アルコキシカルボニルアミノ基、 アリ —ルオキシカルボニルアミノ基、 スルホニルアミノ基、 スルファモイル基、 カルバモイル基、 アルキルチオ基、 アリールチオ基、 芳香族へテロ環チオ基 、 スルホニル基、 スルフィニル基、 ウレイ ド基、 リン酸アミ ド基、 ヒドロキ シ基、 メルカプト基、 ハロゲン原子、 シアノ基、 スルホ基、 カルボキシル基 、 ニトロ基、 ヒドロキサム酸基、 スルフィノ基、 ヒドラジノ基、 イミノ基、 ヘテロ環基 (例えば、 ヘテロアリール基) 、 シリル基、 および、 これらを組 み合わせた基などが挙げられる。 なお、 上記置換基は、 さらに置換基で置換 されていてもよい。
なお、 R1 1および R 12で表される置換基としては、 後述するメソゲン基を 有する基以外の基が好ましい。
[0034] 電子吸引性基としては、 H a mm e t tの CJ p値 (シグマパラ値) が正の 置換基を表し、 例えば、 シアノ基、 アシル基、 アルキルオキシカルボニル基 、 アリールオキシカルボニル基、 スルファモイル基、 スルフィニル基、 およ び、 ヘテロ環基が挙げられる。
これら電子吸引性基はさらに置換されていてもよい。
ハメッ トの置換基定数 C7値について説明する。 ハメッ ト則は、 ベンゼン誘 導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために 1 93 5年 L. P. H a mm e t tにより提唱された経験則であるが、 これは今日 広く妥当性が認められている。 ハメッ ト則に求められた置換基定数には CJ p 値と crm値があり、 これらの値は多くの一般的な成書に見出すことができる 。 例えば、 J . A. D e a n編、 「L a n g e’ s H a n d b o o k 〇 f C h e m i s t r y」 第 1 2版, 1 979年 (Me G r aw-H i l |) や 「化学の領域」 増刊, 1 22号, 96〜 1 03頁, 1 979年 (南光 堂) 、 C h e m. R e v. , 1 99 1年, 9 1巻, 1 65〜 1 95ぺージな どに詳しい。 本発明において電子吸引性基としては、 ハメッ トの置換基定数 〇 2020/175569 13 卩(:171? 2020 /007805
£7 値が 0. 20以上の置換基が好ましい。 £7 値としては、 〇. 25以上 が好ましく、 0. 30以上がより好ましく、 0. 35以上がさらに好ましい 。 上限は特に制限はないが、 〇. 80以下が好ましい。
具体例としては、 シアノ基 (〇. 66) 、 カルボキシル基 (一〇〇〇1~1 : 〇. 45) 、 アルコキシカルボニル基 (一〇〇〇1\/16 : 〇. 45) 、 アリー ルオキシカルボニル基
Figure imgf000015_0001
: 0. 44) 、 カルバモイル基 (一〇 〇1\11~12 : 〇. 36) 、 アルキルカルボニル基 (一〇〇1\/16 : 〇. 50) 、 ア リールカルボニル基
Figure imgf000015_0002
: 0. 43) 、 アルキルスルホニル基 (一
3〇21\/16 : 0. 72) 、 および、 アリールスルホニル基 (一 3〇2 11 : 0 . 68) が挙げられる。
本明細書において、 1\/16はメチル基を、 IIはフエニル基を表す。 なお、 括弧内の値は代表的な置換基の
Figure imgf000015_0003
[¾ 6 . , 1 99 1年,
9 1巻, 1 65〜 1 95ぺージから抜粋したものである。
[0035]
Figure imgf000015_0004
5〜 7員環 (好ましくは
5〜 6員環) の環を形成し、 形成される環としては通常メロシアニン色素で 酸性核として用いられるものが好ましい。
Figure imgf000015_0005
して形成される環としては、 1 , 3—ジカルボニル 核、 ピラゾリノン核、 2, 4, 6—トリケトへキサヒドロピリミジン核 (チ オケトン体も含む) 、 2—チオ _ 2, 4—チアゾリジンジオン核、 2—チオ -2, 4—オキサゾリジンジオン核、 2—チオ _ 2, 5—チアゾリジンジオ ン核、 2, 4—チアゾリジンジオン核、 2, 4—イミダゾリジンジオン核、
2 -チオー2, 4 -イミダゾリジンジオン核、 2 -イミダゾリンー 5 -オン 核、 3, 5—ピラゾリジンジオン核、 ベンゾチオフエンー 3—オン核、 また はインダノン核が好ましい。
[0036] は、 ヘテロ環基であることが好ましく、 芳香族へテロ環基であること がより好ましい。 ヘテロ環基は、 単環であっても、 多環であってもよい。 へ テロ環基としては、 ピラゾール環基、 チアゾール環基、 オキサゾール環基、 イミダゾール環基、 オキサジアゾール環基、 チアジアゾール環基、 トリアゾ 〇 2020/175569 14 卩(:171? 2020 /007805
—ル環基、 ピリジン環基、 ピリダジン環基、 ピリミジン環基、 ピラジン環基 、 これらのベンゾ縮環基 (例えば、 ベンゾチアゾール環基、 ベンゾピラジン 環基) もしくはナフト縮環基、 または、 これら縮環の複合体が好ましい。 上記へテロ環基には、 置換基が置換していてもよい。 置換基としては、 上
Figure imgf000016_0001
[0037] は、 それぞれ独立に、 水素原子、 アルキル基、 アリール基、 ヘテロア リール基、 置換ホウ素 (一巳
Figure imgf000016_0002
2、 R 3は置換基を表す) または金属原 子を表し、
Figure imgf000016_0003
していてもよい。
Figure imgf000016_0004
置換基と同義であり、 アルキル基、 アリール基、 または、 ヘテロアリール基 が好ましい。 置換ホウ素の置換基 (例えば、 上述した、 アルキル基、 アリー ル基、 または、 ヘテロアリール基) は、 さらに置換基で置換されていてもよ い。 置換基としては、
Figure imgf000016_0005
られる。
また、
Figure imgf000016_0006
遷移金属原子、 マグネシウム原子、 ア ルミニウム原子、 カルシウム原子、 バリウム原子、 亜鉛原子、 または、 スズ 原子が好ましく、 アルミニウム原子、 亜鉛原子、 スズ原子、 バナジウム原子 、 鉄原子、 コバルト原子、 ニッケル原子、 銅原子、 パラジウム原子、 イリジ ウム原子、 または、 白金原子がより好ましい。
[0038] は、 それぞれ独立に、 メソゲン基を有する基を表す。 メソゲン基の定 義は、 上述した通りである。
1 4は、 式 (2) で表される基であることが好ましい。 氺は、 結合位置を 表す。
式 (2) 氺一 1^】一 (乂1 - !^ 2) „-乂2 -
1\/| 1は、 置換もしくは無置換のアリーレン基、 または、 置換もしくは無置換 のへテロアリーレン基を表す。 アリーレン基としては、 フエニレン基が挙げ られる。 ヘテロアリーレン基としては、 ピラゾール環、 チアゾール環、 オキ 20/175569 15 卩(:171? 2020 /007805
サゾール環、 イミダゾール環、 オキサジアゾール環、 チアジアゾール環、 卜 リアゾール環、 ピリジン環、 ピリダジン環、 ピリミジン環、 ピラジン環、 こ れらのベンゾ縮環 (例えば、 ベンゾチアゾール環、 ベンゾピラジン環) もし くはナフト縮環、 または、 これら縮環の複合体から任意の 2つの水素原子を 除いた 2価の基が挙げられる。 上記アリーレン基および上記へテロアリーレ ン基が置換基を有する場合、 置換基としては、
Figure imgf000017_0001
1および[¾ 1 2で表される置 換基で例示した基が挙げられる。
〇一、 — 0 ([¾〇) 2 _
Figure imgf000017_0002
Figure imgf000017_0003
三〇_、 一 [¾ 0—、 または、 これらの組み合 わせ (例えば、 _〇〇〇_、 _〇〇 [¾。一、 _〇〇〇〇1~1 2〇1~1 2—、 - 0 0 N R C H 2 C H 2 __〇〇〇〇1~1 =〇1_1 _、 および、 _〇三〇 _〇三〇 _) を表す。
Figure imgf000017_0004
水素原子または炭素数 1〜 5のアルキル基を表す。
IV! 2は、 置換もしくは無置換のアリーレン基、 置換もしくは無置換のへテロ アリーレン基、 または、 置換もしくは無置換のシクロアルキレン基を表す。 アリーレン基としては、 フエニレン基が挙げられる。 ヘテロアリーレン基と しては、 ピラゾール環、 チアゾール環、 オキサゾール環、 イミダゾール環、 オキサジアゾール環、 チアジアゾール環、 トリアゾール環、 ピリジン環、 ピ リダジン環、 ピリミジン環、 ピラジン環、 これらのベンゾ縮環 (例えば、 ベ ンゾチアゾール環、 ベンゾピラジン環) もしくはナフト縮環、 または、 これ ら縮環の複合体から任意の 2つの水素原子を除いた 2価の基が挙げられる。 シクロアルキレン基に含まれる炭素数は、 5〜 7が好ましい。 上記アリーレ ン基、 上記へテロアリーレン基、 および、 上記シクロアルキレン基が置換基 を有する場合、 置換基としては、
Figure imgf000017_0005
た基が挙げられる。
X 2は、 単結合または 2価の連結基を表す。 2価の連結基としては、 例えば 、 2価の炭化水素基 (例えば、 炭素数 1〜 1 0のアルキレン基、 炭素数 1〜
1 0のアルケニレン基、 および、 炭素数 1〜 1 0のアルキニレン基などの 2 価の脂肪族炭化水素基、 アリーレン基などの 2価の芳香族炭化水素基) 、 2 〇 2020/175569 16 卩(:171? 2020 /007805
Figure imgf000018_0001
は、 これらを組み合わせた基 (例えば、 _〇_ 2価の炭化水素基一、 一 (〇 _ 2価の炭化水素基) —〇— (〇!は、 1以上の整数を表す) 、 および、 _ 2 価の炭化水素基一〇一〇〇一など) が挙げられる。 〇は、 水素原子またはア ルキル基を表す。
门は 1〜 1 0を表す。 なかでも、 1〜 5が好ましく、 2〜 4がより好まし い。
は、 水素原子、 または、 重合性基を表す。 重合性基の定義は、 後述する 液晶化合物が有していてもよい重合性基の定義と同義である。
[0039] 赤外線吸収色素は、 式 (3) で表される化合物であることがより好ましい
[0040] [化 2]
Figure imgf000018_0002
[0041 ]
Figure imgf000018_0003
上述した通りである。
2 2は、 それぞれ独立に、 シアノ基、 アシル基、 アルコキシカルボニル基 、 アルキルスルフイニル基、 アリールスルフイニル基、 または、 含窒素へテ ロアリール基を表す。
1 5および[¾ 1 6は、 それぞれ独立に、 水素原子、 アルキル基、 アルコキシ 基、 アリール基、 または、 ヘテロアリール基を表し、 [¾ 1 5および[¾ 1 6は結合 して環を形成してよい。 形成される環としては、 炭素数 5〜 1 0の脂環、 炭 素数 6〜 1 0の芳香族炭化水素環、 または、 炭素数 3〜 1 0の芳香族複素環 が挙げられる。
Figure imgf000018_0004
6が結合して形成される環には、 さらに置換基 が置換していてもよい。 置換基としては、
Figure imgf000018_0005
〇 2020/175569 17 卩(:171? 2020 /007805
の説明で例示した基が挙げられる。
1 7および[¾ 1 8は、 それぞれ独立に、 アルキル基、 アルコキシ基、 アリー ル基、 または、 ヘテロアリール基を表す。
Figure imgf000019_0001
、 さらに置換基が置換してもよい。 置換基としては、
Figure imgf000019_0002
および [¾ 1 2で表さ れる置換基の説明で例示した基が挙げられる。
Xは、 それぞれ独立に、 酸素原子、 硫黄原子、 一 [¾ -、
Figure imgf000019_0003
一、 -〇1~1 =〇! ! -、 または、 一 =〇1~1 -を表し、
Figure imgf000019_0004
および , は、 それぞれ 独立に、 水素原子、 アルキル基、 または、 アリール基を表す。
[0042] 組成物中における赤外線吸収色素の含有量は特に制限されないが、 本発明 の効果がより優れる点で、 液晶化合物全質量に対して、 5〜 7 0質量%が好 ましく、 1 0〜 5 0質量%がより好ましい。
[0043] <液晶化合物>
液晶化合物の種類は特に制限されないが、 その形状から、 棒状タイプ (棒 状液晶化合物) と円盤状タイプ (円盤状液晶化合物。 ディスコティック液晶 化合物) とに分類できる。 さらにそれぞれ低分子タイプと高分子タイプとが ある。 高分子とは一般に重合度が 1 0 0以上のものを指す (高分子物理 ·相 転移ダイナミクス, 土井 正男 著, 2頁, 岩波書店, 1 9 9 2) 。 なお、 2 種以上の棒状液晶化合物、 2種以上の円盤状液晶化合物、 または、 棒状液晶 化合物と円盤状液晶化合物との混合物を用いてもよい。
[0044] 液晶化合物の極大吸収波長の位置は特に制限されないが、 本発明の効果が より優れる点で、 紫外線領域に位置することが好ましい。
[0045] 液晶化合物は、 逆波長分散性液晶化合物であることが好ましい。 逆波長分 散性液晶化合物とは、 その化合物を用いて形成される光学異方性膜が逆波長 分散性を示す化合物を意味する。 つまり、 逆波長分散性液晶化合物とは、 そ の化合物を用いて形成される光学異方性膜の面内レタデーシヨンが、 測定波 長が大きくなるにつれて大きくなり、 理想曲線に近づくような化合物を意味 する。
[0046] 光学特性の温度変化および湿度変化を小さくできることから、 液晶化合物 〇 2020/175569 18 卩(:171? 2020 /007805
としては、 重合性基を有する液晶化合物 (以下、 「重合性液晶化合物」 とも いう。 ) が好ましい。 液晶化合物は 2種類以上の混合物でもよく、 その場合 、 少なくとも 1つが 2以上の重合性基を有していることが好ましい。
つまり、 光学異方性膜は、 重合性液晶化合物を含む組成物が重合などによ って固定されて形成された層であることが好ましく、 この場合、 層となった 後はもはや液晶性を示す必要はない。
上記重合性基の種類は特に制限されず、 ラジカル重合またはカチオン重合 が可能な重合性基が好ましい。
ラジカル重合性基としては、 公知のラジカル重合性基を用いることができ 、 アクリロイル基またはメタアクリロイル基が好ましい。
カチオン重合性基としては、 公知のカチオン重合性基を用いることができ 、 具体的には、 脂環式エーテル基、 環状アセタール基、 環状ラクトン基、 環 状チオエーテル基、 スピロオルソエステル基、 および、 ビニルオキシ基など が挙げられる。 なかでも、 脂環式エーテル基またはビニルオキシ基が好まし く、 エポキシ基、 オキセタニル基、 または、 ビニルオキシ基がより好ましい
特に、 好ましい重合性基の例としては下記が挙げられる。
[0047] [化 3]
Figure imgf000020_0001
[0048] なかでも、 液晶化合物としては、 式 (丨) で表される化合物が好ましい。
式 (丨) 1 -八1- 03-〇1-01-八 1—02-〇2-04 -八2- 3 2_し 2 上記式 (丨) 中、 〇 \
Figure imgf000020_0002
および [)4は、 それぞれ独立に、 単結合、
Figure imgf000020_0003
〇 2020/175569 19 卩(:171? 2020 /007805
12-〇〇一〇
Figure imgf000021_0001
一 [^-〇[¾23 -、 または、 _〇〇一 81 _を表す。
[0049]
Figure imgf000021_0003
、 および
Figure imgf000021_0002
は、 それぞれ独立に、 水素原子、 フッ素原子、 ま たは、 炭素数 1〜 4のアルキル基を表す。
また、 上記式 (丨) 中、
Figure imgf000021_0004
および〇2は、 それぞれ独立に、 炭素数 5〜 8 の 2価の脂環式炭化水素基を表し、 脂環式炭化水素基を構成する _ 01~12—の 1個以上が一〇一、
Figure imgf000021_0005
または
Figure imgf000021_0006
また、 上記式 (丨) 中、 1および 2は、 それぞれ独立に、 単結合、 炭素 数 6以上の芳香環、 または、 炭素数 6以上のシクロアルキレン環を表す。 また、 上記式 (丨) 中、 3 1および 3 2は、 それぞれ独立に、 単結合、 炭素数 1〜 1 4の直鎖状もしくは分岐鎖状のアルキレン基、 または、 炭素数 1 〜 1 4の直鎖状もしくは分岐鎖状のアルキレン基を構成する _〇 1~12_の 1 個以上が __
Figure imgf000021_0008
(0) —、 もしくは、
Figure imgf000021_0007
〇一に 置換された 2価の連結基を表し、 0は、 重合性基を表す。
また、 上記式 (丨) 中、 1-1および 1_ 2は、 それぞれ独立に 1価の有機基 ( 例えば、 アルキル基、 または、 重合性基) を表す。
なお、 八 「が後述する式 (八 「_ 1) 、 式 (八 「_2) 、 式 (八 「_4)
、 または、 式 (八 「一5) で表される基である場合、 し1および 1_2の少なく とも一方は重合性基を表す。 また、 八 「が、 後述する式 (八 「_3) で表さ れる基である場合は、 1_ 1および 1_2ならびに下記式 (八 「一3) 中の 1_3およ び !_ 4の少なくとも 1つが重合性基を表す。
[0050] 上記式 (丨) 中、
Figure imgf000021_0009
および
Figure imgf000021_0010
が示す炭素数 5〜 8の 2価の脂環式炭化水 素基としては、 5員環または 6員環が好ましい。 また、 脂環式炭化水素基は 、 飽和脂環式炭化水素基でも不飽和脂環式炭化水素基でもよいが、 飽和脂環 式炭化水素基が好ましい。 ◦ 1および(32で表される 2価の脂環式炭化水素基 としては、 例えば、 特開 201 2— 2 1 068号公報の段落 0078の記載 を参酌でき、 この内容は本明細書に組み込まれる。
[0051] 上記式 (丨) 中、
Figure imgf000021_0011
が示す炭素数 6以上の芳香環としては、 例 〇 2020/175569 20 卩(:171? 2020 /007805
えば、 ベンゼン環、 ナフタレン環、 アントラセン環、 および、 フエナンスロ リン環などの芳香族炭化水素環; フラン環、 ピロール環、 チオフエン環、 ピ リジン環、 チアゾール環、 および、 ベンゾチアゾール環などの芳香族複素環 ;が挙げられる。 なかでも、 ベンゼン環 (例えば、 1 , 4 -フエニル基など ) が好ましい。
また、 上記式 (丨) 中、
Figure imgf000022_0001
以上のシクロアルキ レン環としては、 例えば、 シクロヘキサン環、 および、 シクロヘキセン環な どが挙げられ、 なかでも、 シクロヘキサン環 (例えば、 シクロヘキサンー 1 , 4 -ジイル基など) が好ましい。
[0052] 上記式 (丨) 中、 3 1および 3 2が示す炭素数 1〜 1 4の直鎖状または 分岐鎖状のアルキレン基としては、 メチレン基、 エチレン基、 プロピレン基 、 または、 プチレン基が好ましい。
[0053] 上記式 (丨) 中、 !_ 1および 1_ 2で表される重合性基は、 特に制限されない が、 ラジカル重合性基 (ラジカル重合可能な基) またはカチオン重合性基 ( カチオン重合可能な基) が好ましい。
ラジカル重合性基の好適範囲は、 上述の通りである。
[0054] —方、 上記式 (丨) 中、 八 「は、 下記式 (八 「_ 1) 〜 (八 「_ 7) で表 される基からなる群から選択されるいずれかの芳香環を表す。 なお、 下記式 (八 「一 1) 〜 (八 「一 7) 中、 * 1は 0 1との結合位置を表し、 * 2は〇2 との結合位置を表す。
[0055]
〇 2020/175569 卩(:171? 2020 /007805
[化 4]
Figure imgf000023_0001
[0056] [化 5]
Figure imgf000023_0002
[0057] ここで、 上記式 (八 「一 1) 中、 〇1は、 1\1または〇1~1を表し、 〇2は、 一
3—、 一〇一、 または、 一 ([^ ) 一を表し、
Figure imgf000023_0003
は、 水素原子または炭素 数 1〜 6のアルキル基を表し、 丫1は、 置換基を有してもよい、 炭素数 6〜 1 20/175569 22 卩(:171? 2020 /007805
2の芳香族炭化水素環基、 または、 炭素数 3〜 1 2の芳香族複素環基を表す が示す炭素数 1〜 6のアルキル基としては、 例えば、 メチル基、 ェチル 基、 プロピル基、 イソプロピル基、
Figure imgf000024_0001
_プチル基、 イソプチル基、 3 6 0 - プチル基、 1 6 「 1:—プチル基、 n _ペンチル基、 および、 n _ヘキシル基 などが挙げられる。
1が示す炭素数 6〜 1 2の芳香族炭化水素環基としては、 例えば、 フェニ ル基、 2 , 6—ジェチルフェニル基、 および、 ナフチル基などのアリール基 が挙げられる。
1が示す炭素数 3〜 1 2の芳香族複素環基としては、 例えば、 チェニル基 、 チアゾリル基、 フリル基、 ピリジル基、 および、 ベンゾフリル基などのへ テロアリール基が挙げられる。 なお、 芳香族複素環基には、 ベンゼン環と芳 香族複素環とが縮合した基も含まれる。
また、 丫1が有していてもよい置換基としては、 例えば、 アルキル基、 アル コキシ基、 ニトロ基、 アルキルスルホニル基、 アルキルオキシカルボニル基 、 シアノ基、 および、 ハロゲン原子などが挙げられる。
アルキル基としては、 例えば、 炭素数 1〜 1 8の直鎖状、 分岐鎖状または 環状のアルキル基が好ましく、 炭素数 1〜 8のアルキル基 (例えば、 メチル 基、 ェチル基、 プロピル基、 イソプロピル基、
Figure imgf000024_0002
_ブチル基、 イソプチル基 、 3 6 0—ブチル基、 1 _ブチル基、 および、 シクロヘキシル基) がより好 ましく、 炭素数 1〜 4のアルキル基がさらに好ましく、 メチル基またはェチ ル基が特に好ましい。
アルコキシ基としては、 例えば、 炭素数 1〜 1 8のアルコキシ基が好まし く、 炭素数 1〜 8のアルコキシ基 (例えば、 メ トキシ基、 ェトキシ基、 n - ブトキシ基、 および、 メ トキシェトキシ基) がより好ましく、 炭素数 1〜 4 のアルコキシ基がさらに好ましく、 メ トキシ基またはェトキシ基が特に好ま しい。
ハロゲン原子としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 およ 〇 2020/175569 23 卩(:171? 2020 /007805
び、 ヨウ素原子などが挙げられ、 フッ素原子、 または、 塩素原子が好ましい
[0058] また、 上記式 (八 「一 1) 〜 (八 「一 7) 中、 12および 3は、 それ それ独立に、 水素原子、 炭素数 1〜 20の 1価の脂肪族炭化水素基、 炭素数 3〜 20の 1価の脂環式炭化水素基、 炭素数 6〜 20の 1価の芳香族炭化水 素環基、 ハロゲン原子、 シアノ基、 ニトロ基、
Figure imgf000025_0001
または、
Figure imgf000025_0002
を表し、
Figure imgf000025_0003
それぞれ独立に、 水素原子または炭素数 1〜 6のアル キル基を表し、 1および 2は、 互いに結合して環を形成してもよい。 環は 、 脂環式、 複素環、 および、 芳香環のいずれであってもよく、 芳香環である ことが好ましい。 なお、 形成される環には、 置換基が置換していてもよい。 炭素数 1〜 20の 1価の脂肪族炭化水素基としては、 炭素数 1〜 1 5のア ルキル基が好ましく、 炭素数 1〜 8のアルキル基がより好ましく、 メチル基 、 ェチル基、 イソプロピル基、 6 「 ーペンチル基 (1 , 1 —ジメチルプ ロピル基) 、 I 6 「 I -ブチル基、 または、 1 , 1 -ジメチルー 3, 3 -ジ メチループチル基がさらに好ましく、 メチル基、 ェチル基、 または、 1 6 「
I—ブチル基が特に好ましい。
炭素数 3〜 20の 1価の脂環式炭化水素基としては、 例えば、 シクロプロ ピル基、 シクロブチル基、 シクロペンチル基、 シクロヘキシル基、 シクロへ プチル基、 シクロオクチル基、 シクロデシル基、 メチルシクロヘキシル基、 および、 ェチルシクロヘキシル基などの単環式飽和炭化水素基;シクロブテ ニル基、 シクロペンテニル基、 シクロヘキセニル基、 シクロヘプテニル基、 シクロオクテニル基、 シクロデセニル基、 シクロペンタジェニル基、 シクロ へキサジェニル基、 シクロオクタジェニル基、 および、 シクロデカジェン基 などの単環式不飽和炭化水素基; ビシクロ [2. 2. 1 ] ヘプチル基、 ビシ クロ [2. 2. 2] オクチル基、 トリシクロ [5. 2. 1. 02, 6] デシル基 、 トリシクロ [3. 3. 1. 13, 7] デシル基、 テトラシクロ [6. 2. 1.
13' 6. 〇2, 7] ドデシル基、 および、 アダマンチル基などの多環式飽和炭化 水素基;が挙げられる。 〇 2020/175569 24 卩(:171? 2020 /007805
炭素数 6〜 2 0の 1価の芳香族炭化水素環基としては、 例えば、 フエニル 基、 2 , 6—ジエチルフエニル基、 ナフチル基、 および、 ビフエニル基など が挙げられ、 炭素数 6〜 1 2のアリール基 (特にフヱニル基) が好ましい。 ハロゲン原子としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 およ び、 ヨウ素原子などが挙げられ、 フッ素原子、 塩素原子、 または、 臭素原子 が好ましい。
—方、
Figure imgf000026_0001
が示す炭素数 1〜 6のアルキル基としては、 例えば、 メチ ル基、 エチル基、 プロピル基、 イソプロピル基、
Figure imgf000026_0002
_ブチル基、 イソプチル 基、 3 6 0—ブチル基、 ㊀「 ーブチル基、
Figure imgf000026_0003
および、 11 -ヘキシル基などが挙げられる。
[0059] また、 上記式 (八 「_ 2) および (八 「_ 3) 中、 八3および八4は、 それ ぞれ独立に、 一〇一、
Figure imgf000026_0004
([¾ 9) —、 一3—、 および、 一〇〇一からなる群 から選択される基を表し、 8 9は、 水素原子または置換基を表す。
が示す置換基としては、 上記式 (八 「_ 1) 中の丫1が有していてもよ い置換基と同様のものが挙げられる。
[0060] また、 上記式 (八 「_ 2) 中、 Xは、 水素原子または置換基が結合してい てもよい第 1 4族〜第 1 6族の非金属原子を表す。
また、 Xが示す第 1 4族〜第 1 6族の非金属原子としては、 例えば、 酸素 原子、 硫黄原子、 置換基を有する窒素原子、 および、 置換基を有する炭素原 子が挙げられ、 置換基としては、 上記式 (八 「一 1) 中の丫1が有していても よい置換基と同様のものが挙げられる。
[0061] また、 上記式 (八 「_ 3) 中、 〇5および は、 それぞれ独立に、 単結合
Figure imgf000026_0005
または、 一〇〇
Figure imgf000026_0006
独立に、 水素原子、 フッ素原子、 または、 炭素数 1〜 4のアルキル基を表す。 〇 2020/175569 25 卩(:171? 2020 /007805
[0062] また、 上記式 (八 「_ 3) 中、 3 3および 3 4は、 それぞれ独立に、 単 結合、 炭素数 1〜 1 2の直鎖状もしくは分岐鎖状のアルキレン基、 または、 炭素数 1〜 1 2の直鎖状もしくは分岐鎖状のアルキレン基を構成する _〇! ! 2 _の 1個以上が __
Figure imgf000027_0002
(0) —、 もしくは、
Figure imgf000027_0001
〇一に置換された 2価の連結基を表し、 0は、 重合性基を表す。
[0063] また、 上記式 (八 「_ 3) 中、 !_ 3および !_ 4は、 それぞれ独立に 1価の有 機基 (例えば、 アルキル基、 または、 重合性基) を表し、 上述したように、
!_ 3および !_ 4ならびに上記式 (丨) 中の!- 1および !_ 2の少なくとも 1つが重 合性基を表す。
[0064] また、 上記式 (八 「_ 4) 〜 (八 「_ 7) 中、 八父は、 芳香族炭化水素環 および芳香族複素環からなる群から選ばれる少なくとも 1つの芳香環を有す る、 炭素数 2〜 3 0の有機基を表す。
また、 上記式 (八 「_ 4) 〜 (八 「_ 7) 中、
Figure imgf000027_0003
水素原子、 置換基 を有していてもよい炭素数 1〜 6のアルキル基、 または、 芳香族炭化水素環 および芳香族複素環からなる群から選択される少なくとも 1つの芳香環を有 する、 炭素数 2〜 3 0の有機基を表す。
ここで、 Xおよび ソにおける芳香環は、 置換基を有していてもよく、 八父と八 7とが結合して環を形成していてもよい。
また、 〇3は、 水素原子、 または、 置換基を有していてもよい炭素数 1〜 6 のアルキル基を表す。
八 Xおよび八ソとしては、 〇 2 0 1 4 / 0 1 0 3 2 5号の段落 0 0 3 9 〜 0 0 9 5に記載されたものが挙げられる。
また、 〇3が示す炭素数 1〜 6のアルキル基としては、 例えば、 メチル基、 エチル基、 プロピル基、 イソプロピル基、 |^ _ブチル基、 イソプチル基、 3 6〇—ブチル基、 ㊀ 「 ーブチル基、 —ペンチル基、 および、 —ヘキ シル基などが挙げられ、 置換基としては、 上記式 (八 「一 1) 中の丫1が有し ていてもよい置換基と同様のものが挙げられる。
[0065] なかでも、 本発明の効果がより優れる点で、 八 1および八2の少なくとも一 \¥0 2020/175569 26 卩(:17 2020 /007805
方が、 炭素数 6以上のシクロアルキレン環であることが好ましく、
Figure imgf000028_0001
および 八2の一方が、 炭素数 6以上のシクロアルキレン環であることがより好ましい
[0066] 組成物中における液晶化合物の含有量は特に制限されないが、 組成物中の 全固形分に対して、 5 0質量%以上が好ましく、 7 0質量%以上がより好ま しい。 上限は特に制限されないが、 9 0質量%以下の場合が多い。
なお、 組成物中の全固形分には、 溶媒は含まれない。 つまり、 固形分とは 、 組成物から溶媒を除いた成分を意味する。
[0067] なお、 組成物は、 さらに順波長分散性液晶化合物を含んでいてもよい。 順 波長分散性液晶化合物とは、 その化合物を用いて形成される光学異方性膜が 順波長分散性を示す化合物を意味する。 つまり、 順波長分散性液晶化合物と は、 その化合物を用いて形成される光学異方性膜の面内レタデーシヨンが、 測定波長が大きくなるにつれて小さくなるような化合物を意味する。
順波長分散性液晶化合物を加えることで、 組成物の波長分散を調節し、 よ り理想波長分散に近い波長分散性を付与することが可能となる。
[0068] 上記組成物は、 上述した赤外線吸収色素、 および、 液晶化合物以外の成分 を含んでいてもよい。
組成物は、 重合開始剤を含んでいてもよい。 使用される重合開始剤は、 重 合反応の形式に応じて選択され、 例えば、 熱重合開始剤、 および、 光重合開 始剤が挙げられる。 例えば、 光重合開始剤としては、
Figure imgf000028_0002
カルボニル化合物 、 アシロインエーテル、
Figure imgf000028_0003
炭化水素置換芳香族アシロイン化合物、 多核キ ノン化合物、 および、 トリアリールイミダゾールダイマーと ーアミノフェ ニルケトンとの組み合わせなどが挙げられる。
組成物中における重合開始剤の含有量は、 組成物の全固形分に対して、 〇 . 0 1〜 2 0質量%が好ましく、 〇. 5〜 1 0質量%がより好ましい。
[0069] また、 組成物は、 重合性モノマーを含んでいてもよい。
重合性モノマーとしては、 ラジカル重合性またはカチオン重合性の化合物 が挙げられる。 なかでも、 多官能性ラジカル重合性モノマーが好ましい。 ま 〇 2020/175569 27 卩(:171? 2020 /007805
た、 重合性モノマーとしては、 上記の重合性基を有する液晶化合物と共重合 性のモノマーが好ましい。 例えば、 特開 2 0 0 2 _ 2 9 6 4 2 3号公報中の 段落 0 0 1 8〜 0 0 2 0に記載の重合性モノマーが挙げられる。
組成物中における重合性モノマーの含有量は、 液晶化合物の全質量に対し て、 1〜 5 0質量%が好ましく、 2〜 3 0質量%がより好ましい。
[0070] また、 組成物は、 界面活性剤を含んでいてもよい。
界面活性剤としては、 従来公知の化合物が挙げられるが、 フッ素系化合物 が好ましい。 例えば、 特開 2 0 0 1 _ 3 3 0 7 2 5号公報中の段落 0 0 2 8 〜 0 0 5 6に記載の化合物、 および、 特願 2 0 0 3 _ 2 9 5 2 1 2号明細書 中の段落〇 0 6 9〜 0 1 2 6に記載の化合物が挙げられる。
[0071 ] また、 組成物は、 溶媒を含んでいてもよい。 溶媒としては、 有機溶媒が好 ましい。 有機溶媒としては、 アミ ド (例: 1\1 , 1\1 -ジメチルホルムアミ ド)
、 スルホキシド (例:ジメチルスルホキシド) 、 ヘテロ環化合物 (例: ピリ ジン) 、 炭化水素 (例:ベンゼン、 ヘキサン) 、 アルキルハライ ド (例: ク ロロホルム、 ジクロロメタン) 、 エステル (例:酢酸メチル、 酢酸エチル、 酢酸プチル) 、 ケトン (例: アセトン、 メチルエチルケトン) 、 および、 エ —テル (例:テトラヒドロフラン、 1 , 2 -ジメ トキシエタン) が挙げられ る。 なお、 2種類以上の有機溶媒を併用してもよい。
[0072] また、 組成物は、 垂直配向剤、 および、 水平配向剤などの各種配向制御剤 を含んでいてもよい。 垂直配向剤は、 界面側において液晶化合物を垂直に配 向制御可能な化合物である。 水平配向剤は、 界面側において液晶化合物を水 平に配向制御可能な化合物である。
垂直配向剤としては、 ボロン酸化合物、 および、 オニウム塩が挙げられる
[0073] ボロン酸化合物としては、 式 (2 0) で表される化合物が好ましい。
[0074] 式 (2 0)
[0075] \¥02020/175569 28 卩(:17 2020 /007805
[化 6]
Figure imgf000030_0001
[0076] 式 (20) 中、
Figure imgf000030_0002
および は、 それぞれ独立に、 水素原子、 置換若しく は無置換の脂肪族炭化水素基、 置換若しくは無置換のアリール基、 または、 置換若しくは無置換のへテロ環基を表す。
(メタ) アクリル基を含む置換基を表す。
ポロン酸化合物の具体例としては、 特開 2008 _ 225281号公報の 段落 0023〜 0032に記載の一般式 (丨) で表されるポロン酸化合物が 挙げられる。
[0077] オニウム塩としては、 式 (2 1) で表される化合物が好ましい。
[0078] 式 (2 1)
[0079] [化 7]
Figure imgf000030_0003
[0080] 式 (2 1) 中、 環八は、 含窒素複素環からなる第 4級アンモニウムイオン を表す。 Xは、 アニオンを表す。 は、 2価の連結基を表す。 !_2は、 単結 合、 または、 2価の連結基を表す。 丫1は、 5または 6員環を部分構造として 有する 2価の連結基を表す。 は、 2〜 20のアルキレン基を部分構造とし て有する 2価の連結基を表す。
Figure imgf000030_0004
それぞれ独立に、 重合性エ チレン性不飽和結合を有する一価の置換基を表す。
オニウム塩の具体例としては、 特開 201 2-208397号公報の段落 0052〜〇 058号公報に記載のオニウム塩、 特開 2008-02673 〇号公報の段落〇〇 24〜 0055に記載のオニウム塩、 および、 特開 20 02-37777号公報に記載のオニウム塩が挙げられる。 \¥0 2020/175569 29 卩(:17 2020 /007805
[0081 ] 組成物中の垂直配向剤の含有量は、 液晶化合物全質量に対して、 〇 . 1〜 4 0 0質量%が好ましく、 〇. 5〜 3 5 0質量%がより好ましい。
垂直配向剤は、 単独で用いてもよいし、 2種以上を組み合わせて用いても よい。 垂直配向剤が 2種以上を用いられる場合、 それらの合計量が上記範囲 であることが好ましい。
[0082] 組成物は、 レベリング剤を含むことが好ましい。
レべリング剤は特に制限されず、 フッ素原子を含むレべリング剤 (フッ素 系レべリング剤) 、 または、 ケイ素原子を含むレべリング剤 (ケイ素系レべ リング剤) が好ましく、 フッ素系レべリング剤がより好ましい。
[0083] フッ素系レべリング剤としては、 脂肪酸の一部がフルオロアルキル基で置 換された多価カルボン酸の脂肪酸エステル類、 および、 フルオロ置換基を有 するポリアクリレート類が挙げられる。 特に、 式 (2 2) で表される化合物 由来の繰り返し単位を含むレべリング剤が好ましい。
[0084] 式 ( 2 2)
[0085] [化 8]
Figure imgf000031_0001
[0086] ◦は、 水素原子、 ハロゲン原子、 または、 メチル基を表す。
1_は、 2価の連結基を表す。 1_としては、 炭素数 2〜 1 6のアルキレン基 が好ましく、 上記アルキレン基において隣接しない任意の一 0 1~1 2—は、 一〇 —、 一〇〇〇一、 一〇〇一、 または、 一〇〇 1\! 1~1—に置換されていてもよい 门は、 1〜 1 8の整数を表す。
[0087] 式 (2 2) で表される化合物由来の繰り返し単位を有するレべリング剤は 、 さらに他の繰り返し単位を含んでいてもよい。
他の繰り返し単位としては、 式 (2 3) で表される化合物由来の繰り返し 〇 2020/175569 30 卩(:171? 2020 /007805
単位が挙げられる。
[0088] 式 (2 3)
[0089] [化 9]
Figure imgf000032_0001
[0090] は、 水素原子、 ハロゲン原子、 または、 メチル基を表す。
Xは、 酸素原子、 硫黄原子、 または、 一 ([^ 3) -を表す。
Figure imgf000032_0002
水 素原子、 または、 炭素数 1〜 8のアルキル基を表す。
8 1 2は、 水素原子、 置換基を有してもよいアルキル基、 または、 置換基を 有していてもよい芳香族基を表す。 上記アルキル基の炭素数は、 1〜 2 0が 好ましい。 上記アルキル基は、 直鎖状、 分岐鎖状、 および、 環状のいずれで あってもよい。
また、 上記アルキル基の有していてもよい置換基としては、 ポリ (アルキ レンオキシ) 基、 および、 重合性基が挙げられる。 重合性基の定義は、 上述 した通りである。
[0091 ] レべリング剤が、 式 (2 2) で表される化合物由来の繰り返し単位、 およ び、 式 (2 3) で表される化合物由来の繰り返し単位を含む場合、 式 (2 2 ) で表される化合物由来の繰り返し単位の含有量は、 レべリング剤が含む全 繰り返し単位に対して、 1 0〜 9 0モル%が好ましく、 1 5〜 9 5モル%が より好ましい。
レべリング剤が、 式 (2 2) で表される化合物由来の繰り返し単位、 およ び、 式 (2 3) で表される化合物由来の繰り返し単位を含む場合、 式 (2 3 ) で表される化合物由来の繰り返し単位の含有量は、 レべリング剤が含む全 繰り返し単位に対して、 1 0〜 9 0モル%が好ましく、 5〜 8 5モル%がよ り好ましい。 〇 2020/175569 31 卩(:171? 2020 /007805
[0092] また、 レべリング剤としては、 上述した式 (2 2) で表される化合物由来 の繰り返し単位に代えて、 式 (2 4) で表される化合物由来の繰り返し単位 を含むレベリング剤も挙げられる。
[0093] 式 (2 4)
[0094] [化 10]
Figure imgf000033_0001
[0095] 8 2は、 水素原子、 ハロゲン原子、 又は、 メチル基を表す。
1_ 2は、 2価の連結基を表す。
门は、 1〜 1 8の整数を表す。
[0096] レべリング剤の具体例としては、 特開 2 0 0 4— 3 3 1 8 1 2号公報の段 落 0 0 4 6〜〇 0 5 2に例示される化合物、 および、 特開 2 0 0 8— 2 5 7 2 0 5号公報の段落 0 0 3 8〜 0 0 5 2に記載の化合物が挙げられる。
[0097] 組成物中のレべリング剤の含有量は、 液晶化合物全質量に対して、 1 〇〜
8 0質量%が好ましく、 2 0〜 6 0質量%がより好ましい。
レべリング剤は、 単独で用いてもよいし、 2種以上を組み合わせて用いて もよい。 レべリング剤が 2種以上を用いられる場合、 それらの合計量が上記 範囲であることが好ましい。
さらに、 組成物は、 上記成分以外に、 密着改良剤、 および、 可塑剤を含ん でいてもよい。
[0098] 上記組成物を用いた光学異方性膜 Xの製造方法は特に制限されず、 公知の 方法が挙げられる。
なかでも、 レタデーシヨンの制御がしやすい点から、 重合性液晶化合物お よび赤外線吸収色素を含む組成物を塗布して塗膜を形成し、 塗膜に配向処理 を施して重合性液晶化合物を垂直配向させ、 得られた塗膜に対して硬化処理 (紫外線の照射 (光照射処理) または加熱処理) を施して、 光学異方性膜 X を形成する方法が好ましい。
つまり、 光学異方性膜 Xは、 垂直配向した液晶化合物 (特に、 重合性液晶 〇 2020/175569 32 卩(:171? 2020 /007805
化合物) を固定してなる膜であることが好ましい。
以下、 上記方法の手順について詳述する。
[0099] まず、 支持体上に、 組成物を塗布して塗膜を形成し、 塗膜に配向処理を施 して重合性液晶化合物を配向させる。
使用される組成物は、 重合性液晶化合物を含む。 重合性液晶化合物の定義 は、 上述した通りである。
[0100] 使用される支持体は、 組成物を塗布するための基材として機能を有する部 材である。 支持体は、 組成物を塗布および硬化させた後に剥離される仮支持 体であってもよい。
支持体 (仮支持体) としては、 プラスチックフィルムの他、 ガラス基板を 用いてもよい。 プラスチックフィルムを構成する材料としては、 ポリエチレ ンテレフタレートなどのポリエステル樹脂、 ポリカーボネート樹脂、 (メタ ) アクリル樹脂、 エポキシ樹脂、 ポリウレタン樹脂、 ポリアミ ド樹脂、 ポリ オレフィン樹脂、 セルロース誘導体、 シリコーン樹脂、 および、 ポリビニル アルコールなどが挙げられる。
支持体の厚みは、 5〜 1 0 0 0 程度であればよく、 1 0〜 2 5 0 ^ 01 が好ましく、 1 5〜 9 0 がより好ましい。
[0101 ] なお、 必要に応じて、 支持体上には、 配向層を配置してもよい。
配向層は、 一般的には、 ポリマーを主成分とする。 配向層用ポリマーとし ては、 多数の文献に記載があり、 多数の市販品を入手できる。 配向層用ポリ マーとしては、 ポリビニルアルコール、 ポリイミ ド、 または、 その誘導体が 好ましい。
なお、 配向層には、 公知のラビング処理が施されることが好ましい。
配向層の厚みは、 〇. 0 1〜 1 〇 が好ましく、 〇. 0 1 ~ 1 がよ り好ましい。
[0102] 組成物の塗布方法としては、 力ーテンコーティング法、 ディップコーティ ング法、 スピンコーティング法、 印刷コーティング法、 スプレーコーティン グ法、 スロッ トコーティング法、 口ールコーティング法、 スライ ドコーティ 〇 2020/175569 33 卩(:171? 2020 /007805
ング法、 ブレードコーティング法、 グラビアコーティング法、 および、 ワイ ヤーパー法が挙げられる。 いずれの方法で塗布する場合においても、 単層塗 布が好ましい。
[0103] 支持体上に形成された塗膜に、 配向処理を施して、 塗膜中の重合性液晶化 合物および赤外線吸収色素を配向させる。 重合性液晶化合物の配向に伴って 、 赤外線吸収色素も所定の方向に配向する傾向にある。
配向処理は、 室温により塗膜を乾燥させる、 または、 塗膜を加熱すること により行うことができる。 配向処理で形成される液晶相は、 サーモトロピッ ク性液晶化合物の場合、 一般に温度または圧力の変化により転移させること ができる。 リオトロピック性液晶化合物の場合には、 溶媒量などの組成比に よっても転移させることができる。
なお、 塗膜を加熱する場合の条件は特に制限されないが、 加熱温度として は 5 0〜 2 5 0 °〇が好ましく、 6 0〜 2 3 0 °〇がより好ましく、 加熱時間と しては 1 0秒間〜 1 0分間が好ましい。
また、 塗膜を加熱した後、 後述する硬化処理 (光照射処理) の前に、 必要 に応じて、 塗膜を冷却してもよい。 冷却温度としては、 2 0〜 2 0 0 °〇が好 ましく、 3 0〜 1 5 0 °〇がより好ましい。
[0104] 次に、 重合性液晶化合物が配向された塗膜に対して硬化処理を施す。
重合性液晶化合物が配向された塗膜に対して実施される硬化処理の方法は 特に制限されず、 例えば、 光照射処理および加熱処理が挙げられる。 なかで も、 製造適性の点から、 光照射処理が好ましく、 紫外線照射処理がより好ま しい。
光照射処理の照射条件は特に制限されないが、 5 0〜 1
Figure imgf000035_0001
の照射量が好ましい。
[0105] 上記製造方法において、 各種条件を調整することにより、 赤外線吸収色素 の配置状態などを調整でき、 結果として光学異方性膜の光学特性を調整でき る。
[0106] (好適態様 2) 〇 2020/175569 34 卩(:171? 2020 /007805
光学異方性膜 Xの他の好適態様としては、 ポリマーと、 赤外線吸収色素と を含む組成物を用いて形成された光学異方性膜 Xが挙げられる。
以下、 上記組成物に含まれる成分について説明する。
[0107] 赤外線吸収色素の好適態様については、 上述した通りである。
[0108] ポリマーの種類は特に制限されないが、 逆波長分散性ポリマーであること が好ましい。 逆波長分散性ポリマーとは、 そのポリマーを用いて形成される 光学異方性膜が逆波長分散性を示すポリマーを意味する。
ポリマーの好適態様の 1つとしては、 式 (7) で表される繰り返し単位お よび式 (8) で表される繰り返し単位からなる群から選択される 1種以上の オリゴフルオレン単位を含むポリマーが挙げられる。
[0109] [化 1 1 ]
Figure imgf000036_0001
[01 10] 式 (7) および式 (8) 中、 1〜[¾ 33は、 それぞれ独立に、 単結合、 ま たは、 置換基を有していてもよい炭素数 1〜 4のアルキレン基を表す。
は、 それぞれ独立に、 水素原子、 置換基を有していてもよい炭 素数 1〜 1 0のアルキル基、 置換基を有していてもよい炭素数 4〜 1 〇のア リール基、 置換基を有していてもよい炭素数 4〜 1 0のへテロアリール基、 置換基を有していてもよい炭素数 1〜 1 〇のアシル基、 置換基を有していて もよい炭素数 1〜 1 0のアルコキシ基、 置換基を有していてもよい炭素数 1 〜 1 0のアリールオキシ基、 置換基を有していてもよい炭素数 1〜 1 〇のア シルオキシ基、 置換基を有していてもよいアミノ基、 置換基を有していても 〇 2020/175569 35 卩(:171? 2020 /007805
よい炭素数 1 〜 1 〇のビニル基、 置換基を有していてもよい炭素数 1 〜 1 0 のエチニル基、 置換基を有する硫黄原子、 置換基を有するケイ素原子、 ハロ ゲン原子、 ニトロ基、 または、 シアノ基を表す。 但し、
Figure imgf000037_0001
のうち隣 接する少なくとも 2つの基が互いに結合して環を形成していてもよい。 また、 式 (7) に含まれる
Figure imgf000037_0002
[¾35、 [¾36、 [¾37、 [¾38および 39は、 互いに同一であっても、 異なっていてもよい。 同様に、 式 (8) に含 まれる 2つの[¾ 3 4、 [¾ 3 5、 [¾ 3 6、 [¾ 3 7
Figure imgf000037_0003
互いに同一で あっても、 異なっていてもよい。
[0111] ポリマー中に含まれるオリゴフルオレン単位の含有量は特に制限されない が、 全繰り返し単位に対して、 1 〜 70モル%が好ましく、 1 0〜 40モル %がより好ましい。
[0112] ポリマーの他の好適態様としては、 式 (9) で表される繰り返し単位およ び式 ( 1 1 ) で表される繰り返し単位を含むポリマーが挙げられる。
[0113] [化 12]
Figure imgf000037_0004
[0114] [化 13]
Figure imgf000037_0005
[0115] 式 (9) 中、
Figure imgf000037_0006
は、 それぞれ独立に、 水素原子、 ハロゲン原子、 または、 炭素数 1 〜 6の炭化水素基を表す。
Xは、 式 ( 1 0) で表される基を表す。 式 ( 1 0) 中、 氺は結合位置を表 す。
[0116] 〇 2020/175569 36 卩(:171? 2020 /007805
[化 14]
式(10)
Figure imgf000038_0001
[0117] 式 (1 1) 中、
Figure imgf000038_0002
それぞれ独立に、 水素原子、 ハロゲン原子
、 または、 炭素数 1〜 22の炭化水素基を表す。
丫は、 一〇 ([¾61) ([¾62) -、 式 (1 2) で表される基、 一3 丨 ([¾67 ) (868) —、 -302 -, -3 -, 2価の脂肪族炭化水素基、 一 0 (〇1~132 _フエニレン基
Figure imgf000038_0003
( 01~13) 2 _、 または、 _〇〇__!___〇〇_ を表す。
式 ( 1 2) 中、 氺は結合位置を表す。
[0118] [化 15]
Figure imgf000038_0004
[0119] [¾61、 [¾62、 [¾67および[¾68は、 それぞれ独立に、 水素原子、 ハロゲン原 子、 または、 炭素数 1〜 22の炭化水素基 (例えば、 炭素数 6〜 1 0のアリ —ル ¾) を表す。
63 66は、 それぞれ独立に、 水素原子またはアルキル基を表す。
!_は、 2価の脂肪族炭化水素基を表す。
[0120] ポリマー中における式 (9) で表される繰り返し単位の含有量は特に制限 されないが、 全繰り返し単位に対して、 30〜 90モル%が好ましい。
ポリマー中における式 ( 1 1) で表される繰り返し単位の含有量は特に制 限されないが、 全繰り返し単位に対して、 1 0〜 70モル%が好ましい。
[0121] ポリマーの他の好適態様としては、 セルロースアシレートが挙げられる。
セルロースアシレートとしては、 セルロースの低級脂肪酸エステルが好ま しい。 低級脂肪酸とは、 炭素数が 6以下の脂肪酸を意味する。 脂肪酸の炭素 〇 2020/175569 37 卩(:171? 2020 /007805
数は、 2 (セルロースアセテート) 、 3 (セルロースプロビオネート) 、 ま たは、 4 (セルロースプチレート) であることが好ましい。 なお、 セルロー スアセテートプロビオネートおよびセルロースアセテートプチレートのよう な混合脂肪酸エステルを用いてもよい。
セルロースアセテートの酢化度は、 5 5 . 〇〜 6 2 . 5 %が好ましく、 5 7 . 〇〜 6 2 . 0 %がより好ましく、 5 8 . 5〜 6 1 . 5 %がさらに好まし い。
酢化度は、 セルロース単位質量当たりの結合酢酸量を意味する。 酢化度は 、 八3丁1\/1 : 0 - 8 1 7 - 9 1 (セルロースアセテート等の試験法) におけ るアセチル化度の測定および計算に従う。
[0122] なお、 ポリマーとしてセルロースアシレートを用いる場合、 可塑剤、 劣化 防止剤、 レタデーション上昇剤、 および、 紫外線吸収剤などの添加剤を合わ せて用いてもよい。
上記添加剤に関しては、 特開 2 0 0 4 _ 0 5 0 5 1 6号公報に例示される 添加剤が挙げられる。
[0123] 組成物中におけるポリマーの含有量は特に制限されないが、 組成物中の全 固形分に対して、 5 0質量%以上が好ましく、 7 0質量%以上がより好まし い。 上限は特に制限されないが、 9 7質量%以下の場合が多い。
なお、 組成物中の全固形分には、 溶媒は含まれない。
[0124] 上記組成物を用いた光学異方性膜 Xの製造方法は特に制限されず、 公知の 方法が挙げられる。
なかでも、 レタデーションの制御がしやすい点から、 ポリマー、 および、 赤外線吸収色素を含む組成物を用いて未延伸フィルムを形成し、 得られた未 延伸フィルムを厚み方向に延伸配向させて、 延伸フィルムである光学異方性 膜を形成する方法が挙げられる。
[0125] (好適態様 3)
光学異方性膜 Xの他の好適態様としては、 赤外線吸収色素残基を有するポ リマー (特定ポリマー) を含む組成物を用いて形成された光学異方性膜 Xが 〇 2020/175569 38 卩(:171? 2020 /007805
挙げられる。
上述したように、 赤外線吸収色素残基とは、 赤外線吸収色素から任意の水 素原子を除いて得られる基を意味する。
赤外線吸収色素残基を形成し得る赤外線吸収色素としては、 上記 (好適態 様 1) で説明した赤外線吸収色素が挙げられる。
なお、 上記組成物には、 上記 (好適態様 2) で説明したポリマーが含まれ ていてもよい。
[0126] 上記組成物を用いた光学異方性膜 Xの製造方法は特に制限されず、 公知の 方法が挙げられる。
なかでも、 レタデーシヨンの制御がしやすい点から、 赤外線吸収色素、 お よび、 ポリマーを含む組成物を用いて未延伸フィルムを形成し、 得られた未 延伸フィルムを厚み方向に延伸配向させて、 延伸フィルムである光学異方性 膜 Xを形成する方法が挙げられる。
[0127] <用途>
上述した光学異方性膜 Xは、 種々の用途に適用できる。
光学異方性膜 Xは、 他の光学異方性膜を含む積層体として用いてもよい。 他の光学異方性膜の種類は特に制限されないが、 例えば、 ス / 2板、 およ び、 ス / 4板が挙げられる。
ス / 4板とは、 ある特定の波長の直線偏光を円偏光に (または、 円偏光を 直線偏光に) 変換する機能を有する板である。 より具体的には、 所定の波長 ス门 01における面内レタデーシヨン[¾ 6がス / 4 (または、 この奇数倍) を 示す板である。
ス / 4板の波長 5 5 0 〇!での面内レタデーシヨン
Figure imgf000040_0001
(5 5 0) ) は 、 理想値 (1 3 7 . 5 n〇〇 を中心として、 2 5 n 程度の誤差があっても よく、 例えば、 1 1 0〜 1 6 0 n であることが好ましく、 1 2 0〜 1 5 0 1^ 01であることがより好ましい。
上記ス / 4板としては、 ス / 2板とス / 4板とが積層された広帯域ス / 4 板を用いてもよい。 〇 2020/175569 39 卩(:171? 2020 /007805
ス / 2板とは、 特定の波長ス 01における面内レタデーシヨン
Figure imgf000041_0001
㊀ (ス) (ス) ス / 2を満たす光学異方性膜のことをいう。 この式は、 可視 光線領域のいずれかの波長 (例えば、 5 5 0
Figure imgf000041_0002
において達成されていれ ばよい。 なかでも、
Figure imgf000041_0003
(5 5 0) が、 以下の関係を満たすことが好ましい。
Figure imgf000041_0004
(5 5 0) £ 3 0 0
[0128] (光学異方性膜丫)
また、 他の光学異方性膜の好適態様の一つとしては、 液晶化合物および赤 外線吸収色素を含む組成物から形成された光学異方性膜 (以後、 「光学異方 性膜丫」 ともいう。 ) であって、 光学異方性膜丫は後述する式 (丫 1) の関 係を満たし、 光学異方性膜丫の進相軸の方向での波長 7 0 0〜 9 0 0 n mに おける吸収が、 光学異方性膜丫の遅相軸の方向での波長 7 0 0〜 9 0 0 n における吸収よりも大きい、 光学異方性膜丫 (本発明の第 2実施態様の一例 に該当) が挙げられる。 光学異方性膜丫は、 上記波長 7 0 0〜 9 0 0 n に おける吸収の影響を受けて、 長波長領域の面内レタデーシヨンが大きくなり 、 面内方向の位相差において逆波長分散性に優れる。
[0129] 光学異方性膜丫の特徴点の一つとしては、 波長 7 0 0〜 9 0 0 n におけ る吸収特性を制御している点が挙げられる。
まず、 図 5に、 測定波長
Figure imgf000041_0005
(5 5〇 1^〇1) ) を 1 として規格化した可視光線領域での各波長における位相差
Figure imgf000041_0006
(ス) ) の波長分散特性を示す。 例えば、 上述した理想的なス / 4板は、 図 5の点線 に示すように、 位相差が測定波長に対し比例関係にあるため、 測定波長が長 いほど位相差が大きくなる 「負の分散」 特性を有する。 それに対して、 従来 の逆波長分散性を示す光学異方性膜は、 図 5の実線に示すように、 短波長領 域においては点線で示す理想曲線と重なる位置にもあるが、 長波長領域にお いては理想曲線から外れる傾向を示す。
光学異方性膜丫においては、 波長 7 0 0〜 9 0 0 n における吸収特性を 制御することにより、 白抜き矢印で示すように、 長波長領域における光学特 〇 2020/175569 40 卩(:171? 2020 /007805
性を理想曲線に近づけることができる。
[0130] 光学異方性膜丫においては、 進相軸の方向での波長 7 0 0〜 9 0 0
Figure imgf000042_0001
に おける吸収が、 遅相軸の方向での波長 7 0 0〜 9 0 0 n mにおける吸収より も大きくなる。 以後、 このような吸収特性を、 吸収特性丫ともいう。 後段で 詳述するように、 上記吸収特性丫の達成手段の一つとしては、 例えば、 光学 異方性膜丫中において赤外線吸収色素の吸光度の高い軸方向を進相軸の方向 と平行になるように配置することが挙げられる。
吸収特性丫を示す光学異方性膜においては、 吸収特性丫を有さない光学異 方性膜よりも、 常光線屈折率がより低下する。
具体的には、 図 6において、 上記吸収特性丫の有無による異常光線屈折率 门 6と常光線屈折率 n〇の波長分散の比較を示す図である。 図 6中、 太線は 吸収特性丫がない場合の異常光線屈折率〇 6のカーブを示し、 実線は吸収特 性丫がない場合の常光線屈折率 n〇のカーブを示す。 それに対して、 吸収特 性丫を有する光学異方性膜丫においては、 上記図 4で示したような波長 7 0 〇〜 9 0 0 n の吸収に由来する影響を受けて、 破線で示すように可視光線 領域の長波長領域において常光線屈折率门〇の値がより低下する。 結果とし て、 可視光線領域の長波長領域において、 異常光線屈折率〇 6と常光線屈折 率 n〇との差である複屈折△nがより大きくなり、 図 5に示す矢印の挙動が 達成される。
[0131 ] 光学異方性膜丫は、 式 (丫 1 ) の関係を満たす。
Figure imgf000042_0002
面内レタデー シヨンを表し、
Figure imgf000042_0003
( 5 5 0 ) は波長 5 5 0 n における光学異方性膜丫の 面内レタデーシヨンを表す。
なかでも、
Figure imgf000042_0004
( 5 5 0 ) は、 〇. 9 7以下が好ましく
、 〇. 9 2以下がより好ましく、 〇. 8 8以下がさらに好ましい。 下限は特 に制限されないが、 〇. 7 5以上の場合が多い。
[0132] 光学異方性膜
Figure imgf000042_0005
( 6 5 0 ) / ㊀ ( 5 5 0 ) は特に制限されないが 〇 2020/175569 41 卩(:171? 2020 /007805
, 1. 05以上が好ましく、 1. 08以上がより好ましく、 1. 1 0以上が さらに好ましい。 上限は特に制限されないが、 1. 25以下が好ましく、 1 . 20以下がより好ましい。
Figure imgf000043_0001
(650) の比である。
なお、
Figure imgf000043_0002
(650) は、 波長 650 n における光学異方性膜丫の面内 レタデーシヨンを表す。
[0133] 光学異方性膜丫の
Figure imgf000043_0003
(550) は特に制限されないが、 ス /4板として 有用である点で、 1
Figure imgf000043_0004
が好ましく、 1 20〜 1 50 n mがよ り好ましい。
[0134] 光学異方性膜丫の厚みは特に制限されず、 薄型化の点から、 1 0 以下 が好ましく、 〇. 5〜 8. 〇 がより好ましく、 〇. 5〜 6. 〇 がさ らに好ましい。
なお、 本明細書において、 光学異方性膜丫の厚みとは、 光学異方性膜丫の 平均厚みを意図する。 上記平均厚みは、 光学異方性膜丫の任意の 5箇所以上 の厚みを測定して、 それらを算術平均して求める。
[0135] 光学異方性膜丫においては、 光学異方性膜丫の進相軸の方向での波長 70 〇〜 900 n における吸収 (以下、 「吸収 」 ともいう) が、 光学異方性 膜丫の遅相軸の方向での波長 700〜 900 n における吸収 (以下、 「吸 収3」 ともいう) よりも大きい。
上記 「吸収 が吸収 3よりも大きい」 とは、 光学異方性膜丫の進相軸に平 行な偏光を光学異方性膜丫に照射した際に得られる吸収スぺクトルの波長 7 00〜 900 n における最大吸光度が、 光学異方性膜丫の遅相軸に平行な 偏光を光学異方性膜丫に照射した際に得られる吸収スぺクトルの波長 700 〜 900 n における最大吸光度よりも大きいことを意図する。
なお、 上記測定は、 赤外線用偏光子を備えた分光光度計
Figure imgf000043_0005
1 0 0 (31~1 丨 1\/1八0211製) ) を用いて実施できる。
[0136] なお、 上記のような吸収の異方性は、 上述した赤外線吸収色素を用いるこ 〇 2020/175569 42 卩(:171? 2020 /007805
とにより実現できる。 特に、 二色性の赤外線吸収色素を用いて、 この色素の 吸光度のより高い軸方向を光学異方性膜の進相軸方向と平行とすることによ り、 吸収 を吸収 3よりも大きくできる。
[0137] 光学異方性膜丫においては、 赤外線吸収色素の波長 700〜 900 n mに おける極大吸収波長における光学異方性膜丫の配向秩序度 30は特に制限され ず、 _0. 50超一〇. 1 0以下の場合が多い。 配向秩序度 3。が大きいと、 赤外線吸収色素の使用量を減らしても、 光学異方性膜丫の逆波長分散性を向 上させることができる。 そのため、 光学異方性膜丫を有機巳 !_ (エレクトロ ルミネッセンス) 表示装置の反射防止膜として適用した際に、 有機巳 !_表示 装置の輝度がより優れる点で、 式 (丫2) の関係を満たすことが好ましい。 式 (丫 2) -0. 50<3〇<-〇. 1 5
なかでも、 配向秩序度 3。は一 0. 40〜一 0. 20であることがより好ま しく、 一〇. 30〜一〇. 20であることがさらに好ましい。
[0138] 上記波長ス n における光学異方性膜丫の配向秩序度 3〇 (ス) は、 式 (丫
3) で表される値である。
式 (丫3) 30 (ス) = (八^ / (八 +2八
式 (丫3) 中、 八[3は、 光学異方性膜丫の遅相軸方向に対して平行方向に偏 光した光に対する吸光度を表す。
Figure imgf000044_0001
は、 光学異方性膜丫の遅相軸方向に対し て直交方向に偏光した光に対する吸光度を示す。
光学異方性膜丫の配向秩序度 3。 (ス) は、 光学異方性膜丫の偏光吸収測定 により求めることができる。 なお、 上記測定は、 赤外線用偏光子を備えた分 光光度計 (1\/1?〇一3 1 00 (31~1 丨 1\/1八0211製) ) を用いて実施できる 。 スは、 光学異方性膜丫の吸収測定で得られた波長 700〜 900 n mにお ける吸収スぺクトルの極大吸収波長である。
[0139] (光学異方性膜 )
また、 他の光学異方性膜の好適態様の一つとしては、 液晶化合物および赤 外線吸収色素を含む組成物から形成された光学異方性膜 (以後、 「光学異方 性膜 」 ともいう。 ) であって、 赤外線吸収色素の波長 700〜 900 n 〇 2020/175569 43 卩(:171? 2020 /007805
での極大吸収波長における光学異方性膜 の配向秩序度 3 0が、 後述する式 ( 1) の関係を満たし、 光学異方性膜 の進相軸の方向での波長 7 0 0〜 9 0 0 n における吸収が、 光学異方性膜 の遅相軸の方向での波長 7 0 0〜
9 0 0 n mにおける吸収よりも大きい、 光学異方性膜 (本発明の第 2実施 態様の他の例に該当) が挙げられる。 光学異方性膜 は、 上記波長 7 0 0〜
9 0 0门 における吸収の影響を受けて、 長波長領域の面内レタデーシヨン が大きくなり、 面内方向の位相差において逆波長分散性に優れる。
光学異方性膜 2が優れた逆波長分散性を示す理由は、 上述した光学異方性 膜丫の場合と同様の理由である。
[0140] 光学異方性膜 においては、 赤外線吸収色素の波長 7 0 0〜 9 0 0 n mに おける極大吸収波長における光学異方性膜の配向秩序度 3 0は、 式 ( 1) の 関係を満たす。
式 ( 1) - 0 . 5 0 < 3〇< -〇. 1 5
なかでも、 配向秩序度 3。は一 0 . 4 0〜一 0 . 2 0であることがより好ま しく、 一〇. 3 0〜一〇. 2 0であることがさらに好ましい。
光学異方性膜 の配向秩序度 3〇 (ス) の測定方法は、 上述した光学異方性 膜丫で説明した通りである。
[0141 ] 光学異方性膜 においては、 光学異方性膜 の進相軸の方向での波長 7 0 〇〜 9 0 0 n における吸収 (吸収 ) が、 光学異方性膜 の遅相軸の方向 での波長 7 0 0〜 9 0 0 n における吸収 (吸収 3) よりも大きい。
上記 「吸収 が吸収 3よりも大きい」 とは、 光学異方性膜 の進相軸に平 行な偏光を光学異方性膜に照射した際に得られる吸収スぺクトルの波長 7 0 〇〜 9 0 0 n における最大吸光度が、 光学異方性膜 の遅相軸に平行な偏 光を光学異方性膜に照射した際に得られる吸収スぺクトルの波長 7 0 0〜 9 0 0门
Figure imgf000045_0001
における最大吸光度よりも大きいことを意図する。
なお、 上記測定は、 赤外線用偏光子を備えた分光光度計
Figure imgf000045_0002
1 0 0 (3 1~1 丨 1\/1八0 2 11製) ) を用いて実施できる。
[0142] なお、 上記のような吸収の異方性は、 赤外線吸収色素を用いることにより 〇 2020/175569 44 卩(:171? 2020 /007805
実現できる。 特に、 二色性の赤外線吸収色素を用いて、 この色素の吸光度の より高い軸方向を光学異方性膜 の進相軸方向と平行とすることにより、 吸 収 を吸収 3よりも大きくできる。
[0143] 光学異方性膜 は、 式 ( 2) の関係を満たすことが好ましい。
Figure imgf000046_0001
膜の面内レタデーシ ヨンを表し、
Figure imgf000046_0002
(550) は波長 550 n における光学異方性膜の面内 レタデーシヨンを表す。
なかでも、
Figure imgf000046_0003
(550) は、 〇. 97以下が好ましく
、 〇. 92以下がより好ましく、 〇. 88以下がさらに好ましい。 下限は特 に制限されないが、 〇. 75以上の場合が多い。
[0144] 光学異方性膜
Figure imgf000046_0004
(650) XRe (550) は特に制限されないが , 1. 05以上が好ましく、 1. 08以上がより好ましく、 1. 1 0以上が さらに好ましい。 上限は特に制限されないが、 1. 25以下が好ましく、 1 . 20以下がより好ましい。
Figure imgf000046_0005
(650) の比である。
なお、
Figure imgf000046_0006
(650) は、 波長 650 n における光学異方性膜 の面内 レタデーシヨンを表す。
[0145] 光学異方性膜 の
Figure imgf000046_0007
6 (550) は特に制限されないが、 ス /4板として 有用である点で、 1
Figure imgf000046_0008
が好ましく、 1 20〜 1 50 n mがよ り好ましい。
[0146] 光学異方性膜 の厚みは特に制限されず、 薄型化の点から、 1 0 以下 が好ましく、 〇. 5〜 8. 〇 がより好ましく、 〇. 5〜 6. 〇 がさ らに好ましい。
光学異方性膜 の厚みの測定方法は、 上述した光学異方性膜丫で説明した 通りである。
[0147] 光学異方性膜丫および光学異方性膜 の形成に用いられる組成物中の液晶 〇 2020/175569 45 卩(:171? 2020 /007805
化合物および赤外線吸収色素としては、 それぞれ光学異方性膜 Xの形成に用 いられる液晶化合物および赤外線吸収色素が挙げられる。
[0148] 光学異方性膜丫および光学異方性膜 の製造方法としては、 重合性基を有 する液晶化合物および赤外線吸収色素を含む組成物を塗布して塗膜を形成し 、 塗膜に配向処理を施して重合性液晶化合物を配向させ、 得られた塗膜に対 して硬化処理 (紫外線の照射 (光照射処理) または加熱処理) を施して、 光 学異方性膜を形成する方法が好ましい。
光学異方性膜丫および光学異方性膜 としては、 液晶化合物を水平配向さ せて固定化してなる光学異方性膜であって、 赤外線吸収色素を含む光学異方 性膜が好ましい。
以下、 上記方法の手順について詳述する。
[0149] まず、 支持体上に、 組成物を塗布して塗膜を形成し、 塗膜に配向処理を施 して重合性液晶化合物を配向させる。
使用される組成物は、 重合性液晶化合物を含む。 重合性液晶化合物の定義 は、 上述した通りである。
使用される支持体としては、 上述した光学異方性膜 Xの形成に用いられる 支持体が挙げられる。
なお、 必要に応じて、 支持体上には、 配向層を配置してもよい。 配向層と しては、 光学異方性膜 Xの形成に用いられる配向層が挙げられる。
[0150] 組成物の塗布方法としては、 光学異方性膜 Xの形成の際に用いられる塗布 方法が挙げられる。
[0151 ] 支持体上に形成された塗膜に、 配向処理を施して、 塗膜中の重合性液晶化 合物を配向させる。 特に、 重合性液晶化合物を水平配向させることが好まし い。 重合性液晶化合物の配向に伴って、 赤外線吸収色素も所定の方向に配向 する傾向にある。
配向処理は、 室温により塗膜を乾燥させる、 または、 塗膜を加熱すること により行うことができる。 配向処理で形成される液晶相は、 サーモトロピッ ク性液晶化合物の場合、 一般に温度または圧力の変化により転移させること 〇 2020/175569 46 卩(:171? 2020 /007805
ができる。 リオトロピック性液晶化合物の場合には、 溶媒量などの組成比に よっても転移させることができる。
なお、 塗膜を加熱する場合の条件は特に制限されないが、 加熱温度として は 5 0〜 2 5 0 °〇が好ましく、 5 0〜 1 5 0 °〇がより好ましく、 加熱時間と しては 1 0秒間〜 1 0分間が好ましい。
また、 塗膜を加熱した後、 後述する硬化処理 (光照射処理) の前に、 必要 に応じて、 塗膜を冷却してもよい。 冷却温度としては 2 0〜 2 0 0 °〇が好ま しく、 3 0〜 1 5 0 °〇がより好ましい。
[0152] 次に、 重合性液晶化合物が配向された塗膜に対して硬化処理を施す。
重合性液晶化合物が配向された塗膜に対して実施される硬化処理の方法は 特に制限されず、 例えば、 光照射処理および加熱処理が挙げられる。 なかで も、 製造適性の点から、 光照射処理が好ましく、 紫外線照射処理がより好ま しい。
光照射処理の照射条件は特に制限されないが、 5 0〜 1
Figure imgf000048_0001
の照射量が好ましい。
[0153] (円偏光板)
光学異方性膜 Xは、 円偏光板に適用できる。 より具体的には、 円偏光板の 構成としては、 光学異方性膜 X、 ス / 4板、 および、 偏光子を含む態様が挙 げられる。 なお、 上記円偏光板において、 光学異方性膜 X、 ス / 4板、 およ び、 偏光子の積層順は特に制限されず、 例えば、 光学異方性膜 X、 ス / 4板 、 および、 偏光子がこの順で積層されていてもよいし、 ス / 4板、 光学異方 性膜 X、 および、 偏光子がこの順で積層されていてもよい。
なお、 上記ス / 4板として、 上述した光学異方性膜丫および光学異方性膜 を用いてもよい。
偏光子は、 光を特定の直線偏光に変換する機能を有する部材 (直線偏光子 ) であればよく、 主に、 吸収型偏光子を利用できる。
吸収型偏光子としては、 ヨウ素系偏光子、 二色性染料を利用した染料系偏 光子、 およびポリエン系偏光子などが挙げられる。 ヨウ素系偏光子および染 料系偏光子には、 塗布型偏光子と延伸型偏光子とがあり、 いずれも適用でき るが、 ポリビニルアルコールにヨウ素または二色性染料を吸着させ、 延伸し て作製される偏光子が好ましい。
偏光子の吸収軸とス / 4板の遅相軸との関係は特に制限されないが、 偏光 子の吸収軸とス / 4板の遅相軸とのなす角は、 4 5 ° ± 1 0 ° が好ましい。
[0154] (表示装置)
光学異方性膜 Xは、 表示装置中に含まれていてもよい。 つまり、 光学異方 性膜 Xのより具体的な用途としては、 例えば、 液晶セルを光学補償するため の光学補償フィルム、 および、 有機エレクトロルミネッセンス表示装置など の表示装置に用いられる反射防止膜が挙げられる。
なかでも、 光学異方性膜 Xの好ましい態様として、 上述したように、 光学 異方性膜 Xと偏光子とを含む円偏光板が挙げられる。 この円偏光板は、 上記 反射防止膜として好適に使用できる。 つまり、 表示素子 (例えば、 有機エレ クトロルミネッセンス表示素子) と、 表示素子上に配置された円偏光板とを 有する表示装置においては、 反射色味がより抑制できる。
また、 光学異方性膜 Xは、 丨 P S (In P lane Sw i tch i ng) 型液晶表示装置 の光学補償フィルムに好適に用いられ、 斜め方向から視認した時の色味変化 および黒表示時の光漏れを改善できる。
実施例
[0155] 以下に、 実施例および比較例を挙げて本発明の特徴をさらに具体的に説明 する。 以下の実施例に示す材料、 使用量、 割合、 処理内容、 および、 処理手 順等は、 本発明の趣旨を逸脱しない限り適宜変更できる。 従って、 本発明の 範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[0156] <色素の合成>
(化合物 a - 2の合成)
化合物 a _ 2を下記スキームに従い合成した。
[0157] [化 16]
Figure imgf000050_0001
[0158] 4—ブロモフエノール (50. O g、 258mmo 丨) 、 2—エチルヘキ シルブロミ ド (58. 2 g、 336 m m〇 I) 、 炭酸カリウム ( 93. 0 g 、 673 mm〇 丨) 、 および、 N, N _ジメチルホルムアミ ド ( 250 m I ) を室温にて混合した。 得られた混合物を 1 〇 5°Cに昇温し、 1 0時間撹拌 した後、 室温に降温し、 混合液中の無機塩を據過により除去した。 この混合 液に、 酢酸エチル (300m l) および 1 N塩酸水 (300m l) を加えて 分液抽出を行った。 有機層を蒸留水 (300m l) および飽和重曹水 (30 0m l) でそれぞれ洗い、 得られた有機層を硫酸マグネシウムにて乾燥した 。 その後、 得られた溶液からろ過により硫酸マグネシウムを除去して、 溶液 から溶媒を減圧留去した。 得られた粗生成物を、 酢酸エチルーヘキサンを溶 媒に用いたシリカゲルカラムクロマトグラフィによる精製を行い、 オイル状 の化合物 a- 1 を (72. 2 g、 253 mm〇 I) を得た (収率 = 98. 1 %) 。 化合物 a _ 1の構造は、 H— NMR (Nuclear Magnetic Resonance) により同定した。
1 H-NMR (溶媒: CDC I 3) 5 (p pm) : 0. 92 (m, 6 H) , 1 . 38 (m, 8 H) , 1. 69 (m, 1 H) , 3. 79 (d, 2 H) , 6.
77 (m, 2 H) , 7. 29 (m, 2 H)
[0159] 乾燥窒素雰囲気下、 マグネシウム (3. 75 g、 1 54 m m〇 I) 、 塩化 リチウム (3. 27 g、 1 05 mmo l) 、 および、 テトラヒドロフラン ( 1 60m l) を室温にて混合した。 得られた混合物を 63°Cに昇温し、 化合 物 a- 1 (40. 0 g , 1 40 m m〇 I) およびテトラヒドロフラン ( 40 m l) の混合物を滴下した。 得られた混合物を室温に降温した後、 トリメ ト キシボラン (7. 29 g , 70. 0 mm〇 I) およびテトラヒドロフラン (
20m l) の混合物を滴下した。 得られた混合物を 50°Cに昇温し、 2時間 攪拌した後、 室温に降温した。 得られた混合液に蒸留水 (20〇! I) を加え た後、 酢酸エチル
Figure imgf000051_0001
および 1 1\1塩酸水
Figure imgf000051_0002
を加え、 分液抽出した。 有機層を飽和食塩水 (200〇! I) で 2回洗い、 得られた有 機層を硫酸マグネシウムにて乾燥した。 その後、 得られた溶液からろ過によ り硫酸マグネシウムを除去して、 溶液から溶媒を減圧留去した。 得られた粗 生成物を酢酸エチルーヘキサンを溶媒に用いたシリカゲルカラムクロマトグ ラフィによる精製を行った。 得られた粗生成物にトルエン ( 1 〇〇 丨) お よびエタノールアミン (6. 429 , 1 05〇1〇1〇 1) を加え、 室温にて 1 〇分間攪拌した。 溶媒および過剰なエタノールアミンを減圧留去し、 オイル 状の化合物 3 2 (23. 49 , 48. 7〇1111〇 1) を得た (収率: 69. 6%) 。 化合物 3— 2の構造は、 11~1— IV! により同定した。
1
Figure imgf000051_0003
3. 84 (〇1, 61~1) , 4. 1 3 (〇1, 21~1) , 6. 83 (〇1, 41~1) , 7 . 29 (〇1, 2
[0160] (化合物 3 _ 5の合成)
化合物 3-5を以下のスキームに従って合成した。
[0161] [化 17]
Figure imgf000051_0004
[0162] 化合物 3— 3は、 \^/〇201 8/1 24 1 98号の段落 0088〜〇 09
1 に記載の化合物 1 _ 1のスキームに従い、 を合成した。
[0163] 化合物 3— 3 (1 0. 〇 、 3〇. 8〇1111〇 1) 、 2, 2, 6, 6—テト 〇 2020/175569 50 卩(:171? 2020 /007805
ラメチルピペリジン 1 —オキシル (1 2.
Figure imgf000052_0001
〇. 77〇1〇1〇 丨) 、 トルエン (2〇 丨) 、 および、 1\1, 1\1 -ジメチルアセトアミ ド (5.
Figure imgf000052_0002
I) を室温にて混合した。 得られた混合物を一 5 に降温し、 塩化チオニル (3. 529、 29. 6 〇 丨) を混合物に滴下した。 得られた混合液を 内温一 5〜 3°〇にて 1時間撹拌した後、 2 - (4 -ヒドロキシフエニル) エ タノール (3. 559、 25. 7〇1〇1〇 1) および 1\1, 1\1 -ジメチルアセト アミ ド (1 3. 〇 I) の混合物を滴下した。 得られた混合液を 52°〇に昇 温し、 7時間擾祥した後、 室温まで降温した。 この混合液に、 蒸留水および トルエンを加えて分液抽出を行った。 有機層を 1 1\]塩酸水で洗い、 その後、 飽和重曹水で 2回洗い、 さらに飽和食塩水で洗い、 得られた有機層を硫酸マ グネシウムにて乾燥した。 その後、 得られた溶液からろ過により硫酸マグネ シウムを除去して、 溶液から溶媒を減圧留去した。 得られた粗生成物を、 酢 酸エチルーヘキサンを溶媒に用いたシリカゲルカラムクロマトグラフィによ る精製を行い、 白色固体の化合物 3 -4 (6. 039、 1 3. 6 〇 1) を得た (収率 = 52. 8 %) 。 化合物 a 4の構造は、 11~1_ 1\/|[¾により同 定した。
11~1- 1\/^ (溶媒: 〇0〇 1 3) 8 ( 〇1) : 2. 98 (1: , 21~1) , 3 . 74 (〇1, 61~1) , 3. 87 (〇1, 21~1) , 4. 1 7 (〇1, 21~1) , 4.
Figure imgf000052_0003
. 9 1 (〇1, 21~1) , 7. 1 9 (〇1, 21~1) , 7. 95 (〇1, 21~1)
[0164] 化合物 8— 4 (4. 469 % 1 〇. 〇 〇 丨) 、 シクロへキサンジカル ボン酸ジクロライ ド (6. 299、 3〇. 0〇!〇!〇 I) 、 ジブチルヒドロキ シトルエン (66. 0〇19、 〇. 30〇1〇1〇 1) 、 および、 テトラヒドロフ フン (67. 〇111 1) を室温にて混合した。 得られた混合液を 3 に降温し 、 1\1, 1\1_ジイソプロピルエチルアミン (2. 599、 20. 0〇!〇!〇 I) を滴下した後、 得られた混合液を 1時間撹拌した。 得られた混合液にメタン スルホン酸 (1 30 丨) を加え、 不溶解物をろ過した後、 1 〇%炭酸カリ \¥02020/175569 51 卩(:17 2020 /007805
ウム水 (1 2. 59) を加えて分液抽出を行った。 有機層を 1 7%炭酸カリ ウム水 (2〇. 49) で洗い、 得られた有機層を硫酸マグネシウムにて乾燥 した。 その後、 得られた溶液からろ過により硫酸マグネシウムを除去して、 溶液から溶媒を減圧留去した。 得られた粗生成物を、 酢酸ェチルーヘキサン を溶媒に用いたシリカゲルカラムクロマトグラフィによる精製を行い、 白色 固体の化合物 3-5 (2. 069、 3. 43〇1〇1〇 丨) を得た (収率: 34 . 3%) 。 化合物 3— 5の構造は、 11~1— IV! により同定した。
11~1- 1\/^ (溶媒: 〇0〇 13) 5 ( 〇〇 : 1. 63 (〇1, 41~1) , 2
. 38 (〇1, 61~1) , 3. 05 (1: , 21~1) , 3. 74 (〇1, 61~1) , 3.
87 (〇1, 21~1) , 4. 18 (〇1, 21~1) , 4. 32 (〇1, 21~1) , 4. 4
Figure imgf000053_0001
29 (〇1, 21~1) , 7. 95 (〇1, 21~1)
[0165] (赤外線吸収色素丨
Figure imgf000053_0002
の合成)
赤外線吸収色素丨
Figure imgf000053_0003
1を以下のスキームに従って合成した。
[0166] [化 18]
Figure imgf000053_0004
[0167] 錯体丨
Figure imgf000053_0005
は、 ジフエニルボリン酸 2 -アミノエチルエステルに代え 〇 2020/175569 52 卩(:171? 2020 /007805
て、 上記化合物 3— 2を用いて、 \^/〇201 7/1 46092号公報の段落 027 1〜 0272に記載の化合物 _ 1 5の合成法に従って合成した。
[0168]
Figure imgf000054_0001
(4. 479、 2. 92〇1〇1〇 1) 、 化合物 3 - 5 (5.
4 1 9、 9. 04〇1〇1〇 丨) 、 1 —エチルー 3— (3—ジメチルアミノプロ ピル) カルボジイミ ド塩酸塩 (3. 359、 1 7. 5〇1〇1〇 1) 、 1\1, 1\1- ジメチルアミノビリジン ( 36.0 9、 〇. 29 〇 丨) 、 ジブチルヒド ロキシトルエン (64.0019、 0. 29〇1111〇 丨) 、 1\1, 1\1_ジメチルアセ トアミ ド (6〇. 0 1) 、 および、 テトラヒドロフラン (60.0 1) を 室温にて混合した。 得られた混合液を 70°〇に昇温し、 2時間撹拌した後、 室温まで降温した。 この混合液に、 メタノール (600〇1 丨) を滴下し、 析 出した結晶をろ過して回収した。 得られた粗生成物を、 酢酸ェチルークロロ ホルムを溶媒に用いたシリカゲルカラムクロマトグラフィによる精製を行い 、 緑色固体の赤外線吸収色素 1 8— 1 (6. 949 % 2. 58〇1111〇 丨) を 得た (収率 = 88. 3 %) 。 赤外線吸収色素丨
Figure imgf000054_0002
の構造は、 11~1 _ IV! により同定した。
11~1- 1\/^ (溶媒: 〇0〇 1 3) 5 ( 〇〇 : 〇. 93 (〇1, 241~1) ,
1. 57 (〇1, 441~1) , 2. 3 1 (〇1, 81~1) , 2. 6 1 (〇1, 41~1) ,
3. 05 (1: , 41~1) , 3. 33 , 61~1) , 3. 80 (〇1, 241~1) ,
4. 1 9 (〇1, 41~1) , 4. 34 (〇1, 41~1) , 4. 50 (1: , 41~1) , 5
Figure imgf000054_0003
, 6. 70 (〇1, 201~1) , 6. 93 (〇1, 41~1) , 7. 05 (〇1, 41~1)
, 7. 1 5 (〇1, 81~1) , 7. 30 (〇1, 61~1) , 7. 96 (〇1, 41~1)
[0169] <実施例 1 >
セルロースアシレートフィルム丁 1 ( 「丁 060111_」 (富士フイルム株 式会社製) に、 下記の組成の下塗り層塗布液を# 3. 2のワイヤーバーで連 続的に塗布した。 塗膜が形成された支持体を 40°〇の温風で 60秒間乾燥し 、 その後に、 酸素濃度が〇. 〇 1体積%以下の雰囲気になるように窒素パー ジし、 高圧水銀ランプを用い照射量
Figure imgf000054_0004
〇 2020/175569 53 2020 /007805
、 下塗り層を形成した。
[0170] (下塗り層塗布液)
下記化合物 X— 1 1 00質量部 光重合開始剤 (丨 「 9 _ 1 27) 3質量部 下記含フッ素化合物 _ 1 0. 1質量部 エタノール 240. 4質量部 [0171] [化 19]
Figure imgf000055_0001
[0172] フッ素化合物 _ 1 (以下、 化学式中の繰り返し単位中の 「90」 および 「
1 0」 は、 全繰り返し単位に対する、 各繰り返し単位の含有量 (質量%) を 表す。 )
[0173] [化 20]
Figure imgf000055_0002
[0174] 下記の光学異方性膜用塗布液を調製した。
下記液晶化合物 _ 1 42. 5質量部 下記液晶化合物 _ 2 42. 5質量部 下記液晶化合物 _ 3 5. 0質量部 赤外線吸収色素丨 8 _ 1 1 0. 〇質量部 下記光重合開始剤 I _ 1 5. 0質量部 上記含フッ素化合物 _ 1 〇. 3質量部 〇 2020/175569 54 卩(:171? 2020 /007805 下記含フッ素化合物 _ 2 〇. 3質量部 単童体 1 8. 0質量部 下記添加剤 _ 1 4. 5質量部 シクロペンタノン 3 1 1. 1質量部 メタノール 9. 7質量部
[0175] 液晶化合物 1
[0176] [化 21]
Figure imgf000056_0001
[0177] 液晶化合物 !__2
[0178] [化 22]
Figure imgf000056_0002
[0179] 液晶化合物 !__3
[0180] [化 23]
Figure imgf000056_0003
[0181] 光重合開始剤 I _ 1
[0182] [化 24]
Figure imgf000056_0004
[0183] フッ素化合物 _ 2
[0184] 〇 2020/175569 55 卩(:171? 2020 /007805
[化 25]
Figure imgf000057_0001
[0185] 単量体 [< 1
[0186] [化 26]
Figure imgf000057_0002
[0187] 添加剤
Figure imgf000057_0003
[0188] [化 27]
Figure imgf000057_0004
[0189] 上記下塗り層上に光学異方性膜用記塗布液を #5. 0のワイヤーバーで塗 布して塗膜を形成し、 80°〇で 1分間加熱し、 25°〇に冷却した。 その後に 、 酸素濃度が〇. 1体積%以下の雰囲気になるように窒素パージし、 高圧水 銀ランプを用い照射量 500^」/〇 2の紫外線を塗膜に照射し、 光学異方 性膜 (第 1実施態様に該当) を作製した。 なお、 上記処理により液晶化合物 は垂直配向されて、 硬化処理により固定化されていた。
得られた光学異方性膜の光学特性は、
Figure imgf000057_0005
Figure imgf000057_0006
(550) が 0 77、 [¾ 1: (650) /[¾ 1: (550) が 1. 1 5 であった。
また、 赤外線用偏光子を備えた分光光度計 (1\/1?〇_3 1 00 (3 !~1 丨 1\/1 〇 2020/175569 56 卩(:171? 2020 /007805
八〇 II製) ) を用いて、 極角 45° での赤外線領域での吸収を確認したと ころ、
Figure imgf000058_0001
において、 3偏光の吸収が、 偏光の吸収よ りも大きいことが確認された。 偏光および 3偏光の測定は、 赤外線吸収色 素丨 1が添加されていないフィルムをべースラインとして用いて行った 。
Figure imgf000058_0002
の範囲で最も吸収の大きい波長において、 偏光 を照射した際の吸収強度に対する 3偏光を照射した際の吸収強度の比 (3偏 光強度/ 偏光強度) は、 1. 1 2であった (図 7参照) 。
[0190] <実施例 2>
赤外線吸収色素
Figure imgf000058_0003
の使用量を 1 〇質量部から 5質量部に変更した以 外は、 実施例 1 と同様の手順に従って、 光学異方性膜 (第 1実施態様に該当 ) を得た。
得られた光学異方性膜の光学特性は、
Figure imgf000058_0004
Figure imgf000058_0005
(550) が 0 79、 [¾ 1: (650) /[¾ 1: (550) が 1. 07 であった。
また、 赤外線用偏光子を備えた分光光度計 (1\/1?〇_3 1 00 (31~1 丨 1\/1 八〇 II製) ) を用いて、 極角 45° での赤外線領域での吸収を確認したと ころ、
Figure imgf000058_0006
において、 3偏光の吸収が、 偏光の吸収よ りも大きいことが確認された。 偏光および 3偏光の測定は、 赤外線吸収色 素丨 1が添加されていないフィルムをべースラインとして用いて行った 。
Figure imgf000058_0007
の範囲で最も吸収の大きい波長において、 偏光 を照射した際の吸収強度に対する 3偏光を使用した際の吸収強度の比 (3偏 光強度/ 偏光強度) は、 1. 1 1であった (図 8参照) 。
[0191] <比較例 1 >
赤外線吸収色素丨
Figure imgf000058_0008
1 を使用しなかった以外は、 実施例 1 と同様の手順 に従って、 光学異方性膜を得た。
得られた光学異方性膜の光学特性は、
Figure imgf000058_0009
Figure imgf000058_0010
〇 2020/175569 57 卩(:171? 2020 /007805
(550) が 0 80、 [¾ 1: (650) /[¾ 1: (550) が 1. 02 であった。
また、 赤外線用偏光子を備えた分光光度計 (1\/1?〇_3 1 00 (31~1 丨 1\/1 八〇 II製) ) を用いて、 極角 45° での赤外線領域での吸収を確認したと ころ、
Figure imgf000059_0001
偏光においても、 3偏光においても吸収 はみられなかった。
[0192] <実施例 3>
下記の光学異方性膜用塗布液を調製した。
上記液晶化合物 _ 1 43質量部 上記液晶化合物 _ 2 43質量部 下記液晶化合物 _ 4 1 4質量部 近赤外線吸収色素丨 8 _ 1 5質量部 下記光重合開始剤 丨 _ 1 〇. 50質量部 下記含フッ素化合物 _ 1 〇. 20質量部 クロロホルム 535質量部
[0193] [化 28]
Figure imgf000059_0002
〇 2020/175569 58 卩(:171? 2020 /007805
[0196] ラビングされたポリイミ ド配向層 (3巳一 1 30、 日産化学社製) 付ガラ ス基板上に上光学異方性膜用塗布液をスピンコート塗布して塗膜を形成し、
1 50°〇で 1分間加熱したのちに、 60°〇まで冷却した。 その後に、 酸素濃 度が 1. 0体積%以下の雰囲気になるように窒素パージし、 高圧水銀ランプ を用い照射量 50
Figure imgf000060_0001
の紫外線を塗膜に照射し、 光学異方性膜 ( 第 2実施態様に該当) を作製した。 なお、 上記処理により液晶化合物は水平 配向されて、 硬化処理により固定化されていた。
得られた光学異方性膜 の光学特性を X o S c a n 〇 1\/1 _ 1 (才 プトサイエンス社製) を用いて、 測定したところ、
Figure imgf000060_0002
6 (550) が 1 40 、
Figure imgf000060_0003
(550) が〇. 83、
Figure imgf000060_0004
(550) が 1. 08であった。
また、 赤外線用偏光子を備えた分光光度計 (1\/1?〇_3 1 00 (31~1 丨 1\/1 八0 11製) ) を用いて、 赤外線領域での吸収を確認したところ、 799 n に近赤外線吸収色素 0 _ 1 に由来するピーク (極大吸収波長: ス 0! 3 X) を発現することを確認した。 また、 波長 700〜 900
Figure imgf000060_0005
において、 光学 異方性膜 の進相軸と平行な方向での吸収が、 遅相軸と平行な方向での吸収 よりも大きいことが確認された。
また、 近赤外線吸収色素丨
Figure imgf000060_0006
1の極大吸収波長における光学異方性膜 1 の配向秩序度 3。は、 一0. 28であった。
[0197] 上記で得られた光学異方性膜 と、 実施例 1で得られた光学異方性膜とを それぞれの支持体の長手方向が合うように、 粘着剤を介して張り合わせて、 積層体 1 を作製した。
[0198] <有機巳 !_表示装置の作製>
厚さ 80 〇1のポリビニルアルコールフィルムを、 ヨウ素濃度〇. 05質 量%のヨウ素水溶液中に 30°〇で 60秒間浸潰して染色した。 次いで、 得ら れたフィルムをホウ酸水溶液 (ホウ酸濃度: 4質量%) 中に 60秒間浸潰し ている間に元の長さの 5倍に縦延伸した後、 縦延伸されたフィルムを 50°〇 で 4分間乾燥させて、 厚さ 20 の偏光子を得た。 〇 2020/175569 59 卩(:171? 2020 /007805
[0199] 市販のセルロースアシレート系フィルム 「丁 0 8 0 II !_」 (富士フイルム 社製) を準備し、 1 . 5モル/リッ トルで 5 5 °〇の水酸化ナトリウム水溶液 中に浸潰した後、 得られたフィルムを水で十分に水酸化ナトリウムを洗い流 した。
その後、 〇. 0 0 5モル/リッ トルで 3 5 °〇の希硫酸水溶液に得られたフ ィルムを 1分間浸潰した後、 得られたフィルムを水に浸潰して、 フィルム上 の希硫酸水溶液を十分に洗い流した。 その後、 洗浄されたフィルムを 1 2 0 °〇で乾燥させ、 偏光子保護フィルムを作製した。
[0200] 上記で作製した偏光子の片面に、 上記で作製した偏光子保護フィルムをポ リビニルアルコール系接着剤で貼り合わせて、 偏光子と、 偏光子の片面に配 置された偏光子保護フィルムとを含む偏光板を作製した。
[0201 ] 上記作製した偏光板中の偏光子 (偏光子保護フィルムのない) 側に、 粘着 剤 (3 < - 2 0 5 7、 綜研化学株式会社製) を塗布して粘着剤層を形成し、 上 記で作製した積層体 1 を貼り合せて円偏光板を作製した。 なお、 積層体の遅 相軸 (言い換えれば、 光学異方性膜 の遅相軸) と偏光子の透過軸とのなす 角度は 4 5 ° とした。
[0202] 0 3 I 3 X 7 3 4 (S a m s u n g社製) を分解し、 製品に貼合されてい る反射防止フィルムの一部をはがして、 発光層とした。 この発光層に、 粘着 剤を介して、 上記作製した円偏光板を空気が入らないようにして貼合して、 有機巳 !_ (エレクトロルミネッセンス) 表示装置を作製した。
[0203] <製造例八 1 >
洗浄したガラス基板上に、 ポリイミ ド配向膜 3巳_ 1 3 0 (日産化学社製 ) をスピンコート法により塗布した。 塗布膜を乾燥後、 塗布膜を 2 5 0 °〇で 1時間焼結した後、 塗布膜にラビング処理を施し、 配向層を形成した。
[0204] 下記の光学異方性膜用塗布液を調製した。
下記液晶化合物 1- _ 5 1 0 0質量部 赤外線吸収色素
Figure imgf000061_0001
1 〇質量部 上記光重合開始剤 ? I - 1 2 . 0質量部 〇 2020/175569 60 卩(:171? 2020 /007805
上記含フッ素化合物 _ 1 1. 〇質量部 クロロホルム 57 1. 8質量部
[0205] なお、 下記液晶化合物 _ 5および赤外線吸収色素 I
Figure imgf000062_0001
_ 2の構造式中の アクリロイルオキシ基に隣接する基は、 プロピレン基 (メチル基がエチレン 基に置換した基) を表し、 下記液晶化合物!- _ 5および赤外線吸収色素 I
Figure imgf000062_0002
_ 2はメチル基の位置が異なる位置異性体の混合物を表す。
[0206] 液晶化合物 _ 5 (以下、 構造式)
[0207] [化 31]
Figure imgf000062_0003
[0208] 赤外線吸収色素
Figure imgf000062_0004
(以下、 構造式)
[0209] [化 32]
Figure imgf000062_0005
[0210] 上記配向層上に光学異方性膜用塗布液をスピンコート法により塗布して塗 膜を形成し、 1 20°◦で 1分間加熱し、 60°◦に冷却した。
その後に、 酸素濃度が 1. 0体積%以下の雰囲気になるように窒素パージ し、 高圧水銀ランプを用い照射量 500^」 /〇 2の紫外線を塗膜に照射し 、 光学異方性膜 (第 2実施態様に該当) を作製した。 なお、 上記処理により 液晶化合物は水平配向されて、 硬化処理により固定化されていた。
得られた光学異方性膜の光学特性を X〇 S c a n 〇 1\/1 _ 1 (オプ トサイエンス社製) を用いて、 測定したところ、
Figure imgf000062_0006
6 (550) が 1 40 n 〇1、
Figure imgf000062_0007
(550) が〇. 78、
Figure imgf000062_0008
(
550) が 1. 25であった。 \¥02020/175569 61 卩(:17 2020 /007805
また、 赤外線用偏光子を備えた分光光度計
Figure imgf000063_0001
(31~1 丨 1\/1 八0 11製) ) を用いて、 赤外線領域での吸収を確認したところ、 波長 7〇 〇〜 900 111において、
光学異方性膜の進相軸と平行な方向での吸収が、 遅相軸と平行な方向での吸 収よりも大きいことが確認された。
また、 赤外線吸収色素丨
Figure imgf000063_0002
2の極大吸収波長における光学異方性膜の配 向秩序度 3。は、 一0. 25であった。
[0211] <製造例八2〜八5>
使用する液晶化合物の種類および使用量、 赤外線吸収色素の種類および使 用量、 光重合開始剤 3 _ 1の使用量、 含フッ素化合物 _ 1の使用量、 並び に、 塗膜形成の際の加熱条件および冷却条件を表 1のように変更した以外は 、 製造例 1 と同様の手順に従って、 光学異方性膜 (第 2実施態様に該当) を作製した。
得られた光学異方性膜の
Figure imgf000063_0003
(550
) ^ 6
Figure imgf000063_0004
(550) 、 および、 配向秩序度 3〇を表 1 にまと めて示す。
なお、 製造例八 2〜八 5において得られた光学異方性膜に関して、 赤外線 用偏光子を備えた分光光度計 (1\/1?〇一3 1 00 (31~1 丨 1\/1八0211製) ) を用いて、 赤外線領域での吸収を確認したところ、 波長 700〜 900
Figure imgf000063_0005
〇! において、 光学異方性膜の進相軸と平行な方向での吸収が、 遅相軸と平行な 方向での吸収よりも大きいことが確認された。
[0212] なお、 表 1中の液晶化合物および赤外線吸収色素は以下の通りである。
[0213] 液晶化合物 !__6 (以下、 構造式)
[0214] [化 33]
Figure imgf000063_0006
[0215] 赤外線吸収色素丨 [¾_3 (以下、 構造式)
[0216] \¥02020/175569 ¢2 ?01/1?2020/007805
[化 34]
Figure imgf000064_0001
[0217] なお、 上記赤外線吸収色素丨 [¾_3の構造式中のアクリロイルオキシ基に 隣接する基は、 プロピレン基 (メチル基がエチレン基に置換した基) を表し 、 上記赤外線吸収色素丨
Figure imgf000064_0002
3はメチル基の位置が異なる位置異性体の混合 物を表す。
[0218] なお、 上記<色素の合成>を参考にして、 赤外線吸収色素丨
Figure imgf000064_0003
および
I ^ _ 3を合成した。
[0219] 赤外線吸収色素丨
Figure imgf000064_0004
_ 2および赤外線吸収色素 I
Figure imgf000064_0005
_ 3をそれぞれクロロ ホルムに 1
Figure imgf000064_0006
丨 /丨の濃度で溶解させて、 得られた溶液を用いて分光特 性を測定した。 なお、 測定には、 分光光度計 (1\/1?〇一3 1 00 (31~1 丨 1\/1 八〇 II製) ) を用いた。
赤外線吸収色素
Figure imgf000064_0007
赤外線吸収 長は 800 〇!であった。
Figure imgf000064_0008
の波長 700〜 900 n の吸光度の積算値は、 赤外線吸収色素
Figure imgf000064_0009
の波長 400〜 700 n の吸光度の積算値よりも 大きかった。
赤外線吸収色素
Figure imgf000064_0010
の波長 700〜 900 n の吸光度の積算値は、 赤外線吸収色素
Figure imgf000064_0011
の波長 400〜 700 n の吸光度の積算値よりも 大きかった。
[0220] 〇 2020/175569 63 卩(:171? 2020 /007805
[表 1 ]
Figure imgf000065_0001
[0221 ] 上記製造例 2〜 4で製造された光学異方性膜と、 実施例 1で得られた 光学異方性膜とをそれぞれの支持体の長手方向が合うように、 粘着剤を介し て張り合わせて、 積層体を作製した。
得られた積層体を <有機巳 !_表示装置の作製 >中の積層体 1の代わりに用 いて、 有機巳 !_表示装置を作製した。

Claims

\¥02020/175569 64 卩(:17 2020 /007805 請求の範囲
[請求項 1] 以下の要件 1〜 4を満たす光学異方性膜。
要件 1 :前記光学異方性膜の膜表面の法線方向から 45° 傾けた方向 から、 互いに直交する直線偏光である 9偏光および 3偏光をそれぞれ 照射した際に、 波長 700〜 900
Figure imgf000066_0001
の範囲で最も吸収の大きい波 長における吸収強度において、 ?偏光を照射した際の吸収強度に対す る 3偏光を照射した際の吸収強度の比が 1. 02以上である。
要件 2 ^ 6 (550) <1 0门〇1
要件 3 ^ 6 (800) <1 0门〇1
Figure imgf000066_0002
光学異方性膜の厚 み方向のレタデーシヨンを表し、
Figure imgf000066_0003
(550) は波長
Figure imgf000066_0004
における前記光学異方性膜の厚み方向のレタデーシヨンを表し、
Figure imgf000066_0005
㊀ (550) は波長 550 n における前記光学異方性膜の面内レタデ —シヨンを表す。
[請求項 2] 液晶化合物またはポリマー、 および、 赤外線吸収色素を含む組成物 を用いて形成された、 請求項 1 に記載の光学異方性膜。
[請求項 3] 前記赤外線吸収色素が、 式 (1 ) で表される化合物である、 請求項
2に記載の光学異方性膜。
[化 1]
Figure imgf000066_0006
[¾1 1および[¾12は、 それぞれ独立に、 水素原子または置換基を表 し、 少なくとも一方は電子吸引性基であり、 [¾1 1および[¾12は結合 して環を形成してもよい。 [¾13は、 それぞれ独立に、 水素原子、 ア 〇 2020/175569 65 卩(:171? 2020 /007805
ルキル基、 アリール基、 ヘテロアリール基、 置換ホウ素または金属原 子を表し、
Figure imgf000067_0001
していてもよい。 [¾ 1 4は 、 それぞれ独立に、 メソゲン基を有する基を表す。
[請求項 4] 前記組成物が液晶化合物を含み、
前記液晶化合物を垂直配向させて固定化してなる、 請求項 1〜 3の いずれか 1項に記載の光学異方性膜。
[請求項 5] 請求項 1〜 4のいずれか 1項に記載の光学異方性膜と、 前記光学異 方性膜とは異なる他の光学異方性膜とを含む、 積層体。
[請求項 6] 前記他の光学異方性膜が、 ス / 4板である、 請求項 5に記載の積層 体。
[請求項 7] 請求項 1〜 4のいずれか 1項に記載の光学異方性膜と、 ス / 4板と
、 偏光子とを有する、 円偏光板。
[請求項 8] 表示素子と、 前記表示素子上に配置された請求項 1〜 4のいずれか
1項に記載の光学異方性膜とを有する、 表示装置。
PCT/JP2020/007805 2019-02-27 2020-02-26 光学異方性膜、積層体、円偏光板、表示装置 WO2020175569A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021502331A JP7182686B2 (ja) 2019-02-27 2020-02-26 光学異方性膜、積層体、円偏光板、表示装置
US17/400,752 US11353750B2 (en) 2019-02-27 2021-08-12 Optically anisotropic film comprising an absorption intensity ratio of 1.02 or more, laminate, circularly polarizing plate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034593 2019-02-27
JP2019-034593 2019-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/400,752 Continuation US11353750B2 (en) 2019-02-27 2021-08-12 Optically anisotropic film comprising an absorption intensity ratio of 1.02 or more, laminate, circularly polarizing plate, and display device

Publications (1)

Publication Number Publication Date
WO2020175569A1 true WO2020175569A1 (ja) 2020-09-03

Family

ID=72238326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007805 WO2020175569A1 (ja) 2019-02-27 2020-02-26 光学異方性膜、積層体、円偏光板、表示装置

Country Status (3)

Country Link
US (1) US11353750B2 (ja)
JP (1) JP7182686B2 (ja)
WO (1) WO2020175569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234789A1 (ja) * 2021-05-07 2022-11-10 富士フイルム株式会社 偏光板及び有機el表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020861A1 (ja) * 2016-07-27 2018-02-01 富士フイルム株式会社 組成物、膜、光学フィルタ、積層体、固体撮像素子、画像表示装置、赤外線センサおよび化合物
JP2018025770A (ja) * 2016-07-28 2018-02-15 富士フイルム株式会社 液晶混合物の製造方法
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
WO2018174015A1 (ja) * 2017-03-23 2018-09-27 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
WO2018216812A1 (ja) * 2017-05-26 2018-11-29 富士フイルム株式会社 光配向性ポリマー、バインダー組成物、バインダー層、光学積層体、光学積層体の製造方法および画像表示装置
WO2019017444A1 (ja) * 2017-07-19 2019-01-24 富士フイルム株式会社 重合性液晶化合物、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2019017445A1 (ja) * 2017-07-19 2019-01-24 富士フイルム株式会社 重合性液晶化合物、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2019044859A1 (ja) * 2017-08-28 2019-03-07 富士フイルム株式会社 光学異方性膜、円偏光板、表示装置
WO2019189809A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 光学素子および導光素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401032B2 (ja) 2006-12-15 2014-01-29 富士フイルム株式会社 光学異方性膜、輝度向上フィルム、位相差板および液晶表示装置
JP5073427B2 (ja) * 2007-09-11 2012-11-14 日東電工株式会社 液晶パネル、及び液晶表示装置
JP2010107941A (ja) * 2008-07-08 2010-05-13 Fujifilm Corp Tnモード液晶表示装置、それに用いられる光学補償フィルムとその製造方法および偏光板
JP5297360B2 (ja) * 2009-11-30 2013-09-25 富士フイルム株式会社 Va型液晶表示装置
JP2015031790A (ja) * 2013-08-01 2015-02-16 富士フイルム株式会社 液晶表示装置
US10598836B2 (en) * 2015-07-24 2020-03-24 Sumitomo Chemical Company, Limited Laminated body, circularly polarizing plate including laminated body, display device including laminated body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020861A1 (ja) * 2016-07-27 2018-02-01 富士フイルム株式会社 組成物、膜、光学フィルタ、積層体、固体撮像素子、画像表示装置、赤外線センサおよび化合物
JP2018025770A (ja) * 2016-07-28 2018-02-15 富士フイルム株式会社 液晶混合物の製造方法
WO2018159235A1 (ja) * 2017-03-02 2018-09-07 富士フイルム株式会社 組成物、膜、赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、及び、新規な化合物
WO2018174015A1 (ja) * 2017-03-23 2018-09-27 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
WO2018216812A1 (ja) * 2017-05-26 2018-11-29 富士フイルム株式会社 光配向性ポリマー、バインダー組成物、バインダー層、光学積層体、光学積層体の製造方法および画像表示装置
WO2019017444A1 (ja) * 2017-07-19 2019-01-24 富士フイルム株式会社 重合性液晶化合物、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2019017445A1 (ja) * 2017-07-19 2019-01-24 富士フイルム株式会社 重合性液晶化合物、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2019044859A1 (ja) * 2017-08-28 2019-03-07 富士フイルム株式会社 光学異方性膜、円偏光板、表示装置
WO2019189809A1 (ja) * 2018-03-30 2019-10-03 富士フイルム株式会社 光学素子および導光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234789A1 (ja) * 2021-05-07 2022-11-10 富士フイルム株式会社 偏光板及び有機el表示装置

Also Published As

Publication number Publication date
JPWO2020175569A1 (ja) 2021-12-16
US20210382348A1 (en) 2021-12-09
JP7182686B2 (ja) 2022-12-02
US11353750B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
KR102208206B1 (ko) 액정 조성물, 위상차판, 화상 표시 장치, 및 광학 이방성층의 파장 분산 제어 방법
KR101808475B1 (ko) 중합성 화합물, 중합성 조성물, 필름, 및 투영상 표시용 하프 미러
KR102079276B1 (ko) 위상차판, 원편광판, 및 화상 표시 장치
KR102210179B1 (ko) 중합성 액정 조성물, 광학 이방성막, 광학 필름, 편광판, 화상 표시 장치 및 유기 일렉트로 루미네선스 표시 장치
JP5088769B2 (ja) フィルム及びその製造方法
JP7034166B2 (ja) 光学異方性膜、円偏光板、表示装置
US10280181B2 (en) Coloring composition, anisotropic light absorption film, laminate, polarizing plate, image display device and compound
WO2017154907A1 (ja) 着色組成物、光吸収異方性膜、積層体および画像表示装置
JP5250082B2 (ja) ポリマーフィルム、位相差フィルム、偏光板、液晶表示装置及び紫外線吸収剤
JP6986841B2 (ja) 重合性液晶化合物、光学フィルム用組成物およびこれらを含む光学フィルム、補償フィルム、反射防止フィルムと表示装置
JP5364304B2 (ja) 液晶組成物、光吸収異方性膜、偏光素子、液晶表示装置
JP7118153B2 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
JP2009242717A (ja) 液晶組成物、位相差板、偏光板、並びに液晶表示装置
US20220113461A1 (en) Optically anisotropic film, laminate, circularly polarizing plate, and display device
JP7273985B2 (ja) 光学異方性膜、偏光板、画像表示装置、組成物、化合物
JP7171886B2 (ja) 積層体、円偏光板、表示装置
JP7340617B2 (ja) 重合性液晶組成物、化合物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2020175569A1 (ja) 光学異方性膜、積層体、円偏光板、表示装置
JP7285226B2 (ja) 重合性液晶組成物、化合物、光学異方性膜、光学フィルム、偏光板および画像表示装置
KR102422667B1 (ko) 광학 필름용 조성물, 필름 및 표시 장치
JP2022033445A (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
JP2022033442A (ja) 重合体、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
JP2010215846A (ja) 二色性色素組成物
JP7182685B2 (ja) 組成物、光学異方性膜、円偏光板、表示装置、近赤外線吸収色素
KR20200131223A (ko) 이방성 색소막 형성용 조성물, 이방성 색소막, 및 광학 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763420

Country of ref document: EP

Kind code of ref document: A1