WO2020171163A1 - ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ - Google Patents

ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ Download PDF

Info

Publication number
WO2020171163A1
WO2020171163A1 PCT/JP2020/006754 JP2020006754W WO2020171163A1 WO 2020171163 A1 WO2020171163 A1 WO 2020171163A1 JP 2020006754 W JP2020006754 W JP 2020006754W WO 2020171163 A1 WO2020171163 A1 WO 2020171163A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene
temperature
polypropylene film
width direction
Prior art date
Application number
PCT/JP2020/006754
Other languages
English (en)
French (fr)
Inventor
今西 康之
大倉 正寿
佑太 中西
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US17/431,589 priority Critical patent/US20220135780A1/en
Priority to CN202080012289.2A priority patent/CN113382839A/zh
Priority to KR1020217024972A priority patent/KR20210130714A/ko
Priority to EP20758827.8A priority patent/EP3922436A4/en
Publication of WO2020171163A1 publication Critical patent/WO2020171163A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a polypropylene film that is particularly suitable for use in capacitors.
  • polypropylene film Since polypropylene film has excellent transparency, mechanical properties, electrical properties, etc., it is used in various applications such as packaging applications, tape applications, cable wrapping, capacitors and other electrical applications.
  • polypropylene film is particularly preferably used not only for DC and AC but also for high voltage capacitors due to its excellent withstand voltage and low loss characteristics.
  • polypropylene film is said to have high heat resistance and dielectric breakdown voltage.
  • silicon carbide SiC
  • the operating environment temperature will become higher. Due to the demand for higher heat resistance and higher withstand voltage as a capacitor, it is required to improve the dielectric breakdown voltage of the film under a high temperature environment exceeding 110°C.
  • the upper limit of the use temperature of the polypropylene film is said to be about 110° C., and it is extremely difficult to stably maintain the dielectric breakdown voltage under such a temperature environment. .. It is considered that the thermal history of the film itself during the vapor deposition process of the film is up to around 150°C, and in the case of a thermally unstable film, if the film structure relaxes during the vapor deposition process, the withstand voltage performance originally possessed by the film will It was difficult to demonstrate as.
  • the relaxation time of an amorphous component and the relaxation time of an intermediate component of polypropylene in an atmosphere of 70° C. are controlled.
  • a film in which the dielectric breakdown voltage is improved by controlling so that the change in the storage elastic modulus at 125° C. with respect to the storage elastic modulus at room temperature is reduced.
  • Patent Document 7 a proposal of a sheet in which a polypropylene film has a high stereoregular polypropylene raw material having a high elastic modulus at a high temperature, melt-extruded, then rapidly cooled, and then heat-treated to form (for example, Patent Document 7), molecular weight distribution of polypropylene raw material, stereo A biaxially stretched film in which the high temperature dielectric breakdown voltage at 100° C. is improved by controlling the regularity has been proposed (for example, Patent Document 8).
  • Motonobu Kawai “Film Capacitor Breakthrough, From Car to Energy”, Nikkei Electronics, Nikkei BP, September 17, 2012, p.57-62
  • the present invention provides a polypropylene film having excellent structural stability against heat, which has excellent long-term use reliability in a high temperature environment and is suitable for use in capacitors used at high temperature and high voltage. It is intended to provide a metal film laminated film and a film capacitor using the same.
  • the inventors of the present invention have made extensive studies in order to solve the above problems, and have arrived at the following invention. That is, (1) the sum of the F5 values at 130° C. in the longitudinal direction and the width direction is 15 MPa or more, and in the dielectric breakdown test at 130° C., the dielectric breakdown voltage (B150) when heat treatment is performed at 150° C. for 1 minute.
  • a polypropylene film (first form) in which (V/ ⁇ m) and the dielectric breakdown voltage (B0) (V/ ⁇ m) when heat treatment is not performed satisfy the following relationship.
  • the present invention provides a polypropylene film which has excellent long-term reliability in a high temperature environment and is suitable for use in capacitors used under high temperature and high voltage and has excellent structural stability against heat. Moreover, a metal film laminated film and a film capacitor using the same are provided.
  • the inventors of the present invention have conducted extensive studies in order to solve the above-mentioned problems, and the polypropylene films described in Patent Documents 1 to 4 described above have a dielectric breakdown voltage in a high temperature environment and a long time in a high temperature environment when used as a capacitor.
  • the reasons for the insufficient reliability of use were considered as follows.
  • the polypropylene films described in Patent Document 1 and Patent Document 2 can be said to have sufficient withstand voltage property and reliability in a 105° C. environment as a capacitor, but assuming further withstand voltage property in a high temperature environment, It was considered that there is a problem that the stretching ratio in the film formation, the preheating and the heat treatment during the lateral stretching are not always sufficient, and the amorphous structure of the film is relaxed at a higher temperature to lower the dielectric breakdown voltage. Also in Patent Document 3, presuming the withstand voltage property in a high temperature environment, preheating and heat treatment at the time of transverse stretching in film formation are not always sufficient, and slow cooling treatment is performed at the heat treatment temperature after transverse stretching.
  • Patent Document 4 does not control the cold xylene-soluble part (CXS) contained in the raw material, and does not sufficiently improve the crystallinity because the stretching ratio and the transverse stretching slow cooling in the film formation are not sufficient, so that at high temperature. There was a case where it was inferior in withstand voltage.
  • CXS cold xylene-soluble part
  • the present inventors have further studied, and the relationship between the sum of F5 values at 130° C. in the longitudinal direction and the width direction of a polypropylene film and the dielectric breakdown voltage before and after heat treatment at 150° C. for 1 minute. It was found that the above problem can be solved by using a film having a value of a certain value or more.
  • the sum of the F5 values at 130° C. in the longitudinal direction and the width direction is 15 MPa or more, and in the dielectric breakdown test at 130° C., the dielectric breakdown voltage (B150 when the heat treatment was performed at 150° C. for 1 minute). ) (V/ ⁇ m) and the dielectric breakdown voltage (B0) (V/ ⁇ m) when heat treatment is not performed satisfy the following relationship.
  • the polypropylene film described in Patent Document 5 since the polypropylene film described in Patent Document 5 has a propylene-based random copolymer added to the polypropylene resin for the purpose of imparting high rigidity and antistatic properties for packaging, it has a copolymerization weight in a high-temperature environment exceeding 105°C. We thought that it was not suitable for capacitors due to the lack of heat resistance of the united product. Further, the polypropylene film described in Patent Document 6 can be said to have sufficient withstand voltage property and reliability in a 105° C. environment as a capacitor.
  • the polypropylene film of Patent Document 7 is an unstretched sheet, and it has no technical concept of biaxially stretching a sheet having excellent rigidity to develop withstand voltage performance, and has a withstand voltage property and reliability in an environment exceeding 105° C. as a capacitor. I thought that the reason was low.
  • the polypropylene film described in Patent Document 8 uses a polypropylene resin having high stereoregularity, the withstand voltage property and reliability in a 100° C. environment are recognized, but further assume a withstand voltage property in a high temperature environment.
  • the preheating and heat treatment during transverse stretching in film formation are not always sufficient, the film contains a large amount of movable amorphous components, the preheating temperature before transverse stretching is low, and the film is slowly cooled at the heat treatment temperature after transverse stretching. Therefore, it was considered that the reason is that the stabilization of the molecular chain orientation structure is insufficient and the relaxation time of the amorphous component at high temperature becomes short.
  • the present inventors further studied, and by making the polypropylene film a film in which the relation between the relaxation time of the amorphous component before and after the heat treatment at 150° C. for 1 minute is a certain value or more. It has been found that the above problems can be solved.
  • the relaxation time T2 of the amorphous component obtained by the pulsed NMR method the relaxation time (T2A) ( ⁇ s) after heat treatment at 150° C. for 1 minute and the relaxation time (T2B) ( is a polypropylene film satisfying the following expression.
  • the polypropylene film described in Patent Document 9 can be said to have sufficient withstand voltage property and reliability in a 105° C. environment as a capacitor, when further assuming the withstand voltage property in a high temperature environment, the film in film formation is Stretching ratio, preheating and heat treatment during transverse stretching are not always sufficient, and there are many cold xylene-soluble parts (CXS) contained in the raw material, and it is difficult to increase the crystallinity. We thought that there was a problem in that the structure relaxed and the melting point decreased. Further, the polypropylene film described in Patent Document 10 can be said to have sufficient withstand voltage and reliability in a 105° C.
  • the polypropylene film described in Patent Document 11 is higher because it is used by blending a polypropylene resin having high stereoregularity and a polypropylene resin having a low molecular weight component, and preheating and heat treatment during lateral stretching in film formation are not always sufficient.
  • the polypropylene film described in Patent Document 12 is a polypropylene resin having high stereoregularity and is subjected to two-stage stretching in a longitudinal stretching step in biaxial stretching to enhance the degree of orientation, and its withstand voltage and reliability in a 105° C. environment are recognized.
  • withstand voltage in a high temperature environment preheating and heat treatment during lateral stretching in film formation are not always sufficient, and the amorphous structure of the film tends to relax at higher temperatures and the melting point decreases. I thought that there was a problem in that.
  • the present inventors further conducted studies, and made the polypropylene film a film in which the relationship of the change in the melting point of the film before and after the heat treatment at 150° C. for 1 minute is a certain value or more. I found that can be solved.
  • each of a film (hereinafter referred to as a treated film) that has been heat-treated at 150° C. for 1 minute and an untreated film (hereinafter referred to as an untreated film) is subjected to DSC measurement at a heating rate ⁇ (° C./min).
  • the melting peak temperature (Tm ⁇ ) (°C) observed as the Y-axis, and the value obtained by raising the temperature rise rate ⁇ (°C/min) to the 0.5 power (hereinafter referred to as ⁇ 0.5 ) are the X-axis
  • the y-intercept (H1y) (°C) of the linear function in the treated film and the y-intercept (H0y) (°C) of the linear function in the untreated film were obtained.
  • the polypropylene film may be simply referred to as a film hereinafter.
  • the form of the invention of the polypropylene film is not particularly limited. Since the polypropylene film of the present invention is not a microporous film, it does not have many pores. That is, the polypropylene film of the present invention means a polypropylene film other than the microporous film.
  • the microporous film penetrates both surfaces of the film and uses a B-type Gurley tester of JIS P 8117 (1998) at 23° C. and a relative humidity of 65% at a permeation time of 100 ml of air of 5 It is defined as a film having a pore structure having an air permeability of 1,000 seconds/100 ml or less.
  • the polypropylene film of the first aspect of the present invention has a sum of F5 values at 130° C. in the longitudinal direction and the width direction of the film of 15 MPa or more, and is subjected to a heat treatment at 150° C. for 1 minute in a dielectric breakdown test at 130° C. It is necessary that the dielectric breakdown voltage (B150) (V/ ⁇ m) when the heat treatment is performed and the dielectric breakdown voltage (B0) (V/ ⁇ m) when the heat treatment is not performed satisfy the following relationship.
  • the dielectric breakdown voltage (B150) (V/ ⁇ m) when the film is heat-treated at 150° C. for 1 minute and the dielectric breakdown voltage (B0) (V/ ⁇ m) when the film is not heat-treated are (B150). Satisfying the relationship of /(B0) ⁇ 0.80 implies that the film has a small structural change even when heated, and means that the film has a very stable structure especially in a high temperature environment. ..
  • the value of (B150)/(B0) is preferably 0.83 or more, more preferably 0.86 or more, still more preferably 0.89 or more, and most preferably 0.94 or more. The higher this value is, the higher the dielectric breakdown voltage is even at high temperature, and when the capacitor is used, the reliability can be exhibited for a long time in a high temperature environment.
  • a polypropylene raw material having a high mesopentad fraction and a cold xylene-soluble portion (CXS) of less than 1.5% by mass is used, Before the filter, after the filter, the melt extrusion temperature in the spinneret is lowered in multiple stages, the area stretching ratio is 60 times or more at the time of biaxial stretching, and the stretching ratio in the width direction is 10.5 times or more, and after the uniaxial stretching in the longitudinal direction.
  • CXS cold xylene-soluble portion
  • the preheating temperature immediately before biaxial stretching in the width direction is set to +5 to +15°C in the width direction, and in the heat setting treatment and relaxation treatment step after the biaxial stretching, first, the temperature is lower than the stretching temperature in the width direction.
  • a relaxation treatment while being heat-treated in the first step, and then heat-treated at 135° C. or higher (second step) at a temperature lower than the heat-treatment temperature of the first step while maintaining tension in the width direction of the film, and further 80 It can be obtained by appropriately subjecting the film to a multi-step heat-setting treatment and a relaxation treatment in which a heat treatment (third step) is performed at a temperature of not less than 0° C. and lower than the second step heat treatment temperature.
  • (B150)/(B0) when it is used as a capacitor in a high temperature environment where a high voltage is applied, especially when it is placed in a high temperature state for a long time. , The molecular chain relaxation of the film progresses to lower the withstand voltage, resulting in a decrease in capacitor capacity and short circuit destruction, resulting in a capacitor with poor reliability.
  • the upper limit of the above relational expression (B150)/(B0) is not particularly limited, but it is practically 0.99 or less. If (B150)/(B0) is set to be larger than 0.99, it is necessary to increase the draw ratio during film formation, which may cause breakage.
  • the polypropylene film of the second embodiment of the present invention is heat-treated with the relaxation time (T2A) ( ⁇ s) after the film is heat-treated at 150° C. for 1 minute. It is necessary that the relation of the previous relaxation time (T2B) ( ⁇ s) satisfies the following equation.
  • the value of (T2B)/(T2A) is preferably 0.92 or more, more preferably 0.95 or more, and most preferably 0.97 or more. The higher this value is, the higher the dielectric breakdown voltage is even at high temperature, and when the capacitor is used, the reliability can be exhibited for a long time in a high temperature environment.
  • the inventors of the present invention have earnestly studied in order to obtain a polypropylene film that exhibits long-term reliability in a high temperature environment for use in capacitors, and thus relates to the relaxation time T2 of the amorphous component obtained by the pulsed NMR method of the film. It was found that there is a high correlation between the parameter (T2B)/(T2A) and the long-term reliability of the capacitor at high temperature.
  • the relaxation time T2 of the amorphous component obtained by the pulsed NMR method before and after heating the film at a temperature equal to or higher than the operating environment temperature It has been found that controlling the change to be small is particularly important in long-term reliability of a capacitor for a long time, and has reached the present invention. Satisfying the relationship of (T2B)/(T2A) ⁇ 0.90 means that the structural change due to amorphous relaxation is small even when the film is heated, and the film molecular chain moves especially in a high temperature environment. It means that the film has a structure in which loosening is suppressed and which is very stable to heat.
  • the area stretching ratio is increased in the stretching step during film formation, and the sequential biaxial stretching is particularly preferable. It is effective to increase the draw ratio in the width direction by the method.
  • the effect can be more remarkably obtained by setting the preheating temperature in the transverse stretching to a temperature higher than the transverse stretching temperature and performing the heat setting treatment and the relaxation treatment of the multistage system in the heat treatment after the transverse stretching. That is, for example, a polypropylene raw material having a mesopentad fraction of 0.970 or more and a cold xylene-soluble portion (CXS) of less than 1.5% by mass is used, and the melt extrusion temperature in a die before a filter, after a filter, and a multistage low temperature (Here, the multi-stage low temperature means that the temperature is lowered in each stage before and after the filter and the stage of the die, as will be described later.
  • CXS cold xylene-soluble portion
  • the area stretching ratio is 60 times or more, and the width direction stretching ratio is 10.5 times or more.
  • the preheating temperature after the uniaxial stretching in the longitudinal direction and immediately before the biaxial stretching in the width direction is At the stretching temperature of +5 to +15° C.
  • the relaxation treatment is performed while performing the heat treatment (first step) at a temperature lower than the stretching temperature in the width direction, and then the film is While maintaining tension in the width direction, a heat treatment at a temperature lower than the first heat treatment temperature of 135° C. or higher (second heat treatment), and at a temperature of 80° C.
  • DS melting peak temperature
  • the relation between the y-intercept (H1y) (° C.) of the linear function in the treated film and the y-intercept (H0y) (° C.) of the linear function in the untreated film may satisfy the following relation. is necessary.
  • the value of (H1y)/(H0y) is preferably 0.92 or more, more preferably 0.94 or more, and most preferably 0.96 or more. The higher this value is, the higher the dielectric breakdown voltage is even at high temperature, and when the capacitor is used, the reliability can be exhibited for a long time in a high temperature environment.
  • the inventors of the present invention conducted extensive studies to obtain a polypropylene film that exhibits long-term reliability in a high-temperature environment for capacitor applications, and thus elevated the film heat-treated at 150° C. for 1 minute and the untreated film respectively.
  • a y-section (H1y) (°C) of the film obtained by heat-treating the film at 150°C for 1 minute and a y-section of the untreated film are used.
  • the present invention has found that it is important to control so that the change in (H0y) (° C.) is small, particularly in long-term reliability of a capacitor for a long time.
  • satisfying the relationship of (H1y)/(H0y) ⁇ 0.90 means that the structural change due to the amorphous relaxation is small and the melting point change is small even when the film is heated, and particularly in a high temperature environment, the film molecule This means that the film has a structure in which movement and loosening of chains are suppressed and the structure is very stable against heat.
  • the area stretching ratio is increased in the stretching step at the time of film formation, and particularly in the width direction by the sequential biaxial stretching method. It is effective to increase the stretching ratio.
  • the effect can be more remarkably obtained by setting the preheating temperature in the transverse stretching to a temperature higher than the transverse stretching temperature and performing the heat setting treatment and the relaxation treatment of the multistage system in the heat treatment after the transverse stretching. That is, for example, a polypropylene raw material having a mesopentad fraction of 0.970 or more and a cold xylene-soluble portion (CXS) of less than 1.5 mass% is used, and the melt extrusion temperature in the die before the filter and after the filter is set to a multistage low temperature.
  • the multi-stage low temperature means that the temperature is lowered in each stage before and after the filter and the stage of the die, as will be described later.
  • the area stretching ratio is 60 times or more, and the width direction stretching ratio is 10.5 times or more.
  • the preheating temperature after the uniaxial stretching in the longitudinal direction and immediately before the biaxial stretching in the width direction is At the stretching temperature of +5 to +15° C.
  • the relaxation treatment is performed while performing the heat treatment (first step) at a temperature lower than the stretching temperature in the width direction, and then the film is While maintaining tension in the width direction, a heat treatment at a temperature lower than the first heat treatment temperature of 135° C. or higher (second heat treatment), and at a temperature of 80° C.
  • the high temperature of the y-section (H1y) (° C.) means that the melting temperature of the film is high and the heat resistance is high. Therefore, it is difficult to cause a short circuit break when used as a capacitor for a long time in a high temperature environment. Withstand voltage can be maintained and high reliability can be obtained.
  • the y-intercept (H1y) (° C.) is more preferably 157° C.
  • a high mesopentad And a cold xylene-soluble part (CXS) of less than 1.5% by mass is used as the polypropylene raw material, and the melt extrusion temperature in the die before the filter, after the filter, and in the spinneret is lowered in a multi-stage manner to increase the area stretching ratio during biaxial stretching. It is possible to set the stretching ratio to 60 times or more and the stretching ratio in the width direction to 10.5 times or more.
  • the polypropylene film of the present invention preferably has a film breakdown voltage (B0) (V/ ⁇ m) at 130° C. of 350 V/ ⁇ m or more. It is more preferably 375 V/ ⁇ m or more, further preferably 400 V/ ⁇ m or more, particularly preferably 420 V/ ⁇ m or more, and most preferably 440 V/ ⁇ m or more.
  • the upper limit is not particularly limited, but is about 800 V/ ⁇ m.
  • the film breakdown voltage (B0) (V/ ⁇ m) at 130° C. within the above range (350 V/ ⁇ m or more)
  • a high mesopentad fraction and a cold xylene soluble part ( CXS) using a polypropylene raw material of less than 1.5% by mass lowering the melt extrusion temperature in the die before the filter, after the filter, in a multistage manner, and at the time of biaxial stretching, the area stretching ratio is 60 times or more and the width direction
  • the stretching ratio can be obtained by setting it to 10.5 times or more.
  • the sum of F5 values at 130°C in the longitudinal direction and the width direction of the film needs to be 15 MPa or more. If the sum of F5 values at 130°C is 15 MPa or more, it means that sufficient film strength is maintained even at high temperature, and it is particularly difficult to cause short circuit breakdown when used as a capacitor in a high temperature environment for a long time, and withstand voltage. Can be maintained and high reliability can be obtained.
  • the sum of F5 values at 130° C. is more preferably 17 MPa or more, further preferably 19 MPa or more, and particularly preferably 21 MPa or more. In order to set the sum of F5 values at 130° C.
  • a polypropylene raw material having a high mesopentad fraction and a cold xylene-soluble part (CXS) of less than 1.5% by mass is used, At the time of biaxial stretching, the area stretching ratio is 60 times or more, and the width direction stretching ratio is 10.5 times or more.
  • the preheating temperature immediately before biaxial stretching in the width direction after uniaxial stretching in the longitudinal direction is The stretching temperature is set to +5 to +15° C., and in the heat setting treatment and the relaxation treatment step after the biaxial stretching, first, the relaxation treatment is performed while the heat treatment (first step) is performed at a temperature lower than the stretching temperature in the width direction, and then, While maintaining tension in the width direction of the film, heat treatment was performed at a temperature lower than the heat treatment temperature of the first step above 135° C. (second step), and further at a temperature of 80° C. or more below the heat treatment temperature of the second step (3 It can be obtained by appropriately subjecting the film to a heat-setting treatment and a relaxation treatment of a multi-stage system in which the step is performed.
  • the mechanical strength at high temperature is low, resulting in a capacitor with poor withstand voltage.
  • the upper limit of the sum of F5 values at 130°C is not particularly limited, but it is practically 50 MPa or less. If the sum of the F5 values at 130° C. in the longitudinal direction and the width direction of the film is set to be larger than 50 MPa, it is necessary to increase the draw ratio during film formation, which may cause breakage.
  • the “longitudinal direction” is a direction corresponding to the flow direction in the film manufacturing process (hereinafter, may be referred to as “MD”), and the “width direction” is the above-mentioned film. It is a direction (hereinafter sometimes referred to as “TD”) orthogonal to the flow direction in the manufacturing process.
  • TD a direction orthogonal to the flow direction in the manufacturing process.
  • the polypropylene film of the present invention preferably has a heat shrinkage stress value (SF130MD) (MPa) of 2.0 MPa or less, and more preferably 1.7 MPa, which is obtained by using a thermomechanical analyzer at 130° C. in the longitudinal direction of the film. Or less, more preferably 1.3 MPa or less, and most preferably less than 1.0 MPa.
  • the self-recovery function operates by maintaining an appropriate gap between the film layers, suppressing breakthrough short circuit destruction that accompanies a sudden decrease in capacitance, and improves the reliability of the capacitor. Can be increased.
  • the lower limit of the heat shrinkage stress value (SF130MD) (MPa) obtained using a thermomechanical analyzer at 130° C. in the longitudinal direction of the film is not particularly limited, but about 0.1 MPa is practical.
  • the shrinkage stress is lower than 0.1 MPa, the film itself does not sufficiently shrink due to heat in the capacitor manufacturing process and the use process, and there is a possibility that a sufficient capacity may not be achieved with respect to the designed capacity.
  • the stretching ratio in the width direction during biaxial stretching is 10.5 times or more, and preheating immediately after biaxial stretching in the width direction after uniaxial stretching in the longitudinal direction.
  • the stretching temperature in the width direction is +5 to +15° C., and in the heat setting treatment and the relaxation treatment step after the biaxial stretching, first, while performing the heat treatment (first step) at a temperature lower than the stretching temperature in the width direction.
  • Relaxation treatment then heat treatment at 135° C. or higher (second stage) at a temperature lower than the first stage heat treatment temperature while maintaining tension in the width direction, and 80° C. or higher and lower than the second stage heat treatment temperature. It can be obtained by appropriately subjecting the film to a heat-setting treatment and a relaxation treatment of a multi-stage system in which a heat treatment (third stage) is performed under the condition of.
  • the polypropylene film of the present invention has a sum of storage elastic moduli (E′135 (MD+TD)) (GPa) obtained by a fixed viscoelasticity measurement at 135° C. in the longitudinal direction and the width direction, and in the longitudinal direction and the width direction. It is preferable that the relationship of the sum of storage elastic moduli (E'125 (MD+TD)) (GPa) obtained by fixed viscoelasticity measurement at 125° C. satisfies the following equation.
  • the value of (E'135(MD+TD))/(E'125(MD+TD)) is preferably 0.83 or more, more preferably 0.86 or more, and most preferably 0.89 or more.
  • the ratio of the sum of storage elastic moduli at 135° C. and the sum of storage elastic moduli at 125° C. satisfies the above relationship ((E′135(MD+TD))/(E′125(MD+TD))>0.80)
  • a polypropylene raw material having a high mesopentad fraction and a cold xylene-soluble portion (CXS) of less than 1.5% by mass is used, and the area stretching ratio is 60 times or more and the width is biaxially stretched.
  • the stretching ratio in the machine direction is 10.5 times or more, and the preheating temperature immediately before biaxial stretching in the width direction after uniaxial stretching in the longitudinal direction is the stretching temperature in the width direction +5 to +15°C.
  • a relaxation treatment is performed while performing a heat treatment (first stage) at a temperature lower than the stretching temperature in the width direction, and then the first stage while maintaining tension in the width direction of the film.
  • a multi-step heat-setting and relaxation treatment in which a heat treatment at a temperature lower than the heat treatment temperature of 135° C. or higher (second step) and a heat treatment at 80° C. or higher and a temperature lower than the heat treatment temperature of the second step (third step) are performed. This can be done by appropriately applying it to the film.
  • the polypropylene film of the present invention has less surface dents and has a moderate slipperiness to improve device processability and withstand voltage, and at least one surface of the film has a thickness of 1,252 ⁇ m ⁇
  • the total valley-side volume which is the total volume of the valleys with a depth of 20 nm or more in the region of 939 ⁇ m, is preferably 1 to 12,000 ⁇ m 3 . From the viewpoint of the lower limit, the total valley side volume is more preferably 300 ⁇ m 3 or more, and further preferably 600 ⁇ m 3 or more.
  • the total valley volume more preferably to 5,000 .mu.m 3 or less in terms of an upper limit, further preferable to be 2,500 3 less, and particularly preferably 1,000 .mu.m 3 or less.
  • the surface tends to be flat without unevenness, and in that case, the slippage of the film is extremely reduced and the handling property is reduced, or wrinkles are easily generated, and the device processability is increased. May be affected. Also, when used as a capacitor for a long period of time, the capacitance changes greatly due to the effects of wrinkles, etc., and when a film laminated capacitor is used, there is no appropriate gap between the films, so the self-recovery function (self-recovery function healing) is difficult to operate and the reliability of the capacitor may be reduced.
  • the thickness exceeds 12,000 ⁇ m 3 , locally there are many thin portions, and there is a risk of dielectric breakdown from those portions, and the withstand voltage of the film decreases, especially for high voltage capacitor applications. In that case, the withstand voltage property and reliability in a high temperature environment may be impaired.
  • the total valley volume by the preferred ranges described above (the total valley volume 1 [mu] m 3 or more 12,000 3 or less), dent less surface reduces the risk of breakdown at a low voltage is generated, the withstand voltage of the film
  • the withstand voltage property and reliability in a high temperature environment are improved, and the capacitance change when used as a capacitor for a long time can be suppressed.
  • an appropriate gap can be formed between the films, so that the self-recovery function (self-healing) can be operated and the reliability of the capacitor can be improved.
  • a method for controlling the total valley side volume for example, a polypropylene raw material having a high mesopentad fraction and a cold xylene-soluble portion (CXS) of less than 1.5 mass% is used, and the casting drum temperature and the stretching temperature in the longitudinal direction are used. Is controlled in a preferable range, the area stretching ratio is 60 times or more during biaxial stretching, and the stretching ratio in the width direction is 10.5 times or more.
  • the relationship between the F5 value in the longitudinal direction (F5MD) (MPa) and the F5 value in the width direction (F5TD) (MPa) at room temperature preferably satisfies the following formula.
  • the value of (F5TD)/(F5MD) ⁇ 1.5 The value of (F5TD)/(F5MD) is preferably 1.7 or more, more preferably 1.9 or more, and most preferably 2.1 or more.
  • the area stretching ratio at the time of biaxial stretching is 60 times or more, and the stretching ratio in the width direction is 10.5 times or more.
  • the upper limit of the value of (F5TD)/(F5MD) is not particularly limited and is not particularly limited as long as it is 1.5 or more, but it is considered that the practically achievable value is about 4.0.
  • the polypropylene film of the present invention preferably has a heat shrinkage stress value (SF130TD) (MPa) of 2.0 MPa or less, and more preferably 1.5 MPa, which is obtained by using a thermomechanical analyzer at 130° C. in the film width direction.
  • SF130TD heat shrinkage stress value
  • 1.1 MPa or less is more preferable, and 0.9 MPa or less is most preferable.
  • the heat shrinkage stress value (SF130TD) (MPa) obtained using a thermomechanical analyzer at 130° C. in the film width direction is 2.0 MPa or less
  • the vapor deposition film electrode portion is used in the aging treatment after metallikon spraying in the capacitor manufacturing process.
  • the lower limit of the heat shrinkage stress value (SF130TD) (MPa) obtained using a thermomechanical analyzer at 130° C. in the film width direction is not particularly limited, but it is practically about 0.1 MPa. If the heat shrinkage stress is lower than 0.1 MPa, the heat of the capacitor manufacturing process and the use process causes insufficient shrinkage of the film itself, and there is a possibility that a sufficient capacity may not be exhibited with respect to the designed capacity.
  • thermomechanical analyzer In order to control the heat shrinkage stress value (SF130TD) (MPa) obtained using a thermomechanical analyzer in the film width direction at 130° C. within a preferable range, for example, a high mesopentad fraction and a cold xylene soluble part ( CXS) is less than 1.5% by mass, a polypropylene raw material is used, the area stretching ratio is 60 times or more during biaxial stretching, and the stretching ratio in the width direction is 10.5 times or more. It is possible to obtain the preheating temperature immediately before biaxial stretching in the width direction by setting the stretching temperature in the width direction to +5 to +15°C.
  • the detailed method for measuring the heat shrinkage stress value obtained by using a thermomechanical analyzer at 130° C. is as described below.
  • the ratio of heat shrinkage stress values (SF130MD)/(SF130TD) obtained by using a thermomechanical analyzer at 130° C. in the film longitudinal direction and the width direction is 0.5 or more and 1.7.
  • the ratio (SF130MD)/(SF130TD) of the heat shrinkage stress value is in this range, that is, 0.5 or more and 1.7 or less means that the heat shrinkage stress is well balanced in the film plane, and the film interlayer when the capacitor is formed. The uniformity of the gap is improved, and the life and reliability of the capacitor are improved.
  • the lower limit of the ratio (SF130MD)/(SF130TD) of the heat shrinkage stress value is preferably 0.8 or more, more preferably 1.0 or more, and most preferably 1.2 or more.
  • the upper limit of the ratio (SF130MD)/(SF130TD) of the heat shrinkage stress values is preferably 1.5 or less, more preferably 1.4 or less, and most preferably 1.3 or less.
  • a high mesopentad fraction and a cold xylene-soluble portion are used.
  • a polypropylene raw material having a (CXS) of less than 1.5% by mass is used, the area stretching ratio is 60 times or more at the time of biaxial stretching, and the width direction stretching ratio is 10.5 times or more, and after uniaxial stretching in the longitudinal direction.
  • the preheating temperature immediately before biaxial stretching in the width direction is set to +5 to +15°C in the width direction, and in the heat setting treatment and relaxation treatment step after the biaxial stretching, first, the temperature is lower than the stretching temperature in the width direction.
  • the heat treatment (1st step) is performed to perform a relaxation treatment for 2 to 20%, and then the film is heat-treated at a temperature lower than the 1st step heat treatment temperature of 135° C. or higher (2 step) while maintaining tension in the width direction. It can be obtained by appropriately subjecting the film to a multi-stage heat-setting treatment and a relaxation treatment in which the heat treatment (the third step) is further performed at a temperature of 80° C. or higher and lower than the second step heat treatment temperature.
  • the polypropylene component (CXS, also referred to as a cold xylene-soluble portion) dissolved in xylene is 1. It is preferably less than 5% by mass.
  • the cold xylene-soluble portion (CXS) is considered to be a component that is difficult to crystallize due to low stereoregularity, low molecular weight, and the like.
  • CXS is preferably 1.3% by mass or less, more preferably 1.1% by mass or less, further preferably less than 1.0% by mass, and most preferably less than 0.9% by mass.
  • CXS CXS is less than 1.5% by mass
  • a method of increasing the catalytic activity when obtaining a polypropylene resin to be used a method of washing the obtained polypropylene resin with a solvent or a propylene monomer itself Etc. can be used.
  • the lower limit of CXS is not particularly limited, but 0.1% by mass is practical. If the CXS is made to be less than 0.1% by mass, the stretchability during film formation may be deteriorated and the film may be broken.
  • the polypropylene used in the polypropylene film of the present invention preferably has a melt flow rate (MFR) of 1 to 10 g/10 minutes (230° C., 21.18 N load), and more preferably 2 to 5 g/from the viewpoint of film forming property. 10 minutes (230°C, 21.18N load).
  • MFR melt flow rate
  • a method of controlling the average molecular weight or the molecular weight distribution is adopted.
  • Polypropylene used in the polypropylene film of the present invention is mainly composed of a propylene homopolymer, but other unsaturated hydrocarbon copolymer components may be used within a range not impairing the object of the present invention, and propylene A polymer that is not a homopolymer may be blended.
  • Examples of the monomer component other than propylene which constitutes such a copolymer component or blend include ethylene, 1-butene, 1-pentene, 3-methylpentene-1,3-methylbutene-1,1-hexene, 4- Examples thereof include methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene and 5-methyl-2-norbornene.
  • the copolymerization amount or blending amount other than the propylene component is preferably less than 1 mol% in terms of dielectric breakdown voltage and heat resistance, and the blending amount constitutes the film as the amount of components other than propylene. It is preferably less than 1% by mass of the entire resin.
  • the polypropylene film of the present invention may contain a branched polypropylene resin.
  • a branched polypropylene resin Specifically, "Profax” (registered trademark) (PF-814 etc.) manufactured by Lyondell Basel, "Daploy” (WB130HMS, WB135HMS etc.) manufactured by Borealis, "WAYMAX” (MFX8, manufactured by Japan Polypro Co., Ltd.).
  • MFX6 and MFX3 can be appropriately selected and used.
  • the melt tension of the branched polypropylene resin is preferably 2 cN or more and 40 cN or less from the viewpoint of stretching uniformity.
  • the lower limit of the melt tension is more preferably 3 cN or more, further preferably 5 cN or more.
  • the upper limit is more preferably 30 cN or less, further preferably 20 cN or less.
  • the content of the branched-chain polypropylene resin is preferably 0.1 to 10 mass% with respect to the entire film.
  • the lower limit of the content of the branched-chain polypropylene resin is more preferably 0.15% by mass, more preferably 0.2% by mass.
  • the upper limit is more preferably 9% by mass and more preferably 8% by mass.
  • the spherulite size generated in the cooling step of the melt-extruded resin sheet can be easily controlled to be small, and the generation of insulation defects generated in the stretching step can be suppressed to a small level.
  • a polypropylene film having excellent high temperature withstand voltage can be obtained.
  • the polypropylene resin used in the polypropylene film of the present invention is various additives within a range that does not impair the object of the present invention, such as organic particles, inorganic particles, crystal nucleating agents, antioxidants, heat stabilizers, chlorine scavengers, and slip agents.
  • An agent, an antistatic agent, an antiblocking agent, a filler, a viscosity modifier, and a coloring preventing agent may be contained.
  • the antioxidant when included in these, it is important to select the type and amount of the antioxidant from the viewpoint of long-term heat resistance. That is, as such an antioxidant, a phenol-based antioxidant having steric hindrance, at least one of which is preferably a high-molecular-weight antioxidant having a molecular weight of 500 or more. Specific examples thereof include various ones, for example, 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4).
  • Tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene for example, Irganox (registered trademark) 1330 manufactured by BASF: molecular weight 775.2
  • tetrakis[methylene-3(3,5-di-t] -Butyl-4-hydroxyphenyl)propionate]methane for example, Irganox (registered trademark) 1010 manufactured by BASF Ltd.: molecular weight 1,177.
  • the total content of these antioxidants is preferably in the range of 0.1 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor.
  • a more preferable total content is 0.2 to 0.7% by mass, particularly preferably 0.2 to 0.4% by mass based on the total mass of the resin.
  • the polypropylene film of the present invention preferably has a mesopentad fraction of 0.970 or more.
  • the mesopentad fraction is more preferably 0.975 or more, further preferably 0.980 or more, and most preferably 0.983 or more.
  • the mesopentad fraction is an index showing the stereoregularity of the crystal phase of polypropylene measured by the nuclear magnetic resonance method (NMR method), and in the present invention, by setting it to 0.970 or more, the crystallinity is high and the melting point is It is preferable because it has a high value, has an effect of increasing the storage elastic modulus at high temperature, and can improve the dielectric breakdown voltage in a high temperature environment.
  • the upper limit of the mesopentad fraction is not specified.
  • the polypropylene resin having a high mesopentad fraction is particularly preferably one produced by a so-called Ziegler-Natta catalyst, and a method of appropriately selecting an electron donating component in the catalyst is preferably adopted.
  • the melting point of the polypropylene resin used in the polypropylene film of the present invention is preferably 164°C or higher, more preferably 166°C or higher, even more preferably 167°C or higher, and most preferably 168°C or higher.
  • the melting point of the polypropylene resin is less than 164°C, the crystallinity is low, so that the storage elastic modulus at high temperature may be low, or the dielectric breakdown voltage or the thermal dimensional stability of the film in a high temperature environment may be lowered.
  • the film may be broken during the film transportation.
  • the polypropylene film of the present invention has a film thickness of 0.5 ⁇ m or more and less than 10 ⁇ m from the viewpoint of being suitable for a thin film heat-resistant film capacitor required for automobile applications (including hybrid car applications) used particularly in high temperature environments.
  • the thickness is more preferably 0.6 ⁇ m or more and 8 ⁇ m or less, still more preferably 0.8 ⁇ m or more and 6 ⁇ m or less, and 0.8 ⁇ m or more and 4 ⁇ m or less is most preferable for the above heat resistant film capacitor application from the viewpoint of balance between characteristics and capacitor size due to thinning.
  • the polypropylene film of the present invention is preferably in the form of a single layer film, but may be in the form of a laminated film.
  • the polypropylene film of the present invention is preferably used as a dielectric film for capacitors, but the type of capacitor is not limited. Specifically, from the viewpoint of the electrode structure, it may be either a metal foil and film wound winding capacitor or a metal vapor deposition film capacitor, and no oil immersion type capacitor impregnated with insulating oil or insulating oil is used at all. It is also preferably used in dry capacitors. However, due to the characteristics of the film of the present invention, it is particularly preferably used as a metallized film capacitor. From the viewpoint of the shape, it may be a winding type or a laminating type.
  • polypropylene film usually has low surface energy and it is difficult to stably deposit metal, it is preferable to perform surface treatment before vapor deposition for the purpose of improving adhesion with the metal film.
  • Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, flame treatment and the like.
  • the surface wetting tension of a polypropylene film is usually about 30 mN/m, but by these surface treatments, the wetting tension is set to 37 to 75 mN/m, preferably 39 to 65 mN/m, most preferably 41 to 55 mN/m. It is preferable that the adhesiveness with the metal film is excellent and the safety is also good.
  • the polypropylene film of the present invention can be obtained by biaxially stretching, heat-treating and relaxing using a raw material which can give the above-mentioned properties.
  • the method of biaxial stretching, inflation simultaneous biaxial stretching method, tenter simultaneous biaxial stretching method can be obtained by any of the tenter sequential biaxial stretching method, among them, film-forming stability of the film, crystalline and amorphous. It is preferable to employ the tenter sequential biaxial stretching method in view of controlling the structure and surface characteristics, particularly the mechanical characteristics and the thermal dimensional stability while increasing the stretching ratio in the width direction of the present invention.
  • a polypropylene resin is melt extruded on a support to obtain an unstretched polypropylene film.
  • This unstretched polypropylene film is stretched in the longitudinal direction, then stretched in the width direction, and sequentially biaxially stretched.
  • heat treatment and relaxation treatment are performed to manufacture a biaxially oriented polypropylene film.
  • the present invention will be described more specifically, but the present invention is not necessarily limited to this.
  • CXS is less than 1.5% by mass.
  • the polypropylene resin is melt-extruded from a single-screw extruder set to an extrusion temperature of 220 to 280° C., preferably 230 to 270° C., passed through a filtration filter, and then slit-shaped at a temperature of 200 to 260° C., more preferably 210 to 240° C. Push out from the base.
  • the temperature before the filtration filter is preferably set to a low temperature
  • the temperature of the die immediately before ejection is preferably set to a temperature that can achieve further multi-stage temperature reduction.
  • the molten sheet extruded from the slit-shaped die is solidified on a casting drum (cooling drum) controlled at a temperature of 40 to 110°C to obtain an unstretched polypropylene film.
  • any one of an electrostatic applying method, an adhering method using surface tension of water, an air knife method, a press roll method, an underwater casting method, an air chamber method and the like can be used.
  • the air knife method which has good flatness and can control the surface roughness, is preferable. Further, it is preferable to appropriately adjust the position of the air knife so that the air flows to the downstream side of the film formation in order to prevent the film from vibrating.
  • the temperature of the casting drum is preferably 60 to 110° C., and more preferably 80 to 110° C. from the viewpoint of improving the device workability and the withstand voltage by providing the surface with few dents and having appropriate slipperiness. °C.
  • the unstretched polypropylene film is biaxially stretched and biaxially oriented.
  • the unstretched polypropylene film is preheated by passing it between rolls kept at 70 to 150°C, preferably 80 to 145°C, and then the unstretched polypropylene film is heated to a temperature of 70°C to 150°C, preferably 80 to 145°C. After keeping the temperature, stretching in the longitudinal direction 2 to 15 times, preferably 4.5 to 12 times, more preferably 5.5 to 10 times, and then cooled to room temperature.
  • the temperature of the preheating step immediately before stretching in the width direction is set to a stretching temperature in the width direction of +5 to +15°C, preferably +5 to +12°C, more preferably +5 to +10°C.
  • the fibril structure highly oriented in the direction can be further strengthened, and the change in dielectric breakdown voltage before and after film heating can be suppressed.
  • the dimensional stability can be improved by stabilizing the molecular chain with insufficient orientation by preheating at high temperature.
  • the preheating temperature is less than the stretching temperature +5°C, the change in the dielectric breakdown voltage before and after heating the film cannot be suppressed, and the thermal dimensional stability may not be improved.
  • the preheating temperature is the stretching temperature +15. If the temperature is higher than 0°C, the film may be broken during the stretching process.
  • the temperature at which the film is stretched in the width direction while holding the edges of the film with clips is 150 to 170° C., preferably 155 to 165° C.
  • the stretching ratio in the width direction is 10.5 to 20 times, more preferably 11 to 19 times, and most preferably 11.5 to 18 times.
  • the stretching ratio in the width direction is less than 10.5 times, the orientation contribution of the fibril structure highly oriented in the longitudinal direction by uniaxial stretching remains largely, so that the film cannot suppress the change in dielectric breakdown voltage before and after heating the film.
  • Increasing the draw ratio in the width direction gives the orientation in the width direction while maintaining the high orientation in the longitudinal direction, which increases the molecular chain tension in the plane and further improves the structural stability against heat, which is a trade-off. It is preferable from the viewpoint that it is considered that the effect of improving the heat shrinkage property can be obtained.
  • the stretching ratio in the width direction exceeds 20 times, the film may be easily broken during film formation, resulting in poor productivity.
  • the area draw ratio is preferably 60 times or more from the viewpoint of suppressing the change in the dielectric breakdown voltage before and after the film is heated and providing a capacitor with excellent long-term use reliability in a high temperature environment. ..
  • the area draw ratio is the product of the draw ratio in the longitudinal direction and the draw ratio in the width direction.
  • the area stretch ratio is more preferably 64 times or more, further preferably 68 times or more, and most preferably 72 times or more.
  • the width direction of 145° C. to 165° C.
  • first-step heat treatment at a temperature lower than the stretching temperature (first-step heat treatment temperature)
  • first-step heat treatment temperature the above heat-setting temperature (first-step heat treatment temperature) is maintained at 135°C or higher while holding the clip in the width direction with tension again.
  • Multi-stage heat treatment (3rd stage heat treatment) under conditions of less than 80°C and less than the above heat setting temperature (2nd stage heat treatment temperature) while holding tension It is preferable to perform the heat treatment by the method from the viewpoints of suppressing the change in the dielectric breakdown voltage before and after the film is heated, improving the structural stability against heat, and obtaining the withstand voltage property and reliability of the capacitor.
  • the relaxation rate is preferably 2 to 20%, more preferably 5 to 18%, even more preferably 8 to 15%, from the viewpoint of enhancing the structural stability against heat. If it exceeds 20%, the film may be too loose inside the tenter, which may cause wrinkles on the product to cause unevenness during vapor deposition, or deterioration of mechanical properties. On the other hand, if the relaxation rate is less than 2%, it is sufficient. The structural stability against heat cannot be obtained, and the capacity may be reduced or short circuit may be destroyed in a high temperature environment when used as a capacitor.
  • the production conditions to be noticed in order to obtain the polypropylene film of the present invention will be specifically described as follows.
  • ⁇ The melt extrusion temperature should be lowered in multiple stages with the die before and after the filter.
  • the polypropylene resin has a mesopendat fraction of 0.970 or more.
  • -The CXS of the polypropylene resin is less than 1.5% by mass.
  • -The stretching area draw ratio is 60 times or more.
  • -The stretching ratio in the width direction is 10.5 times or more.
  • the preheating temperature before stretching in the width direction is the stretching temperature in the width direction +5 to +15°C.
  • the heat treatment temperature of the first step is 145° C. or higher and 165° C. or lower and is lower than the stretching temperature in the width direction.
  • the heat treatment temperature of the second step is 135°C or higher and lower than the heat treatment temperature of the first step.
  • the heat treatment temperature of the third step is 80° C. or higher and lower than the heat treatment temperature of the second step.
  • a relaxation treatment of 2 to 20% is applied in the width direction.
  • the metal film laminated film of the present invention has a metal film on at least one side of the polypropylene film of the present invention.
  • This metal film laminated film can be obtained by providing a metal film on at least one surface of the polypropylene film according to the present invention.
  • the method of applying a metal film is not particularly limited, for example, at least one surface of a polypropylene film, aluminum or a metal such as a vapor deposition film to be an internal electrode of a film capacitor by vapor deposition of an alloy of aluminum and zinc.
  • a method of providing a film is preferably used.
  • other metal components such as nickel, copper, gold, silver, and chromium can be vapor-deposited simultaneously or sequentially with aluminum.
  • a protective layer can be provided on the vapor-deposited film with oil or the like.
  • the metal film laminated film can be annealed or heat-treated at a specific temperature, if necessary. Further, for insulation or other purposes, at least one surface of the metal film laminated film may be coated with a resin such as polyphenylene oxide.
  • the film capacitor of the present invention comprises the metal film laminated film of the present invention. That is, the film capacitor of the present invention has the metal film laminated film of the present invention.
  • the film capacitor of the present invention can be obtained by laminating or winding the above-mentioned metal film laminated film of the present invention by various methods.
  • the preferred method for manufacturing the wound film capacitor is as follows.
  • vapor deposition is performed in a stripe shape having a margin portion running in the longitudinal direction.
  • a tape-shaped take-up reel having a margin on one side of the surface is created by inserting a slit into the center of each vapor deposition section on the surface and the center of each margin section.
  • Two tape-shaped take-up reels each having a left or right margin, one for the left margin and one for the right margin, are wound in such a manner that they are overlapped in the width direction so that the vapor deposition portion protrudes from the margin portion.
  • a tape-shaped take-up reel is manufactured by inserting a blade into the center of the margin on each of the front and back sides and slitting the both sides and having a margin on one side (for example, if the front surface has a margin on the right side, the back surface has a margin on the left side).
  • the obtained reel and one undeposited laminated film are wound one on top of the other so that the metallized film protrudes from the laminated film in the width direction, and is wound to obtain a wound body.
  • the core material can be removed from the wound body created as described above and pressed, the metallikon can be sprayed on both end faces to form external electrodes, and lead wires can be welded to the metallikon to obtain a wound film capacitor.
  • the film capacitor has a wide variety of uses such as railroad cars, automobiles (hybrid cars and electric cars), solar power generation/wind power generation, general household appliances, etc., and the film capacitor of the present invention is also suitable for these uses. Can be used. In addition, it can be used in various applications such as a packaging film, a release film, a process film, a sanitary article, an agricultural article, a building article, and a medical article.
  • the method of measuring the characteristic value and the method of evaluating the effect in the present invention are as follows.
  • the thickness of the polypropylene film at any 10 positions was measured in an atmosphere of 23° C. and 65% RH using a contact type electronic micrometer (K-312A type) manufactured by Anritsu Corporation. The arithmetic mean value of the thickness at the 10 locations was defined as the film thickness of the polypropylene film.
  • the load applied to the film at a sample elongation of 5% was read, and the value obtained by dividing by the cross-sectional area of the sample before the test (film thickness x width (10 mm)) was measured at an elongation of 5% (F5 value, unit: MPa). ) was calculated.
  • the measurement was performed 5 times for each of the samples for measurement in the longitudinal direction and the width direction, the F5 value in the longitudinal direction or the width direction was calculated as the arithmetic average value, and the sum was calculated by adding them.
  • the film thickness used to calculate the F5 value was the value measured in (1) above.
  • Film breakdown voltage (B0) (V/ ⁇ m) at 130°C The film was heated in an oven kept at 130° C. for 1 minute, and then measured in the atmosphere according to JIS C2330 (2001) 7.4.11.2 B method (flat plate electrode method). However, regarding the lower electrode, "Conductive rubber E-100 ⁇ 65>" made by Togawa Rubber Co., Ltd. having the same size is placed on the metal plate described in JIS C2330 (2001) 7.4.11.2 B method. Used as an electrode. Dielectric breakdown voltage test was carried out 30 times, the obtained value was divided by the film thickness (measured in (1) above) and converted to (V/ ⁇ m), out of the measured values (calculated values) of 30 points in total.
  • the film breakdown voltage (B0) (V/ ⁇ m) at 130° C. was an average value of 20 points excluding 5 points in the descending order from the maximum value and 5 points in the descending order from the minimum value.
  • NMR relaxation time (T2B) and (T2A) and their ratio (T2B)/(T2A) The film is heat treated at 150°C for 1 minute by using a square metal frame with a thickness of 2 mm, an outer dimension of 300 mm x 300 mm, and an inner dimension of 280 mm x 280 mm and a width of 20 mm.
  • a tape (“Nii-Stack” NW-H15 adhesive strength 02 manufactured by Nichiban Co., Ltd.) is attached, the film is attached so that the entire surface of the metal frame is covered with the film, and the film is sandwiched by the metal frame of the same size. At this time, attach it so that the film does not have wrinkles.
  • a sample was prepared by sandwiching and fixing four sides of the frame with clips, and left in an oven heated to 150° C. for 1 minute. After 1 minute, the sample was taken out and allowed to stand at room temperature for 5 minutes, and then the film was cut out along the inner frame of the metal frame to obtain a film after heat treatment at 150° C. for 1 minute.
  • a metal frame having a size capable of being attached was used.
  • the relaxation time (T2B) ( ⁇ s) of the amorphous component of the polypropylene film by the pulse NMR method before the heat treatment at 150° C. for 1 minute and the relaxation time (T2A) of the amorphous component of the polypropylene film by the pulse NMR method after the treatment ( ⁇ s) was determined by the following apparatus and conditions, and the ratio (T2B)/(T2A) was calculated.
  • Pulse mode Solido Echo method
  • the spin-spin relaxation time T2 of 1H nucleus was determined for the amorphous component of the polypropylene film. The measurement was started after the film was put in the apparatus and kept warm for 15 minutes, and the obtained attenuation curve was separated into a short Gaussian function component of T2 and an exponential function component of long T2 by the least square method.
  • the short-time component corresponds to a crystalline component and the long-term component corresponds to an amorphous component.
  • a sample was prepared by sandwiching and fixing four sides of the frame with clips, and left in an oven heated to 150° C. for 1 minute. After 1 minute, the sample was taken out and allowed to stand at room temperature for 5 minutes, and then the film was cut out along the inner frame of the metal frame to obtain a film after heat treatment at 150° C. for 1 minute.
  • a metal frame having a size capable of being attached was used.
  • the y-intercept (H1y) (° C.) of the linear function and the y-intercept (H0y) (° C.) of the linear function of the untreated film were obtained, and the ratio (H1y)/(H0y) was calculated.
  • Sample container Standard aluminum container.
  • the film is heat treated at 150°C for 1 minute by using a square metal frame with a thickness of 2 mm, an outer dimension of 300 mm x 300 mm, and an inner dimension of 280 mm x 280 mm and a width of 20 mm.
  • a tape (“Nii-Stack” NW-H15 adhesive strength 02 manufactured by Nichiban Co., Ltd.) is attached, the film is attached so that the entire surface of the metal frame is covered with the film, and the film is sandwiched by the metal frame of the same size. At this time, attach it so that the film does not have wrinkles.
  • a sample was prepared by sandwiching and fixing four sides of the frame with clips, and left in an oven heated to 150° C. for 1 minute. After 1 minute, the sample was taken out and allowed to stand at room temperature for 5 minutes, and then the film was cut out along the inner frame of the metal frame to obtain a film after heat treatment at 150° C. for 1 minute.
  • a metal frame having a size capable of being attached was used. The film subjected to the heat treatment at 150° C. for 1 minute was subjected to a dielectric breakdown test in a 130° C.
  • Ratio of sum of storage elastic moduli ((E'135 (MD+TD))/(E'125 (MD+TD)))
  • a rectangular polypropylene film (width (short side) 10 mm ⁇ length (long side) 50 mm) cut out with the film trial length direction (longitudinal direction or width direction) as the long side direction was prepared by the following apparatus and conditions. It was attached to the chuck part of the apparatus under a °C atmosphere, the temperature was raised from 23 °C to 260 °C, and the measurement was performed.
  • a viscoelastic-temperature curve was drawn by the dynamic viscoelastic method, and the storage elastic modulus (E'125) (GPa) at 125°C and the storage elastic modulus (E'135) (GPa) at 135°C were read.
  • Test mode Tension mode Distance between chucks: 20mm Frequency: 1Hz Strain amplitude: 10.0 ⁇ m Gain: 1.5 Force amplitude initial value: 400mN Temperature range: 23 ⁇ 260°C Temperature rising rate: 2° C./min Measurement atmosphere: In nitrogen Measurement thickness: Film thickness was determined by the method of (1) above.
  • the ratio of 130° C. heat shrinkage stress (SF130MD)/(SF130TD)) is calculated from the ratio of 130° C. heat absorption stress (SF130MD) (MPa) in the longitudinal direction to 130° C. heat absorption stress (SF130TD) (MPa) in the width direction. Calculated.
  • Thermomechanical analyzer TMA/SS6000 manufactured by Seiko Instruments Inc.
  • Test mode L control mode
  • Test length 20mm
  • Temperature range 23 ⁇ 200°C
  • Temperature rising rate 10° C./min
  • SS program 0.1 ⁇ m/min
  • Measurement atmosphere In nitrogen Measurement thickness: The film thickness of (1) above was used.
  • Total volume of valleys with a depth of 20 nm or more on the film surface (total valley side volume) The measurement was performed using VertScan 2.0 R5300GL-Lite-AC manufactured by Ryoka System Co., Ltd., and analyzed using the bearing function which is an analysis tool of the attached analysis software. In order to specify a valley-side void having a depth of 20 nm or more, the valley-side height threshold was set to ⁇ 20 nm in the height region specification. Next, the value of the analyzed void volume on the valley side was read and rounded off to have two significant digits.
  • both sides of the film are measured and the total valley side volume falls within the range of 1 to 12,000 ⁇ m 3 , the value on the side that falls within the range (when both sides fall within the range) The value of the surface on the side having a small value) and the value of the surface on the side close to the range of the total valley side volume of 1 to 12,000 ⁇ m 3 when both surfaces do not fall within the range.
  • the measurement conditions are as follows. Manufacturer: Ryoka System Co., Ltd. Device name: VertScan 2.0 R5300GL-Lite-AC Measurement conditions: CCD camera Sony HR-57 1/2 inch (1.27 cm) Objective lens 10x Intermediate lens 0.5x Wavelength filter 520nm white Measurement mode: Phase Measurement software: VS-Measure Version 5.5.1. Analysis software fair: VS-Viewer Version 5.5.1. Measurement area: 1.252 x 0.939 mm 2 .
  • CXS Cold xylene soluble part
  • Peak division was performed using WINFIT software (manufactured by Bruker). At that time, the peak on the high magnetic field side was divided into the following peaks, and then software automatic fitting was performed to optimize the peak divisions, and then the sum of the mmmm peak fractions was calculated.
  • Mmmm The same measurement was performed 5 times on the same sample, and the average value of the obtained mesopentad fractions was defined as the mesopentad fraction of the sample.
  • Ratio of F5 value (F5TD)/(F5MD)
  • a rectangular polypropylene film (width (short side) 10 mm x length (long side) 150 mm) cut out with the film trial length direction (longitudinal direction or width direction) as the long side direction was used as a measurement sample.
  • the film was set in a sample tensile tester (Tensilon UCT-100 manufactured by Orientec) with an initial chuck distance of 20 mm, and a tensile test of the film was performed under a room temperature environment at a tensile speed of 300 mm/min.
  • the position of the sample in the length direction was adjusted so that the center of the sample was in the vicinity of the center between the chucks.
  • the load applied to the film at a sample elongation of 5% was read, and the value obtained by dividing the value by the cross-sectional area of the sample before the test (film thickness x width (10 mm)) was applied at a stress of 5% elongation (F5 value, unit: Mpa).
  • the measurement was performed 5 times for each of the samples for measurement in the longitudinal direction and the width direction, and the F5 values (F5MD) (MPa) and (F5TD) (MPa) in the longitudinal direction and the width direction were obtained as the arithmetic average value thereof, The ratio of (F5TD)/(F5MD) was determined.
  • the film thickness used to calculate the F5 value was the value measured in (1) above.
  • a capacitor element was wound with a device winding machine (KAW-4NHB) manufactured by Minato Manufacturing Co., Ltd., and after metallikoning, heat treatment was performed at a temperature of 130° C. for 8 hours under reduced pressure. The lead wire was attached and the capacitor element was finished.
  • KAW-4NHB device winding machine
  • a voltage of 250 VDC is applied to the capacitor element at a high temperature of 120° C. using 10 capacitor elements thus obtained, and after 10 minutes at the voltage, the applied voltage is gradually increased at 50 VDC/1 minute stepwise. A so-called step-up test was repeated.
  • Example 1 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.984, a melting point of 168° C., a melt flow rate (MFR) of 2.5 g/10 minutes, and a cold xylene-soluble part (CXS) of 0.8% by mass.
  • the polypropylene resin is supplied to an extruder having a temperature of 255° C. to be melted, passed through a pipe set at 250° C.
  • the unstretched polypropylene film was preheated stepwise to 142° C. by a plurality of roll groups, passed through rolls having a peripheral speed difference, and stretched 6.3 times in the longitudinal direction. Subsequently, the film was introduced into a tenter, preheated at a temperature of 169° C.
  • Corona discharge treatment was performed therein, and a film having a film thickness of 2.2 ⁇ m was wound as a film roll.
  • the properties and capacitor properties of the polypropylene film of this example are shown in the table.
  • the film has a ratio of the sum of F5 values in the longitudinal direction and width direction of the film at 130° C. and the dielectric breakdown strength before and after heating at 150° C. for 1 minute ( B150)/(B0), the ratio of NMR relaxation times before and after heating at 150° C. for 1 minute (T2B)/(T2A), and the ratio of y intercept of film melting point (H1y)/(H0y) are very good. And, the reliability as a capacitor was also excellent.
  • Examples 2 and 3 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.981, a melting point of 166° C., a melt flow rate (MFR) of 3.0 g/10 minutes, and a cold xylene-soluble part (CXS) of 1.4% by mass.
  • MFR melt flow rate
  • CXS cold xylene-soluble part
  • Example 2 was a polypropylene film having a thickness of 2.1 ⁇ m
  • Example 3 was a polypropylene film having a thickness of 2.2 ⁇ m.
  • the properties and capacitor properties of the polypropylene films of Examples 2 and 3 are as shown in the table.
  • the films have a relationship of dielectric breakdown strength ratio (B150)/(B0) before and after heating at 150° C. for 1 minute, before and after heating at 150° C. for 1 minute.
  • the relationship between the NMR relaxation time ratio (T2B)/(T2A) and the film melting point y-intercept ratio (H1y)/(H0y) is good, and there is no problem in reliability in actual use as a capacitor. It was
  • Example 4 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.982, a melting point of 167° C., a melt flow rate (MFR) of 3.0 g/10 minutes, and a cold xylene-soluble part (CXS) of 0.8% by mass.
  • An example was carried out in the same manner as in Example 1 except that the temperature of the casting drum for cooling the melt-extruded sheet, the draw ratio during biaxial stretching, the TD preheating, the TD stretching and the heat treatment conditions were changed to those shown in the table using a polypropylene resin. No. 4 obtained a polypropylene film having a thickness of 2.1 ⁇ m.
  • the properties and capacitor properties of the polypropylene film of this example are shown in the table.
  • the film has a ratio of the sum of F5 values in the longitudinal direction and width direction of the film at 130° C. and the dielectric breakdown strength before and after heating at 150° C. for 1 minute ( B150)/(B0), the ratio of NMR relaxation time before and after heating at 150° C. for 1 minute (T2B)/(T2A), and the ratio of y intercept of film melting point (H1y)/(H0y) are good.
  • the capacitor was at a level where there was no problem in reliability in actual use.
  • Example 5 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.981, a melting point of 166° C., a melt flow rate (MFR) of 3.0 g/10 minutes, and a cold xylene-soluble part (CXS) of 1.4% by mass.
  • the polypropylene resin was blended with 1.0 wt% of a branched chain polypropylene resin (high melt tension polypropylene Profax PF-814) manufactured by Basell and supplied to an extruder at a temperature of 260° C. to obtain a melt extruded sheet.
  • a branched chain polypropylene resin high melt tension polypropylene Profax PF-814
  • Example 2 is the same as Example 2 except that the temperature of the casting drum to be cooled, the draw ratio during biaxial stretching, the TD preheating, the TD stretching and the heat treatment conditions are the same as those in Example 2 except that the polypropylene film has a thickness of 2.1 ⁇ m.
  • Example 3 a polypropylene film having a thickness of 2.2 ⁇ m was obtained.
  • the properties and capacitor properties of the polypropylene film of Example 5 are as shown in the table.
  • the film has a relationship of dielectric breakdown strength ratio (B150)/(B0) before and after heating at 150° C. for 1 minute, and NMR before and after heating at 150° C. for 1 minute.
  • the relationship of the relaxation time ratio (T2B)/(T2A) and the relationship of the y-intercept of the film melting point (H1y)/(H0y) were good, and there was no problem in reliability in practical use as a capacitor.
  • Example 6 An unstretched sheet obtained in the same manner as in Example 1 was biaxially stretched in MD and TD simultaneously at the TD preheat stretching temperature and the TD stretching temperature shown in Table 1, and the heat treatment conditions were changed to those in the table.
  • a polypropylene film having a thickness of 2.4 ⁇ m was obtained in both Example 6 and Example 7.
  • the properties and capacitor properties of the polypropylene film of Example 6 are as shown in the table.
  • the film has a good relationship of the dielectric breakdown strength ratio (B150)/(B0) before and after heating at 150° C. for 1 minute, and is practically used as a capacitor. There was no problem in reliability.
  • the polypropylene film of Example 7 had a good relationship of the y-intersection ratio (H1y)/(H0y) of the melting point of the film, and was at a level where there was no problem in reliability in actual use as a capacitor.
  • Example 8 The temperature of the casting drum for cooling the melt-extruded sheet was set to 50° C., and the stretching ratio at the time of biaxial stretching, the TD stretching and the heat treatment conditions were the same as in Example 1 except that the thickness was 2 in Example 8. A polypropylene film of 0.3 ⁇ m was obtained. As shown in the table, the characteristics of the polypropylene film and the capacitor characteristics of the present example have a good relationship of the ratio (T2B)/(T2A) of the NMR relaxation time before and after heating at 150° C. for 1 minute, and the reliability in practical use as a capacitor. There was no problem with the level.
  • Example 9 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.984, a melting point of 168° C., a melt flow rate (MFR) of 2.5 g/10 minutes, and a cold xylene-soluble part (CXS) of 0.8% by mass.
  • Polypropylene resin was blended with 3.0% by mass of branched chain polypropylene resin (“WAYMAX” MFX3) manufactured by Japan Polypro Co., Ltd., and the mixture was supplied to an extruder at 255° C. to be melted, and a pipe set at 250° C.
  • WAYMAX branched chain polypropylene resin
  • Example 9 obtained a polypropylene film having a thickness of 2.2 ⁇ m. ..
  • the properties and capacitor properties of the polypropylene film of this example are shown in the table.
  • the film has a ratio of the sum of F5 values in the longitudinal direction and width direction of the film at 130° C. and the dielectric breakdown strength before and after heating at 150° C.
  • Comparative Example 1 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.981, a melting point of 166° C., a melt flow rate (MFR) of 4.0 g/10 min, and a cold xylene-soluble part (CXS) of 1.8% by mass.
  • the polypropylene resin is supplied to an extruder having a temperature of 255° C. to be melted, and the resin temperature after passing through the filtration filter is set to 255° C.
  • the sheet is melt-extruded from a T-shaped slit die, and the melt-extruded sheet is cooled.
  • a polypropylene film having a thickness of 2.2 ⁇ m was obtained in Comparative Example 1 in the same manner as in Example 1 except that the temperature of the casting drum, the stretching ratio during biaxial stretching, the TD preheating, the TD stretching and the heat treatment conditions were changed to those in the table. ..
  • the properties and capacitor properties of the polypropylene film of Comparative Example 1 are as shown in the table.
  • the film of Comparative Example 1 Since the polypropylene film of Comparative Example 1 has no gradient in extrusion temperature, has a large amount of CXS as a raw material, and has a low area stretching ratio, the film has a sum of F5 values in the longitudinal and width directions of the film at 130° C. and 150° C. for 1 minute. Relationship of dielectric breakdown strength ratio before and after heating (B150)/(B0), ratio of NMR relaxation time before and after heating at 150° C. for 1 minute (T2B)/(T2A), ratio of y intercept of film melting point (H1y) The relationship of /(H0y) was insufficient, and the reliability of the capacitor was destroyed due to the change in the element shape, which was a problematic level in actual use.
  • Comparative Examples 2, 3, 4 were performed in the same manner as in Example 1 except that the temperature of the casting drum for cooling the melt-extruded sheet, the draw ratio during biaxial stretching, the TD preheating, the TD stretching and the heat treatment conditions were as shown in the table. Then, a polypropylene film having a thickness of 2.3 ⁇ m was obtained.
  • the characteristics and capacitor characteristics of the polypropylene films of Comparative Examples are as shown in the table.
  • the polypropylene film of Comparative Example 2 has the same TD preheating temperature and TD stretching temperature and is not subjected to heat treatment in multiple stages.
  • the polypropylene film of Comparative Example 3 has a high MD stretching ratio and a low TD stretching ratio, so that the ratio of the F5 value is small, and the MD film heat shrinkage stress is high, and the storage elastic modulus at 135° C. and 125° C.
  • the ratio of (B150)/(B0) of the dielectric strength before and after heating at 150° C. for 1 minute, the ratio of the NMR relaxation time before and after heating at 150° C. for 1 minute (T2B) /(T2A) relationship and film melting point y-intercept ratio (H1y)/(H0y) relationship are insufficient, and the reliability of the capacitor is broken due to the change in the element shape, which is a problem in actual use. It was a level.
  • the polypropylene film of Comparative Example 4 has a low preheating temperature for TD stretching and is a two-step heat treatment condition of low temperature 130° C./high temperature 140° C.
  • the film heat shrinkage stress is high in both MD and TD, and 135° C.
  • the storage elastic modulus ratio at 125° C. and the dielectric breakdown voltage at 130° C. are insufficient, resulting in poor thermal stability, and the ratio of the dielectric breakdown strength before and after heating at 150° C. for 1 minute (B150)/(B0), 150. Since the relationship of the ratio (T2B)/(T2A) of the NMR relaxation time before and after heating at 1° C. for 1 minute and the ratio of the y intercept of the film melting point (H1y)/(H0y) were insufficient, the reliability of the capacitor was A change in shape was observed and it was destroyed, which was a problem level in actual use.
  • Comparative example 5 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.972, a melting point of 165° C., a melt flow rate (MFR) of 4.0 g/10 minutes, and a cold xylene-soluble part (CXS) of 2.4 mass %.
  • a comparative example was carried out in the same manner as in Example 1 except that the temperature of the casting drum for cooling the melt extruded sheet, the draw ratio during biaxial stretching, the TD preheating, the TD stretching and the heat treatment conditions were changed to those shown in the table using a polypropylene resin. In No. 5, a polypropylene film having a thickness of 2.2 ⁇ m was obtained.
  • the polypropylene film characteristics and the capacitor characteristics of this comparative example are such that the polypropylene resin used has a large cold xylene soluble portion (CXS) and the film has a large cold xylene soluble portion (CXS), so that the heat shrinkage stress Is high, the sum of F5 values in the longitudinal direction and width direction of the film at 130° C., and the relationship of the ratio (B150)/(B0) of dielectric breakdown strength before and after heating at 150° C. for 1 minute, NMR before and after heating at 150° C. for 1 minute.
  • Comparative Example 6 a polypropylene film having a thickness of 2.3 ⁇ m was obtained in the same manner as in Example 1 except that relaxation of 25% was applied.
  • the polypropylene film properties and the capacitor properties of this comparative example are such that the film has a large cold xylene soluble part (CXS), the TD preheating temperature and the TD stretching temperature are the same, the area stretching ratio is low, and the relaxation treatment is Since it was large, the storage stability ratio of 135° C. and 125° C. and the dielectric breakdown voltage at 130° C. are insufficient, resulting in poor thermal stability, and the ratio of the dielectric breakdown strength before and after heating at 150° C.
  • CXS cold xylene soluble part
  • Comparative Example 7 Made by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.975, a melting point of 165° C., a melt flow rate (MFR) of 4.6 g/10 minutes, and a cold xylene-soluble part (CXS) of 1.4% by mass.
  • the polypropylene resin is 80% by mass
  • the mesopentad fraction is 0.970
  • the melting point is 164° C.
  • the melt flow rate (MFR) is 0.4 g/10 min
  • the cold xylene-soluble part (CXS) is 1.4% by mass.
  • Comparative Example 8 In Comparative Example 8, the thickness was 2 in Comparative Example 8 except that the temperature of the casting drum for cooling the melt-extruded sheet was set to 25° C., and the stretching ratio during biaxial stretching, TD stretching, and heat treatment conditions were changed to those shown in the table. A polypropylene film of 0.3 ⁇ m was obtained. As shown in the table, the polypropylene film properties and the capacitor properties of this comparative example are as follows: the casting drum temperature is as low as 25° C., the TD preheating temperature and the TD stretching temperature are the same, and the heat treatment conditions are low temperature 130° C./high temperature 140° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

長手方向と幅方向の130℃におけるF5値の和が15MPa以上であって、130℃における絶縁破壊試験において、150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たす、ポリプロピレンフィルム。 (B150)/(B0)≧0.80 高電圧コンデンサに用いた際の高温環境で長時間の使用信頼性に優れ、かかるコンデンサ用途等に好適な、熱に対して構造安定性に優れるポリプロピレンフィルム、および、それを用いた金属膜積層フィルムおよびフィルムコンデンサを提供する。

Description

ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
 本発明は、特にコンデンサ用途に適して用いられるポリプロピレンフィルムに関する。
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。
 この中でもコンデンサ用途においては、その優れた耐電圧性、低損失特性から直流、交流に限らず高電圧コンデンサ用にポリプロピレンフィルムは特に好ましく用いられている。
 最近では、各種電気機器がインバーター化されつつあり、それに伴いコンデンサの小型化、大容量化の要求が一層強まってきている。そのような分野、特に自動車用途(ハイブリッドカー用途含む)や太陽光発電、風力発電用途からの要求を受け、ポリプロピレンフィルムとしても薄膜化と絶縁破壊電圧の向上、高温環境で長時間の使用において特性を維持できる優れた信頼性が必須な状況となってきている。
 ポリプロピレンフィルムは、ポリオレフィン系フィルムの中では耐熱性および絶縁破壊電圧は高いとされている。一方で、前記の分野への適用に際しては使用環境温度での優れた寸法安定性と使用環境温度より10~20℃高い領域でも耐電性などの電気的性能として安定した性能を発揮することが重要である。ここで耐熱性という観点では、将来的に、シリコンカーバイト(SiC)を用いたパワー半導体用途を考えた場合、使用環境温度がより高温になるといわれている。コンデンサとしてさらなる高耐熱化と高い耐電圧性の要求から、110℃を超えた高温環境下でのフィルムの絶縁破壊電圧の向上が求められている。しかしながら、非特許文献1に記載のように、ポリプロピレンフィルムの使用温度上限は約110℃といわれており、このような温度環境下において絶縁破壊電圧を安定して維持することは極めて困難であった。またフィルムを蒸着加工する過程でフィルム自身が受ける熱履歴は150℃近傍にまでなると考えられ、熱に不安定なフィルムの場合は蒸着加工時にフィルム構造が緩和すると本来フィルムが有する耐電圧性能をコンデンサとして十分発揮することが困難であった。
 これまでポリプロピレンフィルムを薄膜でかつ、コンデンサとしたときの高温環境下で優れた性能を得るための手法として、例えば、125℃における長手方向の伸度50%における応力を制御することで高温でのコンデンサ特性と信頼性を向上したフィルムの提案(例えば、特許文献1)、また高融点のポリプロピレンに溶融型核剤を添加することにより延伸性を向上し125℃におけるフィルムの機械強度を向上させたフィルムの提案がなされている(例えば、特許文献2)。さらには高立体規則性ポリプロピレン原料を溶融押出後に急冷し、キャストシートにメゾ相を形成させることでフィルムの結晶配向度を向上したフィルムの提案(例えば、特許文献3)、高立体規則性ポリプロピレン樹脂を使用し、押出ホッパー内の酸素濃度を低下させるとともに酸化防止剤の添加量を適正化しフィルターの濾過精度を高めることで絶縁破壊電圧を向上したフィルムの提案がなされている(例えば、特許文献4)。
 また、ポリプロピレンフィルムを薄膜でかつ、コンデンサとしたときの高温環境下で優れた性能を得るための手法として、例えば、70℃雰囲気におけるポリプロピレンの非晶成分の緩和時間と中間成分の緩和時間を制御したフィルムの提案(例えば、特許文献5)、また室温での貯蔵弾性率に対し125℃の貯蔵弾性率の変化が小さくなるよう制御することで絶縁破壊電圧を向上させたフィルムの提案がなされている(例えば、特許文献6)。さらにはポリプロピレンフィルムが高温で高弾性率を有する高立体規則性ポリプロピレン原料を溶融押出し後に急冷し、その後に熱処理して成形するシートの提案(例えば、特許文献7)、ポリプロピレン原料の分子量分布、立体規則性を制御することで100℃での高温絶縁破壊電圧を改良した二軸延伸フィルムの提案がなされている(例えば、特許文献8)。
 さらには、ポリプロピレンフィルムを薄膜でかつ、コンデンサとしたときの高温環境下で優れた性能を得るためDSC測定したフィルムの融点が高いポリプロピレンフィルムを得る手法として、例えば、口金からの溶融樹脂を押し出すときの口金せん断とキャスト密着性を制御した二軸延伸フィルムの提案(例えば、特許文献9)、PP樹脂ペレットまたはフィルムシートに、電子線またはガンマ線を照射して二軸延伸したフィルムの提案(例えば、特許文献10)、分子量分布が異なる2種のポリプロピレン樹脂をブレンドして二軸延伸したフィルムの提案(例えば、特許文献11)、またPP樹脂の立体規則性を高めた高結晶PP樹脂を二軸延伸後に再縦延伸を施したフィルムの提案がなされている(例えば、特許文献12)。
特開2016-033211号公報 国際公開第2016/043172号パンフレット 国際公開第2016/182003号パンフレット 国際公開第2017/159103号パンフレット 特開2002-248681号公報 国際公開第2015/146894号パンフレット 国際公開第2009/008340号パンフレット 国際公開第2009/060944号パンフレット 特開2016-187959号公報 特開2014-231604号公報 特開2010-280795号公報 特開平02-129905号公報
河合基伸、「フィルムコンデンサ躍進、クルマからエネルギーへ」、日経エレクトロニクス、日経BP社、2012年9月17日号、p.57-62
 しかしながら、特許文献1から12に記載のポリプロピレンフィルムは、いずれも110℃を超える高温環境下での絶縁破壊電圧の向上が十分ではなく、さらにコンデンサとしたときの高温環境下の長期使用における信頼性ついても、十分とは言い難いものであった。
 そこで、本発明は、高温環境で長時間の使用信頼性に優れ、高温度・高電圧下で用いられるコンデンサ用途等に好適な、熱に対して構造安定性に優れるポリプロピレンフィルムを提供することを目的とし、また、それを用いた金属膜積層フィルムおよびフィルムコンデンサを提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意検討を重ね、以下の本発明にいたった。すなわち
 (1)長手方向と幅方向の130℃におけるF5値の和が15MPa以上であって、130℃における絶縁破壊試験において、150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たす、ポリプロピレンフィルム(第1の形態)。
 (B150)/(B0)≧0.80
 (2)パルスNMR法にて得られる非晶成分の緩和時間T2について、150℃で1分熱処理した後の緩和時間(T2A)(μs)と、熱処理する前の緩和時間(T2B)(μs)の関係が、次式を満たす、ポリプロピレンフィルム(第2の形態)。
 (T2B)/(T2A)≧0.90
 (3)150℃で1分熱処理したフィルム(以下、処理フィルムという)と未処理のフィルム(以下、未処理フィルムという)のそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(以下、β0.5という)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)の関係が、次の関係を満たす、ポリプロピレンフィルム(第3の形態)。
 (H1y)/(H0y)≧0.90
 本発明により、高温環境で長時間の使用信頼性に優れ、高温度・高電圧下で用いられるコンデンサ用途等に好適な、熱に対して構造安定性に優れるポリプロピレンフィルムが提供される。また、それを用いた金属膜積層フィルムおよびフィルムコンデンサが提供される。
融解ピーク温度(Tmβ)(℃)をY軸、昇温速度β(℃/min)を0.5乗した値(β0.5)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)を説明する図である。
 本発明者らは、前述の課題を解決するため鋭意検討を重ね、上記特許文献1~4に記載のポリプロピレンフィルムが高温環境下において絶縁破壊電圧、並びにコンデンサとしたときの高温環境で長時間の使用信頼性が十分でない理由について、以下のように考えた。
 すなわち、特許文献1および特許文献2記載のポリプロピレンフィルムは、コンデンサとして105℃環境での耐電圧性および信頼性については十分ともいえるが、更に高温環境での耐電圧性を想定してみると、フィルム製膜における延伸倍率、横延伸時の予熱と熱処理が必ずしも十分ではなく、より高い温度でフィルムの非晶構造が緩和し絶縁破壊電圧が低下することに問題があると考えた。特許文献3についても高温環境での耐電圧性を想定してみると、フィルム製膜における横延伸時の予熱と熱処理が必ずしも十分ではなく、横延伸後の熱処理温度で徐冷処理が施されていないことからフィルムに可動非晶成分が多く存在するため高温での絶縁破壊電圧が低くなることがあると考えた。特許文献4は原料中に含まれる冷キシレン可溶部(CXS)を制御する思想なく、フィルム製膜における延伸倍率、横延伸徐冷が十分でないことから結晶化度の向上が十分でないため高温での耐電圧性に劣ることがあった。
 以上の考察を踏まえて、本発明者らはさらに検討を重ね、ポリプロピレンフィルムの長手方向と幅方向の130℃におけるF5値の和と、150℃1分熱処理前と処理後の絶縁破壊電圧の関係が一定以上の値であるフィルムとすることにより上記の課題を解決できることを見出した。
 つまり本発明は、長手方向と幅方向の130℃におけるF5値の和が15MPa以上であって、130℃における絶縁破壊試験において、150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たす、ポリプロピレンフィルム、である。
 (B150)/(B0)≧0.80
 なお、150℃で1分間の熱処理はポリプロピレンフィルムが蒸着および素子加工される際に受ける熱を模擬したものであり、上記の式は素子加工による構造変化が小さいことを意味している。このことがコンデンサ素子の高温環境下での長時間使用において優れたコンデンサ特性を示すことと高い相関があることを見出し、本発明に至った。
 また本発明者らは、上記特許文献5~8に記載のポリプロピレンフィルムが高温環境下において絶縁破壊電圧、並びにコンデンサとしたときの高温環境で長時間の使用信頼性が十分でない理由について、以下のように考えた。
 すなわち、特許文献5記載のポリプロピレンフィルムは、包装用に高い剛性と帯電防止性を付与する目的でポリプロピレン樹脂にプロピレン系ランダム共重合体を添加しているため、105℃を超える高温環境では共重合体の耐熱性が不足しコンデンサ用には適さないと考えた。また特許文献6記載のポリプロピレンフィルムは、コンデンサとして105℃環境での耐電圧性および信頼性については十分ともいえるが、更に高温環境での耐電圧性を想定してみると、フィルム製膜における横延伸時の予熱と熱処理が必ずしも十分ではなく、また原料中に含まれる冷キシレン可溶部(CXS)が多いために結晶化度を高めにくいものであり、高い温度でフィルムの非晶成分の緩和時間が低下することに問題があると考えた。特許文献7のポリプロピレンフィルムは未延伸シートであり、その優れた剛性を有するシートを二軸延伸せしめ耐電圧性能を発現させる技術思想もなくコンデンサとして105℃超える環境での耐電圧性および信頼性が低くなることが理由であると考えた。特許文献8に記載のポリプロピレンフィルムは立体規則性が高いポリプロピレン樹脂を用いているため100℃環境での耐電圧性および信頼性は認められるが、更に高温環境での耐電圧性を想定してみると、フィルム製膜における横延伸時の予熱と熱処理が必ずしも十分ではなく、フィルムに可動非晶成分が多く存在し、また横延伸前の予熱温度が低く、横延伸後の熱処理温度で徐冷処理が施されていないことから、分子鎖配向構造の安定化が不足し高温での非晶成分の緩和時間が低くなることが理由であると考えた。
 以上の考察を踏まえて、本発明者らはさらに検討を重ね、ポリプロピレンフィルムを150℃1分熱処理前と処理後の非晶成分の緩和時間の関係が一定以上の値であるフィルムとすることにより上記の課題を解決できることを見出した。
 つまり本発明は、パルスNMR法にて得られる非晶成分の緩和時間T2について、150℃で1分熱処理した後の緩和時間(T2A)(μs)と、熱処理する前の緩和時間(T2B)(μs)の関係が、次式を満たす、ポリプロピレンフィルム、である。
 (T2B)/(T2A)≧0.90
 さらに本発明者らは、上記特許文献9~12に記載のポリプロピレンフィルムが高温環境下において絶縁破壊電圧、並びにコンデンサとしたときの高温環境で長時間の使用信頼性が十分でない理由について、以下のように考えた。
 すなわち、特許文献9記載のポリプロピレンフィルムは、コンデンサとして105℃環境での耐電圧性および信頼性については十分ともいえるが、更に高温環境での耐電圧性を想定してみると、フィルム製膜における延伸倍率、横延伸時の予熱と熱処理が必ずしも十分ではなく、また原料中に含まれる冷キシレン可溶部(CXS)が多く結晶化度を高めにくいものであり、より高い温度でフィルムの非晶構造が緩和し融点低下が生じることに問題があると考えた。また特許文献10記載のポリプロピレンフィルムは、PP樹脂ペレットまたはフィルムシートに、電子線またはガンマ線を照射しコンデンサとして105℃環境での耐電圧性および信頼性については十分ともいえるが、フィルム製膜における延伸倍率が低く横延伸時の予熱と熱処理が必ずしも十分ではなく、より高い温度でフィルムの非晶構造が緩和し融点低下が生じることに問題があると考えた。特許文献11記載のポリプロピレンフィルムは、立体規則性が高いポリプロピレン樹脂と低分子量成分のポリプロピレン樹脂をブレンドして用い、またフィルム製膜における横延伸時の予熱と熱処理が必ずしも十分ではないため、より高い温度でフィルムの非晶構造が緩和し融点低下が生じることに問題があると考えた。特許文献12記載のポリプロピレンフィルムは、立体規則性が高いポリプロピレン樹脂で二軸延伸における縦延伸工程で2段階の延伸を施すことで配向度を高め105℃環境での耐電圧性および信頼性は認められるが、更に高温環境での耐電圧性を想定してみると、フィルム製膜における横延伸時の予熱と熱処理が必ずしも十分ではなく、より高い温度でフィルムの非晶構造が緩和しやすく融点低下が生じることに問題があると考えた。
 以上の考察を踏まえて、本発明者らはさらに検討を重ね、ポリプロピレンフィルムを150℃1分の熱処理の前後における、フィルム融点変化の関係が一定以上の値であるフィルムとすることにより上記の課題を解決できることを見出した。
 つまり本発明は、150℃で1分熱処理したフィルム(以下、処理フィルムという)と未処理のフィルム(以下、未処理フィルムという)のそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(以下、β0.5という)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)の関係が、次の関係を満たす、ポリプロピレンフィルム、である。
 (H1y)/(H0y)≧0.90
 本明細書において、以下ポリプロピレンフィルムを単にフィルムと称する場合がある。また第1の形態、第2の形態、第3の形態の断りがない説明では、ポリプロピレンフィルムの発明の形態は特に限定されないものとする。なお、本発明のポリプロピレンフィルムは、微多孔フィルムではないので、多数の空孔を有していない。つまり本発明のポリプロピレンフィルムとは、微多孔フィルム以外のポリプロピレンフィルムを意味する。ここで微多孔フィルムとは、フィルムの両表面を貫通し、JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間で5,000秒/100ml以下の透気性を有する孔構造を有するフィルムと定義する。
 本発明の第1の形態のポリプロピレンフィルムは、フィルムの長手方向と幅方向の130℃におけるF5値の和が15MPa以上であり、130℃における絶縁破壊試験において、150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たすことが必要である。
 (B150)/(B0)≧0.80
 つまり本発明者らは、コンデンサ用途において高温環境で長時間の信頼性を発現するポリプロピレンフィルムを得るために鋭意検討することにより、フィルムの長手方向と幅方向の130℃におけるF5値の和、および、フィルムを150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)の関係、(B150)/(B0)が、高温時のコンデンサ長期信頼性との間に高い相関性があることを見いだした。コンデンサ用途において、高温環境で長時間の信頼性を発現可能なポリプロピレンフィルムにおいては、フィルムを使用環境温度以上の温度で加熱した前後の絶縁破壊電圧の変化が小さくなるよう制御することが、特に長時間のコンデンサ長期信頼性において重要であることを見出したのが、本発明の第1の形態である。
 ここで、フィルムを150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が(B150)/(B0)≧0.80の関係を満たすということは、フィルムが加熱されても構造変化が小さいことを示唆し、特に高温環境において非常に安定な構造を有したフィルムであることを意味する。(B150)/(B0)の値は、好ましくは0.83以上、より好ましくは0.86以上、さらに好ましくは0.89以上、最も好ましくは0.94以上である。この値が高いものであるほど、高温でも高い絶縁破壊電圧を示し、コンデンサとしたときに高温環境で長時間の信頼性を発現できる。
 (B150)/(B0)≧0.80を満たすには、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、フィルター前、フィルター後、口金における溶融押出温度を多段式低温化し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすること、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより得ることが可能である。
 他方、(B150)/(B0)の値が0.80未満である場合には、高電圧がかかる高温環境下にてコンデンサとして用いられた場合、特に長時間の高温状態に置かれた際に、フィルムの分子鎖緩和が進行して耐電圧を低下させ、コンデンサ容量減少やショート破壊などを生じ、信頼性の劣ったコンデンサとなる。また上記の関係式(B150)/(B0)の上限は特に限定されないが、0.99以下であることが実用的である。(B150)/(B0)を0.99より大きくしようとすると、製膜時の延伸倍率を大きくする必要があり破れを生じたりする場合がある。
 本発明の第2の形態のポリプロピレンフィルムは、パルスNMR法にて得られる非晶成分の緩和時間T2について、フィルムを150℃で1分熱処理した後の緩和時間(T2A)(μs)と熱処理する前の緩和時間(T2B)(μs)の関係が、次式を満たすことが必要である。
    (T2B)/(T2A)≧0.90
 (T2B)/(T2A)の値は、好ましくは0.92以上、より好ましくは0.95以上、最も好ましくは0.97以上である。この値が高いものであるほど、高温でも高い絶縁破壊電圧を示し、コンデンサとしたときに高温環境で長時間の信頼性を発現できる。
 つまり本発明者らは、コンデンサ用途において高温環境で長時間の信頼性を発現するポリプロピレンフィルムを得るために鋭意検討することにより、フィルムのパルスNMR法にて得られる非晶成分の緩和時間T2に関するパラメーターである(T2B)/(T2A)と、高温時のコンデンサ長期信頼性との間に高い相関性があることを見いだした。つまりコンデンサ用途において、高温環境で長時間の信頼性を発現可能なポリプロピレンフィルムにおいては、フィルムを使用環境温度以上の温度で加熱した前後のパルスNMR法にて得られる非晶成分の緩和時間T2の変化が小さくなるよう制御することが、特に長時間のコンデンサ長期信頼性において重要であることを見出し、本発明に至った。ここで(T2B)/(T2A)≧0.90の関係を満たすということは、フィルムが加熱されても非晶緩和による構造変化が小さいことを意味し、特に高温環境においてフィルム分子鎖が動いたり緩んだりすることが抑制され、熱に対して非常に安定な構造を有したフィルムであることを意味する。
 本発明の第2の形態のポリプロピレンフィルムが前記の式(T2B)/(T2A)≧0.90の関係を充たすようするには、製膜時の延伸工程で面積延伸倍率を高め、特に逐次二軸延伸法にて幅方向の延伸倍率を高めることが有効である。その一方で延伸により生じた配向の影響によって熱収縮率が高くなり、熱収縮応力も高まる傾向があることが判明したため、鋭意検討した結果、後述するように、高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が少ないポリプロピレン原料を使用することで、従来なら幅方向に高倍率延伸した際の幅方向における熱収縮特性悪化が生じるところ、これを抑制できる思いがけない効果を得るに至った。さらに横延伸する際の予熱温度を横延伸温度より高い温度とし、横延伸後の熱処理は多段方式の熱固定処理および弛緩処理を施すことで、その効果がより顕著に得られることを見いだした。すなわち、例えばメソペンタッド分率が0.970以上、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、フィルター前、フィルター後、口金における溶融押出温度を多段式低温化(ここで、多段式低温化とは、後述するように、フィルターの前後の段階や口金の段階について、各段階毎に温度を下げていくことを意味する。以下、同様。)し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後でかつ幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とし、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより、簡便に(T2B)/(T2A)≧0.90としたポリプロピレンフィルムを得ることが可能である。
 他方、(T2B)/(T2A)の値が0.90未満の場合には、高電圧がかかる高温環境下にてコンデンサとして用いられた場合、特に長時間の高温状態におかれた際に、フィルムの分子鎖緩和が進行して耐電圧性を低下させ、コンデンサ容量減少やショート破壊などを生じ、信頼性の劣ったコンデンサとなる。また上記の関係式((T2B)/(T2A)≧0.90)の上限は特に限定されないが、0.99以下であることが実用的である。(T2B)/(T2A)を0.99より大きくしようとすると、製膜時の延伸倍率を大きくする必要があり破れを生じたりする場合がある。
 本発明の第3の形態のポリプロピレンフィルムは、150℃で1分熱処理した処理フィルムと未処理フィルムのそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(β0.5)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)の関係が 、次の関係を満たすことが必要である。
 (H1y)/(H0y)≧0.90
 (H1y)/(H0y)の値は、好ましくは0.92以上、より好ましくは0.94以上、最も好ましくは0.96以上である。この値が高いものであるほど高温でも高い絶縁破壊電圧を示し、コンデンサとしたときに高温環境で長時間の信頼性を発現できる。つまり本発明者らは、コンデンサ用途において高温環境で長時間の信頼性を発現するポリプロピレンフィルムを得るために鋭意検討することにより、150℃で1分熱処理したフィルムと未処理のフィルムのそれぞれを昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度に関するパラメーターである一次関数((Tmβ)=xβ0.5+y)から導かれる、処理フィルムのy切片(H1y)(℃)と未処理フィルムのy切片(H0y)(℃)の関係(H1y)/(H0y)と、高温時のコンデンサ長期信頼性との間に高い相関性があることを見いだした。つまりコンデンサ用途において、高温環境で長時間の信頼性を発現可能なポリプロピレンフィルムにおいては、フィルムを150℃で1分間の熱処理をしたフィルムのy切片(H1y)(℃)と未処理フィルムのy切片(H0y)(℃)の変化が小さくなるよう制御することが、特に長時間のコンデンサ長期信頼性において重要であることを見出したのが、本発明である。ここで(H1y)/(H0y)≧0.90の関係を満たすということは、フィルムが加熱されても非晶緩和による構造変化が小さく融点変化が小さいことを意味し、特に高温環境においてフィルム分子鎖が動いたり緩んだりすることが抑制され、熱に対して非常に安定な構造を有したフィルムであることを意味する。
 本発明のポリプロピレンフィルムが前記の式(H1y)/(H0y)≧0.90の関係を充たすようするには、製膜時の延伸工程で面積延伸倍率を高め、特に逐次二軸延伸法にて幅方向の延伸倍率を高めることが有効である。その一方で延伸により生じた配向の影響によって熱収縮率が高くなり、熱収縮応力も高まる傾向があることが判明したため、鋭意検討した結果、後述するように、高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が少ないポリプロピレン原料を使用することで、従来なら幅方向に高倍率延伸した際の幅方向における熱収縮特性悪化が生じるところ、これを抑制できる思いがけない効果を得るに至った。さらに横延伸する際の予熱温度を横延伸温度より高い温度とし、横延伸後の熱処理は多段方式の熱固定処理および弛緩処理を施すことで、その効果がより顕著に得られることを見いだした。すなわち、例えばメソペンタッド分率は0.970以上、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、フィルター前、フィルター後、口金における溶融押出温度を多段式低温化(ここで、多段式低温化とは、後述するように、フィルターの前後の段階や口金の段階について、各段階毎に温度を下げていくことを意味する。以下、同様。)し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後でかつ幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とし、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより、(H1y)/(H0y)≧0.90となるポリプロピレンフィルムを得ることが可能である。
 他方、(H1y)/(H0y)の値が0.90未満の場合には、高電圧がかかる高温環境下にてコンデンサとして用いられた場合、特に長時間の高温状態におかれた際に、フィルムの融点変化が大きく緩和が進行して耐電圧性を低下させ、コンデンサ容量減少やショート破壊などを生じ、信頼性の劣ったコンデンサとなる。また上記の関係式((H1y)/(H0y)≧0.90)の上限は特に限定されないが、0.99以下であることが実用的である。(H1y)/(H0y)を0.99より大きくしようとすると、製膜時の延伸倍率を大きくする必要があり破れを生じたりする場合がある。
 本発明の第3の形態のポリプロピレンフィルムは150℃で1分熱処理したフィルム(処理フィルム)における一次関数((Tmβ)=xβ0.5+y)のy切片(H1y)(℃)が、155℃以上であることが好ましい。y切片(H1y)(℃)が高温であることは、フィルムの融解温度が高く、耐熱性が高いことを意味するため、特にコンデンサとして高温環境で長時間の使用したときショート破壊を引き起こし難く、耐電圧性が維持され、高い信頼性を得ることができる。y切片(H1y)(℃)は、157℃以上がより好ましく、159℃以上がさらに好ましく、161℃以上が特に好ましい。y切片(H1y)(℃)の上限は特に限定されないが170℃以下であることが実用的である。y切片(H1y)(℃)を170℃より大きくしようとすると、製膜時の延伸倍率を大きくする必要があり破れを生じたりする場合がある。処理フィルムにおける一次関数((Tmβ)=xβ0.5+y)のy切片(H1y)(℃)を上記した範囲(155℃以上)に制御するには、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、フィルター前、フィルター後、口金における溶融押出温度を多段式低温化し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とすることにより可能である。
 本発明のポリプロピレンフィルムは、130℃でのフィルム絶縁破壊電圧(B0)(V/μm)が350V/μm以上であることが好ましい。より好ましくは375V/μm以上であり、さらに好ましくは400V/μm以上であり、特に好ましくは420V/μm以上、最も好ましくは440V/μm以上である。上限は特に限定されないが、800V/μm程度である。(B0)(V/μm)が350V/μm以上である場合には、コンデンサとしたときに特に高温環境で長時間の使用でもショート破壊を引き起こし難く、耐電圧性が維持され、高い信頼性を得ることができる。130℃でのフィルム絶縁破壊電圧(B0)(V/μm)を上記した範囲(350V/μm以上)に制御するには、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、フィルター前、フィルター後、口金における溶融押出温度を多段式低温化し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とすることにより得ることが可能である。
 本発明のポリプロピレンフィルムは、フィルムの長手方向と幅方向の130℃におけるF5値の和が15MPa以上である必要がある。130℃におけるF5値の和が15MPa以上である場合は、高温でも十分なフィルム強度を保っていることを意味し、特にコンデンサとして高温環境で長時間使用したときショート破壊を引き起こし難く、耐電圧性が維持され、高い信頼性を得ることができる。130℃におけるF5値の和は17MPa以上がより好ましく、19MPa以上がさらに好ましく、21MPa以上が特に好ましい。130℃におけるF5値の和を15MPa以上とするためには、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすること、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより得ることが可能である。
 他方、フィルムの長手方向と幅方向の130℃におけるF5値の和が15MPa未満である場合には、高温での機械強度が低いため耐電圧に劣るコンデンサとなる。また130℃におけるF5値の和の上限は特に限定されないが、50MPa以下であることが実用的である。フィルムの長手方向と幅方向の130℃におけるF5値の和を50MPaより大きくしようとすると、製膜時の延伸倍率を大きくする必要があり破れを生じたりする場合がある。
 ここで本発明のポリプロピレンフィルムにおいて、「長手方向」とは、フィルム製造工程における流れ方向に対応する方向(以降、「MD」という場合がある)であり、「幅方向」とは、前記のフィルム製造工程における流れ方向と直交する方向(以降、「TD」という場合がある)である。フィルムサンプルがリール、ロール等の形状の場合はフィルム巻き取り方向が長手方向といえる。一方、フィルムの外観からは何れの方向がフィルム製造工程における流れ方向に対応する方向であるかが不明なフィルムの場合は、例えば、フィルム平面上の任意の直線を基準に15°刻みで線を引き、その各線に平行にスリット状のフィルム片をサンプリングして引張り試験器にて破断強度を求め、最大の破断強度を与える方向を、そのフィルム幅方向とみなし、そのフィルム幅方向に直交する方向を長手方向とみなす。詳細は後述するが、サンプルの幅が50mm未満で引張り試験器では破断強度を求めることができない場合は、広角X線によるポリプロピレンフィルムのα晶(110)面の結晶配向を次のように測定し、下記の判断基準に基づいてフィルム長手および幅方向とする。すなわち、フィルム表面に対して垂直方向にX線(CuKα線)を入射し、2θ=約14°(α晶(110)面)における結晶ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も高い方向をフィルム幅方向とし、それと直交する方向を長手方向とする。
 本発明のポリプロピレンフィルムは、フィルム長手方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130MD)(MPa)が2.0MPa以下であることが好ましく、より好ましくは1.7MPa以下、さらに好ましくは1.3MPa以下、最も好ましくは1.0MPa未満である。フィルム長手方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130MD)(MPa)が2.0MPa以下の場合は、コンデンサ製造工程および使用工程の熱によりフィルム自体の収縮を抑制でき、素子が強く巻き締まらないためフィルム層間の適度な隙間を保持することで自己回復機能(セルフヒーリング)が動作し、急激な容量減少を伴う貫通ショート破壊を抑制し、コンデンサとしての信頼性を高めることができる。フィルム長手方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130MD)(MPa)の下限に特に限定はないが、0.1MPa程度とすることが実用的である。0.1MPaより低い収縮応力ではコンデンサ製造工程および使用工程の熱によりフィルム自体の収縮が不十分となり、設計容量に対し十分な容量が発現しない可能性がある。130℃におけるフィルム長手方向の熱機械分析装置を用いて求められる熱収縮応力値(SF130MD)(MPa)を好ましい範囲内に制御するには、例えば、高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、二軸延伸時に幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすること、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより得ることが可能である。
 本発明のポリプロピレンフィルムは、フィルム長手方向と幅方向の135℃における固定粘弾性測定にて求められる貯蔵弾性率の和(E’135(MD+TD))(GPa)、及び、長手方向と幅方向の125℃における固定粘弾性測定にて求められる貯蔵弾性率の和(E’125(MD+TD))(GPa)の関係が、次式を満たすことが好ましい。
  (E’135(MD+TD))/(E’125(MD+TD))>0.80
 (E’135(MD+TD))/(E’125(MD+TD))の値は、好ましくは0.83以上、より好ましくは0.86以上、最も好ましくは0.89以上である。135℃の貯蔵弾性率の和と125℃の貯蔵弾性率の和の比が上記した関係を満たす((E’135(MD+TD))/(E’125(MD+TD))>0.80)ということは、貯蔵弾性率の高温での温度依存性が小さいことを意味し、特に高温環境においてフィルム分子鎖が動いたり緩んだりすることが抑制され、熱に対して非常に安定な構造を有したフィルムであることを意味する。すなわち高温でも高い絶縁破壊電圧を示し、コンデンサとしたときに高温環境で長時間の信頼性を発現できる。上記の関係式の上限は特に限定されないが、0.99以下であることが実用的である。
 135℃の貯蔵弾性率の和と125℃の貯蔵弾性率の和の比が上記した関係を満たす((E’135(MD+TD))/(E’125(MD+TD))>0.80)には、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすること、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより可能である。
 本発明のポリプロピレンフィルムは、表面の凹みが少なく、適度な易滑性を持つことで素子加工性の向上と耐電圧性の向上をはかる観点から、フィルムの少なくとも一方の表面において、1,252μm×939μmの領域における深さ20nm以上の谷の体積を合計した総谷側体積が1~12,000μmであることが好ましい。この総谷側体積は、下限の観点からは300μm以上とすることが更に好ましく、また、600μm以上とすることが一層好ましい。また総谷側体積は、上限の観点からは5,000μm以下とすることがより好ましく、2,500μm以下とすることが更に好ましく、1,000μm以下とすることが特に好ましい。総谷側体積が1μm未満では、表面の凹凸がなく平坦となり易く、その場合、フィルムの滑りが極端に低下してハンドリング性が低下したり、シワが発生しやすくなったりし、素子加工性に影響が出ることがある。また、コンデンサとして長時間使用したときにシワ等の影響で容量変化が大きくなったり、フィルムを積層したコンデンサとした場合にフィルムとフィルムとの間に適度な隙間がないことから自己回復機能(セルフヒーリング)が動作し難くコンデンサの信頼性が低下したりする可能性がある。他方、12,000μmを超える場合、局所的に厚みが薄い部分が多くなり、当該部分からの絶縁破壊が生じるおそれがあり、フィルムの耐電圧性が低下し、特に高電圧用コンデンサ用途に用いたとき、高温環境下での耐電圧性と信頼性が損なわれる可能性がある。総谷側体積を上記した好ましい範囲(総谷側体積を1μm以上12,000μm以下)にすることで、表面の凹みが少なく、低電圧で絶縁破壊が生じる恐れが減り、フィルムの耐電圧性が向上し、特に高電圧用コンデンサ用途に用いたとき、高温環境下での耐電圧性と信頼性が向上し、コンデンサとして長時間使用したときの容量変化が抑制できる。また、フィルムを積層したコンデンサとした場合に、フィルムとフィルムとの間に適度な隙間を形成できることで、自己回復機能(セルフヒーリング)が動作でき、コンデンサの信頼性が向上できる。総谷側体積を制御する方法としては、例えば、高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、キャスティングドラム温度および長手方向の延伸温度を好ましい範囲で制御すること、二軸延伸時に面積延伸倍率を60倍以上であり、かつ幅方向の延伸倍率を10.5倍以上とすることにより得ることができる。
 本発明のポリプロピレンフィルムは、室温における長手方向のF5値(F5MD)(MPa)と幅方向のF5値(F5TD)(MPa)の関係が、次式を満たすことが好ましい。
 (F5TD)/(F5MD)≧1.5
 (F5TD)/(F5MD)の値は、好ましくは1.7以上、より好ましくは1.9以上、最も好ましくは2.1以上である。この値が高いポリプロピレンフィルムであるほど、TDへの配向度が高まり、高温でも高い絶縁破壊電圧を示すことができる。(F5TD)/(F5MD)≧1.5を満たすには、後述するように、例えば二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とすることにより得ることが可能である。(F5TD)/(F5MD)の値の上限は特に限定されず、1.5以上でありさえすれば特に限定されないが、現実的に達成可能な値は4.0程度と考えられる。
 本発明のポリプロピレンフィルムは、フィルム幅方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130TD)(MPa)が2.0MPa以下であることが好ましく、より好ましくは1.5MPa以下、さらに好ましくは1.1MPa以下、最も好ましくは0.9MPa以下である。フィルム幅方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130TD)(MPa)が2.0MPa以下の場合は、コンデンサ製造工程のメタリコン溶射後のエージング処理において蒸着フィルム電極部とメタリコン電極部の接触不良を防ぎ、設計容量通りのコンデンサ素子を得ることができ、特に長時間の高温使用中に素子が変形を抑え、容量低下やショート破壊を防ぐことができる。フィルム幅方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130TD)(MPa)の下限に特に限定はないが、0.1MPa程度とすることが実用的である。0.1MPaより低い熱収縮応力では、コンデンサ製造工程および使用工程の熱によりフィルム自体の収縮が不十分となり、設計容量に対し十分な容量が発現しない可能性がある。130℃におけるフィルム幅方向の熱機械分析装置を用いて求められる熱収縮応力値(SF130TD)(MPa)を好ましい範囲内に制御するには、例えば、高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすることにより得ることが可能である。なお、130℃における熱機械分析装置を用いて求められる熱収縮応力値の詳細な測定方法は下に記載したとおりである。
 本発明のポリプロピレンフィルムは、フィルム長手方向および幅方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値の比(SF130MD)/(SF130TD)の値は、0.5以上1.7以下であることが好ましい。熱収縮応力値の比(SF130MD)/(SF130TD)がこの範囲、つまり0.5以上1.7以下であることは、フィルム面内で熱収縮応力のバランスが良く、コンデンサとしたときのフィルム層間間隙の均一性が高まりコンデンサ寿命、信頼性が良くなる。なお、この熱収縮応力値の比(SF130MD)/(SF130TD)の値の下限について、好ましくは0.8以上、より好ましくは1.0以上、最も好ましくは1.2以上である。一方でこの熱収縮応力値の比(SF130MD)/(SF130TD)の値の上限については、好ましくは1.5以下、より好ましくは1.4以下、最も好ましくは1.3以下である。熱収縮応力値の比(SF130MD)/(SF130TD)を好ましい範囲内、つまり0.5以上1.7以下に制御するには、後述するように、例えば高メソペンタッド分率、かつ冷キシレン可溶部(CXS)が1.5質量%未満のポリプロピレン原料を使用し、二軸延伸時に面積延伸倍率を60倍以上で、かつ幅方向の延伸倍率は10.5倍以上とし、長手方向に一軸延伸後の幅方向への二軸延伸直前の予熱温度を、幅方向の延伸温度+5~+15℃とすること、二軸延伸後の熱固定処理および弛緩処理工程において、まず、幅方向の延伸温度より低温での熱処理(1段目)をしながら弛緩処理を2~20%を行い、次いでフィルムを幅方向に緊張を保ったまま前記1段目の熱処理温度より低温で135℃以上の熱処理(2段目)、さらに80℃以上で前記2段目の熱処理温度未満の条件で熱処理(3段目)を施す多段方式の熱固定処理および弛緩処理をフィルムに適宜施すことにより得ることが可能である。
 本発明のポリプロピレンフィルムは、キシレンでポリプロピレンフィルムを完全に溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリプロピレン成分(CXS、冷キシレン可溶部とも言う)が1.5質量%未満であることが好ましい。ここで冷キシレン可溶部(CXS)は、立体規則性が低い、分子量が低い等の理由で結晶化し難い成分が該当すると考えられる。CXSを1.5質量%未満にすることでフィルムの高温における貯蔵弾性率の絶対値を高め、かつ、温度依存性を向上させたり、絶縁破壊電圧を高めたり、熱寸法安定性を向上することができる。一方でCXSが1.5質量%以上の場合には、フィルムの高温における貯蔵弾性率の温度依存性が劣ったり、高温での貯蔵弾性率の絶対値が低くなったり、絶縁破壊電圧が低下したり、熱寸法安定性が低下したり、もれ電流が増加する等の問題を生じることがある。従って、CXSは好ましくは1.3質量%以下、より好ましくは1.1質量%以下、さらに好ましくは1.0質量%未満、最も好ましくは0.9質量%未満である。このようなCXS含有量(CXSを1.5質量%未満)とするには、使用するポリプロピレン樹脂を得る際の触媒活性を高める方法、得られたポリプロピレン樹脂を溶媒あるいはプロピレンモノマー自身で洗浄する方法等の方法が使用できる。またCXSの下限は特に限定されないが、0.1質量%であることが実用的である。CXSを0.1質量%未満にしようとすると、製膜時の延伸性が悪化し破れを生じたりする場合がある。
 本発明のポリプロピレンフィルムに用いられるポリプロピレンは、製膜性の点から、好ましくはメルトフローレート(MFR)が1~10g/10分(230℃、21.18N荷重)、より好ましくは2~5g/10分(230℃、21.18N荷重)である。メルトフローレート(MFR)を上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。
 本発明のポリプロピレンフィルムに用いられるポリプロピレンは、主としてプロピレンの単独重合体からなるが、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分が用いられてもよいし、プロピレンの単独重合体ではない重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成するプロピレン以外の単量体成分として例えばエチレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。
 プロピレン成分以外の共重合量またはブレンド量は、絶縁破壊電圧、耐熱性の点から、共重合量としては1mol%未満とすることが好ましく、ブレンド量ではプロピレン以外の成分の量としてフィルムを構成する樹脂全体の1質量%未満とすることが好ましい。
 本発明のポリプロピレンフィルムは、分岐鎖状のポリプロピレン樹脂を含んでもよい。具体的には、Lyondell Basell社製“Profax”(登録商標)(PF-814など)、Borealis社製“Daploy”(WB130HMS、WB135HMSなど)、日本ポリプロ(株)社製、“WAYMAX”(MFX8、MFX6、MFX3など)の市販品を適宜選択の上、使用することができる。
 分岐鎖状ポリプロピレン樹脂は、チーグラー・ナッタ触媒系やメタロセン系触媒系など、複数市販されているが、低分子量成分、高分子量成分が少なく、分子量分布の狭いメタロセン触媒系がフィルムの耐電圧を高めコンデンサ特性を向上できる観点からより好ましい。分岐鎖状ポリプロピレン樹脂の溶融張力は、2cN以上40cN以下であることが延伸均一性の観点の観点から好ましい。溶融張力の下限は3cN以上であることがより好ましく、5cN以上がさらに好ましい。上限は30cN以下がより好ましく、20cN以下がさらに好ましい。溶融張力を上記の値とするためには、平均分子量や分子量分布、ポリプロピレン樹脂中の分岐度を制御する方法などが採用される。分岐鎖状ポリプロピレン樹脂の含有量はフィルム全体に対して0.1~10質量%であることが好ましい。分岐鎖状ポリプロピレン樹脂の含有量の下限は0.15質量%がより好ましく、0.2質量%がより好ましい。他方、上限は9質量%がより好ましく、8質量%がより好ましい。分岐鎖状ポリプロピレン樹脂の含有量を上記の範囲にすることで、溶融押出した樹脂シートの冷却工程で生成する球晶サイズを容易に小さく制御でき、延伸工程で生成する絶縁欠陥の生成を小さく抑え、高温耐電圧に優れたポリプロピレンフィルムを得ることができる。
 本発明のポリプロピレンフィルムに用いられるポリプロピレン樹脂は、本発明の目的を損なわない範囲で種々の添加剤、例えば有機粒子、無機粒子、結晶核剤、酸化防止剤、熱安定剤、塩素捕捉剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤を含有してもよい。
 これらの中で酸化防止剤を含有させる場合、その酸化防止剤の種類および添加量の選定は、長期耐熱性の観点から重要である。すなわち、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製Irganox(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製Irganox(登録商標)1010:分子量1,177.7)等を併用することが好ましい。これら酸化防止剤の総含有量はポリプロピレン全量に対して0.1~1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトによる高温下でのブロッキングにより、コンデンサ素子に悪影響を及ぼす場合がある。より好ましい総含有量は樹脂全体の質量の0.2~0.7質量%であり、特に好ましくは0.2~0.4質量%である。
 本発明のポリプロピレンフィルムは、フィルムのメソペンタッド分率が0.970以上であることが好ましい。メソペンタッド分率は0.975以上がより好ましく、0.980以上がさらに好ましく、0.983以上が最も好ましい。
 メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、本発明では0.970以上とすることで、結晶化度が高く、融点が高くなり、高温の貯蔵弾性率を高める効果があり、高温環境下での絶縁破壊電圧を向上できるので好ましい。メソペンタッド分率の上限については特に規定するものではない。本発明では、高メソペンタッド分率のポリプロピレン樹脂は、特に、いわゆるチーグラー・ナッタ触媒により作製されたものが好ましく、該触媒において電子供与成分の選定を適宜行う方法等が好ましく採用され、これによるポリプロピレン樹脂は分子量分布(Mw/Mn)が3.0以上、<2,1>エリトロ部位欠損は0.1mol%以下とすることができ、このようなポリプロピレン樹脂を用いることが好ましい。
 本発明のポリプロピレンフィルムに用いるポリプロピレン樹脂の融点は164℃以上が好ましく、より好ましくは166℃以上、さらに好ましくは167℃以上、最も好ましくは168℃以上である。ポリプロピレン樹脂の融点が164℃未満の場合、結晶性が低い為、高温での貯蔵弾性率が低くなったり、フィルムの高温環境下での絶縁破壊電圧の低下や熱寸法安定性の低下を招いたり、金属膜を蒸着により形成する工程やコンデンサ素子巻き取り加工での、フィルム搬送中に破膜する場合がある。
 本発明のポリプロピレンフィルムは、特に高温環境下で用いられる自動車用途(ハイブリッドカー用途含む)等に要求される薄膜の耐熱フィルムコンデンサ用に好適である観点から、フィルム厚みは0.5μm以上10μm未満であることが好ましい。より好ましくは0.6μm以上8μm以下、さらに好ましくは0.8μm以上6μm以下であり、上記耐熱フィルムコンデンサ用途としては特性と薄膜化によるコンデンササイズのバランスから0.8μm以上4μm以下が最も好ましい。
 本発明のポリプロピレンフィルムは単層フィルムの態様であることが好ましいが、積層フィルムの態様であっても構わない。
 本発明のポリプロピレンフィルムは、コンデンサ用誘電体フィルムとして好ましく用いられるものであるが、コンデンサのタイプは限定されるものではない。具体的には電極構成の観点では金属箔とフィルムとの合わせ巻きコンデンサ、金属蒸着フィルムコンデンサのいずれであってもよいし、絶縁油を含浸させた油浸タイプのコンデンサや絶縁油を全く使用しない乾式コンデンサにも好ましく用いられる。しかしながら本発明のフィルムの特性から、特に金属蒸着フィルムコンデンサとして好ましく使用される。形状の観点では、巻回式であっても積層式であっても構わない。
 ポリプロピレンフィルムは通常、表面エネルギーが低く、金属蒸着を安定的に施すことが困難であるために、金属膜との接着性を改善する目的で、蒸着前に表面処理を行うことが好ましい。表面処理とは具体的にコロナ放電処理、プラズマ処理、グロー処理、火炎処理等が例示される。通常ポリプロピレンフィルムの表面濡れ張力は30mN/m程度であるが、これらの表面処理によって、濡れ張力を37~75mN/m、好ましくは39~65mN/m、最も好ましくは41~55mN/m程度とすることが、金属膜との接着性に優れ、保安性も良好となるので好ましい。
 本発明のポリプロピレンフィルムは、上述した特性を与えうる原料を用い、二軸延伸、熱処理および弛緩処理されることによって得ることが可能である。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、その中でも、フィルムの製膜安定性、結晶・非晶構造、表面特性、特に本発明の幅方向に延伸倍率を高めながら機械特性および熱寸法安定性を制御する点においてテンター逐次二軸延伸法を採用することが好ましい。
 次に本発明のポリプロピレンフィルムの製造方法を例に挙げて説明する。まず、ポリプロピレ樹脂を支持体上に溶融押出して未延伸ポリプロピレンフィルムとする。この未延伸ポリプロピレンフィルムを長手方向に延伸し、次いで幅方向に延伸して、逐次二軸延伸せしめる。その後、熱処理および弛緩処理を施して二軸配向ポリプロピレンフィルムを製造する。以下、より具体的に説明するが、本発明は必ずしもこれに限定して解釈されるものではない。
 まず、フィルム加熱前後での非晶成分の緩和時間T2の変化を抑え、高温での絶縁破壊電圧および熱に対する構造安定性、もれ電流を低減させる観点からCXSが1.5質量%未満であるポリプロピレン樹脂を押出温度220~280℃、好ましくは230~270℃に設定した単軸押出機から溶融押出し濾過フィルタを通した後、200~260℃、より好ましくは210~240℃の温度でスリット状口金から押し出す。ここで溶融押出時は樹脂を十分に溶融させ、スクリュー回転によるせん断による分子鎖長の切断を防ぐことで高温でもフィルム構造が緩和せず安定化できる観点から、濾過フィルタ前は高温、フィルタ通過後は低温とし、吐出直前の口金温度はさらに低温化した多段式低温化が達成できるような温度設定とすることが好ましい。スリット状口金から押し出された溶融シートは、40~110℃の温度に制御されたキャスティングドラム(冷却ドラム)上で固化させ、未延伸ポリプロピレンフィルムを得る。溶融シートのキャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法、エアーチャンバー法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御が可能なエアーナイフ法が好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を適宜調整することが好ましい。キャスティングドラムの温度は、表面の凹みが少なく、適度な易滑性を持つことで素子加工性の向上と耐電圧性の向上をはかる観点から、好ましくは60~110℃、より好ましくは80~110℃である。
 次に、未延伸ポリプロピレンフィルムを二軸延伸し、二軸配向せしめる。未延伸ポリプロピレンフィルムを70~150℃、好ましくは80~145℃に保たれたロール間に通して予熱し、引き続き該未延伸ポリプロピレンフィルムを70℃~150℃、好ましくは80~145℃の温度に保ち、長手方向に2~15倍、好ましくは4.5~12倍、より好ましくは5.5~10倍に延伸した後、室温まで冷却する。
 次いで長手方向に一軸延伸せしめたフィルムの端部をクリップで把持したまま、テンターに導く。ここで本発明においては幅方向へ延伸する直前の予熱工程の温度を幅方向の延伸温度+5~+15℃、好ましくは+5~+12℃、より好ましくは+5~+10℃とすることが一軸延伸で長手方向に高配向したフィブリル構造をさらに強化でき、フィルム加熱前後での絶縁破壊電圧の変化を抑制できる。また一軸延伸後、配向が不十分な分子鎖を高温予熱で安定化させることで熱寸法安定性が向上できる観点で好ましい。予熱温度が延伸温度+5℃未満の場合はフィルム加熱前後での絶縁破壊電圧の変化を抑制できず、熱寸法安定性の向上が得られなかったりする場合があり、一方で予熱温度が延伸温度+15℃より高い場合には延伸工程でフィルムが破れたりする場合がある。
 次いでフィルムの端部をクリップで把持したまま幅方向へ延伸する温度(幅方向の延伸温度)は150~170℃、好ましくは155~165℃である。
 フィルム加熱前後での絶縁破壊電圧の変化を抑制する観点から、幅方向の延伸倍率は10.5~20倍、より好ましくは11~19倍、最も好ましくは11.5~18倍である。幅方向の延伸倍率が10.5倍未満では、一軸延伸で長手方向に高配向したフィブリル構造の配向寄与が大きく残存するため、フィルム加熱前後での絶縁破壊電圧の変化を抑制できないフィルムとなる。幅方向の延伸倍率を高めることは長手方向の高い配向状態を保ったまま幅方向の配向が付与されるため、面内の分子鎖緊張が高まり、さらに熱に対する構造安定性を向上できるためトレードオフとなる熱収縮特性を改善できる効果を得られると考察している観点で好ましい。他方、幅方向の延伸倍率が20倍を超えると、製膜時フィルム破れが生じ易く生産性が劣ったものとなる場合がある。
 ここで、面積延伸倍率は60倍以上であることがフィルム加熱前後での絶縁破壊電圧の変化を抑制し、コンデンサとしたとき高温環境で長時間の使用信頼性に優れたものとなる観点で好ましい。本発明において、面積延伸倍率とは、長手方向の延伸倍率に幅方向の延伸倍率を乗じたものである。面積延伸倍率は、より好ましくは64倍以上、さらに好ましくは68倍以上、最も好ましくは72倍以上である。
 本発明のポリプロピレンフィルムの製造においては、続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2~20%の弛緩を与えつつ、145℃以上165℃以下、かつ幅方向の延伸温度未満の温度(1段目熱処理温度)で熱固定(1段目熱処理)した後に、再度クリップで幅方向を緊張把持したまま135℃以上、前記の熱固定温度(1段目熱処理温度)未満の条件で熱処理を施し(2段目熱処理)、さらに緊張把持したまま80℃以上、前記の熱固定温度(2段目熱処理温度)未満の条件で熱固定(3段目熱処理)を施す多段方式の熱処理を行うことが、フィルム加熱前後での絶縁破壊電圧の変化を抑えられ、熱に対する構造安定性を向上させ、コンデンサとしたときの耐電圧性、信頼性を得る観点から好ましい。
 弛緩処理においては、熱に対する構造安定性を高める観点から、弛緩率は2~20%が好ましく、5~18%がより好ましく、8~15%がさらに好ましい。20%を超える場合はテンター内部でフィルムが弛みすぎ製品にシワが入り蒸着時にムラを発生させる場合があったり、機械特性の低下が生じたり、他方、弛緩率が2%より小さい場合は十分な熱に対する構造安定性が得られず、コンデンサとしたときの高温環境下で容量低下やショート破壊を引き起こす場合がある。
 多段式に低温化する熱処理を経た後はテンターの外側へ導き、室温雰囲気にてフィルム端部のクリップ解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム厚み0.5μm以上10μm未満のフィルム製品ロールを巻き取る。ここでフィルムを巻取る前に蒸着を施す面に蒸着金属の接着性を良くするために、空気中、窒素中、炭酸ガス中あるいはこれらの混合気体中でコロナ放電処理を行うことが好ましい。
 なお、本発明のポリプロピレンフィルムを得るため、着眼される製造条件を具体的に挙げてみると、例としては以下のとおりである。
・溶融押出温度は、フィルター前、フィルター後、口金と多段式に低温化すること。
・ポリプロピレン樹脂のメソペンダット分率が0.970以上であること。
・ポリプロピレン樹脂のCXSが1.5質量%未満であること。
・延伸の面積延伸倍率が60倍以上であること。
・幅方向の延伸倍率が10.5倍以上であること。
・幅方向の延伸前の予熱温度が幅方向の延伸温度+5~+15℃であること。
・1段目の熱処理温度が、145℃以上165℃以下であり、かつ幅方向の延伸温度未満の温度であること。
・2段目の熱処理温度が、135℃以上1段目の熱処理温度未満であること。
・3段目の熱処理温度が、80℃以上2段目の熱処理温度未満であること。
・1段目の熱処理工程において、幅方向に2~20%の弛緩処理が施されていること。
 続いて、本発明のポリプロピレンフィルムを用いてなる金属膜積層フィルム、それを用いてなるフィルムコンデンサ、およびそれらの製造方法について説明する。
 本発明の金属膜積層フィルムは、本発明のポリプロピレンフィルムの少なくとも片面に金属膜を有する。この金属膜積層フィルムは、上記の本発明に係るポリプロピレンフィルムの少なくとも片面に金属膜を設けることで得ることができる。
 本発明において、金属膜を付与する方法は特に限定されないが、例えば、ポリプロピレンフィルムの少なくとも片面に、アルミニウムまたは、アルミニウムと亜鉛との合金を蒸着してフィルムコンデンサの内部電極となる蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロムなどの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。ポリプロピレンフィルム表面の粗さが表裏で異なる場合には、粗さが平滑な表面側に金属膜を設けて金属膜積層フィルムとすることが耐電圧性を高める観点から好ましい。
 本発明では、必要により、金属膜を形成後、金属膜積層フィルムを特定の温度でアニール処理を行なったり、熱処理を行なったりすることができる。また、絶縁もしくは他の目的で、金属膜積層フィルムの少なくとも片面に、ポリフェニレンオキサイドなど樹脂のコーティングを施すこともできる。
 本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを用いてなる。つまり本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを有する。
 例えば、上記した本発明の金属膜積層フィルムを、種々の方法で積層もしくは巻回すことにより本発明のフィルムコンデンサを得ることができる。巻回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。
 ポリプロピレンフィルムの片面にアルミニウムを減圧状態で蒸着する。その際、長手方向に走るマージン部を有するストライプ状に蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面の一方にマージンを有した、テープ状の巻取リールを作成する。左もしくは右にマージンを有するテープ状の巻取リールを左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて巻回し、巻回体を得る。
 両面に蒸着を行う場合は、一方の面の長手方向に走るマージン部を有するストライプ状に蒸着し、もう一方の面には長手方向のマージン部が裏面側蒸着部の中央に位置するようにストライプ状に蒸着する。次に表裏それぞれのマージン部中央に刃を入れてスリットし、両面ともそれぞれ片側にマージン(例えば表面右側にマージンがあれば裏面には左側にマージン)を有するテープ状の巻取リールを作製する。得られたリールと未蒸着の合わせフィルム各1本ずつを、幅方向に金属化フィルムが合わせフィルムよりはみ出すように2枚重ね合わせて巻回し、巻回体を得る。
 以上のようにして作成した巻回体から芯材を抜いてプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して巻回型フィルムコンデンサを得ることができる。フィルムコンデンサの用途は、鉄道車輌用、自動車用(ハイブリットカー、電気自動車)、太陽光発電・風力発電用および一般家電用等、多岐に亘っており、本発明のフィルムコンデンサもこれら用途に好適に用いることができる。その他、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途でも用いることができる。
 本発明における特性値の測定方法、並びに効果の評価方法は次のとおりである。
 (1)フィルム厚み
 ポリプロピレンフィルムの任意の10箇所の厚みを、23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定した。その10箇所の厚みの算術平均値をポリプロピレンフィルムのフィルム厚みとした。
 (2)130℃におけるフィルム長手方向および幅方向のF5値の和
 フィルム試長方向(長手方向または幅方向)を長辺方向として切り出した長方形のポリプロピレンフィルム(幅(短辺)10mm×長さ(長辺)150mm)を測定試料とした。次にサンプル引張試験機(オリエンテック製テンシロンUCT-100)に、初期チャック間距離20mmでセットし、130℃の環境下に温度調整されたオーブン内に1分間保持した後、引張速度を300mm/分としてフィルムの引張試験を行った。この際、試料の中心がチャック間の真ん中の近傍にくるように試料の長さ方向の位置を調整した。サンプル伸び5%時のフィルムにかかっていた荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を伸度5%時の応力(F5値、単位:MPa)として算出した。測定は長手方向および幅方向の測定用のサンプルについて各々5回ずつ行い、その算術平均値として、長手方向または幅方向におけるF5値を求め、それぞれを足して和を求めた。
 なお、F5値の算出のために用いるフィルム厚みは上記(1)で測定した値を用いた。
 (3)130℃でのフィルム絶縁破壊電圧(B0)(V/μm)
 130℃に保温されたオーブン内でフィルムを1分間加熱後、その雰囲気中でJIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて測定した。ただし、下部電極については、JIS C2330(2001)7.4.11.2のB法記載の金属板の上に、同一寸法の株式会社十川ゴム製「導電ゴムE-100<65>」を載せたものを電極として使用した。絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1)で測定)で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち最大値から大きい順に5点と最小値から小さい順に5点を除いた20点の平均値を、130℃でのフィルム絶縁破壊電圧(B0)(V/μm)とした。
 (4)NMR緩和時間(T2B)と(T2A)およびその比(T2B)/(T2A)
フィルムを150℃で1分熱処理する方法は、厚み2mm、外寸300mm×300mm、内寸280mm×280mmに中抜きされた幅20mmの四角い金属製フレームを用い、そのフレーム面の4辺には両面テープ(ニチバン社製“ナイスタック”NW-H15接着力02)を貼り、金属製フレームの全面にフィルムが被さるようにフィルムを貼り付け、さらに同寸法の金属製フレームでフィルムを挟み込む。このとき、フィルムに皺が入らないように貼り付ける。次いで、金属フレーム/両面テープ/フィルム/金属フレームの状態で、フレームの4辺をクリップで挟み固定したサンプルを作成し、150℃に加熱されたオーブン中へ1分間放置した。1分後にサンプルを取り出し、常温で5分間放置したあと、金属フレームの内枠に沿ってフィルムを切り出し、150℃1分熱処理後のフィルムとした。フィルムが300mm×300mmの寸法で得られない場合は、貼り付け可能な寸法の金属枠を用いた。
 次いで150℃で1分の熱処理前のパルスNMR法によるポリプロピレンフィルムの非晶成分の緩和時間(T2B)(μs)と、処理後のパルスNMR法によるポリプロピレンフィルムの非晶成分の緩和時間(T2A)(μs)は、以下に示す装置および条件にて求め、その比(T2B)/(T2A)を算出した。
装置:Bruker Biospin社製mq20
温度:40℃
観測周波数:20MHz
90°パルス幅:2.74μs
パルス繰り返し時間:2.0s
パルスモード: Solido Echo法
 測定は、熱処理前のフィルムと熱処理後のフィルムのそれぞれのフィルムについて、フィルムを裁断して、外径10mmのガラス管の管内に高さ1cmとなるまで断裁したフィルムを詰め込み、ポリプロピレンフィルムの非晶成分について1H核のスピン-スピン緩和時間T2を求めた。測定はフィルムを装置に投入して15分間保温した後に開始し、得られた減衰曲線を最小二乗法により、T2の短いガウス関数成分と、T2の長い指数関数成分に分離した。なお短時間成分が結晶成分に、長時間成分が非晶成分に相当する。
 (5)融点に関する一次関数((Tmβ)=xβ0.5+y)のy切片(H1y)(℃)、および(H1y)/(H0y)の比
 フィルムを150℃で1分熱処理する方法は、厚み2mm、外寸300mm×300mm、内寸280mm×280mmに中抜きされた幅20mmの四角い金属製フレームを用い、そのフレーム面の4辺には両面テープ(ニチバン社製“ナイスタック”NW-H15接着力02)を貼り、金属製フレームの全面にフィルムが被さるようにフィルムを貼り付け、さらに同寸法の金属製フレームでフィルムを挟み込む。このとき、フィルムに皺が入らないように貼り付ける。次いで、金属フレーム/両面テープ/フィルム/金属フレームの状態で、フレームの4辺をクリップで挟み固定したサンプルを作成し、150℃に加熱されたオーブン中へ1分間放置した。1分後にサンプルを取り出し、常温で5分間放置したあと、金属フレームの内枠に沿ってフィルムを切り出し、150℃1分熱処理後のフィルムとした。フィルムが300mm×300mmの寸法で得られない場合は、貼り付け可能な寸法の金属枠を用いた。
 次いで150℃で1分熱処理した処理フィルムと未処理フィルムのそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(β0.5)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)をそれぞれ求め、その比(H1y)/(H0y)を算出した。なお各昇温速度で複数の融点が観測された場合は150℃~170℃の範囲で最も低温の融点を用いた。
装置 : Perkin-Elmer 社製DSC 8500
データ処理 : 東レリサーチセンター製  “TRC-THADAP-DSC”
装置内雰囲気 : 窒素(20 mL/min)
温度・熱量校正 : 高純度インジウム(Tm=156.61℃、ΔHm=28.70 J/g)
温度範囲 : 約-50~250℃
昇温速度 : 5℃/min、20℃/min、50℃/min、100℃/min
試料量 :温度追従を考慮し、昇温速度に応じて試料重量を変更した。
5℃/minで4mg、20℃/minで2mg、50℃/minで1.5mg、100℃/minで0.5mg
(なおDSC 曲線は試料重量を5.0 mg に規格化して表示)
試料容器 : アルミニウム製標準容器。
 (6)130℃絶縁破壊電圧の比(B150)/(B0)
 フィルムを150℃で1分熱処理する方法は、厚み2mm、外寸300mm×300mm、内寸280mm×280mmに中抜きされた幅20mmの四角い金属製フレームを用い、そのフレーム面の4辺には両面テープ(ニチバン社製“ナイスタック”NW-H15接着力02)を貼り、金属製フレームの全面にフィルムが被さるようにフィルムを貼り付け、さらに同寸法の金属製フレームでフィルムを挟み込む。このとき、フィルムに皺が入らないように貼り付ける。次いで、金属フレーム/両面テープ/フィルム/金属フレームの状態で、フレームの4辺をクリップで挟み固定したサンプルを作成し、150℃に加熱されたオーブン中へ1分間放置した。1分後にサンプルを取り出し、常温で5分間放置したあと、金属フレームの内枠に沿ってフィルムを切り出し、150℃1分熱処理後のフィルムとした。フィルムが300mm×300mmの寸法で得られない場合は、貼り付け可能な寸法の金属枠を用いた。150℃1分間の熱処理を行ったフィルムについて130℃雰囲気の絶縁破壊試験を(3)と同様の方法にて行い絶縁破壊電圧(B150)(V/μm)を求めた。次いで(3)で求めた130℃絶縁破壊電圧(B0)(V/μm)と(B150)の比を算出し(B150)/(B0)の値を求めた。
 (7)貯蔵弾性率の和の比((E’135(MD+TD))/(E’125(MD+TD)))
 以下に示す装置および条件にて、フィルム試長方向(長手方向または幅方向)を長辺方向として切り出した長方形のポリプロピレンフィルム(幅(短辺)10mm×長さ(長辺)50mm)を、23℃雰囲気下で装置チャック部に取付け、23℃から260℃まで昇温させて測定を行った。動的粘弾性法により粘弾性-温度曲線を描き、125℃での貯蔵弾性率(E’125)(GPa)、135℃での貯蔵弾性率(E’135)(GPa)を読み取った。なお測定試験数はn=5で行い、その中の最大値と最小値を除いた残りn=3の平均値をその方向での貯蔵弾性率とし、フィルムの長手方向、幅方向のそれぞれの方向で測定した。得られた結果から長手方向と幅方向の125℃での貯蔵弾性率の和(E’125(MD+TD))(GPa)、および長手方向と幅方向の135℃での貯蔵弾性率の和(E’135(MD+TD))(GPa)を算出し、((E’135(MD+TD))/(E’125(MD+TD)))を算出した。
 装置:EXSTAR DMS6100(セイコーインスツルメント(株)製)
 試験モード  :引張モード
 チャック間距離:20mm
 周波数    :1Hz
 歪振幅    :10.0μm
 ゲイン    :1.5
 力振幅初期値 :400mN
 温度範囲   :23~260℃
 昇温速度   :2℃/分
 測定雰囲気  :窒素中
 測定厚み   :上記(1)の方法によりフィルム厚みを求めた。
 (8)フィルム長手方向および幅方向の130℃における熱収縮応力(SF130)(MPa)、130℃熱収縮応力の比((SF130MD)/(SF130TD))
 ポリプロピレンフィルムを、フィルムの測定方向(長手方向)を長辺として幅4mm、長さ50mmの長方形の試料に切り出し、試長20mmとなるよう金属製チャックにフィルムを挟み込んだ。前記チャックに挟んだサンプルを下記装置にセットし、下記温度プログラムにて試長を一定保持したフィルムにおける長手方向の応力曲線を求めた。得られた応力曲線から、130℃におけるフィルムの収縮応力SF130(MPa)を読み取った。130℃熱収縮応力の比((SF130MD)/(SF130TD))は、長手方向の130℃熱収応力(SF130MD)(MPa)と幅方向の130℃熱収応力(SF130TD)(MPa)の比から算出した。
 装置 :熱機械分析装置 TMA/SS6000(セイコーインスツルメント(株)製)
 試験モード  :L制御モード
 試長     :20mm
 温度範囲   :23~200℃
 昇温速度   :10℃/分
 SSプログラム:0.1μm/分
 測定雰囲気  :窒素中
 測定厚み   :上記(1)のフィルム厚みを用いた。
 (9)フィルム表面における深さ20nm以上の谷の体積の合計(総谷側体積)
 測定は(株)菱化システムのVertScan2.0 R5300GL-Lite-ACを使用して行い、付属の解析ソフトの解析ツールであるベアリング機能を用いて解析した。深さ20nm以上の谷側空隙を指定するため、高さ領域指定において、谷側高さ閾値を-20nmに設定した。次いで解析された谷側空隙体積の値を読み取り、有効数字2桁となるよう四捨五入した。
 なお、フィルムの両面を測定して、総谷側体積が1~12,000μmの範囲内に入った場合には、範囲内となった側の面の値(両面ともに範囲内となった場合には、小さい値を有する側の面の値)、両面ともに範囲内に入らなかった場合には、総谷側体積が1~12,000μmの範囲に近い側の面の値を記した。
 測定条件は下記のとおりである。
製造元:株式会社菱化システム
装置名:VertScan2.0 R5300GL-Lite-AC
測定条件:CCDカメラ SONY HR-57 1/2インチ(1.27センチ)
 対物レンズ 10x
 中間レンズ 0.5x
 波長フィルタ 520nm white
測定モード:Phase
測定ソフトウェア:VS-Measure Version5.5.1
解析ソフトフェア:VS-Viewer Version5.5.1
測定面積:1.252×0.939mm
 (10)フィルムの冷キシレン可溶部(CXS)
 原料の場合はポリプロピレン樹脂、フィルムの場合はフィルム試料について、0.5gを135℃のキシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶させた後にろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法にて定量した。ろ過液に溶解しているポリプロピレン系成分の量をX(g)、試料0.5gの精量値をX0(g)として下記式
 CXS(%)=(X/X0)×100
から算出した。
 (11)メソペンタッド分率
 原料の場合はポリプロピレン樹脂、フィルムの場合はフィルム試料について凍結粉砕にてパウダー状にし、60℃のn-ヘプタンで2時間抽出し、ポリプロピレン中の不純物・添加物を除去した後、130℃で2時間以上減圧乾燥したものをサンプルとした。該サンプルを溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた。
 測定条件
・装置:Bruker製DRX-500
・測定核:13C核(共鳴周波数:125.8MHz)
・測定濃度:10質量%
・溶媒:ベンゼン:重オルトジクロロベンゼン=1:3混合溶液(体積比)
・測定温度:130℃
・スピン回転数:12Hz
・NMR試料管:5mm管
・パルス幅:45°(4.5μs)
・パルス繰り返し時間:10秒
・データポイント:64K
・積算回数:10000回
・測定モード:complete decoupling
 解析条件
 LB(ラインブロードニングファクター)を1としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker製)を用いて、ピーク分割を行った。その際に、高磁場側のピークから以下のようにピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmのピーク分率の合計をメソペンタッド分率(mmmm)とした。
(1)mrrm
(2)(3)rrrm(2つのピークとして分割)
(4)rrrr
(5)mrmr
(6)mrmm+rmrr
(7)mmrr
(8)rmmr
(9)mmmr
(10)mmmm
 同じサンプルについて同様の測定を5回行い、得られたメソペンタッド分率の平均値を当該サンプルのメソペンタッド分率とした。
 (12)ポリプロピレン樹脂の融点
 示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリプロピレンチップを30℃から260℃まで20℃/分の条件で昇温する。次いで、260℃で5分間保持した後、20℃/分の条件で30℃まで降温する。さらに、30℃で5分間保持した後、30℃から260℃まで20℃/分の条件で昇温する。この昇温時に得られる吸熱カーブのピーク温度をポリプロピレン樹脂の融点とした。なお複数のピーク温度が観測できる場合には最も高温の温度をポリプロピレン樹脂の融点とした。
 (13)F5値の比(F5TD)/(F5MD)
 フィルム試長方向(長手方向または幅方向)を長辺方向として切り出した長方形のポリプロピレンフィルム(幅(短辺)10mm×長さ(長辺)150mm)を、測定試料とした。次にサンプル引張試験機(オリエンテック製テンシロンUCT-100)に、初期チャック間距離20mmでセットし、室温の環境下で引張速度を300mm/分としてフィルムの引張試験を行った。この際、試料の中心がチャック間の真ん中の近傍にくるように、試料の長さ方向の位置を調整した。サンプル伸び5%時のフィルムにかかっていた荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を、伸度5%時の応力(F5値、単位:MPa)として算出した。測定は長手方向および幅方向の測定用のサンプルについて各々5回ずつ行い、その算術平均値として、長手方向および幅方向におけるF5値(F5MD)(MPa)および(F5TD)(MPa)を求め、(F5TD)/(F5MD)の比を求めた。
 なお、F5値の算出のために用いるフィルム厚みは、上記(1)で測定した値を用いた。
 (14)フィルムコンデンサ特性の評価(120℃での信頼性)
 フィルムの一方の面(なお、濡れ張力が表裏両面で異なる場合は、濡れ張力が高い方の面)に、(株)アルバック製真空蒸着機でアルミニウムを膜抵抗が10Ω/sqで長手方向に垂直な方向にマージン部を設けた、いわゆるT型マージン(マスキングオイルにより長手方向ピッチ(周期)が17mm、ヒューズ幅が0.5mm)を有する蒸着パターンで蒸着を施し、スリット後に、フィルム幅50mm(端部マージン幅2mm)の蒸着リールを得た。
 次いで、このリールを用いて(株)皆藤製作所製素子巻機(KAW-4NHB)にてコンデンサ素子を巻き取り、メタリコンを施した後、減圧下、130℃の温度で8時間の熱処理を施し、リード線を取り付けコンデンサ素子に仕上げた。
 こうして得られたコンデンサ素子10個を用いて、120℃高温下でコンデンサ素子に250VDCの電圧を印加し、該電圧で10分間経過後にステップ状に50VDC/1分で徐々に印加電圧を上昇させることを繰り返す所謂ステップアップ試験を行なった。
 <信頼性>
 静電容量が初期値に対して12%以下に減少するまで電圧を上昇させた後に、コンデンサ素子を解体し破壊の状態を調べて、信頼性を以下の通り評価した。
S:素子形状の変化は無く、貫通状の破壊は観察されない。
A:素子形状の変化は無く、フィルム5層以内の貫通状の破壊が観察される。
B:素子形状の変化は無く、フィルム6層以上10層以内の貫通状の破壊が観察される。
C:素子形状に変化が認められる、若しくは10層を超える貫通状の破壊が観察される。
D:素子形状が大きく変化し破壊する
 Sは問題なく使用でき、A、Bでは条件次第で使用可能である。C、Dでは実用上の性能に劣る。
 以下、実施例を挙げて本発明をさらに具体的に説明する。
 (実施例1)
 メソペンタッド分率が0.984、融点が168℃で、メルトフローレート(MFR)が2.5g/10分、冷キシレン可溶部(CXS)が0.8質量%であるプライムポリマー(株)製ポリプロピレン樹脂を温度255℃の押出機に供給し溶融させ、濾過フィルターを通過後の250℃に設定した配管を通過し、245℃に設定したT型スリットダイよりシート状に溶融押出し、該溶融シートを77℃に保持されたキャスティングドラム上で、エアーナイフにより密着させ冷却固化し未延伸ポリプロピレンフィルムを得た。該未延伸ポリプロピレンフィルムを複数のロール群にて段階的に142℃まで予熱し、そのまま周速差を設けたロール間に通し、長手方向に6.3倍に延伸した。引き続き該フィルムをテンターに導き、フィルム幅手の両端部をクリップで把持したまま169℃の温度(TD延伸温度+8℃)で予熱し、次いで161℃の温度で幅方向に12.3倍延伸した。さらに1段目の熱処理および弛緩処理として幅方向に11%の弛緩を与えながら158℃で熱処理を行ない、さらに2段目の熱処理としてクリップで幅方向把持したまま143℃で熱処理を行った。最後に3段目の熱処理として114℃の熱処理を経てテンターの外側へ導き、フィルム端部のクリップ解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・分/mの処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.2μmのフィルムをフィルムロールとして巻き取った。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が極めて良好で、コンデンサとしての信頼性も優れたものであった。
 (実施例2、3)
 メソペンタッド分率が0.981、融点が166℃で、メルトフローレート(MFR)が3.0g/10分、冷キシレン可溶部(CXS)が1.4質量%であるプライムポリマー(株)製ポリプロピレン樹脂を用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、実施例2は厚み2.1μmのポリプロピレンフィルム、実施例3は厚み2.2μmのポリプロピレンフィルムを得た。実施例2および3のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。
 (実施例4)
 メソペンタッド分率が0.982、融点が167℃で、メルトフローレート(MFR)が3.0g/10分、冷キシレン可溶部(CXS)が0.8質量%であるプライムポリマー(株)製ポリプロピレン樹脂を用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、実施例4は厚み2.1μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。
 (実施例5)
 メソペンタッド分率が0.981、融点が166℃で、メルトフローレート(MFR)が3.0g/10分、冷キシレン可溶部(CXS)が1.4質量%であるプライムポリマー(株)製ポリプロピレン樹脂に、Basell社製分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814)を1.0質量%ブレンドし温度260℃の押出機に供給し、溶融押出シートを得た。冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例2と同様にして実施例2は厚み2.1μmのポリプロピレンフィルム、実施例3は厚み2.2μmのポリプロピレンフィルムを得た。実施例5のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。
 (実施例6、7)
 実施例1と同様にして得られた未延伸シートを、表1に示すTD予熱延伸温度およびTD延伸温度でMDおよびTDに同時二軸延伸し、熱処理条件を表の条件とした以外は実施例1と同様にして、実施例6、実施例7ともに厚み2.4μmのポリプロピレンフィルムを得た。実施例6のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。実施例7のポリプロピレンフィルムはフィルム融点のy切片の比(H1y)/(H0y)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。
 (実施例8)
 溶融押出シートを冷却するキャスティングドラムの温度を50℃とし、二軸延伸時の延伸倍率、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、実施例8では厚み2.3μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通り、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係が良好で、コンデンサとして実使用上の信頼性に問題ないレベルであった。
 (実施例9)
 メソペンタッド分率が0.984、融点が168℃で、メルトフローレート(MFR)が2.5g/10分、冷キシレン可溶部(CXS)が0.8質量%であるプライムポリマー(株)製ポリプロピレン樹脂に日本ポリプロ社製分岐鎖状ポリプロピレン樹脂(“WAYMAX”MFX3)を3.0質量%ブレンドし255℃の押出機に供給し溶融させ、濾過フィルターを通過後の250℃に設定した配管を通過し、245℃に設定したT型スリットダイよりシート状に溶融押出シートを得た。溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を実施例1と同様にして、実施例9は厚み2.2μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りで、フィルムは130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が極めて良好で、コンデンサとしての信頼性も優れたものであった。
 (比較例1)
 メソペンタッド分率が0.981、融点が166℃で、メルトフローレート(MFR)が4.0g/10分、冷キシレン可溶部(CXS)が1.8質量%であるプライムポリマー(株)製ポリプロピレン樹脂を温度255℃の押出機に供給し溶融させ、濾過フィルターを通過後の樹脂温度が255℃になるよう設定したでT型スリットダイよりシート状に溶融押出し用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、比較例1では厚み2.2μmのポリプロピレンフィルム得た。比較例1のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通りである。
 比較例1のポリプロピレンフィルムは押出温度に勾配がなく、原料のCXSが多く、面積延伸倍率が低いため、フィルムは130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分で、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 (比較例2、3、4)
 溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、比較例2、3、4では厚み2.3μmのポリプロピレンフィルムを得た。
 これら比較例のポリプロピレンフィルムの特性およびコンデンサ特性は、表に示す通り、比較例2のポリプロピレンフィルムは、TD予熱温度とTD延伸温度が同一で、熱処理が多段式に施されていないため、フィルムは130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分で、コンデンサの信頼性は素子形状に変化が認められており、実使用で問題となるレベルであった。
 また比較例3のポリプロピレンフィルムは、MD延伸倍率が高くTD延伸倍率が低いため、F5値の比が小さい値になり、またMDのフィルム熱収縮応力が高く、135℃と125℃の貯蔵弾性率の比も劣ったもので熱安定性に劣り、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分で、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 さらに比較例4のポリプロピレンフィルムは、TD延伸の予熱温度が低く、熱処理条件が低温130℃/高温140℃条件の2段式熱処理であるため、フィルム熱収縮応力がMDおよびTDともに高く、135℃と125℃の貯蔵弾性率の比および130℃での絶縁破壊電圧が不十分で熱安定性に劣り、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分であったため、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 (比較例5)
 メソペンタッド分率が0.972、融点が165℃で、メルトフローレート(MFR)が4.0g/10分、冷キシレン可溶部(CXS)が2.4質量%であるプライムポリマー(株)製ポリプロピレン樹脂を用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、比較例5では厚み2.2μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通り、用いたポリプロピレン樹脂の冷キシレン可溶部(CXS)が大きく、フィルムの冷キシレン可溶部(CXS)が大きいため、熱収縮応力が高く、130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分であったため、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 (比較例6)
 メソペンタッド分率が0.979、融点が167℃で、メルトフローレート(MFR)が2.6g/10分、冷キシレン可溶部(CXS)が1.8質量%であるプライムポリマー(株)製ポリプロピレン樹脂を用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とし、1段目の熱処理および弛緩処理として幅方向に25%の弛緩を与えた以外は実施例1と同様にして、比較例6では厚み2.3μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通り、フィルムの冷キシレン可溶部(CXS)が大きく、TD予熱温度とTD延伸温度が同一で、面積延伸倍率が低く、弛緩処理が大きかったため、135℃と125℃の貯蔵弾性率の比および130℃での絶縁破壊電圧が不十分で熱安定性に劣り、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分であったため、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 (比較例7)
 メソペンタッド分率が0.975、融点が165℃で、メルトフローレート(MFR)が4.6g/10分、冷キシレン可溶部(CXS)が1.4質量%であるプライムポリマー(株)製ポリプロピレン樹脂80質量%とメソペンタッド分率が0.970、融点が164℃で、メルトフローレート(MFR)が0.4g/10分、冷キシレン可溶部(CXS)が1.4質量%である日本ポリプロ株式会社製ポリプロピレン樹脂20質量%を用い、溶融押出シートを冷却するキャスティングドラムの温度、二軸延伸時の延伸倍率、TD予熱、TD延伸および熱処理条件を表の条件とし、比較例7では厚み2.2μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通り、TD予熱温度とTD延伸温度が同一で、面積延伸倍率が低く、熱処理を施していなかったため、135℃と125℃の貯蔵弾性率の比および130℃での絶縁破壊電圧が不十分で熱安定性に劣り、130℃におけるフィルム長手方向および幅方向のF5値の和、および、150℃1分加熱前後の絶縁破壊強度の比(B150)/(B0)の関係、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分であったため、コンデンサの信頼性は素子形状に変化が認められ破壊しており、実使用で問題となるレベルであった。
 (比較例8)
 溶融押出シートを冷却するキャスティングドラムの温度を25℃とし、二軸延伸時の延伸倍率、TD延伸および熱処理条件を表の条件とした以外は実施例1と同様にして、比較例8では厚み2.3μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表に示す通り、キャスティングドラムの温度が25℃と低く、TD予熱温度とTD延伸温度が同一で、熱処理条件が低温130℃/高温140℃条件の2段式熱処理であるため、130℃におけるフィルム長手方向および幅方向のF5値の和、150℃1分加熱前後のNMR緩和時間の比(T2B)/(T2A)の関係、フィルム融点のy切片の比(H1y)/(H0y)の関係が不十分であったため、コンデンサの信頼性は素子形状に変化が認められており、実使用で問題となるレベルであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (18)

  1.  長手方向と幅方向の130℃におけるF5値の和が15MPa以上であって、
     130℃における絶縁破壊試験において、150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たす、ポリプロピレンフィルム。
     (B150)/(B0)≧0.80
  2.  パルスNMR法にて得られる非晶成分の緩和時間T2について、150℃で1分熱処理した後の緩和時間(T2A)(μs)と、熱処理する前の緩和時間(T2B)(μs)の関係が、次式を満たす、ポリプロピレンフィルム。
     (T2B)/(T2A)≧0.90
  3.  150℃で1分熱処理したフィルム(以下、処理フィルムという)と未処理のフィルム(以下、未処理フィルムという)のそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(以下、β0.5という)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)の関係が、次の関係を満たす、ポリプロピレンフィルム。
     (H1y)/(H0y)≧0.90
  4.  処理フィルムにおける前記一次関数のy切片(H1y)(℃)が155℃以上である、請求項3に記載のポリプロピレンフィルム。
  5.  150℃で1分間の熱処理を行った場合の絶縁破壊電圧(B150)(V/μm)と熱処理を行わない場合の絶縁破壊電圧(B0)(V/μm)が以下の関係を満たす、請求項1に記載のポリプロピレンフィルム。
    (B150)/(B0)≧0.86
  6.  フィルム長手方向と幅方向の130℃におけるF5値の和が17MPa以上である、請求項1または5に記載のポリプロピレンフィルム。
  7.  パルスNMR法にて得られる非晶成分の緩和時間T2について、150℃で1分熱処理した後の緩和時間(T2A)(μs)と、熱処理する前の緩和時間(T2B)(μs)の関係が、次式を満たす、請求項2に記載のポリプロピレンフィルム。
     (T2B)/(T2A)≧0.95
  8.  150℃で1分熱処理したフィルム(以下、処理フィルムという)と未処理のフィルム(以下、未処理フィルムという)のそれぞれを、昇温速度β(℃/min)でDSC測定して観測される融解ピーク温度(Tmβ)(℃)をY軸、その昇温速度β(℃/min)を0.5乗した値(以下、β0.5という)をX軸とした関係から得られる一次関数((Tmβ)=xβ0.5+y)において、処理フィルムにおける前記一次関数のy切片(H1y)(℃)と未処理フィルムにおける前記一次関数のy切片(H0y)(℃)の関係が、次の関係を満たす、請求項3または4に記載のポリプロピレンフィルム。
     (H1y)/(H0y)≧0.94
  9.  処理フィルムにおける前記一次関数のy切片(H1y)(℃)が159℃以上である、請求項3、4または8に記載のポリプロピレンフィルム。
  10.  幅方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130TD)(MPa)が2.0MPa以下である、請求項1から9のいずれかに記載のポリプロピレンフィルム。
  11.  長手方向の130℃における熱機械分析装置を用いて求められる熱収縮応力値(SF130MD)(MPa)が2.0MPa以下である、請求項1~10のいずれかに記載のポリプロピレンフィルム。
  12.  キシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリプロピレン成分(CXS)が1.5質量%未満である、請求項1~11のいずれかに記載のポリプロピレンフィルム。
  13.  長手方向と幅方向の135℃における固定粘弾性測定にて求められる貯蔵弾性率の和(E’135(MD+TD))(GPa)、及び、長手方向と幅方向の125℃における固定粘弾性測定にて求められる貯蔵弾性率の和(E’125(MD+TD))(GPa)の関係が次式を満たす、請求項1~12のいずれかに記載のポリプロピレンフィルム。
     (E’135(MD+TD))/(E’125(MD+TD))>0.80
  14.  130℃での絶縁破壊電圧が350V/μm以上である、請求項1~13のいずれかに記載のポリプロピレンフィルム。
  15.  少なくとも一方の表面において、1,252μm×939μmの領域における深さ20nm以上の谷の体積を合計した総谷側体積が1~12,000μmである、請求項1~14のいずれかに記載のポリプロピレンフィルム。
  16.  室温における長手方向のF5値(F5MD)(MPa)と幅方向のF5値(F5TD)(MPa)の関係が、次式を満たす、請求項1~15のいずれかに記載のポリプロピレンフィルム。
     (F5TD)/(F5MD)≧1.5
  17.  請求項1~16のいずれかに記載のポリプロピレンフィルムの少なくとも片面に、金属膜を有する金属膜積層フィルム。
  18.  請求項17に記載の金属膜積層フィルムを用いてなるフィルムコンデンサ。
PCT/JP2020/006754 2019-02-21 2020-02-20 ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ WO2020171163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/431,589 US20220135780A1 (en) 2019-02-21 2020-02-20 Polypropylene film, metal layer laminated film using polypropylene film, and film capacitor
CN202080012289.2A CN113382839A (zh) 2019-02-21 2020-02-20 聚丙烯膜和使用它的金属膜层叠膜、膜电容器
KR1020217024972A KR20210130714A (ko) 2019-02-21 2020-02-20 폴리프로필렌 필름 및 이것을 사용한 금속막 적층 필름, 필름 콘덴서
EP20758827.8A EP3922436A4 (en) 2019-02-21 2020-02-20 POLYPROPYLENE FILM, METALLIC FILM USING POLYPROPYLENE FILM, AND FILM CAPACITOR

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019029184 2019-02-21
JP2019029183 2019-02-21
JP2019029182 2019-02-21
JP2019-029182 2019-02-21
JP2019-029183 2019-02-21
JP2019-029184 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020171163A1 true WO2020171163A1 (ja) 2020-08-27

Family

ID=72144468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006754 WO2020171163A1 (ja) 2019-02-21 2020-02-20 ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ

Country Status (5)

Country Link
US (1) US20220135780A1 (ja)
EP (1) EP3922436A4 (ja)
KR (1) KR20210130714A (ja)
CN (1) CN113382839A (ja)
WO (1) WO2020171163A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166994A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
WO2021166993A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2021134353A (ja) * 2020-02-21 2021-09-13 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129905A (ja) 1988-11-09 1990-05-18 Toray Ind Inc コンデンサー
JP2002248681A (ja) 2001-02-27 2002-09-03 Sumitomo Chem Co Ltd 二軸延伸ポリプロピレンフィルム
JP2007084813A (ja) * 2005-08-26 2007-04-05 Toray Ind Inc ポリプロピレンフィルムおよびその製造方法
WO2009008340A1 (ja) 2007-07-06 2009-01-15 Idemitsu Unitech Co., Ltd. ポリプロピレン成形品、シート状ポリプロピレン成形品およびポリプロピレン熱成形品の製造方法
JP2010280795A (ja) 2009-06-04 2010-12-16 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート
JP2014231604A (ja) 2009-03-17 2014-12-11 株式会社プライムポリマー フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用ポリプロピレンシート、それらの製造方法、およびその用途
JP2016033211A (ja) 2014-07-30 2016-03-10 東レ株式会社 ポリプロピレンフィルム
JP2016187959A (ja) 2015-03-27 2016-11-04 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2018181271A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
WO2019044758A1 (ja) * 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2020040127A1 (ja) * 2018-08-23 2020-02-27 東レ株式会社 ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147234A (ja) * 1984-08-13 1986-03-07 Mitsubishi Plastics Ind Ltd 熱収縮性ポリプロピレン系フイルムの製造方法
EP0745637A1 (de) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxial orientierte Polypropylenfolie mit hohem Flächenmodul
JP2004276430A (ja) * 2003-03-17 2004-10-07 Toyobo Co Ltd 積層ポリプロピレン系フィルムの製造方法
KR100723391B1 (ko) * 2006-01-13 2007-05-30 삼성에스디아이 주식회사 고분자 전해질막 및 이를 구비한 연료전지
CN101848961B (zh) 2007-11-07 2014-01-08 王子制纸株式会社 电容器用双轴拉伸聚丙烯薄膜及使用其获得的蒸镀薄膜和电容器
CN103502335B (zh) * 2011-06-08 2015-06-24 东丽株式会社 多孔性聚丙烯膜及其制造方法
CN106103553B (zh) 2014-03-28 2020-05-12 东丽株式会社 双轴取向聚丙烯膜
WO2015146893A1 (ja) * 2014-03-28 2015-10-01 東レ株式会社 二軸配向ポリプロピレンフィルム
EP3196235B1 (en) * 2014-09-19 2021-02-17 Toray Industries, Inc. Polypropylene film and film capacitor
EP3196234A4 (en) * 2014-09-19 2018-05-16 Toray Industries, Inc. Polypropylene film and film capacitor
KR102500999B1 (ko) * 2015-05-12 2023-02-17 도레이 카부시키가이샤 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 그리고 이들의 제조 방법
CN107848282B (zh) * 2015-08-03 2020-01-07 东丽株式会社 烯烃系叠层膜及膜电容器
CN108136661B (zh) * 2015-10-13 2020-08-18 东丽株式会社 双轴取向聚丙烯膜、金属膜叠层膜及膜电容器
JP7135320B2 (ja) * 2016-03-17 2022-09-13 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129905A (ja) 1988-11-09 1990-05-18 Toray Ind Inc コンデンサー
JP2002248681A (ja) 2001-02-27 2002-09-03 Sumitomo Chem Co Ltd 二軸延伸ポリプロピレンフィルム
JP2007084813A (ja) * 2005-08-26 2007-04-05 Toray Ind Inc ポリプロピレンフィルムおよびその製造方法
WO2009008340A1 (ja) 2007-07-06 2009-01-15 Idemitsu Unitech Co., Ltd. ポリプロピレン成形品、シート状ポリプロピレン成形品およびポリプロピレン熱成形品の製造方法
JP2014231604A (ja) 2009-03-17 2014-12-11 株式会社プライムポリマー フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用ポリプロピレンシート、それらの製造方法、およびその用途
JP2010280795A (ja) 2009-06-04 2010-12-16 Oji Paper Co Ltd コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート
JP2016033211A (ja) 2014-07-30 2016-03-10 東レ株式会社 ポリプロピレンフィルム
JP2016187959A (ja) 2015-03-27 2016-11-04 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2018181271A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
WO2019044758A1 (ja) * 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2020040127A1 (ja) * 2018-08-23 2020-02-27 東レ株式会社 ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTONOBU KAWAI: "NIKKEI ELECTRONICS", 17 September 2012, NIKKEI BUSINESS PUBLICATIONS, INC., article "Film Capacitor Breakthrough, from Car to Energy", pages: 57 - 62
See also references of EP3922436A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166994A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
WO2021166993A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2021134353A (ja) * 2020-02-21 2021-09-13 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6992919B2 (ja) 2020-02-21 2022-01-13 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6992929B1 (ja) * 2020-02-21 2022-01-13 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
US12020871B2 (en) 2020-02-21 2024-06-25 Toray Industries, Inc. Polypropylene film, metal layer laminated film using same, and film capacitor

Also Published As

Publication number Publication date
KR20210130714A (ko) 2021-11-01
EP3922436A4 (en) 2022-11-23
US20220135780A1 (en) 2022-05-05
CN113382839A (zh) 2021-09-10
EP3922436A1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP5854180B1 (ja) 二軸配向ポリプロピレンフィルム
JP5920538B2 (ja) 二軸配向ポリプロピレンフィルム
JP6658953B1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
EP3069850B1 (en) Biaxially oriented polypropylene film and method for producing same
JP6070864B2 (ja) ポリプロピレンフィルムおよびフィルムコンデンサ
EP2977398A1 (en) Biaxially oriented polypropylene film, metallized film and film capacitor
WO2020171163A1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
WO2016158590A1 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ
JP6682937B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
JP6992929B1 (ja) ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
JP6885484B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
CN115135703B (zh) 聚丙烯膜、金属膜层叠膜及膜电容器
JP7247918B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP7247919B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP6992919B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2021134352A (ja) ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020758827

Country of ref document: EP

Effective date: 20210907