WO2020173404A1 - 掩模版凸版检测装置、传输系统及光刻设备 - Google Patents

掩模版凸版检测装置、传输系统及光刻设备 Download PDF

Info

Publication number
WO2020173404A1
WO2020173404A1 PCT/CN2020/076329 CN2020076329W WO2020173404A1 WO 2020173404 A1 WO2020173404 A1 WO 2020173404A1 CN 2020076329 W CN2020076329 W CN 2020076329W WO 2020173404 A1 WO2020173404 A1 WO 2020173404A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
distance measuring
reticle
measuring sensor
relief
Prior art date
Application number
PCT/CN2020/076329
Other languages
English (en)
French (fr)
Inventor
向军
朱正平
郑教增
姜杰
庞飞
郝凤龙
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020173404A1 publication Critical patent/WO2020173404A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • This application relates to the field of semiconductor manufacturing, for example, to a reticle relief inspection device, a transmission system, and a lithography equipment. Background technique
  • the reticle transfer device is used to transfer the reticle of the external world to the internal world of the lithography equipment with a certain precision, so as to complete the exposure of the pattern on the reticle in the exposure device.
  • FIG. 1 is a schematic diagram of the distribution of the reticle in the internal plate library. As shown in Figure 1, the reticle is placed in the corresponding position of the internal plate library through the mask access port 11.
  • reticles 1 and 3 are normally placed reticles, which are completely located in the internal plate library, reticles 2, 4, 5, and 6 are reticles that are not placed in place, and one side of the reticle protrudes from the mask taking Release 11, the so-called relief phenomenon.
  • Solution 1 Using a through-beam sensor, a relief detection sensor is installed above or below the internal plate library to detect whether there are relief plates in all grooves. The presence of relief plates on any reticle will block the light path and cause the sensor to trigger. This solution can only Check whether there is a top plate in the internal plate library, and it is impossible to determine which plate slot the top plate exists, and manual inspection is still required.
  • the embodiment of the application provides a reticle relief inspection device, a transmission system, and a lithography equipment.
  • the structure is simple, and it can determine which plate slot in the plate library has relief, without manual inspection, which improves relief inspection efficiency and reduces relief inspection the cost of.
  • an embodiment of the present application provides a reticle relief inspection device, including: The ranging sensor is configured to be located on one side of the plate library;
  • the adjusting component is configured to drive the distance measuring sensor to move to scan the plurality of plate slots of the plate library, and make the distance measuring signal emitted by the distance measuring sensor pass through the reticle in the plurality of plate slots After reflection, the original path is reflected back to the ranging sensor;
  • the detection mechanism is respectively connected with the distance measuring sensor and the adjusting component, and is configured to control the operation of the distance measuring sensor and the adjusting component, and according to the distance measuring sensor when scanning the plurality of plate slots
  • the scanning position and the distance information measured by the ranging sensor determine whether there are relief plates in the plurality of plate grooves.
  • an embodiment of the present application provides a mask transfer system, including at least one plate library and the reticle relief inspection device as described in any of the first aspect of the present application.
  • an embodiment of the present application further provides a lithography apparatus, including the mask transmission system as described in any of the second aspect of the present application.
  • Figure 1 is a schematic diagram of the distribution of reticles in the internal plate library in related technologies
  • FIG. 2 is a schematic diagram of the structure of a relief detection device provided by an embodiment
  • Fig. 3 is a detection principle diagram of a relief plate detection device in an embodiment
  • Fig. 4 is a detection principle diagram of a relief plate detection device in an embodiment
  • Figure 5 is a detection principle diagram of a relief plate detection device in an embodiment
  • FIG. 6 is a schematic structural diagram of a mask transmission system provided by an embodiment. detailed description
  • connection should be interpreted in a broad sense.
  • it may be a fixed connection, a detachable connection, or a Integral; It can be mechanically connected or electrically connected; It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the first feature “on” or “under” the second feature may include direct contact between the first feature and the second feature, or include the first and second features. Features are not in direct contact but through other features between them.
  • the first feature is “above”, “above”, and “above” the second feature, including the first feature directly above and diagonally above the second feature , Or just the first characteristic water The flat height is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 2 is a schematic structural diagram of the relief detection device provided by this embodiment.
  • the plate detection device includes: a distance measuring sensor 110, an adjustment component 120, and a detection mechanism 130.
  • the adjusting component 120 is connected with the distance measuring sensor 110, and is used to drive the distance measuring sensor 110 to move to scan the multiple plate slots of the plate library, and make the distance measuring signal emitted by the distance measuring sensor 110 pass through the masks in the multiple plate slots. After the template is reflected, it can be reflected back to the ranging sensor 110 in the same way.
  • the detection mechanism 130 is respectively communicatively connected with the distance measuring sensor 110 and the adjustment assembly 120, and is used to control the operation of the distance measuring sensor 110 and the adjustment assembly 120, and according to the scanning position and attitude of the distance measuring sensor 110 when scanning multiple plate slots. Based on the distance information measured by the sensor 110, it is determined whether there are relief plates in a plurality of plate grooves.
  • FIG. 3 is a detection principle diagram of a relief plate detecting device in this embodiment.
  • the ranging sensor 110 is located in front of the mask access opening 201 of the plate library 200.
  • the ranging sensor 110 emits a ranging signal in the X direction perpendicular to the plane where the mask access opening 201 is located, and the adjusting component 120 drives the ranging sensor 110 to move in the Z direction perpendicular to the mask 202.
  • the adjustment component 120 may include a driving motor and a guide rod 122, the guide rod 122 is arranged along the Z direction, the driving motor drives the distance measuring sensor 110 to move along the guide rod 122, and the position information of the distance measuring sensor 110 is recorded.
  • the ranging sensor 110 scans the multiple plate slots in the plate library 200, and the ranging signal emitted by the ranging sensor 110 is reflected by the reticle 202 in the multiple plate slots, and then reflected back to the ranging sensor 110 in the same way.
  • the detection mechanism 130 receives the distance information measured by the distance measuring sensor 110 and the position information of the distance measuring sensor 110. When the distance measured by the distance measuring sensor 110 is less than the distance from the plane where the mask access port 201 is located to the distance measuring sensor 110, Combined with the position information of the distance measuring sensor 110 in the Z direction at this time, it can be determined which plate groove has a relief plate.
  • the adjusting component 120 is used to drive the distance measuring sensor 110 to move to scan multiple plate slots in the plate library 200, and make the distance measuring signal emitted by the distance measuring sensor 110 pass through the multiple plates. After the reticle 202 in the groove is reflected, it can be reflected back to the ranging sensor 110 in the same way.
  • the detection mechanism 130 is used to control the operation of the distance measuring sensor 110 and the adjustment component 120, and the scanning position of the 4-bit distance measuring sensor 110 when scanning multiple plate slots and the distance information measured by the distance measuring sensor 110 determine multiple plates. Whether the groove has a relief.
  • the relief plate detection device provided by this embodiment has a simple structure, and can determine which plate slot in the plate library 200 contains the relief plate, without manual inspection, and improves the relief plate detection efficiency.
  • FIG. 4 is a detection principle diagram of another relief detection device in an embodiment.
  • the adjustment assembly 120 includes an encoder 123, a rotating motor 124, and a reflector.
  • Mirror group The encoder 123 and the rotating motor 124 are respectively connected to the detection mechanism 130, and the ranging sensor 110 is located between the plate library 200 and the mirror group.
  • the mirror group includes a plurality of mirrors 125, a plurality of mirrors 125 and a plurality of plate slots
  • the ranging sensor 110 is located directly in front of the mask access opening 201 of the plate library 200, and the reflector
  • the reflective surface of 125 faces the plane where the mask access port 201 is located and is inclined downward in a direction away from the plane where the mask access port 201 is located, and forms a preset angle p with the Z direction.
  • the reflector group is located above the distance measuring sensor 110.
  • the rotating motor 124 is used to control the rotation of the distance measuring sensor 110 to adjust the scanning angle of the distance measuring sensor 110, so that the distance measuring signal is reflected by the mirror 125 and irradiated in the X direction perpendicular to the plane where the mask access port 201 is located.
  • the encoder 123 is used to measure the rotation angle of the ranging sensor 110 and feed it back to the detection mechanism 130, so that the detection mechanism 130 adjusts the scanning angle of the ranging sensor 110 through the rotating motor 124.
  • the scanning angle of the distance measuring sensor 110 is the angle between the laser emitting direction of the distance measuring sensor 110 and the horizontal plane.
  • the detection principle of this embodiment will be explained by taking the detection of the first-layer plate groove from bottom to top in FIG. 4 as an example.
  • the scanning angle 0 of the ranging sensor 110 should be equal to twice the incident angle a of the ranging signal on the mirror 125,
  • the incident angle a of the ranging signal on the reflector 125 is equal to the angle P between the reflective surface of the reflector 125 and the Z direction, so it is necessary to ensure that the scanning angle e of the ranging sensor 110 is the reflective surface of the reflector 125 and the Z direction.
  • the included angle P is twice.
  • the included angles between the reflective surfaces of the multiple mirrors 125 and the Z direction can be preset, and the included angles between the reflective surfaces of the multiple mirrors 125 and the Z direction are different.
  • the rotating motor 124 controls The distance measuring sensor 110 rotates, and the encoder 123 measures the rotation angle of the distance measuring sensor 110 and feeds it back to the detection mechanism 130 to realize the control of the scanning angle 0 of the distance measuring sensor 110, so that the scanning angle 0 is equal to the reflecting surface of the corresponding mirror 125 Double the angle p with the Z direction, the ranging signal emitted by the ranging sensor 110 is reflected by the corresponding reflector 125, and irradiates the corresponding plate slot perpendicular to the plane where the mask access port 201 is located. Return to the ranging sensor 110 to complete scanning of multiple plate slots.
  • the scanning pose includes the position and scanning angle of the ranging sensor 110, and the detection mechanism 130 is determined to have a relief plate in the plate groove corresponding to the scanning angle;
  • D1 is the round-trip distance of the ranging signal measured by the ranging sensor 110
  • L2 is the distance from the reflection point on the mirror 125 corresponding to the scanning angle to the plane where the mask access port 201 is located.
  • the scanning angle of the distance measuring sensor 110, L1 is the horizontal distance from the distance measuring sensor 110 to the reflection point.
  • FIG. 5 is a detection principle diagram of another relief detection device provided by an embodiment.
  • the adjustment assembly 120 includes an encoder 123, a rotating motor 124, and a mirror group
  • the encoder 123 and the rotating motor 124 are respectively connected to the detection mechanism 130
  • the distance measuring sensor 110 is located between the plate library 200 and the mirror group, and the mirror group includes a plurality of mirrors 125 corresponding to the plurality of plate slots.
  • the distance measuring sensor 110 is located at the front side of the mask access opening 201 of the plate library 200, and the reflective surface of the mirror 125 faces the plane of the side wall of the plate library and is inclined downward in a direction away from the plane of the side wall of the plate library.
  • the side wall of the plate library is the side surface of the plate library 200 connected to the mask access port 201, and the distance from the distance measuring sensor 110 to the plane where the mask access port 201 is located is less than or equal to a preset distance.
  • the detection principle of this embodiment is similar to the detection principle shown in FIG. 4.
  • the angle between the reflection surfaces of the multiple mirrors 125 and the Z direction is preset, and the angle between the reflection surfaces of the multiple mirrors 125 and the Z direction is different.
  • the rotating motor 124 controls the rotation of the distance measurement sensor 110, and the encoder 123 measures the rotation angle of the distance measurement sensor 110 and feeds it back to the detection mechanism 130 to realize the control of the scanning angle ⁇ of the distance measurement sensor 110, so that the scanning angle 0 is equal to twice the angle P between the reflecting surface of the corresponding mirror 125 and the Z direction.
  • the ranging signal emitted by the ranging sensor 110 is reflected by the corresponding mirror 125 along a plane perpendicular to the side wall of the plate library.
  • the Y direction irradiates the corresponding plate slot, and returns to the distance measuring sensor 110 in the same way, so as to complete the scanning of multiple plate slots.
  • the reflector group is located above the distance measuring sensor 110.
  • the scanning pose includes the position and scanning angle of the ranging sensor 110, and the detection mechanism 130 is
  • the distance from the reflection point on the reflector 125 to the side of the reticle close to the ranging sensor 110, and 02 is the horizontal distance from the distance measurement to the reflection point.
  • the preset distance is less than or equal to 5 mm. That is, the relief detection device in the embodiment shown in Figure 5 It can detect the reticle whose distance between the plane where the protruding mask take-out port 201 is located and the distance measuring sensor is less than or equal to 5 mm. In an embodiment, the preset distance can be set according to the actual placement accuracy of the reticle.
  • the encoder 123 is a code disc, which refers to a digital encoder for measuring angular displacement, used to measure the rotation angle of the distance measuring sensor 110 and fed back to the detection mechanism 130 to adjust the scanning angle of the measuring distance sensor 110 .
  • the code disc has the advantages of strong resolution, high measurement accuracy and reliable work. It is a commonly used displacement sensor for measuring the position of the shaft rotation angle.
  • the adjustment assembly 120 further includes a mirror group fixing mechanism 126, and the mirror group is fixed on the mirror group fixing mechanism 126.
  • the mirror group includes a plurality of mirrors 125, and a plurality of reflection mirrors.
  • the mirrors 125 are arranged vertically, that is, along the Z direction. Exemplarily, along the Z direction, from bottom to top, the angles between the multiple reflectors and the Z direction are respectively 16.5°, 26°, 31°, 34°, 36°, and 37.5°, then the rotating motor 124 drives the distance measuring sensor 110 rotation, the corresponding scanning angles are 33°, 52°, 62°, 68°, 72° and 75°, respectively corresponding to the six plate slots in the plate library 200 from bottom to top.
  • One scan can get six sets of distance and angle data (D, e), where the angle represents the scan angle of the current ranging sensor 110 (values 33°, 52°, 62°, 68°, 72° and 75°), distance D is the round-trip distance of the ranging signal measured by the ranging sensor 110. According to the detection principle described in the foregoing embodiment, it is determined whether there is a relief plate in the corresponding plate groove.
  • the distance measuring sensor 110 is a laser distance measuring sensor or an infrared distance measuring sensor.
  • the distance measurement sensor 110 is a laser distance measurement sensor.
  • the laser distance measurement sensor 110 includes a laser emitting end 111 and a laser receiving end 112.
  • FIG. 6 is a schematic structural diagram of a mask transmission system provided by this embodiment. As shown in FIG. 6, the mask transmission system includes:
  • the first external plate library 12 and the second external plate library 13, the first internal plate library 14 and the second internal plate library 15, the first reticle transmission mechanism 16, the external console 11 and the control chassis 21, the first external plate library 12 and the second external plate library 13 are docked with the external operating table 11 to store the mask box containing the reticle sent by the external operating table 11, and the first reticle transfer mechanism 16 is used to complete the reticle in the first external plate Circulation between the library 12 and the second external library 13 and the first internal library 14 and the second internal library 15; the first internal library 14 and the second internal library 15 respectively correspond to those described in the above-mentioned embodiment Reticle relief inspection device.
  • the reticle transmission system further includes a first reticle alignment mechanism 18, which is used to eliminate the initial position deviation in the reticle transmission process of the external world;
  • the second reticle transfer mechanism 19 is used to complete the transfer of the reticle with the first reticle transfer mechanism 16 and the transfer of the reticle with the mask stage;
  • the second reticle alignment mechanism 20 is used to correct the position of the reticle during the transfer process between the second reticle transmission mechanism 19 and the mask stage;
  • the reticle particle size detection mechanism 17 is used to transfer the reticle from the first external plate library 12 or the second external plate library 13 to the first internal plate library 14 or the second internal plate library 15 at the first reticle transfer mechanism 16 Previously, the surface of the reticle was inspected for granularity.
  • the working process of the reticle transmission system is: After the mask box containing the reticle is placed in the first external plate library 12 or the second external plate library 13 from the external operating station 11, the first reticle is transmitted
  • the mechanism 16 takes out the reticle from the first external plate library 12 or the second external plate library 13, passes the reticle particle size inspection mechanism 17, and sends it to the first internal plate library 14 or the second internal plate library 15 for inspection.
  • the stencil relief inspection device performs relief inspection on the reticles in the first internal plate library 14 and the second internal plate library 15, prompts the plate slot where the relief plate exists, or controls the first reticle transfer mechanism 16 to adjust the position of the relief plate so that the relief plate Meet the placement requirements.
  • the first reticle transfer mechanism 16 takes out the reticle from the first internal version library 14 or the second internal version library 15, and after the position correction of the first reticle alignment mechanism 18, completes the transfer with the second reticle transfer mechanism 19, Transfer the reticle to the second reticle transfer mechanism 19; after the second reticle transfer mechanism 19 is corrected by the second reticle alignment mechanism 20, it is handed over to the mask stage, and the reticle is transferred to the mask stage, To perform the photolithography process.
  • This embodiment also provides a lithography apparatus, which includes the mask transmission system described in the foregoing embodiment.
  • the adjustment component is configured to drive the ranging sensor to move to scan the multiple plate slots of the plate library, and make the ranging signal emitted by the ranging sensor pass through the multiple plate slots. After the reticle is reflected, it can be reflected back to the ranging sensor in the same way.
  • the detection mechanism is configured to control the work of the distance measuring sensor and the adjustment component, and determine whether there are relief plates in the multiple plate grooves according to the scanning pose of the distance measuring sensor when scanning the multiple plate slots and the distance information measured by the distance measuring sensor.
  • the relief plate detection device provided by the embodiment of the present application has a simple structure and can determine which plate slot in the plate library contains a relief plate without manual inspection, which improves the relief plate detection efficiency and reduces the cost of relief plate detection.
  • the terms “upper”, “lower”, “right”, and other orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for ease of description and simplified operations. It does not indicate or imply that the pointed device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application.
  • the terms “first” and “second” are only used to describe There is no special meaning to distinguish between them.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种掩模版凸版检测装置,包括:测距传感器(110),被配置为位于版库的一侧;调节组件(120),被配置为驱动测距传感器(110)运动以对版库的多个版槽进行扫描,且使测距传感器(110)发射的测距信号经多个版槽中的掩模版反射后,原路反射回测距传感器(110);检测机构(130),分别与测距传感器(110)及调节组件(120)连接,且被配置为控制测距传感器(110)和调节组件(120)工作,并根据测距传感器(110)在扫描多个版槽时的扫描位姿以及测距传感器(110)测得的距离信息,确定多个版槽是否存在凸版,无需人为检查,提高了凸版检测效率。还公开了一种掩模传输系统及光刻设备。

Description

掩模版凸版检测装置、 传输系统及光刻设备 本申请要求申请日为 2019年 2月 28日、 申请号为 201910151508.4的中国专利 申请的优先权, 该申请的全部内容通过引用结合在本申请中。 技术领域
本申请涉及半导体制造领域, 例如涉及一种掩模版凸版检测装置、 传输系 统及光刻设备。 背景技术
掩模版传输装置用于将外部世界的掩模版以一定的精度传输到光刻设备的 内部世界, 从而在曝光装置完成对掩模版上图形的曝光。
光刻设备的内部世界中, 掩模版通常存储在内部版库中, 内部版库设有掩 模架, 掩模架设有多个用于容纳掩模版的版槽。 图 1是掩模版在内部版库内的分 布示意图, 如图 1所示, 掩模版经掩模取放口 11放置到内部版库对应的位置。 图 1中, 掩模版 1和 3为正常放置的掩模版, 完全位于内部版库内, 掩模版 2、 4、 5 和 6为放置不到位的掩模版, 掩模版一侧凸出于掩模取放口 11 , 即通常所说的凸 版现象。 掩模版凸版会导致后续掩模版放置到掩模台上时, 位置发生偏差, 降 低曝光精度, 因此需要检测内部版库中的掩模版是否存在凸版现象。 相关技术 中的凸版检测方案有以下两种:
方案一: 采用对射式传感器, 在内部版库上方或下方设有一个凸版检测传 感器, 用来检测所有槽是否存在凸版, 任何一掩模版存在凸版都会遮挡光路, 导致传感器触发, 该方案只能检测内部版库是否存在凸版, 无法确定凸版存在 哪个版槽, 仍然需要人工进行检查。
方案二: 每个版槽对应一个凸版检测传感器, 用来检测该版槽是否存在凸 版。 该方案需要多个凸版检测传感器, 硬件较为复杂, 成本也更高。 发明内容
本申请实施例提供了一种掩模版凸版检测装置、 传输系统及光刻设备, 结 构简单, 能够确定版库中哪一个版槽存在凸版, 无需人为检查, 提高了凸版检 测效率且降低了凸版检测的成本。
第一方面, 本申请实施例提供了一种掩模版凸版检测装置, 包括: 测距传感器, 被配置为位于版库的一侧;
调节组件, 被配置为驱动所述测距传感器运动以对所述版库的多个版槽进 行扫描, 且使所述测距传感器发射的测距信号经多个所述版槽中的掩模版反射 后, 原路反射回所述测距传感器;
检测机构, 分别与所述测距传感器及所述调节组件连接, 且被配置为控制 所述测距传感器和所述调节组件工作, 并根据所述测距传感器在扫描多个所述 版槽时的扫描位姿以及所述测距传感器测得的距离信息, 确定所述多个所述版 槽是否存在凸版。
第二方面, 本申请实施例提供了一种掩模传输系统, 包括至少一个版库和 如本申请第一方面任意所述的掩模版凸版检测装置。
第三方面, 本申请实施例还提供了一种光刻设备, 包括如本申请第二方面 任意所述的掩模传输系统。 附图说明
图 1是相关技术中掩模版在内部版库内的分布示意图;
图 2为一实施例提供的凸版检测装置的结构示意图;
图 3为一实施例中凸版检测装置的检测原理图;
图 4为一实施例中凸版检测装置的检测原理图;
图 5为一实施例中凸版检测装置的检测原理图;
图 6为一实施例提供的一种掩模传输系统的结构示意图。 具体实施方式
在本申请的描述中, 除非另有明确的规定和限定, 术语“相连’’、“连接”、“固 定”应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成一体; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间 接相连, 可以是两个元件内部的连通或两个元件的相互作用关系。 对于本领域 的普通技术人员而言, 可以具体情况理解上述术语在本申请中的具体含义。
在本申请中, 除非另有明确的规定和限定, 第一特征在第二特征之“上’’或之 “下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接 触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上 方”和“上面”包括第一特征在第二特征正上方和斜上方, 或仅仅表示第一特征水 平高度高于第二特征。 第一特征在第二特征“之下”、 “下方”和“下面”包括第一特 征在第二特征正下方和斜下方, 或仅仅表示第一特征水平高度小于第二特征。
本实施例提供了一种掩模版凸版检测装置, 图 2为本实施例提供的凸版检测 装置的结构示意图, 如图 2所示, 版检测装置包括: 测距传感器 110、 调节组 件 120和检测机构 130。 调节组件 120与测距传感器 110连接, 用于驱动测距传感 器 110运动, 以对版库的多个版槽进行扫描, 且使测距传感器 110发射的测距信 号经多个版槽中的掩模版反射后,能够原路反射回测距传感器 110。检测机构 130 分别与测距传感器 110及调节组件 120通讯连接, 用于控制测距传感器 110和调节 组件 120工作, 并 4艮据测距传感器 110在扫描多个版槽时的扫描位姿以及测距传 感器 110测得的距离信息, 确定多个版槽是否存在凸版。
下面结合具体实施例对本实施例的检测原理进行说明:
图 3为本实施例中一种凸版检测装置的检测原理图, 如图 3所示, 在本实施 例中, 可选的, 测距传感器 110位于版库 200的掩模取放口 201的正前方, 测距传 感器 110沿垂直于掩模取放口 201所在的平面的 X方向发射测距信号, 调节组件 120驱动测距传感器 110沿垂直于掩模版 202的 Z方向运动。 示例性的, 调节组件 120可以包括驱动电机和导向杆 122, 导向杆 122沿 Z方向布置, 驱动电机驱动测 距传感器 110沿导向杆 122运动, 并记录测距传感器 110的位置信息。 测距传感器 110对版库 200内的多个版槽进行扫描, 测距传感器 110发射的测距信号经多个版 槽中的掩模版 202反射后, 原路反射回测距传感器 110。 检测机构 130接收测距传 感器 110测得的距离信息及测距传感器 110的位置信息, 当测距传感器 110测得的 距离小于掩模取放口 201所在的平面到测距传感器 110的距离时, 结合此时测距 传感器 110在 Z方向的位置信息, 可以确定哪个版槽存在凸版。
本实施例提供的凸版检测装置, 调节组件 120用于驱动测距传感器 110运动, 以对版库 200内的多个版槽进行扫描, 且使测距传感器 110发射的测距信号经多 个版槽中的掩模版 202反射后, 能够原路反射回测距传感器 110。 检测机构 130用 于控制测距传感器 110和调节组件 120工作, 并相 4居测距传感器 110在扫描多个版 槽时的扫描位姿以及测距传感器 110测得的距离信息, 确定多个版槽是否存在凸 版。 本实施例提供的凸版检测装置结构简单, 能够确定版库 200中哪一个版槽存 在凸版, 无需人为检查, 提高了凸版检测效率。
图 4为一实施例中另一种凸版检测装置的检测原理图, 可选的, 如图 2和图 4 所示, 在该实施例中, 调节组件 120包括编码器 123、 旋转电机 124和反射镜组, 编码器 123以及旋转电机 124分别与检测机构 130连接, 测距传感器 110位于版库 200和反射镜组之间, 反射镜组包括多个反射镜 125 , 多个反射镜 125与多个版槽
-对应设置。 测距传感器 110位于版库 200的掩模取放口 201的正前方, 反射镜
125的反射面朝向掩模取放口 201的所在平面并沿远离所述掩模取放口的所在平 面的方向向下倾斜设置, 与 Z方向呈预设夹角 p。
如图 4所示的实施例中, 反射镜组位于测距传感器 110的上方。
旋转电机 124用于控制测距传感器 110旋转, 以调节测距传感器 110的扫描角 度, 使测距信号经反射镜 125反射, 沿垂直于掩模取放口 201所在的平面的 X方向 照射对应的版槽, 编码器 123用于测量测距传感器 110的旋转角度并反馈至检测 机构 130 , 以使检测机构 130通过旋转电机 124调节测距传感器 110的扫描角度。 其中, 测距传感器 110的扫描角度为测距传感器 110的激光出射方向与水平面的 夹角。
示例性的, 以图 4中由下至上第一层版槽的检测为例, 对本实施例的检测原 理进行说明。 要使测距信号经反射镜 125反射, 垂直于掩模取放口 201所在的平 面, 则测距传感器 110的扫描角度 0应该等于测距信号在反射镜 125上的入射角 a 的两倍, 而测距信号在反射镜 125上的入射角 a等于该反射镜 125的反射面与 Z方 向的夹角 P, 那么需要保证测距传感器 110的扫描角度 e为反射镜 125的反射面与 Z 方向的夹角 P的两倍。 在具体实施例中, 可预先设定多个反射镜 125的反射面与 Z 方向的夹角, 多个反射镜 125的反射面与 Z方向的夹角不同, 在检测过程中, 旋 转电机 124控制测距传感器 110旋转, 编码器 123测量测距传感器 110的旋转角度 并反馈至检测机构 130, 实现对测距传感器 110的扫描角度 0的控制, 使得扫描角 度 0等于对应的反射镜 125的反射面与 Z方向的夹角 p的两倍, 测距传感器 110发射 的测距信号, 经对应的反射镜 125反射后, 垂直于掩模取放口 201所在的平面照 射对应的版槽, 并原路返回至测距传感器 110 , 从而完成对多个版槽进行扫描。
可选的, 扫描位姿包括测距传感器 110的位置和扫描角度, 检测机构 130被 则确定与扫描角度对应的版槽存在凸版;
Figure imgf000006_0001
如图 4所示, 其中, D1为测距传感器 110测得的测距信号的往返距离, L2为与 扫描角度对应的反射镜 125上的反射点到掩模取放口 201所在平面的距
Figure imgf000006_0002
测距传感器 110的扫描角度, L1为测距传感器 110到反射点的水平距离。 可选 则确定与扫描角度对应的版槽中无掩模版, 若 与扫描角度对应的版槽中掩模版位置摆放正确,
Figure imgf000007_0001
不存在凸版。 图 5为一实施例提供的又一种凸版检测装置的检测原理图, 可选的, 如图 5 所示, 在该实施例中, 调节组件 120包括编码器 123、 旋转电机 124和反射镜组, 编码器 123以及旋转电机 124分别与检测机构 130连接, 测距传感器 110位于版库 200和反射镜组之间, 反射镜组包括与多个版槽—对应设置的多个反射镜 125。 测距传感器 110位于版库 200的掩模取放口 201的侧前方, 反射镜 125的反射面朝 向版库侧壁的所在平面且沿远离所述版库侧壁的所在平面的方向向下倾斜设置, 与 Z方向呈预设夹角 P。 其中, 版库侧壁为版库 200与掩模取放口 201相连的一侧 面, 测距传感器 110到掩模取放口 201所在平面的距离小于或等于预设距离。 该 实施例的检测原理与图 4中所示的检测原理类似, 预先设定多个反射镜 125的反 射面与 Z方向的夹角, 多个反射镜 125的反射面与 Z方向的夹角不同, 在检测过程 中, 旋转电机 124控制测距传感器 110旋转, 编码器 123测量测距传感器 110的旋 转角度并反馈至检测机构 130, 实现对测距传感器 110的扫描角度㊀的控制, 使得 扫描角度 0等于对应的反射镜 125的反射面与 Z方向的夹角 P的两倍, 测距传感器 110发射的测距信号, 经对应的反射镜 125反射后, 沿垂直于版库侧壁所在平面 的 Y方向照射对应的版槽, 并原路返回至测距传感器 110, 从而完成对多个版槽 进行扫描。
如图 5所示的实施例中, 反射镜组位于测距传感器 110的上方。
可选的, 扫描位姿包括测距传感器 110的位置和扫描角度, 检测机构 130被
Figure imgf000007_0003
的 反射镜 125上的反射点到掩模版靠近测距传感器 110的一面的距离, 02为测距传 到反射点的水平距离。 可选的, 若判 角度对应的版槽中掩模版位置摆放正
Figure imgf000007_0002
确, 不存在凸版, 或者确定与扫描角度对应的版槽中无掩模版。
可选的, 预设距离小于或等于 5mm。 即图 5所示的实施例中的凸版检测装置 能够检测凸出掩模取放口 201所在的平面与测距传感器的距离小于或等于 5mm 的掩模版。 在一实施例中, 预设距离可以根据实际的掩模版的摆放精度的需要 设置。
可选的, 编码器 123为码盘, 码盘是指测量角位移的数字编码器, 用于测量 测距传感器 110的旋转角度并反馈至检测机构 130, 以调整测量测距传感器 110的 扫描角度。 码盘具有分辨能力强、 测量精度高和工作可靠等优点, 是测量轴转 角位置的一种常用的位移传感器。
可选的, 如图 4和图 5所示, 调节组件 120还包括镜组固定机构 126, 反射镜 组固定于镜组固定机构 126上, 反射镜组包括多个反射镜 125, 且多个反射镜 125 竖直排列, 即沿 Z方向排列。 示例性的, 沿 Z方向, 由下至上, 多个反射镜与 Z 方向的夹角分别为 16.5°、 26°、 31°、 34°、 36°和 37.5° , 则旋转电机 124驱动测距 传感器 110旋转, 对应的扫描角度分别为 33°、 52°、 62°、 68°、 72°和 75°, 分别对 应版库 200中由下至上的六个版槽。
扫描一次可得六组距离和角度数据( D, e), 其中角度代表当前测距传感器 110的扫描角度(取值 33°、 52°、 62°、 68°、 72°和 75°), 距离 D为测距传感器 110 测得的测距信号的往返距离。 根据上述实施例所述的检测原理, 判断对应的版 槽是否存在凸版。
可选的, 测距传感器 110为激光测距传感器或红外线测距传感器。 在本申请 的上述实施例中, 测距传感器 110为激光测距传感器, 如图 2所示, 激光测距传 感器 110包括激光发射端 111和激光接收端 112。
本实施例还提供了一种掩模传输系统, 包括至少一个版库 200和上述任意实 施例所述的掩模版凸版检测装置。 图 6为本实施例提供的一种掩模传输系统的结 构示意图, 如图 6所示, 掩模版传输系统包括:
第一外部版库 12和第二外部版库 13、 第一内部版库 14和第二内部版库 15、 第一掩模版传输机构 16、 外部操作台 11及控制机箱 21 , 第一外部版库 12和第二 外部版库 13与外部操作台 11对接, 存储由外部操作台 11送入的装有掩模版的掩 模盒, 第一掩模版传输机构 16用于完成掩模版在第一外部版库 12和第二外部版 库 13与第一内部版库 14和第二内部版库 15之间的流转; 第一内部版库 14和第二 内部版库 15分别对应设置上述实施例所述的掩模版凸版检测装置。
可选的, 该掩模版传输系统还包括第一掩模版对准机构 18, 用于消除外部 世界的掩模版传输过程中的初始位置偏差; 第二掩模版传输机构 19 , 用于完成与第一掩模版传输机构 16的掩模版交接 以及与掩模台的掩模版交接;
第二掩模版对准机构 20, 用于校正第二掩模版传输机构 19与掩模台交接过 程中的掩模版的位置;
掩模版颗粒度检测机构 17 , 用于在第一掩模版传输机构 16将掩模版从第一 外部版库 12或第二外部版库 13传送至第一内部版库 14或第二内部版库 15之前, 对掩模版的表面进行颗粒度检测。
本实施例提供的掩模版传输系统的工作流程为: 装有掩模版的掩模盒从外 部操作台 11被放入第一外部版库 12或第二外部版库 13后, 第一掩模版传输机构 16从第一外部版库 12或第二外部版库 13取出掩模版, 经掩模版颗粒度检测机构 17检测合格后, 送入第一内部版库 14或第二内部版库 15中, 掩模版凸版检测装 置对第一内部版库 14和第二内部版库 15中的掩模版进行凸版检测, 对存在凸版 的版槽进行提示或控制第一掩模版传输机构 16调整凸版的位置, 使凸版符合摆 放要求。 第一掩模版传输机构 16从第一内部版库 14或第二内部版库 15中取出掩 模版, 经第一掩模版对准机构 18位置校正后, 与第二掩模版传输机构 19完成交 接, 将掩模版转移至第二掩模版传输机构 19上; 第二掩模版传输机构 19经第二 掩模版对准机构 20位置校正后, 与掩模台交接, 将掩模版传送至掩模台上, 以 进行光刻工艺。
本实施例还提供了一种光刻设备, 包括上述实施例所述的掩模传输系统。 本申请实施例提供的凸版检测装置, 调节组件被配置为驱动测距传感器运动, 以对版库的多个版槽进行扫描, 且使测距传感器发射的测距信号经多个版槽中 的掩模版反射后, 能够原路反射回测距传感器。 检测机构被配置为控制测距传 感器和调节组件工作, 并根据测距传感器在扫描多个版槽时的扫描位姿以及测 距传感器测得的距离信息, 确定多个版槽是否存在凸版。 本申请实施例提供的 凸版检测装置结构简单,能够确定版库中哪一个版槽存在凸版,无需人为检查, 提高了凸版检测效率且降低了凸版检测的成本。 于本文的描述中, 需要理解的是, 术语“上”、 “下”、 “右”、 等方位或位置关 系为基于附图所示的方位或位置关系, 仅是为了便于描述和简化操作, 而不是 指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本申请的限制。 此外, 术语“第一”、 “第二”, 仅仅用于在描述 上加以区分, 并没有特殊的含义。
在本说明书的描述中, 参考术语“一实施例”、 “示例”等的描述意指结合该实 施例或示例描述的具体特征、 结构、 材料或者特点包含于本申请的至少一个实 施例或示例中。 在本说明书中, 对上述术语的示意性表述不一定指的是相同的 实施例或示例。
此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施 方式仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书作为一个整体, 多个实施例中的技术方案也可以 适当组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权 利 要 求 书
1.一种掩模版凸版检测装置, 所述检测装置包括:
测距传感器, 被配置为位于版库的一侧;
调节组件, 被配置为驱动所述测距传感器运动以对所述版库的多个版槽进 行扫描, 且使所述测距传感器发射的测距信号经多个所述版槽中的掩模版反射 后, 原路反射回所述测距传感器;
检测机构, 分别与所述测距传感器及所述调节组件连接, 且被配置为控制 所述测距传感器和所述调节组件工作, 并根据所述测距传感器在扫描多个所述 版槽时的扫描位姿以及所述测距传感器测得的距离信息, 确定所述多个版槽是 否存在凸版。
2.根据权利要求 1所述的掩模版凸版检测装置, 其中, 所述调节组件包括编 码器、 旋转电机和反射镜组, 所述编码器以及所述旋转电机分别与所述检测机 构连接, 所述测距传感器被配置为位于所述版库和所述反射镜组之间, 所述反 射镜组被配置为包括多个与所述版槽 -对应设置的反射镜, 所述旋转电机被 配置为控制所述测距传感器旋转, 以调节所述测距传感器的扫描角度, 以使所 述测距信号经多个所述反射镜反射至对应的所述版槽中, 所述编码器被配置为 测量所述测距传感器的旋转角度并反馈至所述检测机构, 以使所述检测机构通 过所述旋转电机调节所述测距传感器的扫猫角度。
3.根据权利要求 2所述的掩模版凸版检测装置, 其中, 所述调节组件还包括 镜组固定机构, 所述反射镜组固定于所述镜组固定机构上, 且所述多个反射镜 竖直排列。
4.根据权利要求 3所述的掩模版凸版检测装置, 其中, 所述测距传感器被配 置为位于所述版库的掩模取放口的正前方, 所述反射镜的反射面被配置为朝向 所述掩模取放口的所在平面且沿远离所述掩模取放口的所在平面的方向向下倾 斜设置。
5.根据权利要求 4所述的掩模版凸版检测装置, 其中, 所述扫描位姿包括所 述测距传感器的位置和扫描角度, 所述检测机构被配置为:
则确定与所述扫描角度对应的所述版槽存
Figure imgf000011_0001
在凸版; 其中, D1为所述测距传感器测得的测距信号的往返距离, L2为与所述 扫描角度对应的所述反射镜上的反射点到所述掩模耳又放口所在平面的距离, 01 为所述测距传感器的扫描角度, L1为所述测距传感器到所述反射点的水平距离。
6.根据权利要求 3所述的掩模版凸版检测装置, 其中, 所述测距传感器被配 置为位于所述版库的掩模取放口的侧前方, 所述反射镜的反射面被配置为朝向 版库侧壁的所在平面且沿远离所述版库侧壁的所在平面的方向向下倾斜设置, 所述版库侧壁为所述版库与所述掩模取放口相连的一个侧面, 所述测距传感器 到所述掩模取放口所在平面的距离小于或等于预设距离。
7.根据权利要求 6所述的掩模版凸版检测装置, 其中, 所述预设距离小于或 等于 5mm。
8.根据权利要求 6所述的掩模版凸版检测装置, 其中, 所述扫描位姿包括所 述测距传感器的位置和扫描角度, 所述检测机构被配置为:
则确定与所述扫描角度对应的所述版槽存
Figure imgf000012_0001
在凸版; 其中, D2为所述测距传感器测得的测距信号的往返距离, L4为与所述 扫描角度对应的所述反射镜上的反射点到所述掩模版靠近所述测距传感器的一 面的距离, 02为所述测距传感器的扫描角度, L3为所述测距传感器到所述反射 点的水平距离。
9.根据权利要求 2所述的掩模版凸版检测装置, 其中, 所述编码器为码盘。
10.根据权利要求 1所述的掩模版凸版检测装置, 其中, 所述测距传感器为激 光测距传感器或红外线测距传感器。
11.一种掩模传输系统, 包括至少一个版库和如权利要求 1-10任一所述的掩 模版凸版检测装置。
12.根据权利要求 11所述的掩模传输系统, 其中, 所述版库和所述掩模版凸 版检测装置中的所述测距传感器 -对应设置。
13.一种光刻设备, 包括如权利要求 11或 12所述的掩模传输系统。
PCT/CN2020/076329 2019-02-28 2020-02-24 掩模版凸版检测装置、传输系统及光刻设备 WO2020173404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910151508.4 2019-02-28
CN201910151508.4A CN111623718B (zh) 2019-02-28 2019-02-28 一种掩模版凸版检测装置、传输系统及光刻设备

Publications (1)

Publication Number Publication Date
WO2020173404A1 true WO2020173404A1 (zh) 2020-09-03

Family

ID=72238239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076329 WO2020173404A1 (zh) 2019-02-28 2020-02-24 掩模版凸版检测装置、传输系统及光刻设备

Country Status (3)

Country Link
CN (1) CN111623718B (zh)
TW (1) TWI732470B (zh)
WO (1) WO2020173404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280897A (zh) * 2021-12-28 2022-04-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种掩模版传输组件及光刻系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140422A (zh) * 2007-08-20 2008-03-12 上海微电子装备有限公司 用于光刻装置的掩模对准标记及对准方法
CN101403865A (zh) * 2008-11-13 2009-04-08 上海微电子装备有限公司 光刻机掩模预对准系统
CN101424885A (zh) * 2008-12-01 2009-05-06 上海微电子装备有限公司 掩模对准系统及其方法
JP2015010900A (ja) * 2013-06-27 2015-01-19 株式会社アルバック 位置合わせ装置、真空装置、位置合わせ方法
CN105807574A (zh) * 2014-12-30 2016-07-27 上海微电子装备有限公司 掩模传输装置、曝光装置及掩模传输方法
CN105988303A (zh) * 2015-02-26 2016-10-05 上海微电子装备有限公司 一种掩模版传输装置及传输方法
CN208383076U (zh) * 2018-05-25 2019-01-15 南京中电熊猫液晶显示科技有限公司 一种基板异常检测装置
CN109388031A (zh) * 2017-08-11 2019-02-26 上海微电子装备(集团)股份有限公司 掩模版传输系统及方法、光刻设备及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453818B2 (ja) * 1993-11-08 2003-10-06 株式会社ニコン 基板の高さ位置検出装置及び方法
US20080073569A1 (en) * 2006-09-23 2008-03-27 Varian Semiconductor Equipment Associates, Inc. Mask position detection
CN203941380U (zh) * 2014-06-10 2014-11-12 中芯国际集成电路制造(北京)有限公司 一种光罩盒位置监控系统
DE102016107524B4 (de) * 2016-04-22 2019-11-14 Carl Zeiss Smt Gmbh Verfahren zur Positionserfassung eines Maskenhalters auf einem Messtisch
CN107664921B (zh) * 2016-07-29 2019-12-24 上海微电子装备(集团)股份有限公司 可调平的版库设备
CN109982852B (zh) * 2016-12-05 2021-05-11 株式会社富士 印刷装置及印刷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140422A (zh) * 2007-08-20 2008-03-12 上海微电子装备有限公司 用于光刻装置的掩模对准标记及对准方法
CN101403865A (zh) * 2008-11-13 2009-04-08 上海微电子装备有限公司 光刻机掩模预对准系统
CN101424885A (zh) * 2008-12-01 2009-05-06 上海微电子装备有限公司 掩模对准系统及其方法
JP2015010900A (ja) * 2013-06-27 2015-01-19 株式会社アルバック 位置合わせ装置、真空装置、位置合わせ方法
CN105807574A (zh) * 2014-12-30 2016-07-27 上海微电子装备有限公司 掩模传输装置、曝光装置及掩模传输方法
CN105988303A (zh) * 2015-02-26 2016-10-05 上海微电子装备有限公司 一种掩模版传输装置及传输方法
CN109388031A (zh) * 2017-08-11 2019-02-26 上海微电子装备(集团)股份有限公司 掩模版传输系统及方法、光刻设备及方法
CN208383076U (zh) * 2018-05-25 2019-01-15 南京中电熊猫液晶显示科技有限公司 一种基板异常检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280897A (zh) * 2021-12-28 2022-04-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种掩模版传输组件及光刻系统
CN114280897B (zh) * 2021-12-28 2024-01-26 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种掩模版传输组件及光刻系统

Also Published As

Publication number Publication date
TW202034071A (zh) 2020-09-16
CN111623718A (zh) 2020-09-04
TWI732470B (zh) 2021-07-01
CN111623718B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US7423726B2 (en) Exposure apparatus and device manufacturing method
JP2829642B2 (ja) 露光装置
US5194743A (en) Device for positioning circular semiconductor wafers
JP2009135442A (ja) 基板搬送方法、搬送システムおよびリソグラフィ投影装置
CN1475869A (zh) 映像读取装置及成像装置
TW465012B (en) Wafer positioning device
JP3453818B2 (ja) 基板の高さ位置検出装置及び方法
WO2020173404A1 (zh) 掩模版凸版检测装置、传输系统及光刻设备
CN110411377B (zh) 一种直角检测调节系统及方法
JP2002365810A (ja) 分割逐次近接露光装置
JP2006227278A (ja) クランプ部材検出方法と画像形成方法及び画像形成装置
KR100950535B1 (ko) 마이크로 공구의 공작기계상 설치오차 측정장치
JPH05160245A (ja) 円形基板の位置決め装置
JP4906826B2 (ja) 基板の搬送方法、搬送システムおよびリソグラフィ投影装置
JP2006234959A (ja) 露光方法および露光装置
JP2021131378A (ja) 情報処理方法、情報処理装置及びコンピュータ読み取り可能な記録媒体
US6317196B1 (en) Projection exposure apparatus
WO2006090575A1 (ja) 露光方法および露光装置
JP2003106816A (ja) 膜厚測定方法及び装置
JPH0444211A (ja) 露光装置
KR100796299B1 (ko) 기판 정렬 장치 및 방법
JPH0731055B2 (ja) 平面度測定装置
EP0528791A1 (en) Step and repeat camera/projector machine
JP2808152B2 (ja) 露光装置
JPH0576765B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763192

Country of ref document: EP

Kind code of ref document: A1