WO2020170917A1 - 酸化チタン - Google Patents
酸化チタン Download PDFInfo
- Publication number
- WO2020170917A1 WO2020170917A1 PCT/JP2020/005430 JP2020005430W WO2020170917A1 WO 2020170917 A1 WO2020170917 A1 WO 2020170917A1 JP 2020005430 W JP2020005430 W JP 2020005430W WO 2020170917 A1 WO2020170917 A1 WO 2020170917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- bet
- anatase
- crystal phase
- titanium
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
Definitions
- the present invention relates to titanium oxide, and particularly to anatase type titanium oxide.
- the present application claims priority based on Japanese Patent Application No. 2019-027727 filed in Japan on February 19, 2019, and the content thereof is incorporated herein.
- titanium dioxide (TiO 2 ) is a chemically stable material and is industrially used as a white pigment in a wide range of fields.
- anatase-type fine particle titanium oxide having a large specific surface area is required to exhibit higher functions in these applications.
- the industrial methods for obtaining anatase-type fine titanium oxide particles are mainly the vapor phase method and the liquid phase method.
- a gas phase method there is a method of reacting a titanium halide gas with an acid gas as in Patent Document 1.
- Patent Document 2 describes that a carboxylic acid such as acetic acid, oxalic acid, or formic acid is added to an aqueous solution containing titanium tetrachloride, and hydrochloric acid generated during the synthesis of titanium oxide is neutralized with ammonia. ing.
- a carboxylic acid such as acetic acid, oxalic acid, or formic acid
- Patent Document 3 describes adding a metal element or Si or P when synthesizing titanium oxide in a liquid phase from titanyl sulfate.
- Patent Document 4 describes a method of synthesizing titanium oxide from titanium tetrachloride by a liquid phase method, in which an aqueous titanium tetrachloride solution is dropped into warm water.
- Example 1 of Patent Document 5 anhydrous citric acid was added to an aqueous solution of titanium tetrachloride, the temperature was raised to 92° C., held for 30 minutes, cooled to 70° C., and then neutralized with ammonia water A method for producing titanium powder is described. Further, Patent Document 5 describes that the titanium oxide obtained by this method is fired at 500° C. for 2 hours, and it is disclosed that the rutile content in the titanium oxide after firing is 8%. ..
- Non-Patent Document 1 describes that titanium n-butoxide (TNB) is dissolved in toluene in a test tube, set in an autoclave, and water is introduced between the test tube and the wall surface of the autoclave to react at 300°C. There is.
- anatase crystal phases As crystal structures that TiO 2 can take, there are mainly three known anatase crystal phases (Anatase), brookite crystal phases (Brookite), and rutile crystal phases (Rutile).
- anatase-type titanium oxide containing a large amount of anatase crystal phase has attracted attention as a dielectric material, a solar cell electrode, or a photocatalyst material.
- anatase type titanium oxide having high reactivity with a Ba source which is a raw material is said to be preferable.
- Patent Document 1 the titanium oxide described in Patent Document 1 needs to react with a titanium halide gas at a high temperature in the manufacturing process, and the manufactured titanium oxide is transformed into a rutile phase.
- the titanium oxide obtained by the production method described in Patent Document 2 has a too small crystallite size or a too small specific surface area. That is, in Patent Document 2, titanium oxide having a large crystallite size while suppressing coarsening of primary particles is not obtained.
- the titanium oxide obtained by the method described in Patent Document 3 has an average particle size of 5 ⁇ m or more and is very large, and is not suitable for the above-mentioned use as ultrafine particle titanium oxide.
- the titanium oxides (Table 1, Titania 2 to 6) obtained in Non-Patent Document 1 have a high anatase residual ratio (Table 3) in a high temperature environment, but all have a small BET specific surface area and coarse particles. Also, most of Titania 1 of the same document is rutile when heat-treated at 700° C. for 1 hour. Further, the titanium oxide of Non-Patent Document 1 has a manufacturing process under a high temperature and a high pressure, so that the manufacturing cost becomes high.
- an object of the present invention is to provide a titanium oxide which is low in cost, has a large BET specific surface area, and can maintain a high content of anatase crystalline phase in the crystalline phase even in a high temperature environment.
- the half-width of the peak is B [rad] and the BET specific surface area is S BET [m 2 /g], B ⁇ 2.9 ⁇ 10 ⁇ 2 rad, S BET ⁇ 245 m 2 /g, and B /S BET ⁇ 1.07 ⁇ 10 ⁇ 4 g/m 2 Titanium oxide.
- the titanium oxide according to [1] which is obtained by diluting a mixed solution of an aqueous titanium tetrachloride solution and ⁇ -hydroxycarboxylic acid with water. [3] If the BET specific surface area after heat treatment at 700° C. for 2 hours is S BET2 [m 2 /g], then 15 ⁇ 10 ⁇ 3 ⁇ S BET2 /S BET ⁇ 1.0 [1] or [2] ] Titanium oxide described in.
- titanium oxide that has a low BET specific surface area, can maintain a high content of the anatase crystalline phase in the crystalline phase even in a high temperature environment, at low cost.
- citric acid is used as the ⁇ -hydroxycarboxylic acid having three carboxy groups
- the half value width of the peak corresponding to the anatase crystal phase is expressed as the ratio of B to BET specific surface area S BET , B/S BET , and the change in the anatase content in the crystal phase of titanium oxide after the heating test at 700° C. It is a graph shown.
- titanium oxide means titanium oxide (IV) (TiO 2 ) unless otherwise specified.
- Ti refers to all titanium atoms constituting a compound, ion, complex or the like.
- Ti concentration is the concentration of all titanium atoms constituting a compound, ion, complex or the like.
- the content rate of the anatase crystal phase in all the crystal phases (hereinafter sometimes referred to as the anatase content rate in the crystal phase) is 95% by mass or more and 98% by mass or more. Is preferred, and most preferably 100% by mass.
- the average primary particle diameter of titanium oxide is 6000/( ⁇ S BET )[nm]. Can be represented. Since ⁇ is constant, it is considered that the average primary particle diameter of titanium oxide is proportional to 1/S BET .
- the average crystallite size of the anatase crystal phase is expressed by the Sherrer formula, that is, K ⁇ /Bcos ⁇ [ ⁇ ].
- K is a form factor and is constant at 0.9.
- ⁇ is the wavelength of the Cu-K ⁇ 1 ray, which is 1.5418 ⁇ .
- Cos ⁇ can be regarded as constant.
- the relationship between the average primary particle diameter of titanium oxide and the average crystallite size of the anatase phase will be considered.
- the larger the value of (1/S BET )/(1/B) B/S BET [g/m 2 ], the smaller the crystallite size of the anatase phase relative to the primary particle diameter of titanium oxide, and this value is smaller.
- anatase type titanium oxide When anatase type titanium oxide is heated, it is considered that the crystallites undergo rutile formation due to the stress received from the adjacent crystallites. If the size of the anatase crystallite with respect to the primary particle size is small, that is, B/S BET is large, the number of anatase crystallites contained in the primary particle increases. That is, the anatase crystallite inside the primary particle is adjacent to many crystallites. Therefore, it is considered that rutile formation progresses from many places. Further, in this case, the anatase crystallites inside the primary particles cannot escape the stress, and from this point as well, it can be considered that rutile formation easily proceeds.
- B/S BET ⁇ 1.07 ⁇ 10 ⁇ 4 g/m 2 , preferably B/S BET ⁇ 1.05 ⁇ 10 ⁇ 4 g/m 2 , and more preferably B/S BET ⁇ 1.05 ⁇ 10 ⁇ 4 g/m 2.
- S BET ⁇ 1.00 ⁇ 10 ⁇ 4 g/m 2 .
- the BET specific surface area of titanium oxide of the present invention is 245 m 2 /g or more, preferably 260 m 2 /g or more, and more preferably 300 m 2 /g or more.
- the BET specific surface area after heat-treating the titanium oxide according to the present invention at 700° C. for 2 hours is S BET2 [m 2 /g], 15 ⁇ 10 ⁇ 3 ⁇ S BET2 /S BET ⁇ 1. 0 is preferable, 20 ⁇ 10 ⁇ 3 ⁇ S BET2 /S BET ⁇ 1.0 is more preferable, and 25 ⁇ 10 ⁇ 3 ⁇ S BET2 /S BET ⁇ 1.0 is further preferable. .. As the value of S BET2 /S BET is closer to 1, it can be said that the original grain morphology is maintained even after the heat treatment, that is, the original crystal structure is maintained.
- FIG. 1 is a flow chart showing an example of the method for producing titanium oxide according to the present invention.
- the manufacturing method according to FIG. 1 and the following description is only an example of the method for obtaining the titanium oxide according to the present invention, and is not limited to the manufacturing method described here as long as the titanium oxide according to the present invention can be obtained. Absent.
- the preparation step S1 in which an aqueous solution of titanium tetrachloride and ⁇ -hydroxycarboxylic acid is prepared as a precursor aqueous solution, water is added to the precursor aqueous solution to dilute the reaction solution.
- a diluting step S3 for synthesizing titanium oxide from the reaction solution
- a purifying step S4 for purifying the synthesized titanium oxide.
- titanium oxide was synthesized from titanium tetrachloride in the reaction solution containing ⁇ -hydroxycarboxylic acid. It is considered that ⁇ -hydroxycarboxylic acid has some action during the formation of crystal nuclei of titanium oxide, the growth of crystals, and the process of particle formation. However, the action of ⁇ -hydroxycarboxylic acid is not essential for producing the titanium oxide of the present invention, and if titanium oxide satisfying the above requirements of the present invention is obtained, ⁇ -hydroxycarboxylic acid is produced in the production process of titanium oxide. The acid may not be used.
- Preparation step S1> In the preparing step S1, an aqueous solution of titanium tetrachloride and ⁇ -hydroxycarboxylic acid are mixed to prepare an aqueous solution (mixed solution) of titanium tetrachloride and ⁇ -hydroxycarboxylic acid as a precursor aqueous solution.
- the ⁇ -hydroxycarboxylic acid preferably has 3 or 2 carboxy groups in the molecule.
- As a mixing method it is preferable to add the ⁇ -hydroxycarboxylic acid at once while stirring the titanium tetrachloride aqueous solution, because there is no difference in the reaction conditions between the start and the end of the addition.
- the mixing is preferably performed with stirring for 3 minutes or more, more preferably 5 minutes or more, and further preferably 8 minutes or more.
- Examples of the ⁇ -hydroxycarboxylic acid having three carboxy groups in the molecule include citric acid, isocitric acid, 1,2-dihydroxy-1,1,2-ethanetricarboxylic acid and the like, and citric acid is used. It is preferable. This is because it is easy to obtain and easy to handle, which is advantageous in terms of cost.
- Examples of the ⁇ -hydroxycarboxylic acid having two carboxy groups in the molecule include tartaric acid, malic acid, tartronic acid, citramalic acid and the like, and tartaric acid or malic acid is preferably used. This is because it is easy to obtain and easy to handle, which is advantageous in terms of cost.
- the titanium tetrachloride aqueous solution and the precursor aqueous solution are preferably kept at 35° C. or lower, more preferably 30° C. or lower, and further preferably 25° C. or lower. This is because the formation of amorphous titanium oxide is suppressed by suppressing the progress of hydrolysis of titanium tetrachloride when the Ti concentration is high.
- the Ti concentration in the titanium tetrachloride aqueous solution is preferably 10% by mass or more, more preferably 12% by mass or more, and further preferably 14% by mass or more. This is to prevent titanium tetrachloride from reacting with water to form a titanium hydroxide sol during the storage period.
- the Ti concentration in the titanium tetrachloride aqueous solution is preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 16% by mass or less. This is because the hydrolysis reaction is prevented from proceeding during the storage of the titanium tetrachloride aqueous solution.
- Ratio R of amount of substance of ⁇ -hydroxycarboxylic acid to amount of substance of Ti used for preparation of precursor aqueous solution (molar ratio ⁇ substance amount of ⁇ -hydroxycarboxylic acid (mol) ⁇ / ⁇ substance amount of Ti (mol) ⁇ )
- the preferred range depends on the number of carboxy groups contained in the ⁇ -hydroxycarboxylic acid used.
- the value of the ratio R is within the preferable range, the titanium oxide according to the present invention can be easily obtained. Further, it is considered that by not making the value of the ratio R too large, the titanium oxide particles produced can be favorably dispersed, and fine particle titanium oxide having a large BET specific surface area can be produced.
- the value of the ratio R is preferably 0.017 or less, more preferably 0.013 or less, and 0.012 or less. Is more preferable.
- the value of the ratio R is preferably 0.006 or more, more preferably 0.008 or more, and 0.009 or more. Is more preferable.
- the value of the ratio R is preferably 0.065 or less, more preferably 0.056 or less, and 0.050 or less. It is more preferable that it is 0.048 or less, and it is particularly preferable that it is 0.048 or less.
- the value of the ratio R is preferably 0.034 or more, more preferably 0.039 or more, and 0.044 or more. Is more preferable.
- ⁇ -hydroxycarboxylic acid may be added as an aqueous solution to the titanium tetrachloride aqueous solution.
- the Ti concentration in the precursor aqueous solution is not significantly reduced.
- the Ti concentration in the precursor aqueous solution is preferably 10% by mass or more, more preferably 12% by mass or more, and further preferably 14% by mass or more.
- the prepared precursor aqueous solution (the mixed solution) is diluted with water.
- water may be added to the precursor aqueous solution, or the precursor aqueous solution may be added to the water.
- the Ti concentration C after dilution (hereinafter, in order to distinguish the Ti concentration before dilution from the Ti concentration after dilution, the latter is referred to as "Ti concentration after dilution" or simply "Ti concentration C”) is 0.07. It is preferably set to ⁇ 0.70 mol/L.
- the diluted aqueous solution is used as the reaction solution.
- the Ti concentration C of the reaction solution is related to the reaction temperature T in the subsequent titanium oxide synthesizing step S3, regarding the relationship between the Ti concentration C and the reaction temperature T and the preferable range of the Ti concentration C, the synthesis of titanium oxide is performed. It will be described later in the section describing step S3.
- the diluting step S2 it is more preferable to add water to the precursor aqueous solution. This is because the Ti concentration of the diluted aqueous solution does not fall below the Ti concentration C of the diluted aqueous solution, and it is considered that the reaction between titanium tetrachloride and water can be suppressed without using a special device. Further, it is possible to suppress a rapid temperature change of the compound containing Ti in the aqueous solution, and it is possible to avoid the need for precise temperature control.
- the temperature of water added to the precursor aqueous solution is not particularly limited, but is preferably 70°C or lower, more preferably 60°C or lower.
- the temperature of water added to the precursor aqueous solution is preferably 5°C or higher, more preferably 10°C or higher.
- the water used here is preferably pure water or ion-exchanged water in order to reduce impurities that must be removed in the purification step S4 of titanium oxide described later, but as long as they can be removed in the purification step S4. It is not limited to this.
- Titanium oxide synthesis step S3> In the titanium oxide synthesizing step S3, the reaction liquid obtained in the diluting step S2 is heated to a reaction temperature T [° C.] to synthesize titanium oxide and precipitate titanium oxide particles.
- the reaction temperature T is preferably not lower than 60° C. and not higher than the boiling point of the reaction liquid. More preferably, titanium oxide is synthesized at the reaction temperature T corresponding to the Ti concentration C, and titanium oxide particles are deposited. More preferable ranges of the reaction temperature T with respect to the Ti concentration C of the reaction solution in the synthesis step S3 are as follows (a) to (c).
- reaction temperature T When the Ti concentration C is 0.07 mol/L or more and less than 0.20 mol/L, the reaction temperature T is 60 to 75°C.
- B When the Ti concentration C is 0.20 mol/L or more and less than 0.45 mol/L, the reaction temperature T is 75° C. or higher and the boiling point of the reaction liquid or lower. As the reaction proceeds, titanium oxide is deposited and the concentration of solute in the reaction solution decreases, so that the boiling point of the reaction solution decreases. Further, when the reaction temperature T is the boiling point of the reaction, it is preferable to use a method capable of keeping the amount of water in the reaction solution constant, such as reflux, in this step.
- C When the Ti concentration C is 0.45 mol/L or more and 0.70 mol/L or less, the reaction temperature T is 60 to 75°C.
- the Ti concentration C of the reaction solution is preferably 0.20 to 0.40 mol/L, more preferably 0.25 to 0.40 mol/L, and 0.25 to 0. More preferably, it is 35 mol/L.
- the reaction temperature T is preferably 80° C. or higher, more preferably 90° C. or higher, and further preferably 100° C. or higher.
- the heating of the reaction liquid up to the target temperature that is, the reaction temperature T is preferably performed at a temperature rising rate of 0.1° C./min or more and 1.5° C./min or less, and 0.3° C./min or more 1. It is more preferably performed at 0° C./min or less, further preferably at 0.6° C./min or more and 1.0° C./min or less. ..
- the reaction that produces titanium oxide from the reaction solution is an endothermic reaction. Therefore, in order to maintain the above temperature by suppressing the decrease in temperature rising rate during heating and the decrease in temperature, the amount of heat given by the mantle heater, steam jacket, etc. should be covered with a heat insulating material around the reaction vessel. It is preferable to uniformly heat the reactor with a heater capable of adjusting the temperature.
- the holding time of the reaction temperature T is more preferably 1 hour or more, and further preferably 1.5 hours or more.
- the holding time of the reaction temperature is preferably 5 hours or less, more preferably 3 hours or less, and further preferably 2 hours or less. Further, in this step, it is preferable to stir the reaction liquid.
- Titanium oxide purification step S4 By the synthesis step S3, titanium oxide is precipitated in the reaction liquid to obtain a slurry. In the titanium oxide purification step S4, impurities such as Cl, S, and C in the slurry are removed in order to improve the purity of titanium oxide.
- a purification method any one or more of an ultrafiltration membrane, a reverse osmosis membrane, an ion exchange resin and an electrodialysis membrane may be used.
- Purified titanium oxide may be crushed if necessary.
- the crushing method is not particularly limited, and examples thereof include a method using a mortar and a ball mill.
- the ratio R of the amount of the substance of citric acid to the amount of the substance of Ti R ⁇ the amount of the substance of citric acid (mol) ⁇ / ⁇ the amount of the substance of Ti (mol) ⁇ is shown in Table 1 (that is, in Comparative Example 11, citric acid An aqueous solution (precursor solution) of titanium tetrachloride and citric acid, which was not added), was prepared. In the precursor aqueous solution preparation step S1, the temperature of the aqueous solution containing Ti was always kept at 20°C.
- Tianium oxide synthesis step S3 The reaction solution was transferred to a glass reactor. While stirring the reaction liquid in the reactor at 300 rpm using a magnetic stirrer, the temperature is raised to a target temperature, that is, 100° C. using an external heater at a heating rate of 0.6° C./min. Hold at 100° C. for 2 hours.
- a target temperature that is, 100° C. using an external heater at a heating rate of 0.6° C./min. Hold at 100° C. for 2 hours.
- the obtained slurry was allowed to cool to room temperature (25° C.).
- the slurry after standing to cool is neutralized with ammonia water, and collected by filtration with an ultrafiltration membrane (“Microsa UF (registered trademark)” manufactured by Asahi Kasei Co., Ltd., also in the following Examples and Comparative Examples).
- the obtained solid matter was washed with ion-exchanged water.
- the washed solid substance was put in an oven and dried at 60° C. to obtain a titanium oxide solid substance. This solid was crushed in a mortar to obtain titanium oxide powder.
- Table 1 shows the anatase content [mass %] in the crystalline phase of the obtained titanium oxide before and after the heating test at 700°C.
- Table 1 shows the anatase content [mass %] in the crystalline phase of the obtained titanium oxide before and after the heating test at 700°C.
- citric acid is used as the acid and the Ti concentration C of the reaction solution is 0.32 mol/L
- a change in the anatase content in the crystal phase of titanium oxide after the heating test at 700° C. with respect to the ratio R is shown.
- the graph is shown in FIG. The details of the heating test and the method for measuring the anatase content in the crystal phase will be described later.
- Examples 21-23, Comparative Examples 21-22> For Examples 11 to 13 and Comparative Examples 11 to 13, instead of adding water to the precursor aqueous solution, a method of adding the precursor aqueous solution to water was used, and Examples 21 to 23 and Comparative Example 21 were used. Titanium oxide powders were obtained by setting the ratio R to the value shown in Table 1 for each of Nos. Table 1 shows the anatase content [mass %] in the crystalline phase of the obtained titanium oxide before and after the heating test at 700°C.
- Comparative Example 23 titanium oxide was synthesized by the same method as in Example 8 described in Patent Document 4 above. Specifically, while maintaining an aqueous titanium tetrachloride solution having a Ti concentration of 18% by mass (titanium tetrachloride concentration of 71% by mass) at 20° C., citric acid monohydrate was added, and the ratio of the amount of the substance of citric acid to the amount of the substance of Ti was Was set to 0.01 to give a precursor aqueous solution. 20 g of the precursor aqueous solution at 20° C. was added dropwise to 850 mL of ion-exchanged water at 75° C.
- the content of anatase in the obtained titanium oxide crystal phase was 100% by mass.
- the anatase content [mass %] in the crystal phase after the heating test was 0 mass% (Table 1).
- Examples 41 to 45, Comparative Examples 41 to 45> With respect to Examples 11 to 13 and Comparative Examples 11 to 13, the ratio R is shown in Table 1 for Examples 41 to 45 and Comparative Examples 41 to 45 by replacing the citric acid with malic acid (the number of carboxy groups is 2). Titanium oxide powder was obtained with the indicated values. Table 1 shows the anatase content [mass %] in the crystalline phase of the obtained titanium oxide before and after the heating test at 700°C. Further, when malic acid is used as the acid and the Ti concentration C of the reaction solution is 0.32 mol/L, the change in the anatase content in the crystalline phase of titanium oxide after the heating test at 700° C. with respect to the ratio R is shown. The graph is shown in FIG. Here, the anatase content in the crystal phase at the ratio R 0 uses the data of Comparative Example 11.
- Titanium oxide was produced based on the method described in Example 1 of Patent Document 5. Specifically, while maintaining an aqueous titanium tetrachloride solution (Ti concentration 1.25 mol/L) of 100 g/L in terms of TiO 2 at 25° C., with respect to the mass of titanium tetrachloride contained in the aqueous solution converted to titanium oxide. Then, 3% by mass of citric acid monohydrate in terms of anhydrous citric acid was added (ratio R: 0.012), and the mixture was stirred for 30 minutes. The obtained aqueous solution is used as a precursor aqueous solution. Next, the aqueous solution was heated using an external heater and stirred at 92° C. for 30 minutes.
- Ti concentration 1.25 mol/L 100 g/L in terms of TiO 2 at 25° C.
- the obtained liquid was cooled to 70° C., and the pH was adjusted to 6.5 with aqueous ammonia (ammonia concentration: 25% by mass). Then, the obtained slurry was cooled to 25° C., filtered with an ultrafiltration membrane, and the recovered titanium oxide was washed with ion-exchanged water. The washed titanium oxide was placed in an oven and dried at 60°C.
- the content of anatase in the obtained titanium oxide crystal phase was 100% by mass.
- the anatase content rate [mass %] in the crystal phase after the heating test was 0.0 mass% (Table 1).
- I (2 ⁇ ) I S ( 2 ⁇ ) -I B (2 ⁇ ).
- I S (2 ⁇ ) is the diffraction intensity at 2 ⁇ (for example, the solid line pattern in FIG. 2) of the sample containing titanium oxide and the glass cell.
- I B (2 ⁇ ) is the diffraction intensity at 2 ⁇ of only the glass cell (for example, the dotted line pattern in FIG. 2).
- FIG. 7 is a graph showing changes in the anatase content in the crystalline phase of titanium oxide after the heating test at 700° C., with respect to B/S BET, which is the ratio of the full width at half maximum B and the BET specific surface area S BET .
- the present invention can provide titanium oxide which has a low BET specific surface area and can maintain a high content of the anatase crystalline phase in the crystalline phase even in a high temperature environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
低コストで、BET比表面積が大きく、かつ高温環境下においても結晶相中のアナターゼ結晶相の含有率を高く維持できる酸化チタンを提供する。全結晶相中のアナターゼ結晶相の含有率が95質量%以上の酸化チタンであって、X線回折測定における2θ=24.5°~26.0°にあるアナターゼ結晶相に対応するピークの半値幅をB[rad]、BET比表面積をSBET[m2/g]とすると、B≦2.9×10-2radであり、SBET≧245m2/gであり、かつB/SBET≦1.07×10-4g/m2である酸化チタン。
Description
本発明は酸化チタンに関し、特にアナターゼ型の酸化チタンに関する。
本願は、2019年2月19日に、日本に出願された特願2019-027727号に基づき優先権を主張し、その内容をここに援用する。
本願は、2019年2月19日に、日本に出願された特願2019-027727号に基づき優先権を主張し、その内容をここに援用する。
近年では、二酸化チタン(TiO2)は化学的に安定な材料であり白色顔料などとして広い分野で工業的に使用されている。また、これらの用途においてより高い機能を発現するため、比表面積の大きいアナターゼ型の微粒子酸化チタンが求められている。
アナターゼ型の微粒子酸化チタンを得る工業的な手法としては、主に気相法と液相法がある。このうち気相法として、特許文献1のようにハロゲン化チタンガスを酸性ガスと反応させる手法がある。
液相法としては、特許文献2では四塩化チタンを含む水溶液に酢酸、シュウ酸、ギ酸などのカルボン酸を添加し、酸化チタンの合成中に発生する塩酸をアンモニアで中和することが記載されている。
また、特許文献3では、硫酸チタニルから酸化チタンを液相で合成する際に金属元素、あるいはSi、Pを添加することが記載されている。特許文献4では、液相法により四塩化チタンから酸化チタンを合成する方法において、四塩化チタン水溶液を温水中に滴下することが記載されている。
特許文献5の実施例1では、四塩化チタン水溶液に無水クエン酸を添加し、92℃に昇温し、30分保持した後に、70℃に冷却し、アンモニア水で中和する工程を含む酸化チタン粉末の製造方法が記載されている。また、特許文献5では、この方法によって得られた酸化チタンを500℃で2時間焼成したものが記載されており、焼成後の酸化チタンにおけるルチル含有量が8%であることが開示されている。
非特許文献1では、テストチューブ中でチタンn-ブトキシド(TNB)をトルエンに溶解し、オートクレーブにセットし、テストチューブとオートクレーブ壁面の間に水を入れて300℃で反応させることが記載されている。
H. Kominami et al., "Hydrolysis of Titanium Alkoxide in Organic Solvent at High Temperatures: A New Synthetic Method for Nanosized, Thermally Stable Titanium(IV) Oxide", Industrial & Engineering Chemistry Research, 1999, vol. 38, p. 3925-3931
TiO2が取りうる結晶構造として主に、アナターゼ結晶相(Anatase)、ブルッカイト結晶相(Brookite)、ルチル結晶相(Rutile)の3つが知られている。とりわけアナターゼ結晶相を多く含むアナターゼ型酸化チタンは、誘電体原料、太陽電池電極、あるいは光触媒原料として注目されている。一例として、誘電体原料であるチタン酸バリウムBaTiO3を合成する際には、原料であるBa源との反応性が高いアナターゼ型酸化チタンが好ましいとされている。
BaTiO3の合成方法として炭酸バリウムと酸化チタンとを反応させる固相法がある。この方法では600℃から700℃で反応させる必要があり、この温度域でルチル転化率が低く粒成長しにくいアナターゼ型酸化チタンが求められている。
しかし、特許文献1に記載の酸化チタンは、製造工程において高温でハロゲン化チタンガスを反応させる必要があり、作製した酸化チタンがルチル相に転移する。
特許文献2に記載の製造方法で得られた酸化チタンは、結晶子径が小さすぎる、あるいは、比表面積が小さすぎる。すなわち、特許文献2では、一次粒子の粗大化を抑制しつつ結晶子サイズの大きな酸化チタンは得られていない。
特許文献3に記載の方法で得られる酸化チタンは、平均粒子径5μm以上で、非常に大きく、超微粒子酸化チタンとしての上記用途に適さない。
特許文献4に記載の製造方法で得られる酸化チタンでは、後述する比較例23の通り、700℃の高温環境下においてアナターゼ結晶構造はほぼ全て失われている。
また、特許文献5に記載の上記製造方法で得られる酸化チタンも、後述する比較例51の通り、700℃の高温環境下においてアナターゼ結晶相はほぼ全て失われている。
非特許文献1で得られている酸化チタン(Table 1、Titania 2~6)は、高温環境下でのアナターゼ残存率は高い(Table 3)が、いずれもBET比表面積が小さく、粒子が粗い。また、同文献のTitania 1は、700℃で1時間熱処理すると大部分はルチル化する。また、非特許文献1の酸化チタンは、高温高圧下での製造工程があるため、製造コストが高くなる。
そこで、本発明は、低コストで、BET比表面積が大きく、かつ高温環境下においても結晶相中のアナターゼ結晶相の含有率を高く維持できる酸化チタンを提供することを目的とする。
上記課題を解決するための本発明の構成は以下の通りである。
〔1〕 全結晶相中のアナターゼ結晶相の含有率が95質量%以上の酸化チタンであって、X線回折測定における2θ=24.5°~26.0°にあるアナターゼ結晶相に対応するピークの半値幅をB[rad]、BET比表面積をSBET[m2/g]とすると、B≦2.9×10-2radであり、SBET≧245m2/gであり、かつB/SBET≦1.07×10-4g/m2である酸化チタン。
〔2〕 四塩化チタン水溶液とα-ヒドロキシカルボン酸との混合溶液を、水で希釈することによって得られる〔1〕に記載の酸化チタン。
〔3〕700℃で2時間熱処理した後のBET比表面積をSBET2[m2/g]とすると、15×10-3≦SBET2/SBET≦1.0である〔1〕または〔2〕に記載の酸化チタン。
〔1〕 全結晶相中のアナターゼ結晶相の含有率が95質量%以上の酸化チタンであって、X線回折測定における2θ=24.5°~26.0°にあるアナターゼ結晶相に対応するピークの半値幅をB[rad]、BET比表面積をSBET[m2/g]とすると、B≦2.9×10-2radであり、SBET≧245m2/gであり、かつB/SBET≦1.07×10-4g/m2である酸化チタン。
〔2〕 四塩化チタン水溶液とα-ヒドロキシカルボン酸との混合溶液を、水で希釈することによって得られる〔1〕に記載の酸化チタン。
〔3〕700℃で2時間熱処理した後のBET比表面積をSBET2[m2/g]とすると、15×10-3≦SBET2/SBET≦1.0である〔1〕または〔2〕に記載の酸化チタン。
本発明によれば、低コストで、BET比表面積が大きく、かつ高温環境下においても結晶相中のアナターゼ結晶相の含有率を高く維持できる酸化チタンを提供することができる。
以下、本発明の実施形態にかかる酸化チタン及びその製造方法について説明するが、本発明は以下の実施形態に限られない。
ここで、「酸化チタン」とは、特に断りがなければ酸化チタン(IV)(TiO2)のことを指すものとする。「Ti」とは、特に断りがなければ、化合物、イオン、錯体等を構成するチタン原子全てを指す。「Ti濃度」とは、化合物、イオン、錯体等を構成する全てのチタン原子の濃度である。
<1.酸化チタン>
本発明にかかる酸化チタンは、全結晶相中のアナターゼ結晶相の含有率(以下、結晶相中のアナターゼ含有率とすることもある)が95質量%以上であり、98質量%以上であることが好ましく、100質量%であることが最も好ましい。
本発明にかかる酸化チタンは、全結晶相中のアナターゼ結晶相の含有率(以下、結晶相中のアナターゼ含有率とすることもある)が95質量%以上であり、98質量%以上であることが好ましく、100質量%であることが最も好ましい。
酸化チタンのBET比表面積をSBET[m2/g]、真密度をρ[g/cm3]とすると、酸化チタンの平均一次粒子径は、6000/(ρ×SBET)[nm]で表すことができる。ρは一定であるので、酸化チタンの平均一次粒子径は1/SBETに比例すると考えられる。
アナターゼ結晶相の平均結晶子サイズは、Sherrerの式、すなわちKλ/Bcosθ[Å]で表される。ここで、Kは形状因子であり、0.9で一定とする。λはCu-Kα1線の波長で1.5418Åである。cosθは一定とみなすことができる。B[rad]は、酸化チタンのCu-Kα1線によるX線回折測定(以下、単にX線回折測定とすることもある)における2θ=24.5°~26.0°にあるアナターゼ結晶相に対応するピークの半値幅である。したがって、アナターゼ結晶相の平均結晶子サイズは、1/Bに比例する。
ここで酸化チタンの平均一次粒子径とアナターゼ相の平均結晶子サイズとの関係について考える。(1/SBET)/(1/B)=B/SBET[g/m2]の値が大きい程、酸化チタンの一次粒子径に対するアナターゼ相の結晶子サイズは小さくなり、この値が小さい程、酸化チタンの一次粒子径に対するアナターゼ相の結晶子サイズは大きくなる。
アナターゼ型酸化チタンを加熱した場合、結晶子は、隣合う結晶子から受ける応力によってルチル化が進行すると考えられる。一次粒子径に対するアナターゼ結晶子のサイズが小さい、すなわちB/SBETが大きければ、一次粒子に含まれるアナターゼ結晶子の数が多くなる。すなわち、一次粒子の内部のアナターゼ結晶子は、多くの結晶子と隣り合う。そのため、多くの箇所からルチル化が進行すると考えられる。また、この場合、一次粒子の内部のアナターゼ結晶子は、応力を逃すことができず、この点からもルチル化が進行しやすいと考えらえる。
これらのことから、一次粒子に対するアナターゼ結晶子のサイズを大きくする必要がある。すなわち、本発明の酸化チタンではB/SBETを小さくする必要がある。具体的には、B/SBET≦1.07×10-4g/m2であり、好ましくはB/SBET≦1.05×10-4g/m2であり、より好ましくはB/SBET≦1.00×10-4g/m2である。
BとSBETとが上記の関係を満たしていても、酸化チタンのBET比表面積が小さすぎると、アナターゼ型酸化チタンの加熱によるルチル化が進行しやすくなる。これは、加熱により、隣合う一次粒子間で応力が作用した場合、それぞれの一次粒子が大きいと、応力を逃すために粒子が動くことができず、結果として一次粒子に含まれるアナターゼ結晶子がルチル化するためであると考えらえる。また、超微粒子酸化チタンとしては、BET比表面積が十分に大きくなくてはならない。このことから、本発明の酸化チタンのBET比表面積SBETは245m2/g以上であり、好ましくは260m2/g以上であり、より好ましくは300m2/g以上である。
BとSBETとが上記の関係を満たしていても、アナターゼ結晶相に対応するピークの半値幅をBが広いと、ルチル化が進行しやすくなる。アナターゼ結晶子のサイズが小さすぎると、結晶子の比表面積が大きくなり、結晶の体積に対してルチル化の起点が増えるためであると考えられる。このことから、本発明の酸化チタンにおいて、B≦2.9×10-2radである必要があり、好ましくはB≦2.8×10-2radであり、より好ましくはB≦2.7×10-2radである。
さらに、本発明にかかる酸化チタンを700℃の環境下で2時間熱処理した後のBET比表面積をSBET2[m2/g]とすると、15×10-3≦SBET2/SBET≦1.0であることが好ましく、20×10-3≦SBET2/SBET≦1.0であることがより好ましく、25×10-3≦SBET2/SBET≦1.0であることがさらに好ましい。SBET2/SBETの値が1に近いほど、熱処理をしても元の粒子の形態を維持しているということができ、すなわち、元の結晶構造を維持していると言える。
<2.酸化チタンの製造方法>
図1は、本発明にかかる酸化チタンの製造方法の一例を示したフロー図である。なお、図1及び以下の説明にかかる製造方法は本発明にかかる酸化チタンを得るための方法の一例に過ぎず、本発明にかかる酸化チタンが得られるのであればここに述べる製造方法に限られない。図1に示される酸化チタンの製造方法の一例では、四塩化チタン及びα-ヒドロキシカルボン酸の水溶液を、前駆体水溶液として調製する調製工程S1と、前駆体水溶液に水を加えて希釈し反応液とする希釈工程S2と、反応液から酸化チタンを合成する合成工程S3と、合成された酸化チタンを精製する精製工程S4とを含む。以下、各工程について説明する。
図1は、本発明にかかる酸化チタンの製造方法の一例を示したフロー図である。なお、図1及び以下の説明にかかる製造方法は本発明にかかる酸化チタンを得るための方法の一例に過ぎず、本発明にかかる酸化チタンが得られるのであればここに述べる製造方法に限られない。図1に示される酸化チタンの製造方法の一例では、四塩化チタン及びα-ヒドロキシカルボン酸の水溶液を、前駆体水溶液として調製する調製工程S1と、前駆体水溶液に水を加えて希釈し反応液とする希釈工程S2と、反応液から酸化チタンを合成する合成工程S3と、合成された酸化チタンを精製する精製工程S4とを含む。以下、各工程について説明する。
なお、以下の工程において、α-ヒドロキシカルボン酸を含む反応液内で、四塩化チタンから酸化チタンが合成されている。酸化チタンの結晶の核の形成、及び結晶の成長、さらには粒子の生成過程において、α-ヒドロキシカルボン酸が何らかの作用をすると考えられる。ただし、α-ヒドロキシカルボン酸による作用は、本発明の酸化チタンを製造する上で必須ではなく、本発明の上記要件を満たす酸化チタンが得られれば、酸化チタンの製造工程において、α-ヒドロキシカルボン酸を用いなくてもよい。
<2-1.調製工程S1>
調製工程S1では、四塩化チタン水溶液と、α-ヒドロキシカルボン酸とを混合し、四塩化チタン及びα-ヒドロキシカルボン酸の水溶液(混合溶液)を、前駆体水溶液として調製する。α-ヒドロキシカルボン酸は、分子内の3個または2個のカルボキシ基を有することが好ましい。混合方法としては四塩化チタン水溶液を攪拌しながら、α-ヒドロキシカルボン酸を一回で加えることが添加開始時と終了時とで反応条件に差が出ないため好ましい。十分に均一な水溶液を得るために、混合は3分以上撹拌しながら行うことが好ましく、5分以上行うことがより好ましく、8分以上行うことがさらに好ましい。
調製工程S1では、四塩化チタン水溶液と、α-ヒドロキシカルボン酸とを混合し、四塩化チタン及びα-ヒドロキシカルボン酸の水溶液(混合溶液)を、前駆体水溶液として調製する。α-ヒドロキシカルボン酸は、分子内の3個または2個のカルボキシ基を有することが好ましい。混合方法としては四塩化チタン水溶液を攪拌しながら、α-ヒドロキシカルボン酸を一回で加えることが添加開始時と終了時とで反応条件に差が出ないため好ましい。十分に均一な水溶液を得るために、混合は3分以上撹拌しながら行うことが好ましく、5分以上行うことがより好ましく、8分以上行うことがさらに好ましい。
分子内に3個のカルボキシ基を有するα-ヒドロキシカルボン酸としては、例えば、クエン酸、イソクエン酸、1,2-ジヒドロキシ-1,1,2-エタントリカルボン酸等が挙げられ、クエン酸を用いることが好ましい。入手が容易であること、及び取り扱いやすくコスト面で有利なためである。
分子内に2個のカルボキシ基を有するα-ヒドロキシカルボン酸としては、酒石酸、リンゴ酸、タルトロン酸、シトラマル酸等が挙げられ、酒石酸またはリンゴ酸を用いることが好ましい。入手が容易であること、及び取り扱いやすくコスト面で有利なためである。
調製工程S1では、四塩化チタン水溶液及び前駆体水溶液は35℃以下に保持することが好ましく、30℃以下に保持することがより好ましく、25℃以下に保持することがさらに好ましい。Ti濃度が高い状態での四塩化チタンの加水分解の進行を抑制することで非晶質酸化チタンの生成を抑制するためである。
四塩化チタン水溶液におけるTi濃度は10質量%以上であることが好ましく、12質量%以上であることがより好ましく、14質量%以上であることがさらに好ましい。保存期間中に四塩化チタンが水と反応し水酸化チタンゾルが生成してしまうことを抑制するためである。
四塩化チタン水溶液におけるTi濃度は20質量%以下であることが好ましく、18質量%以下であることがより好ましく、16質量%以下であることがさらに好ましい。四塩化チタン水溶液の保存中に加水分解反応が進行することを抑制するためである。
前駆体水溶液の調製に用いられたTiの物質量に対するα-ヒドロキシカルボン酸の物質量の比率R(モル比率{α-ヒドロキシカルボン酸の物質量(mol)}/{Tiの物質量(mol)})の好ましい範囲は、用いられるα-ヒドロキシカルボン酸に含まれるカルボキシ基の数によって異なる。比率Rの値が好ましい範囲にあれば、本発明にかかる酸化チタンが得られやすい。また、比率Rの値を大きくしすぎないことで、生成する酸化チタン粒子を良好に分散させることができ、大きいBET比表面積を有する微粒子酸化チタンを作製することができると考えられる。
α-ヒドロキシカルボン酸が、分子内にカルボキシ基を3個有する場合、比率Rの値は0.017以下であることが好ましく、0.013以下であることがより好ましく、0.012以下であることがさらに好ましい。α-ヒドロキシカルボン酸が、分子内にカルボキシ基を3個有する場合、比率Rの値は0.006以上であることが好ましく、0.008以上であることがより好ましく、0.009以上であることがさらに好ましい。
α-ヒドロキシカルボン酸が、分子内にカルボキシ基を2個有する場合、比率Rの値は0.065以下であることが好ましく、0.056以下であることがより好ましく、0.050以下であることがさらに好ましく、0.048以下であることが特に好ましい。α-ヒドロキシカルボン酸が、分子内にカルボキシ基を2個有する場合、比率Rの値は0.034以上であることが好ましく、0.039以上であることがより好ましく、0.044以上であることがさらに好ましい。
なお、本工程においてはα-ヒドロキシカルボン酸を水溶液として四塩化チタン水溶液に加えてもよい。ただし、この場合、上記の水酸化チタンゾルの生成を抑制するために、前駆体水溶液中のTi濃度が大きく低下しないようにすることが好ましい。具体的には、前駆体水溶液中のTi濃度を10質量%以上とすることが好ましく、12質量%以上とすることがより好ましく、14質量%以上とすることがさらに好ましい。
<2-2.希釈工程S2>
希釈工程S2では、調製された前駆体水溶液(前記混合溶液)を、水で希釈する。希釈は、前駆体水溶液に水を加えてもよく、水に前駆体水溶液を加えてもよい。希釈後のTi濃度C(以下、希釈前のTi濃度と希釈後のTi濃度とを区別するために、後者を「希釈後のTi濃度」または単に「Ti濃度C」とする)は0.07~0.70mol/Lとすることが好ましい。希釈後の水溶液を反応液とする。反応液のTi濃度Cは、この後の酸化チタンの合成工程S3における反応温度Tと関係があるため、Ti濃度Cと反応温度Tとの関係及び好ましいTi濃度Cの範囲については酸化チタンの合成工程S3を説明する項にて後述する。
希釈工程S2では、調製された前駆体水溶液(前記混合溶液)を、水で希釈する。希釈は、前駆体水溶液に水を加えてもよく、水に前駆体水溶液を加えてもよい。希釈後のTi濃度C(以下、希釈前のTi濃度と希釈後のTi濃度とを区別するために、後者を「希釈後のTi濃度」または単に「Ti濃度C」とする)は0.07~0.70mol/Lとすることが好ましい。希釈後の水溶液を反応液とする。反応液のTi濃度Cは、この後の酸化チタンの合成工程S3における反応温度Tと関係があるため、Ti濃度Cと反応温度Tとの関係及び好ましいTi濃度Cの範囲については酸化チタンの合成工程S3を説明する項にて後述する。
希釈工程S2では、前駆体水溶液に水を加えることがより好ましい。希釈中の水溶液のTi濃度が希釈後の水溶液のTi濃度Cを下回ることはなく、特別な装置を用いなくても四塩化チタンと水との反応を抑制できると考えられるためである。また、水溶液中のTiを含む化合物の急激な温度変化を抑制することもでき、精密な温度管理の必要性も避けられる。
希釈工程S2では、前駆体水溶液に加えられる水の温度は、特に限定されないが、70℃以下であることが好ましく、60℃以下であることがより好ましい。また、前駆体水溶液に加えられる水の温度は、5℃以上であることが好ましく、10℃以上であることがより好ましい。
ここで用いられる水は、後述する酸化チタンの精製工程S4で除去しなければならない不純物を低減させるため、純水またはイオン交換水であることが好ましいが、精製工程S4でそれらが除去できるのであればこれに限られない。
<2-3.酸化チタンの合成工程S3>
酸化チタンの合成工程S3では、希釈工程S2で得られた反応液を、反応温度T[℃]にして酸化チタンを合成し、酸化チタン粒子を析出させる。反応温度Tは60℃以上かつ反応液の沸点以下であることが好ましい。より好ましくは、Ti濃度Cに応じた反応温度Tで酸化チタンを合成し、酸化チタン粒子を析出させる。合成工程S3における、反応液のTi濃度Cに対する反応温度Tのより好ましい範囲は以下の(a)~(c)の通りである。
(a)Ti濃度Cが0.07mol/L以上0.20mol/L未満である場合、反応温度Tは60~75℃。
(b)Ti濃度Cが0.20mol/L以上0.45mol/L未満である場合、反応温度Tは75℃以上かつ反応液の沸点以下。なお、反応が進むと酸化チタンが析出し、反応液の溶質の濃度が低下するため、反応液の沸点は低下する。また、反応温度Tを反応の沸点とする場合、本工程では還流等、反応液中の水の量を一定に保つことができる方法を用いることが好ましい。
(c)Ti濃度Cが0.45mol/L以上0.70mol/L以下である場合、反応温度Tは60~75℃。
酸化チタンの合成工程S3では、希釈工程S2で得られた反応液を、反応温度T[℃]にして酸化チタンを合成し、酸化チタン粒子を析出させる。反応温度Tは60℃以上かつ反応液の沸点以下であることが好ましい。より好ましくは、Ti濃度Cに応じた反応温度Tで酸化チタンを合成し、酸化チタン粒子を析出させる。合成工程S3における、反応液のTi濃度Cに対する反応温度Tのより好ましい範囲は以下の(a)~(c)の通りである。
(a)Ti濃度Cが0.07mol/L以上0.20mol/L未満である場合、反応温度Tは60~75℃。
(b)Ti濃度Cが0.20mol/L以上0.45mol/L未満である場合、反応温度Tは75℃以上かつ反応液の沸点以下。なお、反応が進むと酸化チタンが析出し、反応液の溶質の濃度が低下するため、反応液の沸点は低下する。また、反応温度Tを反応の沸点とする場合、本工程では還流等、反応液中の水の量を一定に保つことができる方法を用いることが好ましい。
(c)Ti濃度Cが0.45mol/L以上0.70mol/L以下である場合、反応温度Tは60~75℃。
上記条件(a)~(c)の中でも、(b)または(c)が好ましく、(b)がより好ましい。(b)の中でも、反応液のTi濃度Cは0.20~0.40mol/Lであることが好ましく、0.25~0.40mol/Lであることがより好ましく、0.25~0.35mol/Lであることがさらに好ましい。また、(b)の中でも、反応温度Tは80℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上がさらに好ましい。
本工程の前の反応液の温度が反応温度Tより低い場合、反応液を加熱する。反応液の加熱は速く行うことが生産性の観点で好ましい。しかし、非晶質酸化チタンの析出を抑制し、結晶性を向上させるには、反応の急激な進行を抑制し、十分に結晶成長させるように昇温速度を抑えることが好ましい。そのため、目標温度、すなわち反応温度Tに至るまでの反応液の加熱は昇温速度0.1℃/min以上1.5℃/min以下で行うことが好ましく、0.3℃/min以上1.0℃/min以下で行うことがより好ましく0.6℃/min以上1.0℃/min以下で行うことがさらに好ましい。
なお、反応液から酸化チタンを生成する反応は吸熱反応であることが実験的にわかっている。そこで、加熱の際の昇温速度の低下、及び温度の低下を抑制して上記の温度を保持するために、反応容器周囲を断熱材等で覆ったうえでマントルヒーターやスチームジャケット等の与える熱量を調整できる加熱器で反応器を均一に加熱することが好ましい。
この工程においては、加熱を終えて、反応液の温度が反応温度Tに至った後、反応液を0.5時間以上、反応温度Tで保持して反応させることが好ましい。反応液中の成分を十分に反応させるためである。この観点から反応温度Tの保持時間は、1時間以上であることがより好ましく、1.5時間以上であることがさらに好ましい。ただし、生産性を考慮すると反応時間は短いほうが良い。そのため、反応温度の保持時間は5時間以下であることが好ましく、3時間以下であることがより好ましく、2時間以下であることがさらに好ましい。また、この工程において、反応液を撹拌することが好ましい。
<2-4.酸化チタンの精製工程S4>
合成工程S3により、反応液中で酸化チタンが析出し、スラリーが得られる。酸化チタンの精製工程S4では、酸化チタンの純度を向上させるためスラリー中のCl、S、Cなどの不純物を除去する。精製方法としては限外ろ過膜、逆浸透膜、イオン交換樹脂、電気透析膜のいずれか一つまたは二つ以上を使用してよい。
合成工程S3により、反応液中で酸化チタンが析出し、スラリーが得られる。酸化チタンの精製工程S4では、酸化チタンの純度を向上させるためスラリー中のCl、S、Cなどの不純物を除去する。精製方法としては限外ろ過膜、逆浸透膜、イオン交換樹脂、電気透析膜のいずれか一つまたは二つ以上を使用してよい。
精製された酸化チタンは、必要に応じて粉砕してもよい。粉砕方法は特に限定されないが、乳鉢、ボールミル等を用いた方法が挙げられる。
以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
<1-1.実施例11~13、比較例11~13>
(前駆体水溶液の調製工程S1)
20℃に保たれたTi濃度15質量%(四塩化チタン濃度59質量%)の四塩化チタン水溶液45gに、クエン酸一水和物を添加した。Tiの物質量に対するクエン酸の物質量の比率R{クエン酸の物質量(mol)}/{Tiの物質量(mol)}が表1に示される値(すなわち、比較例11ではクエン酸を添加していない)となる四塩化チタン及びクエン酸の水溶液(前駆体水溶液)を調製した。前駆体水溶液の調製工程S1において、Tiを含む水溶液の温度を常に20℃に保った。
(前駆体水溶液の調製工程S1)
20℃に保たれたTi濃度15質量%(四塩化チタン濃度59質量%)の四塩化チタン水溶液45gに、クエン酸一水和物を添加した。Tiの物質量に対するクエン酸の物質量の比率R{クエン酸の物質量(mol)}/{Tiの物質量(mol)}が表1に示される値(すなわち、比較例11ではクエン酸を添加していない)となる四塩化チタン及びクエン酸の水溶液(前駆体水溶液)を調製した。前駆体水溶液の調製工程S1において、Tiを含む水溶液の温度を常に20℃に保った。
(希釈工程S2)
調製された20℃の前駆体水溶液に、20℃のイオン交換水を400mL加え、10分撹拌し、Ti濃度0.32mol/Lに希釈し、反応液を調製した。
調製された20℃の前駆体水溶液に、20℃のイオン交換水を400mL加え、10分撹拌し、Ti濃度0.32mol/Lに希釈し、反応液を調製した。
(酸化チタンの合成工程S3)
反応液をガラス製の反応器に移した。反応器内の反応液を、マグネットスターラーを用いて300rpmで攪拌しながら、外部ヒーターを用いて0.6℃/minの昇温速度で目標温度、すなわち反応温度100℃まで昇温させ、反応温度100℃で2時間保持した。
反応液をガラス製の反応器に移した。反応器内の反応液を、マグネットスターラーを用いて300rpmで攪拌しながら、外部ヒーターを用いて0.6℃/minの昇温速度で目標温度、すなわち反応温度100℃まで昇温させ、反応温度100℃で2時間保持した。
(精製工程S4)
その後、得られたスラリーを室温(25℃)まで放冷した。放冷後のスラリーをアンモニア水にて中和し、限外濾過膜(旭化成株式会社製「マイクローザUF(登録商標)」、以下の実施例及び比較例においても同じ)にてろ過回収を行い、得られた固形物を、イオン交換水を用いて洗浄した。洗浄された固形物をオーブンに入れて60℃で乾燥させ、酸化チタンの固形物を得た。この固形物を乳鉢で粉砕し、酸化チタン粉末を得た。
その後、得られたスラリーを室温(25℃)まで放冷した。放冷後のスラリーをアンモニア水にて中和し、限外濾過膜(旭化成株式会社製「マイクローザUF(登録商標)」、以下の実施例及び比較例においても同じ)にてろ過回収を行い、得られた固形物を、イオン交換水を用いて洗浄した。洗浄された固形物をオーブンに入れて60℃で乾燥させ、酸化チタンの固形物を得た。この固形物を乳鉢で粉砕し、酸化チタン粉末を得た。
図2は、本発明の実施例11で製造した酸化チタンのXRD回折パターン(実線)及び測定に用いるガラスセルのみ(バックグラウンド)のXRD回折パターン(点線)を示す図である。また、実施例11で製造した酸化チタンのXRDパターンについて、後述するバックグラウンド補正をしたXRD回折パターンを図3に示す。図3のパターンにおいて、2θ=25,3°にあるピークの半値幅を求めた結果、0.024radであった。
得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。また、酸としてクエン酸を用い、反応液のTi濃度Cが0.32mol/Lの場合の、比率Rに対する700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフを図4に示す。なお、加熱試験及び結晶相中のアナターゼ含有率の測定方法の詳細については後述する。
<1-2.実施例21~23、比較例21~22>
実施例11~13及び比較例11~13に対して、前駆体水溶液に水を添加する方法に代えて、水に前駆体水溶液を添加する方法を用いて、実施例21~23及び比較例21~22の各々について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。
実施例11~13及び比較例11~13に対して、前駆体水溶液に水を添加する方法に代えて、水に前駆体水溶液を添加する方法を用いて、実施例21~23及び比較例21~22の各々について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。
<1-3.比較例23>
比較例23では、上記特許文献4に記載されている実施例8と同様の方法により酸化チタンを合成した。具体的にはTi濃度18質量%(四塩化チタン濃度71質量%)の四塩化チタン水溶液を20℃に保ちながらクエン酸一水和物を加え、Tiの物質量に対するクエン酸の物質量の比率を0.01として、前駆体水溶液とした。20℃の前駆体水溶液20gを、75℃のイオン交換水850mLに、前駆体水溶液を加えられる側の温度を75℃に保ちながら滴下した(滴下後のTi濃度は0.088mol/L)。滴下後、直ちにこの水溶液を20℃に冷却した。冷却後、水溶液をアンモニア水で中和し、限外ろ過膜にて沈殿物を濾過回収し、イオン交換水にて洗浄を行った後、オーブンを用いて80℃で乾燥させて、酸化チタン粉末を得た。
比較例23では、上記特許文献4に記載されている実施例8と同様の方法により酸化チタンを合成した。具体的にはTi濃度18質量%(四塩化チタン濃度71質量%)の四塩化チタン水溶液を20℃に保ちながらクエン酸一水和物を加え、Tiの物質量に対するクエン酸の物質量の比率を0.01として、前駆体水溶液とした。20℃の前駆体水溶液20gを、75℃のイオン交換水850mLに、前駆体水溶液を加えられる側の温度を75℃に保ちながら滴下した(滴下後のTi濃度は0.088mol/L)。滴下後、直ちにこの水溶液を20℃に冷却した。冷却後、水溶液をアンモニア水で中和し、限外ろ過膜にて沈殿物を濾過回収し、イオン交換水にて洗浄を行った後、オーブンを用いて80℃で乾燥させて、酸化チタン粉末を得た。
得られた酸化チタンの結晶相中のアナターゼ含有率は100質量%であった。この酸化チタンに対して、後述する700℃での加熱試験を行ったところ、加熱試験後における結晶相中のアナターゼ含有率[質量%]は0質量%となった(表1)。
<1-4.実施例31~34、比較例31~32>
実施例11~13及び比較例11~13に対して、クエン酸を酒石酸(カルボキシ基の数2)に代えて、実施例31~34及び比較例31~32の各々について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。また、酸として酒石酸を用い、反応液のTi濃度Cが0.32mol/Lの場合の、比率Rに対する700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフを図5に示す。なお、ここで比率R=0における結晶相中のアナターゼ含有率は比較例11のデータを用いた。
実施例11~13及び比較例11~13に対して、クエン酸を酒石酸(カルボキシ基の数2)に代えて、実施例31~34及び比較例31~32の各々について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。また、酸として酒石酸を用い、反応液のTi濃度Cが0.32mol/Lの場合の、比率Rに対する700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフを図5に示す。なお、ここで比率R=0における結晶相中のアナターゼ含有率は比較例11のデータを用いた。
<1-5.実施例41~45、比較例41~45>
実施例11~13及び比較例11~13に対して、クエン酸をリンゴ酸(カルボキシ基の数2)に代えて、実施例41~45及び比較例41~45について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。また、酸としてリンゴ酸を用い、反応液のTi濃度Cが0.32mol/Lの場合の、比率Rに対する700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフを図6に示す。なお、ここで比率R=0における結晶相中のアナターゼ含有率は比較例11のデータを用いた。
実施例11~13及び比較例11~13に対して、クエン酸をリンゴ酸(カルボキシ基の数2)に代えて、実施例41~45及び比較例41~45について、比率Rを表1に示された値として酸化チタン粉末を得た。得られた酸化チタンの700℃での加熱試験の前後における結晶相中のアナターゼ含有率[質量%]を表1に示す。また、酸としてリンゴ酸を用い、反応液のTi濃度Cが0.32mol/Lの場合の、比率Rに対する700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフを図6に示す。なお、ここで比率R=0における結晶相中のアナターゼ含有率は比較例11のデータを用いた。
<1-6.比較例51>
特許文献5の実施例1に記載の方法に基づいて酸化チタンを作製した。具体的には、TiO2換算で100g/Lの四塩化チタン水溶液(Ti濃度1.25mol/L)を25℃で保持しながら、水溶液に含まれる四塩化チタンの酸化チタンに換算した質量に対して、無水クエン酸換算で3質量%のクエン酸一水和物を添加して(比率R:0.012)、30分攪拌した。得られた水溶液を前駆体水溶液とする。次に、外部ヒーターを用いて水溶液を昇温し、92℃で30分間攪拌した。その後、得られた液を70℃まで冷却し、アンモニア水(アンモニア濃度25質量%)でpH=6.5とした。その後、得られたスラリーを25℃に冷却し、限外濾過膜にてろ過し、回収した酸化チタンを、イオン交換水を用いて洗浄した。洗浄された酸化チタンをオーブンに入れて60℃で乾燥させた。
特許文献5の実施例1に記載の方法に基づいて酸化チタンを作製した。具体的には、TiO2換算で100g/Lの四塩化チタン水溶液(Ti濃度1.25mol/L)を25℃で保持しながら、水溶液に含まれる四塩化チタンの酸化チタンに換算した質量に対して、無水クエン酸換算で3質量%のクエン酸一水和物を添加して(比率R:0.012)、30分攪拌した。得られた水溶液を前駆体水溶液とする。次に、外部ヒーターを用いて水溶液を昇温し、92℃で30分間攪拌した。その後、得られた液を70℃まで冷却し、アンモニア水(アンモニア濃度25質量%)でpH=6.5とした。その後、得られたスラリーを25℃に冷却し、限外濾過膜にてろ過し、回収した酸化チタンを、イオン交換水を用いて洗浄した。洗浄された酸化チタンをオーブンに入れて60℃で乾燥させた。
得られた酸化チタンの結晶相中のアナターゼ含有率は100質量%であった。この酸化チタンに対して、後述する700℃での加熱試験を行ったところ、加熱試験後における結晶相中のアナターゼ含有率[質量%]は0.0質量%となった(表1)。
<2.評価方法>
<2-1.加熱試験>
上記実施例及び比較例の各々で得られた酸化チタンについて次の通り加熱試験を行った。まず、得られた酸化チタン粉末2gをアルミナるつぼに入れ、大気雰囲気下、電気炉で25℃から700℃まで2時間で昇温し、700℃環境下で2時間放置した。その後、酸化チタン粉末の入ったアルミナるつぼを電気炉から取り出し、室温(25℃)で放冷した。加熱試験の前、及び加熱試験の後の酸化チタンについて以下の評価を行った。
<2-1.加熱試験>
上記実施例及び比較例の各々で得られた酸化チタンについて次の通り加熱試験を行った。まず、得られた酸化チタン粉末2gをアルミナるつぼに入れ、大気雰囲気下、電気炉で25℃から700℃まで2時間で昇温し、700℃環境下で2時間放置した。その後、酸化チタン粉末の入ったアルミナるつぼを電気炉から取り出し、室温(25℃)で放冷した。加熱試験の前、及び加熱試験の後の酸化チタンについて以下の評価を行った。
<2-2.各結晶相の含有率の測定>
加熱試験前後の各々の酸化チタンについて、以下の通りX線回折測定を行い、酸化チタンの結晶相中に含まれるアナターゼ、ルチル、ブルッカイトの各結晶相の割合を算出した。粉末X線解析測定はPANalytical社製X’pert PROを用いて行った。銅ターゲットのCu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~35°、サンプリング幅0.0167°、走査速度0.0192°/sの条件でX線回折測定を行った。
加熱試験前後の各々の酸化チタンについて、以下の通りX線回折測定を行い、酸化チタンの結晶相中に含まれるアナターゼ、ルチル、ブルッカイトの各結晶相の割合を算出した。粉末X線解析測定はPANalytical社製X’pert PROを用いて行った。銅ターゲットのCu-Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20~35°、サンプリング幅0.0167°、走査速度0.0192°/sの条件でX線回折測定を行った。
測定にあたっては、ガラスセルのみでのバックグラウンドを測定して、酸化チタン及びガラスセルを含むサンプルで測定される回折強度から、バックグラウンドの回折強度を差し引くことにより、サンプルの回折パターンを補正した。バックグラウンド補正後(例えば、図3のパターン)の酸化チタンの回折強度は、I(2θ)=IS(2θ)-IB(2θ)で求められる。ここで、IS(2θ)は、酸化チタン及びガラスセルを含むサンプルの2θにおける回折強度(例えば、図2における実線のパターン)である。IB(2θ)は、ガラスセルのみの2θにおける回折強度(例えば、図2における点線のパターン)である。
加熱試験前後での酸化チタンの各結晶相の割合については、アナターゼ結晶相に対応するピーク(2θ=24.5~26.0°)の強度(Ia)、ルチル結晶相に対応するピーク(2θ=26.6~28.1°)の強度(Ir)、及びブルッカイト結晶相に対応するピーク(2θ=30.8~32.3°)の強度(Ib)から以下の式で計算した。
結晶相中のアナターゼ含有率(質量%)=Ia/(Ia+Ir+Ib)
結晶相中のアナターゼ含有率(質量%)=Ia/(Ia+Ir+Ib)
<2-3.半値幅Bの測定>
加熱試験前の酸化チタンの上記補正後のX線回折パターンにおける2θ=24.5~26.0°にあるアナターゼ結晶相に対応するピークの半値幅B[rad]を測定した。半値幅B[rad]は、2θ=24.5~26.0におけるI(2θ)の最大値Imaxとすると、最大値となる2θを挟んで、I(2θ)=Imax/2となる2つの2θの値の差とした。
加熱試験前の酸化チタンの上記補正後のX線回折パターンにおける2θ=24.5~26.0°にあるアナターゼ結晶相に対応するピークの半値幅B[rad]を測定した。半値幅B[rad]は、2θ=24.5~26.0におけるI(2θ)の最大値Imaxとすると、最大値となる2θを挟んで、I(2θ)=Imax/2となる2つの2θの値の差とした。
<2-4.BET比表面積の測定>
加熱試験前後の各々の酸化チタンについて、窒素ガスを用いたBET法による比表面積(BET比表面積(m2/g))の測定をQuantachrome社製のQUADRASORV evoを用いて測定した。また、加熱試験前のBET比表面積をSBET(m2/g)、加熱試験後のBET比表面積をSBET2(m2/g)として、SBET2/SBETの値を算出した。
加熱試験前後の各々の酸化チタンについて、窒素ガスを用いたBET法による比表面積(BET比表面積(m2/g))の測定をQuantachrome社製のQUADRASORV evoを用いて測定した。また、加熱試験前のBET比表面積をSBET(m2/g)、加熱試験後のBET比表面積をSBET2(m2/g)として、SBET2/SBETの値を算出した。
<3.評価結果>
各実施例及び比較例の製造条件と生成した酸化チタンの評価結果は表1及び図4~7に示したとおりである。
各実施例及び比較例の製造条件と生成した酸化チタンの評価結果は表1及び図4~7に示したとおりである。
図7は、半値幅BとBET比表面積SBETとの比であるB/SBETに対する、700℃での加熱試験後における酸化チタンの結晶相中のアナターゼ含有率の変化を示すグラフである。ここで、半値幅Bは、実施例及び比較例の各々で得られた酸化チタン(加熱前)のアナターゼ結晶相に対応する、2θ=24.5~26.0°にあるピークの半値幅である。B/SBET>1.07×10-4g/m2である酸化チタンはいずれも加熱試験後のアナターゼ結晶相の含有率が低いことがわかる。
表1から、B/SBET≦1.07×10-4g/m2であっても、SBET<245m2/gである比較例13及び、B>2.9×10-2radである比較例23では、加熱試験後の酸化チタンのアナターゼ結晶相の含有率が低い。
一方で、B≦2.9×10-2radであり、SBET≧245m2/gであり、かつB/SBET≦1.07×10-4g/m2である各実施例の酸化チタンはいずれも、加熱試験後のアナターゼ結晶相の含有率が高い。
このことから、本発明によれば、低コストで、BET比表面積が大きく、かつ高温環境下においても結晶相中のアナターゼ結晶相の含有率を高く維持できる酸化チタンを提供できることがわかる。
Claims (3)
- 全結晶相中のアナターゼ結晶相の含有率が95質量%以上の酸化チタンであって、X線回折測定における2θ=24.5°~26.0°にあるアナターゼ結晶相に対応するピークの半値幅をB[rad]、BET比表面積をSBET[m2/g]とすると、B≦2.9×10-2radであり、SBET≧245m2/gであり、かつB/SBET≦1.07×10-4g/m2である酸化チタン。
- 四塩化チタン水溶液とα-ヒドロキシカルボン酸との混合溶液を、水で希釈することによって得られる請求項1に記載の酸化チタン。
- 700℃で2時間熱処理した後のBET比表面積をSBET2[m2/g]とすると、15×10-3≦SBET2/SBET≦1.0である請求項1または2に記載の酸化チタン。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019027727 | 2019-02-19 | ||
JP2019-027727 | 2019-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170917A1 true WO2020170917A1 (ja) | 2020-08-27 |
Family
ID=72144040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005430 WO2020170917A1 (ja) | 2019-02-19 | 2020-02-13 | 酸化チタン |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI765226B (ja) |
WO (1) | WO2020170917A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10230169A (ja) * | 1996-09-13 | 1998-09-02 | Furukawa Co Ltd | 光触媒粉末、二酸化チタン微粒子の製造方法、塗料、建材 |
JPH11506155A (ja) * | 1996-02-15 | 1999-06-02 | ロディア シミ | 二酸化チタン粒子 |
JP2008179528A (ja) * | 2006-12-26 | 2008-08-07 | Toho Titanium Co Ltd | 酸化チタンの製造方法 |
JP2011063496A (ja) * | 2009-09-18 | 2011-03-31 | Sakai Chem Ind Co Ltd | アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法 |
JP2013173667A (ja) * | 2013-04-01 | 2013-09-05 | National Institute Of Advanced Industrial Science & Technology | 多針体二酸化チタン粒子、多針体二酸化チタン粒子コーティング、二酸化チタン系デバイス、及びそれらの製造方法 |
JP2017114700A (ja) * | 2015-12-21 | 2017-06-29 | 昭和電工株式会社 | 酸化チタン及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8900705B2 (en) * | 2011-11-16 | 2014-12-02 | Cristal Usa Inc. | Mesoporous titanium dioxide nanoparticles exhibiting bimodal pore size distributions and process for their production |
WO2016052561A1 (ja) * | 2014-09-30 | 2016-04-07 | 住友大阪セメント株式会社 | 酸化チタン粒子の製造方法、酸化チタン粒子、酸化チタン粒子の分散溶液、酸化チタンペースト、酸化チタン膜及び色素増感太陽電池 |
-
2020
- 2020-02-13 WO PCT/JP2020/005430 patent/WO2020170917A1/ja active Application Filing
- 2020-02-14 TW TW109104681A patent/TWI765226B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11506155A (ja) * | 1996-02-15 | 1999-06-02 | ロディア シミ | 二酸化チタン粒子 |
JPH10230169A (ja) * | 1996-09-13 | 1998-09-02 | Furukawa Co Ltd | 光触媒粉末、二酸化チタン微粒子の製造方法、塗料、建材 |
JP2008179528A (ja) * | 2006-12-26 | 2008-08-07 | Toho Titanium Co Ltd | 酸化チタンの製造方法 |
JP2011063496A (ja) * | 2009-09-18 | 2011-03-31 | Sakai Chem Ind Co Ltd | アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法 |
JP2013173667A (ja) * | 2013-04-01 | 2013-09-05 | National Institute Of Advanced Industrial Science & Technology | 多針体二酸化チタン粒子、多針体二酸化チタン粒子コーティング、二酸化チタン系デバイス、及びそれらの製造方法 |
JP2017114700A (ja) * | 2015-12-21 | 2017-06-29 | 昭和電工株式会社 | 酸化チタン及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI765226B (zh) | 2022-05-21 |
TW202043157A (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003261329A (ja) | 高結晶性チタン酸バリウム超微粒子とその製造方法 | |
US7871595B2 (en) | Fine barium titanate particles | |
KR101621831B1 (ko) | 초미립자 이산화티타늄 및 그 제조 방법 | |
JP4702515B2 (ja) | 正方晶系チタン酸バリウム微粒子粉末及びその製造法 | |
KR100955802B1 (ko) | 미립 티탄산바륨계 분말의 제조방법 | |
WO2020170917A1 (ja) | 酸化チタン | |
JPH06305729A (ja) | ペロブスカイト型化合物微細粒子粉末およびその製造法 | |
WO2020170918A1 (ja) | 酸化チタンの製造方法 | |
JP6769520B1 (ja) | 希土類元素を含む水酸化チタン及び二酸化チタンの製造方法 | |
JP6352210B2 (ja) | ペロブスカイト型酸窒化物微粒子の製造方法、ペロブスカイト型酸窒化物微粒子 | |
JP4565160B2 (ja) | 新型二酸化チタン及びその製造方法 | |
KR100921352B1 (ko) | 미립 티탄산바륨계 분말의 제조방법 | |
JP7106770B2 (ja) | 高耐熱性アナターゼ型酸化チタン及びその製造方法 | |
TWI638777B (zh) | Ultrafine titanium dioxide and manufacturing method thereof | |
JP4140695B2 (ja) | 四塩化チタン水溶液及びこれを用いたチタン系複合酸化物の粉末製造方法 | |
JP5531606B2 (ja) | 球状結晶質オキシシュウ酸チタン粉末およびその製造方法 | |
JPS62167217A (ja) | チタン酸鉛の製造方法 | |
JP2008150290A (ja) | チタン系複合酸化物粉末 | |
JP2014218390A (ja) | 四三酸化マンガンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20759209 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20759209 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |