WO2020164080A1 - 一种无色透明的高介电常数柔性聚氨酯及其自修复方法 - Google Patents

一种无色透明的高介电常数柔性聚氨酯及其自修复方法 Download PDF

Info

Publication number
WO2020164080A1
WO2020164080A1 PCT/CN2019/075130 CN2019075130W WO2020164080A1 WO 2020164080 A1 WO2020164080 A1 WO 2020164080A1 CN 2019075130 W CN2019075130 W CN 2019075130W WO 2020164080 A1 WO2020164080 A1 WO 2020164080A1
Authority
WO
WIPO (PCT)
Prior art keywords
colorless
dielectric constant
flexible polyurethane
transparent high
self
Prior art date
Application number
PCT/CN2019/075130
Other languages
English (en)
French (fr)
Inventor
梁国正
李旦一
顾嫒娟
袁莉
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2019/075130 priority Critical patent/WO2020164080A1/zh
Publication of WO2020164080A1 publication Critical patent/WO2020164080A1/zh
Priority to US17/398,285 priority patent/US20210363315A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters

Definitions

  • the invention relates to a polyurethane (polyurethane film) and a preparation method thereof, in particular to a colorless and transparent high-dielectric constant flexible polyurethane and a self-repairing method thereof.
  • Flexibility is the current development trend of electronic devices.
  • Electronic devices are often multi-layered structures, in which glass is widely used to prepare transparent cover plates for electronic devices due to its outstanding mechanical properties and colorless and transparent characteristics.
  • the rigidity of glass results in very limited flexibility of the device.
  • the bending ability of the glass can be improved by reducing the thickness, the high amplitude is very limited, and the glass is more vulnerable to damage, thus greatly hindering the development of flexible electronic devices.
  • the polymer material used for the cover of the capacitive touch screen should not only have the characteristics of colorlessness and high transmittance, but also should have a relatively high dielectric constant in order to ensure the high sensitivity of the touch device.
  • the dielectric constant of colorless and transparent polymers is often less than 4.5.
  • the basic method for preparing high-dielectric constant polymer materials is to add conductors or high-dielectric constant ceramics to the polymer.
  • the addition of functional bodies often causes transparent polymers to lose high transparency and change from colorless to colored. Therefore, the conditions for preparing the touch screen cannot be satisfied.
  • the present invention provides a colorless and transparent high-dielectric constant flexible polyurethane, such as a polyurethane film and a preparation and self-repairing method thereof.
  • the polyurethane disclosed by the invention has the characteristics of colorlessness, high transparency, good flexibility, high dielectric constant, self-repair and easy processing, and has broad application prospects, especially flexible capacitive touch display devices.
  • a colorless and transparent high-dielectric constant flexible polyurethane includes the following steps:
  • a method for preparing colorless and transparent high-dielectric constant flexible polyurethane includes the following steps:
  • a reaction solution containing polyurethane is obtained.
  • the polyurethane of various structures can be obtained by drying and removing the solvent.
  • polyurethanes of various shapes can be obtained, for example, by film forming.
  • a polyurethane film can be obtained, and a polyurethane board can be obtained by deposition.
  • the solvent is removed from the reaction solution to form a film to obtain a colorless and transparent high-dielectric constant flexible polyurethane film.
  • the invention also discloses a self-repairing method for a colorless and transparent high-dielectric constant flexible polyurethane film, which includes the following steps: fixing the damaged surface of the damaged colorless and transparent high-dielectric constant flexible polyurethane film with a clamp and Closely adhere, and then heat at 80-150°C for 0.5-2 hours to complete the self-repairing of the colorless and transparent high-dielectric constant flexible polyurethane film; the preparation method of the colorless and transparent high-dielectric constant flexible polyurethane film includes The following steps:
  • the damage is scratches or fractures.
  • the scratched or fractured surface is fixed with a clamp and closely attached, and self-repairing can be achieved by heating.
  • the present invention also discloses the colorless and transparent high dielectric constant Application of flexible polyurethane in the preparation of high dielectric constant and/or self-healing materials.
  • the chloroalkane is one or a combination of dichloromethane, chloroform, and 1,2-dichloroethane;
  • the diisocyanate compound is isophorone diisocyanate, hexamethylene One or a combination of trimethylol diisocyanate and dicyclohexylmethane diisocyanate;
  • the polyol crosslinking agent is one or a combination of trimethylolpropane and triethanolamine;
  • the hydroxyl-terminated polyalkylene The molecular weight of the carbonate diol is 2000.
  • mass ratio with 1-ethyl-3-methylimidazole bistrifluoromethanesulfonimide salt is 100: (50 ⁇ 105): (23 ⁇ 46): (0.01 ⁇ 0.03): (4 ⁇ 11): (10 ⁇ 40): (10 ⁇ 40).
  • the present invention has the following beneficial effects:
  • the polyurethane provided by the present invention contains multiple forces, including dynamic ion-dipole interaction, dynamic hydrogen bond crosslinking, permanent chemical crosslinking, etc., so as to have both high tensile strength and high elongation at break. And has outstanding bending ability (flexibility).
  • the polyurethane and polyurethane film provided by the present invention have colorless and highly transparent optical properties. This is because the ionic liquid and lithium salt have good compatibility in the polyurethane matrix and will not cause material transparency due to phase separation and precipitation After being dispersed in the resin, there is no color development, so the final material is not only colorless but also has high transmittance.
  • the colorless and transparent high-dielectric constant flexible polyurethane film provided by the present invention regulates the formation/dissociation of dynamic hydrogen bonds and dynamic ion-dipole interactions and the exchange rate of disulfide bonds through temperature regulation, thereby realizing the reversibility of the material Self-repair, and the repair effect is significant (>90%).
  • ionic liquid and lithium salt are dispersed in the polyurethane to form many microcapacitors, thereby effectively improving the dielectric constant of the material.
  • the preparation method of polyurethane and polyurethane film provided by the invention has the characteristics of simple operation process, abundant source of raw materials, low manufacturing cost and wide applicability.
  • Figure 1 is the infrared spectrum of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention
  • Figure 2 is the thermal weight loss curve of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention (in a nitrogen atmosphere, the heating rate is 10°C/min);
  • Figure 4 is the original sample of the colorless and transparent high-dielectric-constant flexible polyurethane film and commercial polyimide film (now widely used in flexible devices) prepared in Example 1 of the present invention, folded in half and heated by a hair dryer (about 80%) °C) Digital photo after 3min;
  • Example 5 is a colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and its tensile stress-strain curve after fracture self-repair;
  • Example 6 is an intact colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and an effect diagram of a digital photo after fracture self-repair;
  • Example 7 is a colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and its bending effect diagram after fracture and self-repair;
  • Example 8 is the dielectric constant of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention at a typical frequency before and after self-repair;
  • Figure 9 is a photomicrograph of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and the disulfide bond-free polyurethane film prepared in Comparative Example 1 after fracture and after self-repair;
  • Figure 10 is a colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention, a polyurethane film prepared in Comparative Example 1 without disulfide bonds, and a non-bistrifluoromethanesulfonate prepared in Comparative Example 2
  • FIG. 11 is the dielectric constant-frequency curve of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and the polyurethane film prepared in Comparative Example 2.
  • FIG. 11 is the dielectric constant-frequency curve of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention and the polyurethane film prepared in Comparative Example 2.
  • the self-repairing method of the colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 100°C for 1 hour.
  • the tensile stress-strain curve, digital photo, digital photo showing the curling effect, and dielectric constant of the polyurethane film after fracture repair are shown in Figure 5, Figure 6, Figure 7 and Figure 8, respectively.
  • the micrographs of the polyurethane film after fracture and repair are shown in Figure 9.
  • Figure 1 is the infrared spectrum of the colorless and transparent high dielectric constant flexible polyurethane film containing disulfide bonds prepared in Example 1 of the present invention. It can be seen -NH- stretching vibration characteristic peak (3389cm -1) and the bending vibration peak (1538cm -1), but not see the characteristic peak of -NCO (2260cm -1), indicating that isophorone diisocyanate It has reacted with 2,2'-dithiodiethanol and hydroxyl-terminated polyalkylene carbonate diol to extend the chain, and completed the construction of the cross-linked network through the reaction with trimethylolpropane.
  • FIG 2 is a thermal weight loss diagram of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention. It can be seen that the initial thermal decomposition temperature (temperature at 5wt% weight loss, T di ) of the colorless and transparent high-dielectric-constant flexible polyurethane film is 270°C, which is within the range of polyurethane T di (250-300°C).
  • FIG 3 is the ultraviolet-visible light spectrum of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention.
  • the transmittance of the film with a thickness of 0.2mm at the wavelength of 300-800nm was tested.
  • the transmittance in the visible wavelength range of 380-780nm was greater than 90.2%, and its transmittance was comparable to that of the market.
  • Corning's fifth-generation Gorilla Glass which is widely used as a touch screen cover for mobile phones, has the same transmittance.
  • FIG 4 is the original sample of the colorless and transparent high dielectric constant flexible polyurethane film and commercial polyimide film prepared in Example 1 of the present invention, after folding in half, and the number after heating (about 80°C) for 3 minutes by a hair dryer photo. It can be seen that the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention has a shallow crease mark after being folded in half, and the crease can be eliminated under the action of a hair dryer, and the repaired sample is flat. In sharp contrast is the polyimide film.
  • Example 1 The electrical constant flexible polyurethane film does not have the shortcomings of the polyimide film.
  • FIG. 5 is the tensile stress-strain curve of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention before and after self-repair. It can be seen that the original tensile strength and elongation at break of the polyurethane film are 23.54 ⁇ 1.52 MPa and 390.6 ⁇ 10.24%, respectively. After repair, the tensile strength and elongation at break of the material are 22.13 ⁇ 1.24MPa and 358.36 ⁇ 11.24%, respectively, and the corresponding repair efficiency are 94.01% and 91.74%, respectively. Compared with similar self-repairing polyurethane materials, it has a repair time. Short, high repair efficiency.
  • FIG. 6 is a digital photo of the self-repairing effect of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention.
  • the complete colorless and transparent high-dielectric constant flexible polyurethane film is cut, and the sections are tightly bonded together; and then kept at 100°C for 1 hour, the completely broken two parts of the film are reconnected into a whole , The material still has excellent optical transparency after repair.
  • Fig. 7 is a digital photo of the curling and bending effect of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention before and after repair. It can be seen that the intact original polyurethane film can be bent into an S-shape, and can be curled, and its flexibility is better than PMMA. In addition, the polyurethane film after self-healing still maintains excellent flexibility.
  • FIG. 8 is the dielectric constant of the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 of the present invention at typical frequencies before and after self-repair. It can be seen that after the heating treatment, the dielectric constant of the material remains basically unchanged at different frequencies, indicating that the material has an excellent self-healing effect.
  • FIG. 9 shows the colorless and transparent high dielectric constant flexible polyurethane film (0.2mm thick) prepared in Example 1 of the present invention and the polyurethane film (0.2mm thick) prepared in Comparative Example 1 after fracture and after self-repair.
  • Photomicrograph Use a surgical blade to make a section of about 50 ⁇ m wide on the surface of the colorless and transparent high-dielectric constant flexible polyurethane film. After the section is effectively contacted, it is placed on a hot stage at 100°C and heated for 1 hour. After the repair, the original strip shape The opaque black area becomes transparent, leaving only a few scars similar to the healing of human wounds.
  • the self-repair method of the above-mentioned polyurethane film is: self-repair method after fracture. Fully contact the fractured surfaces of the colorless and transparent polyurethane film to ensure that they fit tightly, and then heat it at a temperature of 100°C for 1 hour.
  • the tensile strength and elongation at break of the intact film are 26.45 ⁇ 2.40MPa and 358.24 ⁇ 9.5%, respectively.
  • the tensile strength and elongation at break of the repaired film are 23.35 ⁇ 4.22MPa and 321.55 ⁇ 12.5%, respectively.
  • the repair efficiency of tensile strength and elongation at break were 88.28% and 89.75%, respectively.
  • FIGS. 10 and Figure 11 are the colorless and transparent high dielectric constant flexible polyurethane film prepared in Example 1 of the present invention, the polyurethane film prepared in Comparative Example 1 and the polyurethane film prepared in Comparative Example 2 under typical frequency. Electric constant. It can be seen that the colorless and transparent high-dielectric constant flexible polyurethane film prepared in Example 1 has dielectric constants of 109.7, 7.4 and 6.5 at 100 Hz, 500 kHz and 1 MHz. Compared with the polyurethane film prepared in Comparative Example 2, the dielectric constant The constant is increased by 32 times, 1.8 times and 1.7 times.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 80°C for 2 hours. The completely broken two parts of the film are reconnected into a whole, and the material is repaired It still has excellent optical transparency, and the repair efficiency corresponding to the tensile strength and elongation at break of the material is 93.89% and 91.12%, respectively.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric-constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 150°C for 0.5h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 120°C for 1.2h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric-constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 100°C for 1h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 100°C for 1.2h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric-constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 150°C for 0.5h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 100°C for 1.5 hours. The completely broken two parts of the film are reconnected into a whole, after repair The material still has excellent optical transparency, and the repair efficiency corresponding to the tensile strength and elongation at break of the material are 93.15% and 91.06%, respectively.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 96°C for 1.2h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 108°C for 1h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric-constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 150°C for 0.5h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 143°C for 0.75h. The two completely broken films are reconnected into a whole. After repairing The material still has excellent optical transparency, and the repair efficiency corresponding to the tensile strength and elongation at break of the material are 92.98% and 91.02%, respectively.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at 90°C for 1.2h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 100°C for 1.25h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 115°C for 1h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 120°C for 0.8h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 150°C for 0.75h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 80°C for 1.5h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 128°C for 0.75h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fracture surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat it at a temperature of 110°C for 1h.
  • the self-repairing method of colorless, transparent and highly flexible high-dielectric polyurethane composite material is: self-repairing method after fracture. Fully contact the fractured surface of the colorless and transparent high-dielectric constant flexible polyurethane film to ensure that it fits tightly, and then heat for 1.5h at a temperature of 99°C. The completely broken two parts of the film are reconnected into a whole, after repairing The material still has excellent optical transparency, and the repair efficiency corresponding to the tensile strength and elongation at break of the material are 92.59% and 91.07%, respectively.
  • the polyurethane film provided by the present invention has multiple functions. At room temperature, the film has multi-scale forces such as ion-dipole interaction, hydrogen bond dynamic crosslinking and permanent chemical crosslinking, so it has both high mechanical strength and high Flexibility; Under heating conditions, the ion-dipole and hydrogen bond interactions dissociate, and at the same time the disulfide bond exchange rate is accelerated. These structural changes make the polyurethane have good reversible self-repair properties.
  • the ionic liquid/lithium salt has good compatibility with the polymer matrix and neither develops color. The modified polyurethane does not develop color, nor does it cause phase separation or precipitation of components. The resulting transmittance decreases.
  • the polyurethane film prepared by the present invention also has high dielectric properties on the basis of transparency, which solves the problem of poor dielectric properties of the existing transparent film.
  • the lithium salt and ionic liquid effectively dispersed in the polymer matrix of the present invention A lot of microcapacitors are built, so the dielectric constant of the material is greatly improved.
  • the preparation method of the polyurethane film has the characteristics of wide sources of raw materials, simple process, good product applicability and strong practicability.

Abstract

本发明公开了一种无色透明的高介电常数柔性聚氨酯及其自修复方法。将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,反应得到异氰酸酯封端的齐聚物溶液;将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,去除溶剂,得到无色透明的高介电常数柔性聚氨酯。将受损的无色透明的高介电常数柔性聚氨酯膜的受损面用夹具固定并紧密贴合,然后于80~150℃下加热0.5~2小时,即可完成无色透明的高介电常数柔性聚氨酯膜的自修复。本发明提供的聚氨酯含有多重作用力,从而兼具高抗拉强度和高断裂伸长率,且具有突出的弯曲能力(柔性)。此外,锂盐和离子液体有效地分散在聚合物基体中形成了许多微电容,从而赋予了材料高介电常数的特性。

Description

一种无色透明的高介电常数柔性聚氨酯及其自修复方法 技术领域
本发明涉及一种聚氨酯(聚氨酯膜)及其制备方法,特别涉及一种无色透明的高介电常数柔性聚氨酯及其自修复方法。
背景技术
柔性化是目前电子器件发展的趋势。电子器件往往是多层结构,其中玻璃以其突出的机械性能和无色透明特点而被广泛应用于制备电子器件的透明盖板。但是,玻璃的刚性大,导致器件的可弯曲度十分有限。尽管通过降低厚度,可以提高玻璃的弯曲能力,但是高幅度非常有限,且导致玻璃更易受损,因此大大阻碍了电子器件的柔性化发展进程。
面对电子器件柔性化的大趋势,人们采用高分子材料取代玻璃以获取柔性,但目前广泛使用的聚碳酸酯/聚甲基丙烯酸甲酯(PC/PMMA)材料虽然具有优异的光学透明性,但是其柔性依然有限,不能实现大幅度的弯曲功能。另一方面,用于电容式触控显示屏盖板的高分子材料不仅应该具有无色和高透过率的特点,为了保证触控器件的高灵敏度,还应该具有较的高介电常数。而无色透明的聚合物的介电常数往往小于4.5。
目前,制备高介电常数聚合物材料的基本方法是在聚合物中加入导体或者高介电常数陶瓷,但是,功能体的加入常常导致透明聚合物失去高透明性以及由无色变为有色,从而无法满足制备触控屏的条件。
另一方面,高分子材料在使用过程中难免会受到刮擦、撞击等外力作用,导致器件的使用性能下降或者失效,因此,在保证材料无色透明和柔性的同时,研发具有自修复能力的高介电材料具有重要应用价值。但是,迄今,具有这样综合性能的聚合物材料未见报道。
技术问题
针对现有技术的不足,本发明提供了一种无色透明的高介电常数柔性聚氨酯,比如聚氨酯膜及其制备与自修复方法。本发明公开的聚氨酯具有无色、高透明、良好柔性、高介电常数、可自修复及易于加工等特点而具有广阔的应用前景,特别是柔性电容式触控显示器件。
技术解决方案
为达到上述目的,本发明所采用的技术方案是:
一种无色透明的高介电常数柔性聚氨酯,所述无色透明的高介电常数柔性聚氨酯的制备包括如下步骤:
(1)将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,而后于40~60℃反应0.5~3h,得到异氰酸酯封端的齐聚物溶液;
(2)将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,去除溶剂,得到无色透明的高介电常数柔性聚氨酯。
一种无色透明的高介电常数柔性聚氨酯的制备方法,包括如下步骤:
(1)将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,而后于40~60℃反应0.5~3h,得到异氰酸酯封端的齐聚物溶液;
(2)将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,去除溶剂,得到无色透明的高介电常数柔性聚氨酯。
本发明中,反应结束后,得到含有聚氨酯的反应液,烘干去除溶剂可以得到各种结构的聚氨酯,改变模具的形状与大小,即可制得形状各异的聚氨酯,比如采用成膜的方式可以得到聚氨酯膜,采用沉积的方式可以得到聚氨酯板等。优选,反应结束后,将反应液去除溶剂成膜,得到无色透明的高介电常数柔性聚氨酯膜。
本发明还公开了一种无色透明的高介电常数柔性聚氨酯膜的自修复方法,包括如下步骤,将受损的无色透明的高介电常数柔性聚氨酯膜的受损面用夹具固定并紧密贴合,然后于80~150℃下加热0.5~2小时,完成无色透明的高介电常数柔性聚氨酯膜的自修复;所述无色透明的高介电常数柔性聚氨酯膜的制备方法包括如下步骤:
(1)将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,而后于40~60℃反应0.5~3h,得到异氰酸酯封端的齐聚物溶液;
(2)将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,将反应液去除溶剂成膜,得到无色透明的高介电常数柔性聚氨酯膜。
本发明中,所述受损为划痕或者断裂,将划痕面或者断裂面用夹具固定并紧密贴合,加热即可实现自修复,本发明还公开了上述无色透明的高介电常数柔性聚氨酯在制备高介电常数和/或自修复材料中的应用。
本发明中,所述氯代烷为二氯甲烷、三氯甲烷、1,2-二氯乙烷中的一种或其组合;所述二异氰酸酯化合物为异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯中的一种或其组合;所述多元醇交联剂为三羟甲基丙烷、三乙醇胺中的一种或其组合;所述羟基封端的聚亚烷基碳酸酯二醇的分子量为2000。
本发明中,羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡、多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐的质量比为100∶(50~105)∶(23~46)∶(0.01~0.03)∶(4~11)∶(10~40)∶(10~40)。
有益效果
与现有技术相比,本发明取得的有益效果是:
1. 本发明提供的聚氨酯含有多重作用力,包括动态离子-偶极子相互作用、动态氢键交联作用以及永久化学交联作用等,从而兼具高抗拉强度和高断裂伸长率,并具有突出的弯曲能力(柔性)。
2. 鉴于本发明提供的聚氨酯具有良好的柔韧性,与玻璃和硬质塑料相比,不易碎裂,因此当应用于电容式触控屏盖板时,能够有效地通过减小厚度来提高电容式触控屏的灵敏度。
3. 本发明提供的聚氨酯与聚氨酯膜具有无色高透明的光学性质,这是因为离子液体和锂盐在聚氨酯基体中有良好的相容性,不会因为出现分相和析出而导致材料透明度的下降,且在分散在树脂中后均不显色,因此使得最后的材料不但无色还具有高透过率。
4. 本发明提供的无色透明的高介电常数柔性聚氨酯膜通过温度调控动态氢键与动态离子-偶极子相互作用形成/解离以及二硫键的交换速率,从而实现了材料的可逆自修复,且修复效果显著(>90%)。
5. 本发明提供的无色透明的高介电常数柔性聚氨酯中,离子液体和锂盐分散在聚氨酯中,构成了许多个微电容,因此有效地提高了材料的介电常数。
6.本发明提供的聚氨酯与聚氨酯膜的制备方法具有操作工艺简单,原材料来源丰富,制造成本低以及适用性广的特点。
附图说明
图1是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的红外波谱;
图2是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的热失重曲线(氮气氛围,升温速率为10℃/min);
图3是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的紫外-可见光光谱;
图4是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜和商用聚酰亚胺膜(目前已广泛应用于柔性器件)的原始样、对折后及其吹风机加热(约80℃)3min后的数码照片;
图5是本发明实施例1制备的完好的无色透明的高介电常数柔性聚氨酯膜及其断裂自修复后的拉伸应力-应变曲线;
图6是本发明实施例1制备的完好无色透明的高介电常数柔性聚氨酯膜及其断裂自修复后的数码照片的效果图;
图7是本发明实施例1制备的完好无色透明的高介电常数柔性聚氨酯膜及其断裂自修复后的弯曲效果图;
图8是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜自修复前后在典型频率下的介电常数;
图9是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜和比较例1制备的无二硫键的聚氨酯膜在断裂后以及自修复后的显微照片;
图10是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜、比较例1制备的不含二硫键的聚氨酯膜和比较例2制备的不含双三氟甲磺酰亚胺盐的聚氨酯膜在典型频率下的介电常数;
图11是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜和比较例2中制备的聚氨酯膜的介电常数-频率曲线。
本发明的实施方式
下面结合附图和实施例,对本发明技术方案作进一步的描述。
实施例1
(1)室温下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和500g的二氯甲烷混合;而后升温至55℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液B。
(2)室温下,在溶液B中加入4g的三羟甲基丙烷、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应1h;而后倒入模具中,烘干、成膜,得到无色透明的高介电常数柔性聚氨酯膜,其红外谱图、热失重曲线、紫外-可见光光谱、折叠前后以及在吹风机加热后的数码照片、拉伸应力-应变曲线、数码照片、展示卷曲效果的数码照片、在典型频率下的介电常数分别见附图1、图2、图3、图4、图5、图6、图7和图8。
(3)上述无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1h。断裂修复后的聚氨酯膜的拉伸应力-应变曲线、数码照片、展示卷曲效果的数码照片、介电常数分别见图5、图6、图7和图8。该聚氨酯膜断裂后以及修复后的显微镜照片见图9。
参见附图1,它是本发明实施例1制备的含二硫键的无色透明的高介电常数柔性聚氨酯膜的红外谱图。从中可以看到-NH-的伸缩振动特征峰(3389cm -1)和弯曲振动峰(1538cm -1),但是未看到-NCO的特征峰(2260cm -1),这说明异佛尔酮二异氰酸酯已经与2,2'-二硫二乙醇、羟基封端的聚亚烷基碳酸酯二醇反应扩链,并通过与三羟甲基丙烷的反应完成了交联网络的构建。
参见附图2,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的热失重图。从中可知无色透明的高介电常数柔性聚氨酯膜的起始热分解温度(失重5wt%时的温度,T di)为270℃,位于聚氨酯T di(250-300℃)范围内。
参见附图3,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的紫外-可见光光谱。以空气作为基线,测试了厚度为0.2mm的膜在300-800nm波长下的透过率,其在380-780nm的可见光波长的范围内的透过率均大于90.2%,其透过率与市面上广泛应用为手机触摸屏盖板的康宁第五代大猩猩玻璃的透过率相当。
参见附图4,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜和商用聚酰亚胺膜的原始样、对折后以及吹风机加热(约80℃)3min后的数码照片。从中可以看出,本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜在对折后折痕印记浅,且在吹风机的作用下能够消去折痕,修复后的试样平整。与之形成鲜明对比的是聚酰亚胺膜,其对折后,折痕的印记无法在吹风机的作用下能够消去,且试样存在翘曲,表明实施例1所制备的无色透明的高介电常数柔性聚氨酯膜不存在聚酰亚胺膜具有的不足。
参见附图5,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜自修复前后的拉伸应力-应变曲线。从中可知,聚氨酯膜的原始抗拉强度和断裂伸长率分别为23.54±1.52 MPa和390.6 ±10.24%。修复后,材料的抗拉强度和断裂伸长率分别为22.13±1.24MPa和358.36±11.24%,对应的修复效率分别为94.01%和91.74%,与同类自修复的聚氨酯材料相比,具有修复时间短,修复效率高的特点。
参见附图6,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜的自修复效果的数码照片。如图所示,将完整的无色透明的高介电常数柔性聚氨酯膜切断,将断面紧密地贴合在一起;然后在100℃下保持1h,完全断裂的两部分的膜重新连接成一个整体,修复后材料仍然具有优异的光学透明性。
参见附图7,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜修复前后的卷曲弯曲的效果数码照片。从中可以看出,完好的原始聚氨酯膜能够弯曲成S型,并可以实现卷曲,柔韧性优于PMMA。此外,自修复后的聚氨酯膜仍然保持优异的柔韧性。
参见附图8,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜自修复前后在典型频率下的介电常数。从中可以看出,在加热处理后,材料在不同频率下的介电常数基本保持不变,表明材料的自修复效果优异。
比较例1
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、24g 1,6己二醇、0.02g的二月桂酸二丁基锡和500g的二氯甲烷混合;升温至60℃后保温反应1.5h,得到不含二硫键的异氰酸酯封端的聚碳酸酯溶液,记作溶液C。
(2)在室温的状态下,在溶液C中加入4g的三羟甲基丙烷、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应1h;而后倒入模具中,烘干,得到聚氨酯膜,其介电常数-频率图见附图10。
(3)将受损的上述聚氨酯膜的两个断面充分接触,保证其紧密贴合,然后在温度为100℃下加热1h进行修复,该膜断裂后以及修复后的显微镜照片见附图9,经过处理,断面没有能够粘接起来,修复效率为0。因为没有修复,所以无法在相同条件下测试修复后的介电常数。
参见附图9,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜(0.2mm厚)和比较例1制备的聚氨酯膜(0.2mm厚)在断裂后以及自修复后的显微照片。使用手术刀片在无色透明的高介电常数柔性聚氨酯膜表面制造一条约为50μm宽的断面,将断面有效接触后,其置于100℃的热台上加热1h,修复结束后,原本条状不透明的黑色区域变为透明,只留下少许类似于人类伤口愈合后的伤疤。与之相比,在相同的修复条件下,比较例1制备的聚氨酯膜无法实现裂纹的愈合,黑色条状区域没有消失,这说明即使温度上升至100℃,由于永久化学交联网络的存在,材料的链段的活动性依旧受到了很大的限制。说明本发明公开的新的无色透明的高介电常数柔性聚氨酯膜能够自修复。
比较例2
(1)按照实施例1中的步骤制备溶液B。
(2)在室温的状态下,将4g的三羟甲基丙烷加入到溶液B中,然后在60℃的温度下反应1h,倒入到模具中,烘干,得到聚氨酯膜,其介电常数-频率曲线见图10。
(3)上述聚氨酯膜的自修复方法为:断裂后的自修复方法。将无色透明的上述聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1h。完好的膜的抗拉强度和断裂伸长率分别为26.45±2.40MPa和358.24±9.5%,修复后的膜的抗拉强度和断裂伸长率分别为23.35±4.22MPa和321.55±12.5%,因此抗拉强度和断裂伸长率的修复效率分别为88.28%和89.75%。
参见附图10以及图11,它是本发明实施例1制备的无色透明的高介电常数柔性聚氨酯膜、比较例1制备的聚氨酯膜和比较例2制备的聚氨酯膜在典型频率下的介电常数。从中可知,实施例1制备的无色透明的高介电常数柔性聚氨酯膜在100Hz、500kHz和1MHz处的介电常数为109.7、7.4和6.5,与比较例2制备的聚氨酯膜相比,介电常数提高了32倍、1.8倍和1.7倍。
实施例2
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、50g六亚甲基二异氰酸酯、23g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡、500g的二氯甲烷和500g的三氯甲烷混合;而后升温至60℃后保温反应0.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液D。
(2)在室温的状态下,在溶液D中加入9g的三羟甲基丙烷、10g双三氟甲烷磺酰亚胺锂和40g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为80℃下加热2h,完全断裂的两部分的膜重新连接成一个整体,修复后材料仍然具有优异的光学透明性,材料的抗拉强度和断裂伸长率对应的修复效率分别为93.89%和91.12%。
实施例3
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、105g环己基甲烷二异氰酸酯、35g 2,2'-二硫二乙醇、0.03g的二月桂酸二丁基锡、300g的二氯甲烷和300g的1,2二氯乙烷混合;而后升温至60℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液E。
(2)在室温的状态下,在溶液E中加入11g的三羟甲基丙烷、40g双三氟甲烷磺酰亚胺锂和30g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在40℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为150℃下加热0.5h。
实施例4
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、33g异佛尔酮二异氰酸酯和25g六亚甲基二异氰酸酯、31g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡和500g的二氯甲烷和300g的三氯甲烷混合;而后升温至40℃后保温反应3h,得到异氰酸酯封端的齐聚物溶液,记作溶液F。
(2)在室温的状态下,在溶液F中加入4g的三羟甲基丙烷、25g双三氟甲烷磺酰亚胺锂和10g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为120℃下加热1.2h。
实施例5
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、33g异佛尔酮二异氰酸酯和39g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和1500g的二氯甲烷混合;而后升温至60℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液G。
(2)在室温的状态下,在溶液G中加入4g的三羟甲基丙烷、25g双三氟甲烷磺酰亚胺锂和25g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1h。
实施例6
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、22g异佛尔酮二异氰酸酯17g六亚甲基二异氰酸酯和26g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.03g的二月桂酸二丁基锡、500g的二氯甲烷和300g的三氯甲烷混合;而后升温至55℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液H。
(2)在室温的状态下,在溶液H中加入4g的三羟甲基丙烷、30g双三氟甲烷磺酰亚胺锂和25g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1.2h。
实施例7
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和500g的二氯甲烷混合;而后升温至40℃后保温反应3h,得到异氰酸酯封端的齐聚物溶液,记作溶液I。
(2)在室温的状态下,在溶液I中加入5g的三乙醇胺、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在45℃的温度下反应1.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,100Hz、500kHz和1MHz下的介电常数分别为102.9、7.3和6.4。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为150℃下加热0.5h。
实施例8
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和500g的二氯甲烷混合;而后升温至55℃后保温反应2.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液J。
(2)在室温的状态下,在溶液J中加入2g的三羟甲基丙烷和2.5g的三乙醇胺、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应1.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,其在100Hz、500kHz和1MHz下的介电常数分别为106.7、7.3和6.1。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1.5h,完全断裂的两部分的膜重新连接成一个整体,修复后材料仍然具有优异的光学透明性,材料的抗拉强度和断裂伸长率对应的修复效率分别为93.15%和91.06%。
实施例9
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、79g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡、850g的二氯甲烷和160g的1,2-二氯乙烷混合;而后升温至55℃后保温反应2h,得到异氰酸酯封端的齐聚物溶液,记作溶液K。
(2)在室温的状态下,在溶液K中加入5g的三乙醇胺、25g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在40℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,100Hz、500kHz和1MHz下的介电常数分别为103.3、7.5和6.4。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为96℃下加热1.2h。
实施例10
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、79g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡、150g的三氯甲烷和875g的二氯甲烷混合;而后升温至60℃后保温反应1.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液L。
(2)在室温的状态下,在溶液L中加入5g的三乙醇胺、10g双三氟甲烷磺酰亚胺锂和10g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.75h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为108℃下加热1h。
实施例11
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、50g六亚甲基二异氰酸酯、31g 2,2'-二硫二乙醇、0.03g的二月桂酸二丁基锡、175g的1,2-二氯乙烷和915g的三氯甲烷混合;而后升温至60℃后保温反应0.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液M。
(2)在室温的状态下,在溶液M中加入5g的三乙醇胺、12.5g双三氟甲烷磺酰亚胺锂和15g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在55℃的温度下反应1.25h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为150℃下加热0.5h。
实施例12
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、79g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡、500g的二氯甲烷、500g的三氯甲烷和500g1,2-二氯乙烷混合;而后升温至45℃后保温反应2.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液N。
(2)在室温的状态下,在溶液N中加入5g的三乙醇胺、15g双三氟甲烷磺酰亚胺锂和17.5g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.8h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,100Hz、500kHz和1MHz下的介电常数分别为101.7、6.0和5.9。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为143℃下加热0.75h,完全断裂的两部分的膜重新连接成一个整体,修复后材料仍然具有优异的光学透明性,材料的抗拉强度和断裂伸长率对应的修复效率分别为92.98%和91.02%。
实施例13
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、50g六亚甲基二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和1200g的二氯甲烷混合;而后升温至50℃后保温反应0.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液O。
(2)在室温的状态下,在溶液O中加入5g的三乙醇胺、17.5g双三氟甲烷磺酰亚胺锂和12.5g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在50℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为90℃下加热1.2h。
实施例14
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、50g六亚甲基二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和740g的三氯甲烷混合;而后升温至60℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液P。
(2)在室温的状态下,在溶液P中加入2g的三羟甲基丙烷和2.5g的三乙醇胺、15g双三氟甲烷磺酰亚胺锂和30g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在55℃的温度下反应1.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为100℃下加热1.25h。
实施例15
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、79g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡和1050g的二氯甲烷混合;而后升温至60℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液Q。
(2)在室温的状态下,在溶液Q中加入2g的三羟甲基丙烷和2.5g的三乙醇胺、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在48℃的温度下反应1.25h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为115℃下加热1h。
实施例16
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、33g异佛尔酮二异氰酸酯和25g六亚甲基二异氰酸酯、31g 2,2'-二硫二乙醇、0.01g的二月桂酸二丁基锡和1025g的1,2-二氯乙烷混合;而后升温至50℃后保温反应1.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液R。
(2)在室温的状态下,在溶液R中加入5g的三乙醇胺、15g双三氟甲烷磺酰亚胺锂和15g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在56℃的温度下反应0.75h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为120℃下加热0.8h。
实施例17
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、33g异佛尔酮二异氰酸酯和39g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和760g的二氯甲烷混合;而后升温至57℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液S。
(2)在室温的状态下,在溶液S中加入1.25g的三乙醇胺和3g的三羟甲基丙烷、20g双三氟甲烷磺酰亚胺锂和20g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,100Hz、500kHz和1MHz下的介电常数分别为105.9、7.2和6.2。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为150℃下加热0.75h。
实施例18
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、22g异佛尔酮二异氰酸酯17g六亚甲基二异氰酸酯和26g二环己基甲烷二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和645g的三氯甲烷混合;而后升温至65℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液T。
(2)在室温的状态下,在溶液T中加入1.25g的三乙醇胺和3g的三羟甲基丙烷、25g双三氟甲烷磺酰亚胺锂和25g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在55℃的温度下反应1h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为80℃下加热1.5h。
实施例19
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和765g的二氯甲烷混合;而后升温至60℃后保温反应1h,得到异氰酸酯封端的齐聚物溶液,记作溶液U。
(2)在室温的状态下,在溶液U中加入4g的三羟甲基丙烷、12.5g双三氟甲烷磺酰亚胺锂和12.5g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在46℃的温度下反应0.75h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为128℃下加热0.75h。
实施例20
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、89g异佛尔酮二异氰酸酯、46g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和800g的二氯甲烷混合;而后升温至58℃后保温反应3h,得到异氰酸酯封端的齐聚物溶液,记作溶液V。
(2)在室温的状态下,在溶液V中加入4g的三羟甲基丙烷、16g双三氟甲烷磺酰亚胺锂和19g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在60℃的温度下反应0.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜,100Hz、500kHz和1MHz下的介电常数分别为104.8、7.2和6.0。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为110℃下加热1h。
实施例21
(1)在室温的状态下,将100g羟基封端的聚亚烷基碳酸酯二醇(分子量为2000)、67g异佛尔酮二异氰酸酯、31g 2,2'-二硫二乙醇、0.02g的二月桂酸二丁基锡和855g的二氯甲烷混合;而后升温至55℃后保温反应1.5h,得到异氰酸酯封端的齐聚物溶液,记作溶液W。
(2)在室温的状态下,在溶液W中加入4g的三羟甲基丙烷、22.5g双三氟甲烷磺酰亚胺锂和15.5g 1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐,然后在52℃的温度下反应1.5h;而后倒入模具中,烘干,得到无色透明的高介电常数柔性聚氨酯膜。
(3) 无色透明高柔性的高介电聚氨酯复合材料的自修复方法为:断裂后的自修复方法。将无色透明的高介电常数柔性聚氨酯膜的断裂面充分接触,保证其紧密贴合,然后在温度为99℃下加热1.5h,完全断裂的两部分的膜重新连接成一个整体,修复后材料仍然具有优异的光学透明性,材料的抗拉强度和断裂伸长率对应的修复效率分别为92.59%和91.07%。
本发明提供的聚氨酯膜具有多重功能,在室温下,该膜存在离子-偶极子作用、氢键的动态交联以及永久化学交联等多尺度的作用力,因此兼具高力学强度和高柔性;在加热条件下,离子-偶极子和氢键作用解离,同时二硫键交换速率加快,这些结构变化使得聚氨酯具有良好的可逆自修复性能。本发明制备的聚氨酯膜中,离子液体/锂盐与聚合物基体具有良好的相容性且均不显色,改性后的聚氨酯不会显色,也不会因为出现组分相分离或者析出而导致的透过率下降。尤其是,本发明制备的聚氨酯膜在透明的基础上还具有高介电性能,解决了现有透明薄膜介电性能较差的问题,本发明有效分散在聚合物基体中的锂盐和离子液体构建了许多的微电容,因此大幅度地提高了材料的介电常数。此外,该聚氨酯膜的制备方法具有原材料来源广、工艺简单、产品具有适用性好及实用性强的特点。

Claims (10)

  1. 一种无色透明的高介电常数柔性聚氨酯,其特征在于,所述无色透明的高介电常数柔性聚氨酯的制备包括如下步骤:
    (1)将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,而后于40~60℃反应0.5~3h,得到异氰酸酯封端的齐聚物溶液;
    (2)将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,去除溶剂,得到无色透明的高介电常数柔性聚氨酯。
  2. 根据权利要求1所述无色透明的高介电常数柔性聚氨酯,其特征在于:所述氯代烷为二氯甲烷、三氯甲烷、1,2-二氯乙烷中的一种或其组合;所述二异氰酸酯化合物为异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯中的一种或其组合;所述多元醇交联剂为三羟甲基丙烷、三乙醇胺中的一种或其组合;所述羟基封端的聚亚烷基碳酸酯二醇的分子量为2000。
  3. 根据权利要求1所述无色透明的高介电常数柔性聚氨酯,其特征在于:羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡、多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐的质量比为100∶(50~105)∶(23~46)∶(0.01~0.03)∶(4~11)∶(10~40)∶(10~40)。
  4. 根据权利要求1所述无色透明的高介电常数柔性聚氨酯,其特征在于:步骤(2)中,反应结束后,将反应液去除溶剂成膜,得到无色透明的高介电常数柔性聚氨酯膜。
  5. 权利要求1所述无色透明的高介电常数柔性聚氨酯在制备高介电常数和/或自修复材料中的应用。
  6. 一种无色透明的高介电常数柔性聚氨酯膜的自修复方法,其特征在于,包括如下步骤,将受损的无色透明的高介电常数柔性聚氨酯膜的受损面用夹具固定并紧密贴合,然后于80~150℃下加热0.5~2小时,完成无色透明的高介电常数柔性聚氨酯膜的自修复;所述无色透明的高介电常数柔性聚氨酯膜的制备方法包括如下步骤:
    (1)将羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡和氯代烷混合,而后于40~60℃反应0.5~3h,得到异氰酸酯封端的齐聚物溶液;
    (2)将多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐加入异氰酸酯封端的齐聚物溶液中,于40~60℃反应0.5~1.5h;反应结束后,将反应液去除溶剂成膜,得到无色透明的高介电常数柔性聚氨酯膜。
  7. 根据权利要求6所述无色透明的高介电常数柔性聚氨酯膜的自修复方法,其特征在于:所述受损为划痕或者断裂。
  8. 根据权利要求6所述无色透明的高介电常数柔性聚氨酯膜的自修复方法,其特征在于:所述氯代烷为二氯甲烷、三氯甲烷、1,2-二氯乙烷中的一种或其组合;所述二异氰酸酯化合物为异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯中的一种或其组合;所述多元醇交联剂为三羟甲基丙烷、三乙醇胺中的一种或其组合;所述羟基封端的聚亚烷基碳酸酯二醇的分子量为2000。
  9. 根据权利要求6所述无色透明的高介电常数柔性聚氨酯膜的自修复方法,其特征在于:羟基封端的聚亚烷基碳酸酯二醇、二异氰酸酯、2,2'-二硫二乙醇、二月桂酸二丁基锡、多元醇交联剂、双三氟甲烷磺酰亚胺锂和1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐的质量比为100∶(50~105)∶(23~46)∶(0.01~0.03)∶(4~11)∶(10~40)∶(10~40)。
  10. 根据权利要求6所述无色透明的高介电常数柔性聚氨酯膜的自修复方法,其特征在于:采用烘干的方式去除溶剂。
PCT/CN2019/075130 2019-02-14 2019-02-14 一种无色透明的高介电常数柔性聚氨酯及其自修复方法 WO2020164080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075130 WO2020164080A1 (zh) 2019-02-14 2019-02-14 一种无色透明的高介电常数柔性聚氨酯及其自修复方法
US17/398,285 US20210363315A1 (en) 2019-02-14 2021-08-10 Colorless clear flexible polyurethane with high dielectric constant and self-repairing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075130 WO2020164080A1 (zh) 2019-02-14 2019-02-14 一种无色透明的高介电常数柔性聚氨酯及其自修复方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/398,285 Continuation US20210363315A1 (en) 2019-02-14 2021-08-10 Colorless clear flexible polyurethane with high dielectric constant and self-repairing method thereof

Publications (1)

Publication Number Publication Date
WO2020164080A1 true WO2020164080A1 (zh) 2020-08-20

Family

ID=72045474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075130 WO2020164080A1 (zh) 2019-02-14 2019-02-14 一种无色透明的高介电常数柔性聚氨酯及其自修复方法

Country Status (2)

Country Link
US (1) US20210363315A1 (zh)
WO (1) WO2020164080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292701A (zh) * 2021-05-24 2021-08-24 中国科学院宁波材料技术与工程研究所 一种自愈合离子型聚氨酯、制备方法及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163606B (zh) * 2021-12-29 2023-07-25 盐城工学院 一种动态交联自修复薄膜的制备和检测方法
CN114874415B (zh) * 2022-05-10 2023-05-23 华南理工大学 自愈合及可降解的聚乙二醇基环氧弹性体及其制备方法与应用
CN114773569B (zh) * 2022-05-30 2023-05-26 电子科技大学 一种三维网络结构的自愈合弹性体的制备方法与应用
CN117430781B (zh) * 2023-12-21 2024-03-12 北京大学第三医院(北京大学第三临床医学院) 用于颈脊髓压迫的溶胀硬化的动态交联聚氨酯水凝胶及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482065A (zh) * 2015-12-10 2016-04-13 东华大学 一种含有双硫键的自愈合聚氨酯树脂及其制备方法
CN106654364A (zh) * 2016-10-20 2017-05-10 中国科学院大学 离子液体复合全固态聚合物电解质及其制备方法与应用
CN107974072A (zh) * 2017-12-01 2018-05-01 中国科学院深圳先进技术研究院 一种自修复介电复合材料及其制作方法
CN108503782A (zh) * 2018-03-22 2018-09-07 中国科学院化学研究所 一种全透明高强度自修复聚氨酯弹性体、制备方法及应用
CN109776753A (zh) * 2019-02-11 2019-05-21 苏州大学 一种无色透明的高介电常数柔性聚氨酯及其自修复方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239793A1 (de) * 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
US8987352B1 (en) * 2009-12-23 2015-03-24 Nei Corporation Phase separated self-healing polymer coatings
US8664298B1 (en) * 2010-08-16 2014-03-04 Nei Corporation Self-healing polymer nanocomposite coatings for use on surfaces made of wood
WO2014149469A1 (en) * 2013-03-15 2014-09-25 Avon Products, Inc Cosmetic formulation incorporating a uv-triggered self-healing material
KR101830749B1 (ko) * 2017-07-12 2018-04-04 한국화학연구원 자가복원 폴리우레탄계 중합체 및 이의 제조방법
JP2020007422A (ja) * 2018-07-04 2020-01-16 富士ゼロックス株式会社 表面保護樹脂部材形成用の溶液セット、及び表面保護樹脂部材
CN109659605B (zh) * 2018-12-14 2020-11-24 深圳先进技术研究院 自修复聚合物电解质基体及其制备方法、自修复聚合物电解质、锂离子电池及其应用
CN111690365A (zh) * 2020-05-15 2020-09-22 电子科技大学 一种锂电池封装用自修复聚氨酯胶粘剂的制备方法
CN112159602A (zh) * 2020-09-04 2021-01-01 安徽志诚机电零部件有限公司 一种自修复聚氨酯防火绝缘涂料
CN113363571B (zh) * 2021-03-29 2022-09-30 万向一二三股份公司 一种基于双硫键的自修复聚合物固态电解质及其制备方法
CN113200896B (zh) * 2021-05-13 2022-02-25 中国科学院兰州化学物理研究所 扩链剂及其制备方法和应用、可回收热固性聚氨酯及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482065A (zh) * 2015-12-10 2016-04-13 东华大学 一种含有双硫键的自愈合聚氨酯树脂及其制备方法
CN106654364A (zh) * 2016-10-20 2017-05-10 中国科学院大学 离子液体复合全固态聚合物电解质及其制备方法与应用
CN107974072A (zh) * 2017-12-01 2018-05-01 中国科学院深圳先进技术研究院 一种自修复介电复合材料及其制作方法
CN108503782A (zh) * 2018-03-22 2018-09-07 中国科学院化学研究所 一种全透明高强度自修复聚氨酯弹性体、制备方法及应用
CN109776753A (zh) * 2019-02-11 2019-05-21 苏州大学 一种无色透明的高介电常数柔性聚氨酯及其自修复方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292701A (zh) * 2021-05-24 2021-08-24 中国科学院宁波材料技术与工程研究所 一种自愈合离子型聚氨酯、制备方法及应用
CN113292701B (zh) * 2021-05-24 2022-08-05 中国科学院宁波材料技术与工程研究所 一种自愈合离子型聚氨酯、制备方法及应用

Also Published As

Publication number Publication date
US20210363315A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020164080A1 (zh) 一种无色透明的高介电常数柔性聚氨酯及其自修复方法
CN112375199B (zh) 一种无色透明的高介电常数柔性聚氨酯膜的自修复方法
Zhang et al. A highly efficient self‐healing elastomer with unprecedented mechanical properties
US11479671B2 (en) Transparent rollable folded polysiloxane film and preparation and self-repairing method thereof
Yang et al. Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor
Dolog et al. Shape memory behavior of a polyethylene-based carboxylate ionomer
Hu et al. Robust, transparent, and self-healable polyurethane elastomer via dynamic crosslinking of phenol-carbamate bonds
CN107082862A (zh) 自修复有机硅改性聚氨酯弹性体及其制备方法
CN110643058A (zh) 一种受损的透明可卷曲折叠聚硅氧烷膜的自修复方法
Wang et al. An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance
CN113087837B (zh) 超分子-聚合物双网络低共熔凝胶及其制备方法与应用
Nie et al. Dynamic chemical bonds design strategy for fabricating fast room-temperature healable dielectric elastomer with significantly improved actuation performance
CN103074011A (zh) 一种防晒隔热膜用单组分型水性压敏胶
Chen et al. Photo-induced shape memory blend composites with remote selective self-healing performance enabled by polypyrrole nanoparticles
WO2020215975A1 (zh) 外壳及其制作方法、改性环氧树脂、环氧树脂板和电子设备
Yue et al. Recyclable, reconfigurable, thermadapt shape memory polythiourethane networks with multiple dynamic bonds for recycling of carbon fiber-reinforced composites
CN116672151A (zh) 一种复合型聚氨酯安全套及其制备方法
Lv et al. Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment
Wu et al. Reprocessable thermoset organosilicon elastomer with good self-healable and high stretchable properties for flexible electronic devices
Wang et al. A highly stretchable, self-healable, transparent and solid-state poly (ionic liquid) filler for high-performance dielectric elastomer actuators
Xu et al. Exploring Self‐Healing and Switchable Adhesives based on Multi‐Level Dynamic Stable Structure
Zhou et al. In-situ phase separation constructing robust hydrophobic ionogels with multifunction
Liu et al. Humidity-responsive shape memory polyurea with a high energy output based on reversible cross-linked networks
Ji et al. A novel polyvinyl alcohol‐based hydrogel with ultra‐fast self‐healing ability and excellent stretchability based on multi dynamic covalent bond cross‐linking
CN112280284B (zh) 一种液态金属复合材料及制备方法与重塑方法、回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915340

Country of ref document: EP

Kind code of ref document: A1