WO2020158877A1 - 組換えタンパク質の製造方法 - Google Patents

組換えタンパク質の製造方法 Download PDF

Info

Publication number
WO2020158877A1
WO2020158877A1 PCT/JP2020/003487 JP2020003487W WO2020158877A1 WO 2020158877 A1 WO2020158877 A1 WO 2020158877A1 JP 2020003487 W JP2020003487 W JP 2020003487W WO 2020158877 A1 WO2020158877 A1 WO 2020158877A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
recombinant
cell
amino acid
mreb
Prior art date
Application number
PCT/JP2020/003487
Other languages
English (en)
French (fr)
Inventor
憲治 中東
李 蒋
昂文 野田
研二 津山
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Priority to SG11202107697UA priority Critical patent/SG11202107697UA/en
Priority to US17/426,610 priority patent/US20220033870A1/en
Priority to BR112021014805A priority patent/BR112021014805A2/pt
Priority to JP2020560429A priority patent/JP6968468B2/ja
Priority to EP20749538.3A priority patent/EP3919506A4/en
Priority to CA3127177A priority patent/CA3127177A1/en
Priority to CN202080011556.4A priority patent/CN113439087A/zh
Publication of WO2020158877A1 publication Critical patent/WO2020158877A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for producing a recombinant protein.
  • the present invention also relates to methods of increasing the production of recombinant protein per cell.
  • Patent Document 1 culturing Escherichia coli having a gene encoding a fibroin-like protein in a medium, inducing expression of a gene encoding a fibroin-like protein, and collecting the fibroin-like protein is described.
  • a method for producing a fibroin-like protein which comprises reducing the cell growth after the induction of the expression.
  • An object of the present invention is to provide a method for producing a recombinant protein, which enhances the productivity of producing the recombinant protein while reducing the cell growth of the recombinant cell.
  • the present inventors reduced the cell growth of the recombinant cell and produced the recombinant protein per cell by using a cell having a modified morphogenesis regulator as a host. It was found that the quantity improves.
  • the present invention is based on this novel finding.
  • the present invention relates to the following inventions, for example.
  • a growth reduction step for reducing cell growth of recombinant cells expressing the recombinant protein A production step of culturing the recombinant cell in a protein production medium in a state where cell growth is reduced to produce the recombinant protein, A method for producing a recombinant protein, which comprises reducing the cell proliferation of the recombinant cell by using a recombinant cell containing at least one modified morphogenesis regulator as the recombinant cell in the proliferation reducing step.
  • a method for increasing the amount of recombinant protein produced per cell comprising: A growth reduction step for reducing cell growth of recombinant cells expressing the recombinant protein, A production step of culturing the recombinant cell in a protein production medium in a state where cell growth is reduced to produce the recombinant protein, The method of reducing cell growth of the said recombinant cell in the said proliferation reduction process by using a recombinant cell containing at least 1 modified morphogenesis regulator as said recombinant cell. [17] The method according to [16], wherein the modified morphogenesis regulator is a mutant cytoskeletal protein. [18] The method according to [16], wherein the recombinant cell has introduced therein an expression cassette of a protein that controls the function of a cytoskeletal protein.
  • the present invention it is possible to provide a method for producing a recombinant protein, which enhances the productivity of producing the recombinant protein while reducing the cell growth of the recombinant cell.
  • FIG. 1 is a schematic diagram showing an outline of a method of incorporating a modified fibroin expression cassette into a host genomic DNA by utilizing a mechanism of lysogenization of HK022 phage.
  • FIG. 3 is a schematic diagram showing an outline of a method for incorporating a modified fibroin expression cassette into a host genomic DNA by utilizing the mechanism of lysogenization of ⁇ 80 phage.
  • FIG. 3 is a schematic diagram showing an outline of a method for incorporating a modified fibroin expression cassette into a host genomic DNA using the homologous recombination system of ⁇ phage.
  • the method for producing a recombinant protein according to the present embodiment includes a growth reducing step of reducing cell growth of a recombinant cell expressing the recombinant protein, and the recombinant cell in a protein production medium in a state where the cell growth is reduced. A production step of culturing in to produce a recombinant protein. Further, the method for producing a recombinant protein according to the present embodiment, in the proliferation reducing step, by using a recombinant cell containing at least one modified morphogenetic regulatory factor as the recombinant cell, It reduces proliferation.
  • Morphogenesis control factor means a protein associated with cell morphogenesis or morphogenesis.
  • Cell morphology includes, for example, cell rigidity, shape, and size.
  • Morphogenic regulators include, for example, proteins associated with the formation or regulation of cell elongation, cell width and cell polarity.
  • Specific examples of the morphogenetic regulatory factor include cytoskeletal proteins, proteins that control the functions of cytoskeletal proteins, and peptidoglycan synthases.
  • prokaryotic cells for example, in many bacteria such as Escherichia coli, the cells are covered with peptidoglycan (sugar chains crosslinked by short peptides).
  • peptidoglycan sucrose chains crosslinked by short peptides.
  • strict control of the degradation of existing peptidoglycan and the insertion of newly synthesized peptidoglycan during cell elongation and division allows cells to maintain their morphology without rupture. Is possible.
  • cytoskeletal proteins it is thought that one of the functions of cytoskeletal proteins is to control the intracellular localization of peptidoglycan synthase. That is, it is the peptidoglycan in the periplasmic region that ultimately determines the morphology of the cell, but it is the cytoskeletal protein in the cytoplasm that controls the enzyme that synthesizes it.
  • Examples of bacterial cytoskeletal proteins include FtsZ tubulin and MreB actin.
  • Examples of the peptidoglycan synthase include PBP3 (FtsI) and PBP2.
  • FtsZ tubulin is the first of the division-related proteins to localize at the division plane and forms a division ring (Z ring). Furthermore, more than a dozen kinds of related proteins are assembled into Z-rings one after another to form PBP3 and a supramolecular complex called divisome.
  • MreB forms a complex called elongasome with PBP2 which is essential for cell elongation.
  • examples of constituent factors of elongasome include RodZ, RodA, MreC, and MreD.
  • eukaryotic cytoskeletal proteins examples include crecentin, cytoskeleton ParM and SopA, and the like.
  • modified morphogenetic regulator means a morphogenetic regulator modified by substitution, deletion, insertion, addition or mutation or artificial regulation of expression.
  • the artificial expression regulation means to induce, reduce or suppress the expression of a nucleic acid or a gene to induce, reduce or suppress the production of a protein or a polypeptide, respectively.
  • the expression level of the morphogenic regulator can be modified by incorporating the morphogenic regulator into an expression cassette and introducing it into cells.
  • the expression level of the morphogenesis regulator can be modified by adding an enhancer or other regulatory sequence to the morphogenesis regulator sequence. Other modifications may be included. Alternatively, a combination of the above may be used.
  • mutant morphogenetic regulator refers to a substitution, deletion, insertion and/or addition of one or more amino acid residues as compared with the amino acid sequence of a wild-type morphogenetic regulator. It means a morphogenetic regulatory factor having a corresponding amino acid sequence. It should be noted that the mutant morphogenetic regulator completely lacks the wild-type morphogenetic regulator (for example, the gene encoding the morphogenetic regulator is missing from the chromosomal DNA. It does not express as a protein due to the fact that the gene encoding the regulatory factor is no longer expressed).
  • the mutant morphogenesis regulator preferably comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence of the wild-type morphogenesis regulator, and preferably comprises 95% or more sequence identity. Is more preferable, and it is further preferable that the amino acid sequences have a sequence identity of 99% or more.
  • the mutant morphogenetic regulator may be one in which some or all of the biological activity possessed by the wild-type morphogenetic regulator is lost.
  • a cell having a mutant morphogenetic regulatory factor is, for example, a method by screening a cell existing in nature, a drug treatment such as A22 (S-(3,4-Dichlororobenzyl)-isothiourea) and/or a mutation such as ultraviolet irradiation. It can be obtained by a method of screening after inducing a cell or a method of obtaining a cell having a mutant morphogenesis regulator by a genetic engineering method.
  • a method using a genetic engineering method there are, for example, a method of randomly introducing a mutation and a method of introducing a site-specific mutation.
  • a random mutation introduction kit (BD Diversify PCR Random Mutagenesis (manufactured by CLONTECH)) may be used.
  • a site-specific mutation introducing kit (Mutan-K (manufactured by Takara Bio Inc.)) may be used.
  • the mutant morphogenetic regulatory factor is preferably a mutant cytoskeletal protein, more preferably a mutant MreB.
  • the mutant MreB has an amino acid sequence corresponding to substitution, deletion, insertion and/or addition of one or more amino acid residues as compared with the amino acid sequence of wild-type MreB (SEQ ID NO: 1).
  • mutant MreB examples include, for example, the 14th amino acid residue S, the 20th amino acid residue A, the 23rd amino acid residue L, the 53rd amino acid residue A of wild-type MreB (SEQ ID NO: 1), The 74th amino acid residue R, the 84th amino acid residue F, the 143rd amino acid residue E, the 158th amino acid residue T, the 185th amino acid residue S, the 207th amino acid residue G, the Those having mutations in one or more amino acid residues such as the 209th amino acid residue L, the 276th amino acid residue E and the 322nd amino acid residue L can be mentioned.
  • the mutant MreB is preferably selected from the 53rd amino acid residue A, the 74th amino acid residue R, the 84th amino acid residue F and the 185th amino acid residue S of wild-type MreB (SEQ ID NO: 1). One having a mutation in one or more amino acid residues is included.
  • mutant MreB More specific examples of the mutant MreB include S14A, A20V, L23R, A53T, R74C, R74L, F84V, E143A, A158T, S185F, G207C, and L209R with respect to wild-type MreB (SEQ ID NO: 1). , E276D, L322Q and the like having an amino acid sequence corresponding to substitution of one or more amino acid residues.
  • the mutant MreB is selected from E143A, R74L, A53T, S185F, F84V, and more preferably R74L, A53T, S185F, F84V, G207C and L208R relative to wild-type MreB (SEQ ID NO: 1).
  • proteins that control the function of cytoskeletal proteins that are morphogenic regulators include sulA, yeeV, slmA, and Min family proteins (MinC, D, and E) in prokaryotes.
  • MinC, D, and E Min family proteins in prokaryotes.
  • ezrA and Noc are mentioned in some microorganisms such as the genus Bacillus.
  • SulA is a constituent factor of the SOS system and inhibits FtsZ polymerization by interacting with FtsZ.
  • sulA When sulA accumulates in cells, the cells become long filamentous cells without a septum (Journal of vectorology, 1993, 175:1118-1125.).
  • Wild-type sulA has the amino acid sequence shown in SEQ ID NO:6, and the sulA gene encoding this has the nucleic acid sequence shown in SEQ ID NO:7, for example.
  • the nucleic acid sequence encoding the morphogenesis regulator sulA in this embodiment has at least 90%, preferably 93%, 95%, 98% or 99% sequence identity with the nucleic acid sequence set forth in SEQ ID NO:7.
  • YeV (CbtA) is Toxin of type IV toxin-antitoxin (TA) system.
  • yeeV interacts with FtsZ and MreB, respectively, and acts inhibitoryly.
  • FtsZ it inhibits its GTP-dependent polymerization
  • MreB it inhibits its ATP-dependent polymerization. Since FtsZ and MreB control the size and morphology of cells, it is known that overexpression of the inhibitory yeV causes the cells to grow (Molecular microbiology, 2011, 79:109-118, And PLoS genetics, 2017, 13:e1007007.).
  • Recombinant cell containing modified morphogenetic regulatory factor include a wild-type morphogenetic regulatory factor that has a modified morphogenetic regulatory factor in the cell using an artificial operation such as a genetic engineering method, and the like. Having a morphogenetic regulatory factor different from the wild type in the cell through the mutation in, and the morphogenetic regulatory factor was incorporated into the expression cassette and introduced into the cell to modify the expression level of the morphogenic regulatory factor Things are included.
  • the recombinant cell according to this embodiment expresses a recombinant protein.
  • the recombinant cell according to the present embodiment includes, for example, a nucleic acid sequence encoding a recombinant protein (hereinafter, also referred to as “target protein”) and one or more regulatory sequences operably linked to the nucleic acid sequence. (Hereinafter, also referred to as “target protein expression cassette”).
  • the recombinant cell according to the present embodiment may include one expression cassette or a plurality of expression cassettes (eg, two, three, four, five).
  • the regulatory sequence is a sequence (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, etc.) that controls the expression of the recombinant protein (protein of interest) in the host, and can be appropriately selected depending on the type of host. ..
  • the regulatory sequence may be exogenous or endogenous (host-derived regulatory sequence).
  • a recombinant cell containing the target protein expression cassette can be obtained, for example, by a method of transforming a host cell with an expression vector containing at least a nucleic acid sequence encoding the target protein.
  • the expression vector may contain a protein expression cassette of interest.
  • the recombinant cell according to the present embodiment may have the target protein expression cassette outside the genomic DNA, or may have the target protein expression cassette incorporated into the genomic DNA. It is preferred that the cassette is integrated in genomic DNA.
  • a known method can be used, and examples thereof include transforming a host cell with a plasmid vector.
  • a method for incorporating the target protein expression cassette into genomic DNA a known method can be used. For example, the ⁇ red method and the Red/ET homologous recombination applying the recombination mechanism in the double-strand break repair of ⁇ phage. Method, and a transposition method utilizing the transposon activity using pUT-mini Tn5.
  • a gene transfection kit using transposon: pUTmini-Tn5 Kit manufactured by Biomedal Co., Ltd. can be used to incorporate the target protein expression cassette into the genomic DNA of the host cell according to the method described in the kit.
  • a DNA fragment containing at least a nucleic acid sequence encoding the target protein is recombined so as to be operably linked to one or more regulatory sequences in the genomic DNA of the host cell, whereby the target protein expression cassette is integrated into the host cell. It may be incorporated into genomic DNA.
  • the target protein expression cassette is introduced into the host cell via the attachment site (attB site) in the genomic DNA of the host cell and the attachment site (attP site) on the vector by the integrase of ⁇ phage.
  • a preferred method is to integrate the target protein expression cassette into the genomic DNA of the host cell.
  • any of prokaryotic cells such as bacteria and eukaryotic cells such as yeast cells, filamentous fungal cells, insect cells, animal cells, and plant cells can be used.
  • the host cells are preferably prokaryotic cells such as bacteria from the viewpoint of rapid growth and reduction of culture costs.
  • the host cell may be a coccus, a spiral bacterium, or a bacillus, but is preferably a bacillus.
  • prokaryotic host cells such as bacteria include microorganisms belonging to Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas. ..
  • Preferred examples of prokaryotes include Escherichia coli, Bacillus subtilis, Pseudomonas, Corynebacterium, and Lactococcus.
  • the host cell is preferably a microorganism belonging to the genus Escherichia, particularly Escherichia coli.
  • microorganisms belonging to the genus Escherichia include Escherichia coli BL21 (Novagen), Escherichia coli BL21 (DE3) (Life Technologies), Escherichia coli BLR (DE3) (Merck Millipore), Escherichia coli DH1, Escherichia. ⁇ Coli GI698, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli K5 (ATCC 23506), Escherichia coli KY3276, Escherichia coli MC1000, Escherichia coli MG1655 (ATCC No.
  • Escherichia coli 49 Escherichia coli Rosetta (DE3) (Novagen), Escherichia coli TB1, Escherichia coli Tuner (Novagen), Escherichia coli Tuner (DE3) (Novagen), Escherichia coli W1105, Escherichia coli W1485, Escherichia. ATCC 27325), Escherichia coli XL1-Blue, Escherichia coli XL2-Blue and the like.
  • the host cell is preferably Escherichia coli.
  • any method for transforming the host cell any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-248394), or the method described in Gene, 17, 107 (1982) or Molecular & General Genetics, 168, 111 (1979).
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • the protoplast method JP-A-63-248394
  • Transformation of a microorganism belonging to the genus Brevibacillus can be carried out, for example, by the method of Takahashi et al. (J. Bacteriol., 1983, 156:1130-1134) or the method of Takagi et al. (Agric. Biol. Chem., 1989, 53:3099). -3100), or the method of Okamoto et al. (Biosci. Biotechnol. Biochem., 1997, 61:202-203).
  • the type of vector used for transformation can be appropriately selected according to the type of host, such as plasmid vector, virus vector, cosmid vector, fosmid vector, artificial chromosome vector, etc. ..
  • examples of the vector include pBTrp2, pBTac1, pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-8 (PQE-8).
  • QIAGEN pKYP10 (JP-A-58-110600), pKYP200 [Agric. Biol. Chem.
  • pUC18 When Escherichia coli is used as the host cell, pUC18, pBluescriptII, pSupex, pET22b, pCold and the like can be mentioned as suitable vectors.
  • a vector suitable for a microorganism belonging to the genus Brevibacillus include pUB110 known as Bacillus subtilis vector, pHY500 (JP-A-2-31682), pNY700 (JP-A-4-27891), pHY4831 (J Bacteriol., 1987, 1239-1245), pNU200 (Shigezo Utaka, Journal of Japan Society of Agricultural Chemistry 1987, 61: 669-676), pNU100 (Appl. Microbiol. Biotechnol., 1989, 30: 75-80), pNU211. (J. Biochem., 1992, 112: 488-491), pNU211R2L5 (JP-A-7-170984), pNH301 (Appl.
  • the promoter is not limited as long as it functions in the host cell. Examples thereof include promoters derived from Escherichia coli or phage such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter, T7 promoter and the like. Further, artificially designed and modified promoters such as a promoter in which two Ptrp are connected in series (Ptrp ⁇ 2), tac promoter, lacT7 promoter, letI promoter, etc. can also be used.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases).
  • the transcription termination sequence is not always necessary, but it is preferable to arrange the transcription termination sequence immediately below the gene encoding the target protein.
  • Examples of eukaryotic host cells include yeast and filamentous fungi (mold etc.).
  • yeasts include Saccharomyces genus, Schizosaccharomyces genus, Kluyveromyces genus, Trichospora genus, Schwanniocyca, Psychoanis, Schywani, Schywane , Yarrowia genus, Hansenula genus and the like.
  • the vector When yeast is used as a host cell, the vector is usually an origin of replication (if amplification in the host cell is required) and a selectable marker for growth of the vector in E. coli, inducible for expression of recombinant protein in yeast. It is preferred to include a promoter and terminator, and a selectable marker for yeast.
  • the vector When the vector is a non-integrated vector, it is preferable that the vector further contains an autonomously replicating sequence (ARS). This can improve the stability of the vector in cells (Myers, AM, et al. (1986) Gene 45:299-310).
  • ARS autonomously replicating sequence
  • yeast examples include YEP13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), YIp, pHS19, pHS15, pA0804, pHIL3Ol, pHIL-S1, pPIC9K, pPICZ ⁇ , pGAPZ ⁇ , PGAPZ ⁇ , PGAPZ ⁇ , PGAPZ ⁇ B etc. can be mentioned.
  • promoters when yeast is used as a host cell include galactose-inducible gal1 promoter and gal10 promoter; copper-inducible CUP1 promoter; thiamine-inducible nmt1 promoter; and methanol-inducible AOX1 promoter, AOX2 Examples thereof include promoters, DHAS promoters, DAS promoters, FDH promoters, FMDH promoters, MOX promoters, ZZA1, PEX5-, PEX8- and PEX14-promoters.
  • any method for introducing a vector into yeast can be used as long as it is a method for introducing DNA into yeast, for example, electroporation method (Methods Enzymol., 194, 182 (1990)), spheroplast method. (Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)), lithium acetate method (J. Bacteriol., 153, 163 (1983)), Proc. Natl. Acad. Sci. USA, 75, 1929 (1978), and the like.
  • electroporation method Metals Enzymol., 194, 182 (1990)
  • spheroplast method Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)
  • lithium acetate method J. Bacteriol., 153, 163 (1983)
  • Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) and the like.
  • filamentous fungi examples include genus Acremonium, genus Aspergillus, genus Ustilago, genus Trichoderma, genus Neurospora, genus Fusarium, Fusarium. Penicillium genus, Myceliophtora genus, Botrytis genus, Magnaporthe genus, Mucor genus, Metalithium (Metarhizus), Monascus (Rhizopus), Monascus (Monascus), Monascus (Monascus) , And bacteria belonging to the genus Rhizomucor.
  • promoters when a filamentous fungus is used as a host cell include salicylic acid-inducible PR1a promoter; cycloheximide-inducible Placc promoter; and quinic acid-inducible Pqa-2 promoter.
  • the vector can be introduced into the filamentous fungus by using a conventionally known method.
  • a conventionally known method for example, the method of Cohen et al. (calcium chloride method) [Proc. Natl. Acad. Sci. USA, 69:2110 (1972)], protoplast method [Mol. Gen. Genet. , 168:111 (1979)], the competent method [J. Mol. Biol. 56:209 (1971)], electroporation method and the like.
  • the order of incorporating the target protein expression cassette and introducing a mutation into the morphogenetic regulatory factor does not matter. That is, the target protein expression cassette may be incorporated into a host cell having the modified morphogenesis regulator, or the modified morphogenesis regulator may be introduced into the host cell having the target protein expression cassette.
  • the target protein produced by the method for producing a recombinant protein according to this embodiment is not particularly limited, and any protein can be used.
  • the target protein means a protein which is produced by the production method according to the present embodiment and is then recovered and used.
  • the target protein include any protein that is preferably produced on an industrial scale, and examples thereof include a protein that can be used industrially, a protein that can be used medically, and a structural protein.
  • proteins that can be used industrially or medically include enzymes, regulatory proteins, receptors, peptide hormones, cytokines, membrane or transport proteins, antigens used for vaccination, vaccines, antigen-binding proteins, immunostimulatory proteins, Examples include allergens, full-length antibodies, antibody fragments or derivatives, and the like.
  • structural proteins include fibroin (eg, spider silk, silkworm silk, etc.), keratin, collagen, elastin, resilin, fragments of these proteins, and proteins derived therefrom.
  • fibroin includes naturally occurring fibroin and modified fibroin.
  • naturally-derived fibroin means a fibroin having the same amino acid sequence as naturally-derived fibroin
  • modified fibroin means a fibroin having an amino acid sequence different from that of naturally-derived fibroin. To do.
  • Fibroin may be spider silk fibroin.
  • "Spider silk fibroin” includes natural spider silk fibroin and modified fibroin derived from natural spider silk fibroin. Examples of the natural spider silk fibroin include spider silk protein produced by spiders.
  • Fibroin is, for example, a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m -(A) n motif. May be.
  • the fibroin according to the present embodiment may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence.
  • the N-terminal sequence and the C-terminal sequence are typically, but not limited to, regions having no repeat of the amino acid motif characteristic of fibroin, and consist of about 100 amino acids.
  • domain sequence refers to a crystalline region (typically corresponding to the (A) n motif of an amino acid sequence) and an amorphous region (typically REP of an amino acid sequence) peculiar to fibroin.
  • the (A) n motif represents an amino acid sequence mainly composed of alanine residues, and the number of amino acid residues is 2 to 27.
  • the number of amino acid residues in the n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16. .. Further, the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed of only alanine residues). At least seven of the (A) n motifs present in the domain sequence may be composed of only alanine residues.
  • REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
  • REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
  • m represents an integer of 2 to 300, and may be an integer of 10 to 300.
  • the plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
  • the plurality of REPs may have the same amino acid sequence or different amino acid sequences.
  • Naturally-occurring fibroin examples include, for example, a domain sequence represented by the formula 1: [(A) n motif-REP] m , or the formula 2: [(A) n motif-REP] m -(A) n motif.
  • the proteins included can be mentioned.
  • Specific examples of naturally-derived fibroin include, for example, fibroin produced by insects or arachnids.
  • fibroin produced by insects include Bombyx mori, Bombyx mandarina, Antheraea yam tai rya pynayi, ori peri erygium, Anteraea periyna, Pomegranate (Anteraea periyi), Anteraea periyna, Pomegranate (Anteraea peryny) ), silkworm proteins produced by silkworms such as Anthera apse assap, such as silkworm silkworm (Antheraea assama), such as silkworm silkworms (Samia cynthia), chestnut (Caligura japonica), chusser silkworms (Antheraea mylitta), and mug silkworms (Antheraea assama). Hornet silk protein is mentioned.
  • fibroin produced by insects include silkworm fibroin L chain (GenBank Accession No. M76430 (base sequence), and AAA278840.1 (amino acid sequence)).
  • fibroin produced by the spiders examples include spiders belonging to the genus Araneus (genus Araneus), such as the spider Spider, spider, spider, spider, and spider, spiders belonging to the genus Araneus, spiders such as the spider Nea sp.
  • Genus Araneus such as the spider Spider, spider, spider, spider, and spider
  • spiders belonging to the genus Araneus spiders such as the spider Nea sp.
  • Spiders belonging to the genus Proton spiders belonging to the genus Pronus, spiders belonging to the genus Cyrtarachne, such as spider spider, genus Cyrtarachne, and spider spiders, such as the spider spider Spiders belonging to the genus (Gasteracantha), spiders belonging to the genus Ordgarius (genus Ordgarius), such as the spider spider, Mamaytaiseki spider and Mutsugai spider, belonging to the genus Argiopsis, such as Argiogiope, Argiope brue and Argiope brue Spiders belonging to the genus Arachnura, Spiders belonging to the genus Acusilas such as Spider Spider, spiders belonging to the genus Cytophora (Spider Spider), such as Spiders, Spiders, Black-faced Spiders and genus Cytophora (genus Cytophora).
  • spider spider Spiders belonging to the genus Proton spiders belonging to the genus Pron
  • Spider silk protein produced by spiders belonging to the genus such as spiders, lanterns, spiders belonging to the category
  • spider silk proteins produced by spiders belonging to the genus Chorizopes such as Yamato, and spider silk spiders.
  • Spiders belonging to the genus Tetragnatha such as the herring-tailed spider Spider, Harabiro-shida-daga spider and Uro-core spider, etc.
  • Spiders belonging to the genus Nephila spiders belonging to the genus Menosira, such as black spiders, spiders belonging to the genus Dyschirioognatha, such as the dwarf spider, such as the black-breasted spider, black widow spider, and the black-breasted spider.
  • spider silk proteins include dragline proteins such as MaSp (MaSp1 and MaSp2) and ADF (ADF3 and ADF4), and MiSp (MiSp1 and MiSp2).
  • keratin-derived proteins examples include Capra hircus type I keratin.
  • Examples of the collagen-derived protein include, for example, a protein containing a domain sequence represented by Formula 3: [REP2] p (wherein, in Formula 3, p represents an integer of 5 to 300.
  • REP2 is Gly-X- An amino acid sequence composed of Y is shown, and X and Y are arbitrary amino acid residues other than Gly.
  • a plurality of REP2s may be the same amino acid sequence or different amino acid sequences. it can.
  • elastin-derived proteins include proteins having amino acid sequences such as NCBI GenBank Accession Nos. AAC98395 (human), I47076 (sheep), and NP786966 (bovine).
  • REP3 As the protein derived from resilin, for example, a protein containing a domain sequence represented by the formula 4: [REP3] q (wherein q represents an integer of 4 to 300.
  • REP3 is Ser-JJ).
  • the amino acid residue is preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr, and Ser, and a plurality of REP4s may have the same amino acid sequence or different amino acid sequences. ) Can be mentioned.
  • the target protein may be a hydrophilic protein or a hydrophobic protein.
  • the sum of the hydrophobicity indices (hydropathic index, HI) of all the amino acid residues constituting the target protein is calculated, and then the sum is divided by the total number of amino acid residues (average HI, Hereinafter, also referred to as “hydrophobicity”) is preferably ⁇ 1.0 or more.
  • HI hydrophobicity index
  • a known index Kyte J, & Doolittle R (1982) “A simple method for dissipating the hydropathic character. 105-132).
  • the hydrophobicity index of each amino acid is as shown in Table 1 below.
  • the target protein has a hydrophobicity of ⁇ 0.9 or higher, ⁇ 0.8 or higher, ⁇ 0.7 or higher, ⁇ 0.6 or higher, ⁇ 0.5 or higher, ⁇ 0.4 or higher. , -0.3 or more, -0.2 or more, -0.1 or more, 0 or more, 0.1 or more, 0.2 or more, 0.3 or more, or 0.4 or more, and the purpose.
  • the hydrophobicity of the protein may be 1.0 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, or 0.5 or less.
  • the molecular weight of the target protein is not particularly limited, but may be, for example, 10 kDa or more and 700 kDa or less.
  • the molecular weight of the target protein may be, for example, 20 kDa or higher, 30 kDa or higher, 40 kDa or higher, 50 kDa or higher, 60 kDa or higher, 70 kDa or higher, 80 kDa or higher, 90 kDa or higher, or 100 kDa or higher, for example, 600 kDa or lower, 500 kDa or lower, 400 kDa or lower, 400 kDa or lower. , 300 kDa or less, or 200 kDa or less.
  • the larger the molecular weight of a protein the easier it is for aggregation to occur.
  • the growth reduction step is a step of reducing cell growth of a recombinant cell expressing the recombinant protein.
  • the method for producing a recombinant protein according to the present embodiment by using the above-mentioned recombinant cell (recombinant cell containing at least one modified morphogenetic regulatory factor) as a recombinant cell, Reduce proliferation.
  • the cell proliferation of the recombinant cells can be reduced by culturing the recombinant cells containing at least one modified morphogenesis regulator in the protein production medium described below.
  • the production step is a step of culturing a recombinant cell in a protein production medium in a state where cell growth is reduced to produce a recombinant protein.
  • the growth reduction step and the production step can be carried out simultaneously.
  • the protein production medium for culturing the recombinant cells is not particularly limited, and can be selected from known natural medium or synthetic medium according to the type of the recombinant cells.
  • a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, vitamins, minerals, nutrients required by auxotrophy, and components selected from other various organic components and inorganic components are used.
  • a liquid medium to be contained can be used if necessary. Those skilled in the art may appropriately set the types and concentrations of the medium components.
  • the protein production medium preferably contains naturally-derived components.
  • the naturally-derived component means a component such as a natural product (for example, yeast) itself or an extract from the natural product (for example, Yeast Extract).
  • Naturally-derived components are usually those in which the types of components contained and the respective contents are not completely specified.
  • the naturally-derived component includes, for example, at least one selected from the group consisting of vitamins, low molecular weight peptides (for example, peptides having 2 to 20 amino acid residues), and amino acids.
  • Carbon sources include sugars such as glucose, sucrose, lactose, galactose, fructose and starch hydrolysates, alcohols such as glycerol and sorbitol, and organic acids such as fumaric acid, citric acid and succinic acid.
  • the carbon source may be one kind, or two or more kinds of carbon sources may be mixed in an arbitrary ratio.
  • the concentration of the carbon source in the protein production medium is about 0.1 w/v% to 50 w/v%, preferably about 0.5 w/v% to 40 w/v%, more preferably 1 w/v% to 30 w/v%.
  • the amount may be about 5 w/v% to 20 w/v %, particularly preferably.
  • the ratio of glycerol or glucose in the carbon source is preferably 10% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more.
  • the preferable initial concentration of the carbon source at the start of the culture is as described above, but the carbon source may be appropriately added depending on the consumption of the carbon source during the culture.
  • nitrogen sources include nitrates, ammonium salts, inorganic nitrogen salts such as ammonia gas and ammonia water, amino acids, peptones, extracts, and organic nitrogen sources such as corn steep liquor (CSL) which is a by-product in the corn starch manufacturing industry.
  • peptones include casein peptone, meat peptone, heart muscle peptone, gelatin peptone, soybean peptone, and the like.
  • the extracts include meat extract, yeast extract, heart exudate (heart infusion) and the like.
  • As a nitrogen source containing an amino acid or a peptide it is preferable that the content of lower molecular peptides and amino acids is higher.
  • phosphates such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate and the like
  • phosphoric acid polymers such as pyrophosphoric acid and the like.
  • sulfur source examples include inorganic sulfur compounds such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione.
  • vitamins examples include biotin, choline chloride, cyanocobalamin, folic acid, inositol, nicotinic acid, 4-aminobenzoic acid, pantothenic acid, pyridoxine, riboflavin, thianmin and thymidine.
  • sources of vitamins include various extracts such as malt extract, potato extract and tomato juice.
  • Culturing in the production process can be performed aerobically by, for example, aeration culture or shaking culture.
  • the culturing can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the pH of the protein production medium may be, for example, 3.0 to 9.0.
  • the culture temperature may be, for example, 15-40°C.
  • the culture time may be, for example, 1 to 60 hours.
  • the culture conditions are not particularly limited as long as the recombinant cells can grow and the target protein can be accumulated in the recombinant cells expressing the target protein.
  • the recombinant cells may or may not grow during the period in which the target protein is expressed.
  • the culture conditions may or may not be the same in the period before the target protein is expressed and the period after the expression is started.
  • the culture temperature usually has a great influence on the cell growth.
  • the lower limit temperature of growth is 0° C., which is the freezing temperature of water in cells, or a temperature slightly lower than it, and the upper limit temperature is determined by the denaturing temperature of polymer compounds such as proteins and nucleic acids.
  • the temperature range in which a certain strain can grow is relatively narrow. For example, in Escherichia coli, the lower limit temperature of growth is 0 to 15°C, the upper limit temperature is 46°C, and the optimum growth temperature is around 36 to 42°C.
  • microorganisms When microorganisms are classified according to the optimal growth temperature, they are psychrophilic bacteria with an optimum temperature of 20°C or lower, mesophilic bacteria with an optimum temperature of 20 to 45°C, and thermophilic bacteria with an optimum temperature of 45°C or higher. Can be divided.
  • the optimum growth temperature refers to a temperature at which the microorganism to be cultured can obtain the maximum specific growth rate
  • the specific growth rate refers to the growth rate per unit amount of the microorganism, which is a value specific to the microorganism. Varies depending on culture conditions.
  • the "optimum growth temperature" means that a microorganism obtains a maximum specific growth rate when conditions other than the culture temperature such as pH and dissolved oxygen concentration are constant at the start of the culture. The temperature that can be achieved.
  • the growth of the recombinant cell is controlled by adjusting the culture temperature or the like. By cooling or maintaining the recombinant cell at a temperature lower than the optimum temperature, the expression level of the target protein in the recombinant cell can be increased.
  • the temperature lower than the optimum temperature for growth of the recombinant cells may be, for example, a temperature lower by 3 to 25° C. than the lower limit of the optimum temperature for growth of the recombinant cells, or a temperature lower than 8 to 20° C.
  • the temperature may be 8°C lower.
  • the recombinant cell according to this embodiment may be capable of inducing the expression of the target protein. Induction of expression of the recombinant protein is performed by activating transcription (transcription of nucleic acid encoding the target protein) by an inducible promoter. Activation of the inducible promoter can be performed according to a method known in the art depending on the type of the inducible promoter.
  • an inducible promoter activated by the presence of an inducer such as isopropyl- ⁇ -thiogalactopyranoside (IPTG)
  • an inducer such as isopropyl- ⁇ -thiogalactopyranoside (IPTG)
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the inducer may be added to the culture broth at once or in a plurality of times, or may be added to the culture broth by continuous feed.
  • the fed-batch substrate solution may contain an inducer and be fed.
  • the amount of the inducer to be added can be set according to the types of the inducer and the inducible promoter, but for example, it can be in the range of 0.1 to 30 ⁇ g per 1 g of dry weight of the recombinant cell, and preferably Is in the range of 0.5 to 20 ⁇ g.
  • the expression of the recombinant protein can be induced by increasing or decreasing the temperature of the culture solution.
  • the expression of the recombinant protein during growth can be suppressed by setting the temperature of the culture solution during growth to 20 to 37°C. Then, the expression of the recombinant protein can be induced by raising the temperature of the culture medium to 38 to 44°C.
  • the pH of the culture solution during growth is set to 6.5 to 7.5 as described in JP-A-6-292563 to induce the expression of the recombinant protein.
  • the pH of the culture solution is set to 6.5 to 7.5 as described in JP-A-6-292563 to induce the expression of the recombinant protein.
  • time from the stage of growing recombinant cells to the stage of inducing recombinant protein expression there is no particular limitation on the time from the stage of growing recombinant cells to the stage of inducing recombinant protein expression, and it can be set appropriately according to the configuration of the culture system and the design of the production process. From the viewpoint of efficiently producing the recombinant protein, it is preferable to start the induction of the expression of the recombinant protein when the growth of the recombinant cell reaches the mid-log phase of the logarithmic growth phase.
  • Recombinant cell growth begins in the lag phase or the induction phase (when the number of cells in the initial stage of culture is slow to increase), and goes through the logarithmic growth phase (when the number of cells doubles logarithmically per unit time) , To the stationary phase (the time when the net number of cells does not change).
  • the middle phase of the logarithmic growth phase refers to a time when the number of cells becomes an intermediate level between the number of cells in the lag phase and the number of cells in the stationary phase
  • the latter phase of the logarithmic growth phase refers to the time from the middle phase to the stationary phase.
  • the time when the induction of the expression of the recombinant protein is started for example, in the case of a recombinant cell in which the OD 600 value in the stationary phase is about 150, it is the time when the OD 600 value reaches 30 to 110. Is preferable, it is more preferable that it is 40 to 90, and it is still more preferable that it is 50 to 80.
  • the time for inducing the expression of the recombinant protein may be set according to the host used and the type of the target protein until the set production amount is reached. Since the production rate changes depending on the culture conditions such as the temperature of the culture solution, it is not necessary to uniquely determine the time for inducing the expression of the recombinant protein.
  • the time for inducing the expression of the recombinant protein may be set according to the progress of the separation and purification of the recombinant protein in the next step. Further, in industrial production, it is preferable to set the time for inducing the expression of the recombinant protein so as not to affect the growth of the recombinant cells being carried out in parallel and the transfer of the grown recombinant cells. ..
  • the method for producing a recombinant protein according to this embodiment may further include a preculture step.
  • the pre-culturing step is a step of culturing the recombinant cells in a pre-culture medium before the growth suppressing step.
  • the specific aspect of the pre-culture medium is the same as the aspect described in the above-mentioned protein production medium.
  • the pre-culture medium a medium richer in nutrients than the protein production medium. This makes it possible to increase the number of recombinant cells used in the growth suppression step and the production step.
  • a method for increasing the production amount of a recombinant protein per cell includes a proliferation reducing step of reducing cell proliferation of a recombinant cell expressing the recombinant protein, A production step of producing a recombinant protein by culturing in a protein production medium in a reduced state, wherein the recombinant cell contains at least one modified morphogenetic regulatory factor in the growth reduction step. It is a method of reducing cell proliferation of a recombinant cell by using a replacement cell. Specific aspects and preferable aspects of the method are as described above.
  • Example 1 (1) Preparation of recombinant cells (Escherichia coli strain expressing modified fibroin) (target protein) Based on the nucleotide sequence and amino acid sequence of fibroin (GenBank accession number: P46804.1, GI: 1174415) derived from Nephila clavipes, a modified fibroin having the amino acid sequence represented by SEQ ID NO: 2 (hereinafter, referred to as “PRT966 It is also called.).
  • the amino acid sequence represented by SEQ ID NO: 2 has an amino acid sequence in which amino acid residue substitutions, insertions and deletions have been performed for the purpose of improving productivity, with respect to the amino acid sequence of fibroin derived from Nephila clavipes.
  • the amino acid sequence represented by SEQ ID NO: 3 (tag sequence and hinge sequence) is added to the N-terminus.
  • nucleic acid encoding PRT966 was synthesized. An NdeI site was added to the 5'end and an EcoRI site was added downstream of the stop codon to the nucleic acid. This nucleic acid was cloned into a cloning vector (pUC118). Then, the same nucleic acid was digested with restriction enzymes NdeI and EcoRI to excise it, and then it was recombined into a pET-22b(+) vector to obtain a pET-22(+)/PRT966 vector.
  • Escherichia coli BL21(DE3) strain is used as a host, and the modified fibroin expression cassette is incorporated into the genomic DNA at three positions by using the following methods (a) to (c) to have three modified fibroin expression cassettes. Recombinant cells were obtained.
  • the first modified fibroin expression cassette was incorporated into genomic DNA by utilizing the mechanism of HK022 phage lysogenization.
  • the mechanism is sequence-specific recombination between a specific site in the host genomic DNA (attB site) and a specific site in the phage genome (attP(HK022) site).
  • FIG. 11 is a schematic diagram showing an outline of a method of incorporating a modified fibroin expression cassette into a host genomic DNA by utilizing the mechanism of lysogenization of HK022 phage.
  • the pET-22(+)/PRT966 vector was digested with restriction enzymes NdeI and EcoRI to excise the nucleic acid encoding PRT966, and then recombination into a plasmid vector attHK022-Cm2 having an attP(HK022) site was conducted to obtain attHK022-Cm2.
  • a T7p-PRT966-T7t-FRT-Cm2-ori_R6K-FRT vector was obtained.
  • the attHK022-T7p-PRT966-T7t-FRT-Cm2-ori_R6K-FRT vector was introduced into the host, and the sequence-specific sequence between the attB site in the host genomic DNA and the attP (HK022) site in the vector was introduced.
  • the modified fibroin (PRT966) expression cassette was incorporated into the host genomic DNA by simple recombination.
  • a helper plasmid pAH69 J. Bact 183:6384-6393 having an int gene was previously introduced into the host to express integrase.
  • the helper plasmid pCP20 Proc. Natl. Acad. Sci. USA, 97: 6640-6645
  • the second modified fibroin expression cassette was incorporated into the host genomic DNA by utilizing the mechanism in which the ⁇ 80 phage was lysogenized.
  • the mechanism is sequence-specific recombination between a specific site in the host genomic DNA (attB site) and a specific site in the phage genome (attP( ⁇ 80) site).
  • FIG. 12 is a schematic diagram showing an outline of a method for incorporating a modified fibroin expression cassette into a host genomic DNA by utilizing the mechanism in which the ⁇ 80 phage is lysogenized.
  • the pET-22(+)/PRT966 vector was treated with a restriction enzyme with NdeI and EcoRI to excise the nucleic acid encoding PRT966, and then the plasmid vector att ⁇ 80-Km1_1 having an attP( ⁇ 80) site was recombined to obtain att ⁇ 80-.
  • the ori_R6K-FRT-Km1-FRT-SPT3p-PRT966-T7t-FRT vector was obtained.
  • the att ⁇ 80-ori_R6K-FRT-Km1-FRT-SPT3p-PRT966-T7t-FRT vector was introduced into the host in which the first modified fibroin expression cassette was incorporated by the method of (a) above, and A second modified fibroin (PRT966) expression cassette was incorporated into the host genomic DNA by sequence-specific recombination between the attB site of A. and the attP ( ⁇ 80) site of the same vector.
  • the helper plasmid pCP20 was introduced to express FLP to remove the kanamycin resistance gene flanked by FRT sequences.
  • the third modified fibroin expression cassette was incorporated into host genomic DNA by utilizing the homologous recombination system possessed by ⁇ phage.
  • the homologous recombination system causes homologous recombination with the exo, bet, and gam gene products in the Red region of the phage genome.
  • FIG. 13 is a schematic diagram showing an outline of a method for incorporating a modified fibroin expression cassette into a host genomic DNA using the homologous recombination system of ⁇ phage.
  • a modified fibroin expression cassette (manX5' homologous sequence-SPT3 promoter-PRT966-T7 terminator-containing in this order by the PCR method using the pET-22(+)/PRT966 vector as a template and a primer for introducing a modification into the T7 promoter. .) was amplified.
  • chloramphenicol resistance gene expression cassette (T7 terminator homologous sequence-FRT-chloramphenicol resistance gene-FRT-manX3' homologous sequence is included in this order) is amplified by PCR using the pKD13-Cm vector as a template. did. Both PCR products were ligated using an In-Fusion (registered trademark) cloning system (Takara Bio Inc.).
  • a DNA fragment ligated to the host in which the first modified fibroin expression cassette and the second modified fibroin expression cassette are incorporated is introduced by the above methods (a) and (b), and A third by homologous recombination between the manX5' homologous sequence and the manX5' homologous sequence on the DNA fragment and between the manX3' homologous sequence in the host genomic DNA and the manX3' homologous sequence on the DNA fragment.
  • Modified fibroin (PRT966) expression cassette was incorporated into host genomic DNA.
  • the helper plasmid pKD46 Proc. Natl. Acad. Sci. USA, 97:6640-6645
  • the helper plasmid pCP20 was introduced to express FLP to remove the chloramphenicol resistance gene flanked by FRT sequences.
  • MreB mutation A region encoding the protein of the MreB gene (CDS) was obtained by PCR and cloned into pKOV plasmid (J. Bacteriology 179:6228-6237) using In-Fusion mix (Takara Bio). did. In order to convert the 53rd amino acid into threonine, a mutation was introduced by a PCR method using an A2T-F primer (5'-AGCGTAACTGCAGTAGGTCATG-3') and an A2T-R primer (5'-TACTGCAGTTACGCTTTTCGGT-3'). After amplifying the nucleic acid coding for, the recombinant cells obtained in the above (1) were transformed by reacting with In-Fusion mix. Using the obtained strain, J. The MreB-A53T mutation was introduced into the genome of the strain by the method described in Bacteriology 179:6228-6237 to obtain a MreB(A53T) mutant strain.
  • modified fibroin Recombinant cells obtained by the methods of (1) and (2) above (recombination having three modified fibroin expression cassettes in genomic DNA and having a MreB(A53T) mutation)
  • Cells (hereinafter, also referred to as “MreB mutant strain”) were cultured by the following method, and the expression level of modified fibroin was analyzed.
  • a recombinant cell obtained by the method of (1) above (a recombinant cell having three modified fibroin expression cassettes in its genomic DNA and having no mutation in MreB.
  • wild-type MreB strain also referred to as “wild-type MreB strain”.
  • the MreB mutant strain and the wild-type MreB strain were each cultured in 2 mL of LB medium for 15 hours.
  • the culture solution was added to 100 mL of the preculture medium (seed culture medium in Table 2) so that the OD 600 was 0.005.
  • the temperature of the culture solution was kept at 30° C., and flask culture was carried out until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
  • the seed culture was added to a jar fermenter to which 500 mL of protein production medium (production medium of Table 3) was added so that the OD 600 was 0.05.
  • the temperature of the culture solution was maintained at 37° C., and the culture was performed at a constant pH of 6.9.
  • the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • the feed solution (fed-batch substrate solution in Table 4) was added at a rate of 6 g/hour.
  • the temperature of the culture solution was maintained at 37° C., and the culture was performed at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturated concentration, and the culture was carried out for 16 hours.
  • 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture medium to a final concentration of 0.1 mM to induce the expression of modified fibroin.
  • SDS-PAGE was performed using the cells prepared from the culture medium before and after the addition of IPTG, and the expression of the target modified fibroin was confirmed by the appearance of the band of the target modified fibroin size depending on the IPTG addition. did.
  • the collected bacterial cells were washed with 20 mM Tris-HCl buffer (pH 7.4).
  • the washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi).
  • the disrupted cells were centrifuged to obtain a precipitate.
  • the resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until it became highly pure.
  • the precipitate after washing was suspended in 8M guanidine buffer solution (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) at a concentration of 100 mg/mL, and the temperature was 60°C. The mixture was stirred for 30 minutes with a stirrer and dissolved. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed by a freeze dryer, and the freeze-dried powder was recovered to obtain modified fibroin (PRT966).
  • 8M guanidine buffer solution 8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
  • the mixture was stirred for 30 minutes with a stirr
  • the resulting freeze-dried powder was subjected to polyacrylamide gel electrophoresis, and image analysis was performed using Totallab (nonlinear dynamics ltd.) to evaluate the production amount of modified fibroin.
  • the production amount (production amount per cell) of each modified fibroin calculated from the weight of the freeze-dried powder was calculated as a relative value when the value at the induction time of 32 hours in the wild type MreB strain was 100%.
  • FIG. 1 is a graph in which the average particle diameters of the MreB mutant strain and the wild-type MreB strain are plotted against the culture time.
  • C0 on the horizontal axis is the time when the seed culture was switched to the production culture, and T0 is the time when the production of the recombinant protein was started by the expression inducer.
  • the MreB mutant strain proliferated by vigorous cell division in a nutrient-rich medium during seed culture, and the cell width increased more than that of the wild-type MreB strain. After that, when it was transferred to the production medium, as shown in the period from C0 (at the time of transplantation to the production medium) to T0 (at the time of induction of expression) in FIG.
  • the average particle size of the wild-type MreB strain decreased rapidly, whereas the MreB mutant strain had almost the same average particle size.
  • the average particle size of the MreB mutant strain remained about 30% larger than that of the wild-type MreB strain.
  • FIG. 2 is a graph showing the weight of the cells themselves of the MreB mutant strain and the wild-type MreB strain 16 hours after the start of the production culture (the weight of the recombinant protein produced was excluded from the weight of the dry cells).
  • FIG. 3 is a graph showing cell proliferation 16 hours after the start of production culture of the MreB mutant strain and the wild-type MreB strain. As shown in FIG. 2 and FIG. 3, it can be understood that the growth of the MreB mutant strain is reduced as compared with the wild-type MreB strain.
  • FIG. 4 is a graph showing the modified fibroin production amount (production amount per cell) of the MreB mutant strain and the wild-type MreB strain. As shown in FIG. 4, the amount of modified fibroin produced by the MreB mutant strain increased by 33% at 16 hours after expression induction and about 35% at 32 hours after expression induction, as compared with the wild-type MreB strain.
  • FIG. 5 is a graph showing the modified fibroin production amount (production amount per medium) of the MreB mutant strain and the wild-type MreB strain. As shown in FIG. 5, the amount of modified fibroin produced by the MreB mutant strain was increased by about 33% 16 hours after the induction of expression, as compared with the wild-type MreB strain.
  • the MreB mutant strain As a result, by using the MreB mutant strain, the cell proliferation was reduced during the production culture of the modified fibroin, and the yield of the modified fibroin per cell was remarkably increased. In addition, since the number of cells is smaller than that of the target protein, the use of the MreB mutant strain is more advantageous than the use of the wild-type MreB strain in the production of the modified fibroin protein in that the crushing operation can be reduced. Was confirmed.
  • Example 2 (1) Preparation of Escherichia coli Strain Inducing Modified Fibroin Expression
  • a pET-22(+)/PRT966 vector having modified fibroin PRT966 was obtained. Further, as in Example 1, using the Escherichia coli BL21(DE3) strain as a host, recombinant cells having three modified fibroin expression cassettes were obtained.
  • PCR for amplifying sulA was carried out by using PrimeSTAR (registered trademark) Max (manufactured by Takara Bio Co., Ltd.) according to a manual attached with a primer having a final concentration of 0.2 ⁇ M and a BL21 (DE3) cell suspension having an OD of 0.01. ) And 98° C. for 10 seconds, 55° C. for 5 seconds, and 72° C. for 30 seconds for 30 cycles.
  • 1 ng of attP21-KmR2 vector was similarly prepared using a primer having a final concentration of 0.2 ⁇ M and PrimeSTAR (registered trademark) Max (manufactured by Takara Bio Inc.).
  • As a template 30 cycles of conditions of 98° C. for 10 seconds, 55° C. for 5 seconds, and 72° C. for 30 seconds were performed.
  • the nucleotide sequence of the obtained expression vector was confirmed by the Sanger method.
  • modified fibroin Recombinant cell obtained by the method of (1) and (2) above (a recombinant cell having a modified fibroin expression cassette on three chromosomes and an expression cassette of sulA.
  • sulA-inducible expression strain was cultured in the same manner as in Example 1 to analyze the expression level of modified fibroin.
  • a recombinant cell obtained by the method of (1) above (a recombinant cell having a modified fibroin expression cassette on three chromosomes and no sulA expression cassette.
  • Control strain also referred to as "Control strain”
  • FIG. 6 is a graph in which the average particle diameters of the sulA-inducible expression strain and the Control strain are plotted against the culture time.
  • T0 on the horizontal axis is the time when the production of the recombinant protein (modified fibroin) was started by the expression inducer, and the number after T represents the elapsed time after the induction of expression.
  • the average particle size of the sulA-inducible expression strain increased, while the Control strain showed almost no change.
  • FIG. 7 is a graph showing changes in the relative value of the cell concentration (cell number) of the Control strain and the sulA-inducible expression strain when the Control strain at the time of inducing the expression of the modified fibroin (T0) was used as a reference (100%). .. As shown in FIG. 7, the control strain increased the cell concentration (the number of cells) to 127% in 24 hours after the induction of the expression of the modified fibroin, whereas the cell concentration (the number of the cells) of the sulA-induced expression strain decreased. It had been.
  • FIG. 8 is a graph showing the relative value of the cell concentration (cell number) of the sulA-inducible expression strain with respect to the Control strain (100%) 24 hours after the induction of the expression of the modified fibroin.
  • FIG. 9 is a graph showing the relative value of the modified fibroin production amount per cell of the sulA-inducible expression strain when the Control strain was used as a reference (100%). As shown in FIG. 9, the production amount of modified fibroin per cell by the sulA-inducible expression strain was increased to about 200% or more at 24 and 28 hours after the induction of expression, as compared with the Control strain.
  • FIG. 10 is a graph showing the relative value of the production amount of the modified fibroin of the sulA-inducible expression strain per medium when the Control strain was used as the standard (100%). As shown in FIG. 10, the production amount of the modified fibroin per medium by the sulA-inducible expression strain was increased to about 126% 24 hours after the induction of expression, as compared with the Control strain.

Abstract

本発明は、組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して組換えタンパク質を生産する生産工程と、を備え、増殖低減工程において、組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、組換え細胞の細胞増殖を低減させる、組換えタンパク質の製造方法に関する。

Description

組換えタンパク質の製造方法
 本発明は、組換えタンパク質の製造方法に関する。本発明はまた、組換えタンパク質の細胞あたりの生産量を増加させる方法にも関する。
 組換え細胞を用いた組換えタンパク質の生産において、細胞増殖の旺盛さが組換えタンパク質の生産能に必ずしも結びつかないことが知られている。例えば、特許文献1には、フィブロイン様タンパク質をコードする遺伝子を有するエシェリヒア・コリを培地で培養すること、フィブロイン様タンパク質をコードする遺伝子の発現を誘導すること、およびフィブロイン様タンパク質を採取することを含む、フィブロイン様タンパク質の製造法であって、前記発現誘導後の菌体増殖が低減されていることを特徴とする、方法が開示されている。
国際公開第2015/178466号
 本発明は、組換え細胞の細胞増殖を低減しつつ、組換えタンパク質の生産能を高める、組換えタンパク質の製造方法を提供することを目的とする。
 本発明者らは、組換えタンパク質の製造において、改変された形態形成制御因子を有する細胞を宿主として用いることで、組換え細胞の細胞増殖が低減されると共に、細胞あたりの組換えタンパク質の生産量が向上することを見出した。本発明は、この新規な知見に基づくものである。
 本発明は、例えば、以下の各発明に関する。
[1]
 組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、
 上記組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して上記組換えタンパク質を生産する生産工程と、を備え、
 上記増殖低減工程において、上記組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、上記組換え細胞の細胞増殖を低減させる、組換えタンパク質の製造方法。
[2]
 上記改変された形態形成制御因子が、変異型細胞骨格タンパク質である、[1]に記載の製造方法。
[3]
 上記変異型細胞骨格タンパク質が、変異型MreBである、[2]に記載の製造方法。
[4]
 上記変異型形態形成制御因子が、MreBと少なくとも90%の配列同一性を有するアミノ酸配列を含む、[3]に記載の製造方法。
[5]
 上記変異型形態形成制御因子が、MreBの第53番目のアミノ酸残基アラニンに変異を有するものである、[3]又は[4]に記載の製造方法。
[6]
 上記変異型形態形成制御因子が、MreBの第53番目のアミノ酸残基アラニンがスレオニンに置換された変異を有するものである、[3]~[5]のいずれかに記載の製造方法。
[7]
 上記組換え細胞は、細胞骨格タンパク質の機能を制御するタンパク質の発現カセットが導入されたものである、[1]に記載の製造方法。
[8]
 上記細胞骨格タンパク質の機能を制御するタンパク質が、sulAである、[7]に記載の製造方法。
[9]
 上記タンパク質生産培地が、天然由来成分を含む、[1]~[8]のいずれかに記載の製造方法。
[10]
 上記組換えタンパク質の疎水度が-1.0以上である、[1]~[9]のいずれか一項に記載の製造方法。
[11]
 上記組換えタンパク質が構造タンパク質である、[1]~[10]のいずれかに記載の製造方法。
[12]
 上記組換えタンパク質がフィブロインである、[1]~[11]のいずれかに記載の製造方法。
[13]
 上記組換えタンパク質がクモ糸フィブロインである、[1]~[12]のいずれかに記載の製造方法。
[14]
 上記組換え細胞が、桿菌である、[1]~[13]のいずれかに記載の製造方法。
[15]
 上記組換え細胞が、エシェリヒア属に属する微生物である、[1]~[14]のいずれかに記載の製造方法。
[16]
 組換えタンパク質の細胞あたりの生産量を増加させる方法であって、
 組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、
 上記組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して上記組換えタンパク質を生産する生産工程と、を含み、
 上記増殖低減工程において、上記組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、上記組換え細胞の細胞増殖を低減させる、方法。
[17]
 上記改変された形態形成制御因子が、変異型細胞骨格タンパク質である、[16]に記載の方法。
[18]
 上記組換え細胞は、細胞骨格タンパク質の機能を制御するタンパク質の発現カセットが導入されたものである、[16]に記載の方法。
 本発明によれば、組換え細胞の細胞増殖を低減しつつ、組換えタンパク質の生産能を高める、組換えタンパク質の製造方法を提供することが可能となる。
MreB変異株及び野生型MreB株の平均粒子径を培養時間に対してプロットしたグラフである。 生産培養開始後16時間におけるMreB変異株及び野生型MreB株の細胞自体の重量(乾燥菌体重量から生産された組換えタンパク質の重量を除いたもの)を示すグラフである。 MreB変異株及び野生型MreB株の生産培養開始後16時間における細胞の増殖を示すグラフである。 MreB変異株及び野生型MreB株の改変フィブロイン生産量(細胞あたりの生産量)を示すグラフである。 MreB変異株及び野生型MreB株の改変フィブロイン生産量(培地あたりの生産量)を示すグラフである。 sulA誘導発現株及びControl株の平均粒子径を培養時間に対してプロットしたグラフである。 sulA誘導発現株及びControl株の細胞増殖(細胞濃度)を培養時間に対してプロットしたグラフである。 sulA誘導発現株及びControl株の生産培養開始後24時間における細胞数を示すグラフである。 sulA誘導発現株及びControl株の改変フィブロイン生産量(細胞あたりの生産量)を示すグラフである。 sulA誘導発現株及びControl株の改変フィブロイン生産量(培地あたりの生産量)を示すグラフである。 HK022ファージが溶原化する機構を利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。 φ80ファージが溶原化する機構を利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。 λファージが有する相同組換えシステムを利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
〔組換えタンパク質の製造方法〕
 本実施形態に係る組換えタンパク質の製造方法は、組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して組換えタンパク質を生産する生産工程と、を少なくとも備える。また、本実施形態に係る組換えタンパク質の製造方法は、増殖低減工程において、組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、組換え細胞の細胞増殖を低減させるものである。
(形態形成制御因子)
 本明細書において、「形態形成制御因子」とは、細胞の形態形成又は形態制御に関連するタンパク質を意味する。細胞の形態には、例えば、細胞の剛性、形状、サイズが含まれる。形態形成制御因子としては、例えば、細胞伸長、細胞幅及び細胞極性の形成又は制御に関連するタンパク質が挙げられる。形態形成制御因子の具体例としては、細胞骨格タンパク質、細胞骨格タンパク質の機能を制御するタンパク質及びペプチドグリカン合成酵素等が挙げられる。
 原核細胞において、例えば、大腸菌など多くの細菌は、細胞がペプチドグリカン(短いペプチドによって架橋された糖鎖)により覆われている。これらの細菌では、細胞の伸長及び分裂にあたって、すでに存在するペプチドグリカンの分解、及び新たに合成されたペプチドグリカンの挿入が厳密に制御されることによって、細胞が破裂することなく、その形態を維持することが可能となっている。細胞骨格タンパク質の機能の一つは、ペプチドグリカン合成酵素の細胞内局在を制御することであると考えられる。すなわち、細胞の形態を最終的に決めるのはペリプラズム領域にあるペプチドグリカンであるが、それを合成する酵素を制御するのは細胞質内にある細胞骨格タンパク質である。
 細菌の細胞骨格タンパク質としては、例えば、FtsZチューブリン及びMreBアクチンを挙げることができる。ペプチドグリカン合成酵素としては、例えば、PBP3(FtsI)及びPBP2を挙げることができる。FtsZチューブリンは、分裂関連タンパク質の中で一番始めに分裂面に局在し、分裂環(Zリング)を形成する。さらに十数種類の関連タンパク質を次々とZリングへと集合させ、PBP3とdivisomeと呼ばれる超分子複合体を形成する。MreBは、細胞伸長に必須のPBP2などとelongasomeと呼ばれる複合体を形成している。他に、elongasomeの構成因子としては、RodZ、RodA、MreC、及びMreD等が挙げられる。
 真核細胞の細胞骨格タンパク質としては、例えば、クレセンチン、細胞骨格のParMとSopA等が挙げられる。
(改変された形態形成制御因子)
 本明細書において、「改変された形態形成制御因子」とは、置換、欠失、挿入、付加または突然変異若しくは人為的発現調節によって改変された形態形成制御因子を意味する。人為的発現調節とは、核酸もしくは遺伝子の発現を誘導、低下または抑制して、蛋白質またはポリペプチドの生成を、それぞれ誘導、低下または抑制することを意味する。形態形成制御因子の発現量は、形態形成制御因子が発現カセット中に組み込まれて細胞内に導入することにより改変することができる。さらに、形態形成制御因子の発現量は、形態形成制御因子の配列にエンハンサーまたはその他の調節配列等の追加により改変することができる。別の改変を含んでも良い。または前記の組合せでも良い。
(変異型形態形成制御因子)
 本明細書において、「変異型形態形成制御因子」とは、野生型の形態形成制御因子のアミノ酸配列と比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列を有する形態形成制御因子を意味する。なお、変異型形態形成制御因子には、野生型の形態形成制御因子が完全に欠失している(例えば、当該形態形成制御因子をコードする遺伝子が染色体DNAから脱落している、当該形態形成制御因子をコードする遺伝子が発現しなくなっている等によりタンパク質として発現していない)ことも含む。変異型形態形成制御因子は、野生型の形態形成制御因子のアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなることが好ましく、95%以上の配列同一性を有するアミノ酸配列からなることがより好ましく、99%以上の配列同一性を有するアミノ酸配列からなることが更に好ましい。変異型形態形成制御因子は、野生型の形態形成制御因子が有する生物活性の一部又は全部が失われているものであってよい。
 変異型形態形成制御因子を有する細胞は、例えば、自然界に存在する細胞のスクリーニングによる方法、A22(S-(3,4-Dichlorobenzyl)-isothiourea)等の薬剤処理及び/又は紫外線照射等の突然変異を誘発したうえでスクリーニングする手法、遺伝子工学的手法により変異型形態形成制御因子を有する細胞を取得する方法により得ることができる。
 遺伝子工学的手法を利用した方法としては、例えば、ランダムに変異を導入する方法、部位特異的に変異を導入する方法がある。前者のランダムに変異を導入する方法には、例えば、ランダム変異導入用キット(BD Diversify PCR Random Mutagenesis(CLONTECH社製))を用いてもよい。また、後者の部位特異的に変異を導入する方法には、例えば、部位特異的変異導入用キット(Mutan-K(タカラバイオ社製))を用いてもよい。
 これらの中でも、遺伝子工学的手法を利用した方法で変異型形態形成制御因子を有する細胞を取得するのが好ましいが、この方法に限定されるわけではない。
 変異型形態形成制御因子としては、変異型細胞骨格タンパク質であることが好ましく、変異型MreBであることがより好ましい。変異型MreBは、野生型のMreBのアミノ酸配列(配列番号1)と比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列を有する。
 変異型MreBとしては、例えば、野生型のMreB(配列番号1)の第14番目アミノ酸残基S、第20番目アミノ酸残基A、第23番目アミノ酸残基L、第53番目アミノ酸残基A、第74番目アミノ酸残基R、第84番目アミノ酸残基F、第143番目アミノ酸残基E、第158番目位アミノ酸残基T、第185番目アミノ酸残基S、第207番目アミノ酸残基G、第209番目アミノ酸残基L、第276番目アミノ酸残基E及び第322番目アミノ酸残基L等の1又は複数のアミノ酸残基に変異を有するものが挙げられる。変異型MreBとして好ましくは、野生型のMreB(配列番号1)の第53番目アミノ酸残基A、第74番目アミノ酸残基R、第84番目アミノ酸残基F及び第185番目アミノ酸残基Sから選ばれる1又は複数のアミノ酸残基に変異を有するものが挙げられる。
 変異型MreBのより具体的な例としては、例えば、野生型のMreB(配列番号1)に対して、S14A、A20V、L23R、A53T、R74C、R74L、F84V、E143A、A158T、S185F、G207C、L209R、E276D及びL322Q等の1又は複数のアミノ酸残基が置換されたことに相当するアミノ酸配列を有するものが挙げられる。変異型MreBとしては、野生型のMreB(配列番号1)に対して、E143A、R74L、A53T、S185F、F84V、より好ましくは、R74L、A53T、S185F、F84V、G207C及びL208Rから選択される1又は複数のアミノ酸残基が置換されたことに相当するアミノ酸配列を有するものが好ましく、A53T、S185F及びF84Vから選択される1又は複数のアミノ酸残基が置換されたことに相当するアミノ酸配列を有するものがより好ましい。
(細胞骨格タンパク質の機能を制御するタンパク質)
 形態形成制御因子である細胞骨格タンパク質の機能を制御するタンパク質としては、例えば、原核生物においては、sulA、yeeV、slmA及びMinファミリータンパク質(MinC、D、及びE)が挙げられる。これらに加え、Bacillus属等の一部の微生物では、ezrA及びNocが挙げられる。
 sulAは、SOSシステムの構成因子であり、FtsZと相互作用することでFtsZの重合を阻害する。sulAが細胞内に蓄積すると、その細胞は隔壁がなく長い糸状細胞になる(Journal of bacteriology,1993年,175:1118-1125.)。野生型のsulAは、配列番号6に示すアミノ酸配列を有し、これをコードするsulA遺伝子は、例えば配列番号7に示す核酸配列を有する。本実施形態における形態形成制御因子sulAをコードする核酸配列は、配列番号7に記載の核酸配列と少なくとも90%、好ましくは93%、95%、98%又は99%の配列同一性を有する。
 yeeV(CbtA)は、タイプIVのtoxin-antitoxin(TA)システムのToxinである。yeeVは、FtsZ及びMreBのそれぞれと相互作用し、阻害的に働く。FtsZにおいては、そのGTP依存的な重合を阻害し、MreBにおいては、そのATP依存的な重合を阻害する。FtsZ及びMreBは、細胞の大きさ及び形態を制御するため、それらを阻害するyeeVを過剰に発現すると、細胞が大きくなることが知られている(Molecular microbiology,2011年,79:109-118、及び、PLoS genetics,2017年,13:e1007007.)。
(改変された形態形成制御因子を含む組換え細胞)
 改変された形態形成制御因子を含む組換え細胞には、野生型の形態形成制御因子を遺伝子工学的手法等の人為的な操作を用いて改変された形態制御因子を細胞内に有するもの、自然界における突然変異を経て野生型とは異なる形態形成制御因子を細胞内に有するもの、形態形成制御因子が発現カセット中に組み込まれて細胞内に導入されて形態形成制御因子の発現量が改変されたもの等が含まれる。
(組換え細胞)
 本実施形態に係る組換え細胞は、組換えタンパク質を発現するものである。本実施形態に係る組換え細胞は、例えば、組換えタンパク質(以下、「目的タンパク質」ともいう。)をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを含む(以下、「目的タンパク質発現カセット」ということもある。)ものであってよい。本実施形態に係る組換え細胞は、発現カセットを1つ含むものであってもよく、複数(例えば、2つ、3つ、4つ、5つ)含むものであってもよい。
 調節配列は、宿主における組換えタンパク質(目的タンパク質)の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。調節配列は、外来性のものであってもよく、内在性のもの(宿主由来の調節配列)であってもよい。
 目的タンパク質発現カセットを含む組換え細胞は、例えば、少なくとも目的タンパク質をコードする核酸配列を含む発現ベクターで宿主細胞を形質転換する方法により得ることができる。当該発現ベクターは、目的タンパク質発現カセットを含むものであってもよい。本実施形態に係る組換え細胞は、目的タンパク質発現カセットをゲノムDNA外に有するものであってもよく、目的タンパク質発現カセットがゲノムDNA中に組み込まれたものであってもよいが、目的タンパク質発現カセットがゲノムDNA中に組み込まれたものであるのが好ましい。
 宿主細胞を形質転換する方法としては、公知の方法を使用することができ、例えば、プラスミドベクターを用いて宿主細胞を形質転換することが挙げられる。
 目的タンパク質発現カセットをゲノムDNA中へ組み込む方法としては、公知の方法を使用することができ、例えば、λファージの2重鎖切断修復における組換え機構を応用したλred法、Red/ET相同組換え法、pUT-mini Tn5を用いたトランスポゾン活性を利用した転移法が挙げられる。例えば、バイオメダル社の「トランスポゾンによる遺伝子導入キット:pUTmini-Tn5 Kit」等を用い、キットに記載の方法に準じて、目的タンパク質発現カセットを宿主細胞のゲノムDNA中に組み込むことができる。このとき、少なくとも目的タンパク質をコードする核酸配列を含むDNA断片を宿主細胞のゲノムDNA中の1又は複数の調節配列と作動可能に連結するように組み換えることで、目的タンパク質発現カセットを宿主細胞のゲノムDNA中に組み込んでもよい。
 宿主細胞を形質転換する方法としては、λファージのインテグラーゼにより宿主細胞のゲノムDNA中のアタッチメント・サイト(attB部位)とベクター上のアタッチメント・サイト(attP部位)を介して目的タンパク質発現カセットを宿主細胞のゲノムDNA中に組み込む方法、及び相同組換えに不可欠な3つの遺伝子エキソ(exo)、ベータ(bet)、ガンマ(gam)遺伝子を有するヘルパープラスミドpKD46を用いたレッド-リコンビナーゼ・システムを使用して目的タンパク質発現カセットを宿主細胞のゲノムDNA中に組み込む方法が好ましい。
 宿主細胞として、細菌等の原核生物の細胞、並びに酵母細胞、糸状真菌細胞、昆虫細胞、動物細胞、及び植物細胞等の真核生物の細胞のいずれも用いることができる。ただし、増殖が速くかつ培養コストを削減する観点から、宿主細胞は細菌等の原核細胞の細胞であることが好ましい。宿主細胞は、球菌、らせん菌、桿菌のいずれであってもよいが、桿菌であることが好ましい。
 細菌等の原核生物の宿主細胞としては、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する微生物を挙げることができる。原核生物の好ましい例としては、例えば、大腸菌、バチルス・ズブチリス、シュードモナス、コリネバクテリウム、及びラクトコッカス等を挙げることができる。宿主細胞は、エシェリヒア属に属する微生物、特に大腸菌(Escherichia coli)であることが好ましい。
 エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ BL21(ノバジェン社)、エシェリヒア・コリ BL21(DE3)(ライフテクノロジーズ社)、エシェリヒア・コリ BLR(DE3)(メルクミリポア社)、エシェリヒア・コリ DH1、エシェリヒア・コリ GI698、エシェリヒア・コリ HB101、エシェリヒア・コリ JM109、エシェリヒア・コリ K5(ATCC 23506)、エシェリヒア・コリ KY3276、エシェリヒア・コリ MC1000、エシェリヒア・コリ MG1655(ATCC 47076)、エシェリヒア・コリ No.49、エシェリヒア・コリ Rosetta(DE3)(ノバジェン社)、エシェリヒア・コリ TB1、エシェリヒア・コリ Tuner(ノバジェン社)、エシェリヒア・コリ Tuner(DE3)(ノバジェン社)、エシェリヒア・コリ W1485、エシェリヒア・コリ W3110(ATCC 27325)、エシェリヒア・コリ(Escherichia coli)XL1-Blue、エシェリヒア・コリ XL2-Blue等を挙げることができる。宿主細胞は、大腸菌(Escherichia coli)であることが好ましい。
 上記宿主細胞を形質転換する方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc.Natl.Acad.Sci.USA,69,2110(1972)〕、プロトプラスト法(特開昭63-248394号公報)、又はGene,17,107(1982)やMolecular & General Genetics,168,111(1979)に記載の方法等を挙げることができる。
 ブレビバチルス属に属する微生物の形質転換は、例えば、Takahashiらの方法(J.Bacteriol.,1983,156:1130-1134)や、Takagiらの方法(Agric.Biol.Chem.,1989,53:3099-3100)、又はOkamotoらの方法(Biosci.Biotechnol.Biochem.,1997,61:202-203)により実施することができる。
 形質転換に使用するベクター(以下、単に「ベクター」という。)の種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pKK233-2(Pharmacia社製)、pSE280(Invitrogen社製)、pGEMEX-1(Promega社製)、pQE-8(QIAGEN社製)、pKYP10(特開昭58-110600号公報)、pKYP200〔Agric.Biol.Chem.,48,669(1984)〕、pLSA1〔Agric.Biol.Chem.,53,277(1989)〕、pGEL1〔Proc.Natl.Acad.Sci.USA,82,4306(1985)〕、pBluescript II SK(-)(Stratagene社製)、pTrs30〔Escherichiacoli JM109/pTrS30(FERM BP-5407)より調製〕、pTrs32〔Escherichia coli JM109/pTrS32(FERM BP-5408)より調製〕、pGHA2〔Escherichia coli IGHA2(FERM B-400)より調製、特開昭60-221091号公報〕、pGKA2〔Escherichia coli IGKA2(FERM BP-6798)より調製、特開昭60-221091号公報〕、pTerm2(米国特許4686191号、米国特許4939094号、米国特許5160735号)、pSupex、pUB110、pTP5、pC194、pEG400〔J.Bacteriol.,172,2392(1990)〕、pGEX(Pharmacia社製)、pETシステム(Novagen社製)等を挙げることができる。
 宿主細胞として大腸菌を用いる場合は、pUC18、pBluescriptII、pSupex、pET22b、pCold等を好適なベクターとして挙げることができる。
 ブレビバチルス属に属する微生物に好適なベクターの具体例として、枯草菌ベクターとして公知であるpUB110、又はpHY500(特開平2-31682号公報)、pNY700(特開平4-278091号公報)、pHY4831(J.Bacteriol.,1987,1239-1245)、pNU200(鵜高重三、日本農芸化学会誌1987,61:669-676)、pNU100(Appl.Microbiol.Biotechnol.,1989,30:75-80)、pNU211(J.Biochem.,1992,112:488-491)、pNU211R2L5(特開平7-170984号公報)、pNH301(Appl.Environ.Microbiol.,1992,58:525-531)、pNH326、pNH400(J.Bacteriol.,1995,177:745-749)、pHT210(特開平6-133782号公報)、pHT110R2L5(Appl.Microbiol.Biotechnol.,1994,42:358-363)、又は大腸菌とブレビバチルス属に属する微生物とのシャトルベクターであるpNCO2(特開2002-238569号公報)等を挙げることができる。
 プロモーターとしては、宿主細胞中で機能するものであれば制限されない。例えば、trpプロモーター(Ptrp)、lacプロモーター、PLプロモーター、PRプロモーター、T7プロモーター等の大腸菌又はファージ等に由来するプロモーターを挙げることができる。またPtrpを2つ直列させたプロモーター(Ptrp×2)、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。転写終結配列は必ずしも必要ではないが、目的タンパク質をコードする遺伝子の直下に転写終結配列を配置することが好ましい。
 真核生物の宿主細胞としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。
 酵母としては、例えば、サッカロマイセス(Saccharomyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、クリベロマイセス(Kluyveromyces)属、トリコスポロン(Trichosporon)属、シワニオミセス(Schwanniomyces)属、ピキア(Pichia)属、キャンディダ(Candida)属、ヤロウィア属及びハンゼヌラ属等に属する酵母を挙げることができる。
 酵母を宿主細胞として用いる場合のベクターは通常、複製起点(宿主細胞における増幅が必要である場合)及び大腸菌中でのベクターの増殖のための選抜マーカー、酵母における組換えタンパク質発現のための誘導性プロモーター及びターミネータ、並びに酵母のための選抜マーカーを含むことが好ましい。
 ベクターが非組込みベクターの場合、さらに自己複製配列(ARS)を含むことが好ましい。これにより細胞内におけるベクターの安定性を向上させることができる(Myers、A.M.、et al.(1986)Gene 45:299-310)。
 酵母を宿主細胞として用いる場合のベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、YIp、pHS19、pHS15、pA0804、pHIL3Ol、pHIL-S1、pPIC9K、pPICZα、pGAPZα、pPICZ B等を挙げることができる。
 酵母を宿主細胞とした場合のプロモーターの具体例として、ガラクトース誘導性のgal 1プロモーター及びgal 10プロモーター;銅誘導性のCUP 1プロモーター;チアミン誘導性のnmt1プロモーター;並びにメタノール誘導性のAOX1プロモーター、AOX2プロモーター、DHASプロモーター、DASプロモーター、FDHプロモーター、FMDHプロモーター、MOXプロモーター、ZZA1、PEX5-、PEX8-及びPEX14-プロモーター等を挙げることができる。
 酵母へのベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法(Methods Enzymol.,194,182(1990))、スフェロプラスト法(Proc.Natl.Acad.Sci.,USA,81,4889(1984))、酢酸リチウム法(J.Bacteriol.,153,163(1983))、Proc.Natl.Acad.Sci.USA,75,1929(1978)記載の方法等を挙げることができる。
 糸状真菌としては、例えば、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、ウスチラーゴ(Ustilago)属、トリコデルマ(Trichoderma)属、ノイロスポラ(Neurospora)属、フザリウム(Fusarium)属、フミコーラ(Humicola)属、ペニシリウム(Penicillium)属、マイセリオフトラ(Myceliophtora)属、ボトリティス(Botryts)属、マグナポルサ(Magnaporthe)属、ムコア(Mucor)属、メタリチウム(Metarhizium)属、モナスカス(Monascus)属、リゾプス(Rhizopus)属、及びリゾムコア属に属する菌等を挙げることができる。
 糸状真菌を宿主細胞とした場合のプロモーターの具体例として、サリチル酸誘導性PR1aプロモーター;シクロヘキシミド誘導性Placcプロモーター;及びキナ酸誘導性Pqa-2プロモーター等を挙げることができる。
 糸状真菌へのベクターの導入は,従来公知の方法を用いて行うことができる。例えば、Cohenらの方法(塩化カルシウム法)[Proc.Natl.Acad.Sci.USA,69:2110(1972)]、プロトプラスト法[Mol.Gen.Genet.,168:111(1979)]、コンピテント法[J.Mol.Biol.,56:209(1971)]、エレクトロポレーション法等が挙げられる。
 本実施形態に係る組換え細胞の作製にあたり、目的タンパク質発現カセットの組み込み、及び形態形成制御因子への変異導入の順序は問わない。すなわち、改変された形態形成制御因子を有する宿主細胞に目的タンパク質発現カセットを組み込んでもよく、目的タンパク質発現カセットを有する宿主細胞に対して改変された形態形成制御因子を導入してもよい。
(目的タンパク質)
 本実施形態に係る組換えタンパク質の製造方法により生産する目的タンパク質は、特に制限されず、任意のタンパク質を使用することができる。ここで、目的タンパク質とは、本実施形態に係る製造方法により生産した後、回収等して利用することを目的とするタンパク質のことを意味する。目的タンパク質としては、工業規模での製造が好ましい任意のタンパク質を挙げることができ、例えば、工業用に利用できるタンパク質、医療用に利用できるタンパク質、及び構造タンパク質等を挙げることができる。工業用又は医療用に利用できるタンパク質の具体例としては、酵素、制御タンパク質、受容体、ペプチドホルモン、サイトカイン、膜又は輸送タンパク質、予防接種に使用する抗原、ワクチン、抗原結合タンパク質、免疫刺激タンパク質、アレルゲン、及び完全長抗体又は抗体フラグメント若しくは誘導体等を挙げることができる。構造タンパク質の具体例としては、フィブロイン(例えば、スパイダーシルク、カイコシルク等)、ケラチン、コラ-ゲン、エラスチン、レシリン、及びこれらタンパク質の断片、並びにこれら由来のタンパク質等を挙げることができる。
 本明細書においてフィブロインは、天然由来のフィブロインと改変フィブロインとを含む。本明細書において「天然由来のフィブロイン」とは、天然由来のフィブロインと同一のアミノ酸配列を有するフィブロインを意味し、「改変フィブロイン」とは、天然由来のフィブロインとは異なるアミノ酸配列を有するフィブロインを意味する。
 フィブロインは、クモ糸フィブロインであってよい。「クモ糸フィブロイン」には、天然クモ糸フィブロイン、及び天然クモ糸フィブロインに由来する改変フィブロインが含まれる。天然クモ糸フィブロインとしては、例えば、クモ類が産生するスパイダーシルクタンパク質が挙げられる。
 フィブロインは、例えば、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質であってもよい。本実施形態に係るフィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
 本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)モチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
 天然由来のフィブロインとしては、例えば、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質を挙げることができる。天然由来のフィブロインの具体例としては、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
 昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
 昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
 クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
 ケラチン由来のタンパク質として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。
 コラーゲン由来のタンパク質としては、例えば、式3:[REP2]で表されるドメイン配列を含むタンパク質(ここで、式3中、pは5~300の整数を示す。REP2は、Gly-X-Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP2は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。
 エラスチン由来のタンパク質としては、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有するタンパク質を挙げることができる。
 レシリン由来のタンパク質としては、例えば、式4:[REP3]で表されるドメイン配列を含むタンパク質(ここで、式4中、qは4~300の整数を示す。REP3はSer-J-J-Tyr-Gly-U-Proから構成されるアミノ酸配列を示す。Jは任意アミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。
 目的タンパク質は、親水性タンパク質であってもよく、疎水性タンパク質であってもよい。目的タンパク質としては、目的タンパク質を構成する全てのアミノ酸残基の疎水性指標(ハイドロパシー・インデックス、HI)の総和を求め、次にその総和を全アミノ酸残基数で除した値(平均HI、以下「疎水度」とも表す。)が-1.0以上であるものが好ましい。アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標は、下記表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 本発明の一実施形態において、目的タンパク質の疎水度は、-0.9以上、-0.8以上、-0.7以上、-0.6以上、-0.5以上、-0.4以上、-0.3以上、-0.2以上、-0.1以上、0以上、0.1以上、0.2以上、0.3以上、又は0.4以上であってよく、また、目的タンパク質の疎水度は、1.0以下、0.9以下、0.8以下、0.7以下、0.6以下、又は0.5以下であってよい。
 目的タンパク質の分子量は、特に限定されないが、例えば、10kDa以上700kDa以下であってよい。目的タンパク質の分子量は、例えば、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、例えば、600kDa以下、500kDa以下、400kDa以下、300kDa以下、又は200kDa以下であってよい。一般にタンパク質の分子量が大きくなる程凝集しやすくなる傾向にある。
(増殖低減工程)
 増殖低減工程は、組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる工程である。本実施形態に係る組換えタンパク質の製造方法では、組換え細胞として、上述した組換え細胞(少なくとも一つの改変された形態形成制御因子を含む組換え細胞)を用いることで、組換え細胞の細胞増殖を低減させる。
 増殖低減工程では、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を、後述するタンパク質生産培地で培養することにより、当該組換え細胞の細胞増殖を低減させることができる。
(生産工程)
 生産工程は、組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して組換えタンパク質を生産する工程である。増殖低減工程と生産工程は、同時に実施することもできる。
 組換え細胞を培養するためのタンパク質生産培地は特に限定されず、組換え細胞の種類に応じて、公知の天然培地又は合成培地から選択することができる。タンパク質生産培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、ビタミン類、ミネラル、栄養要求性により要求される栄養素、及びその他の各種有機成分や無機成分から選択される成分を必要に応じて含有する液体培地を用いることができる。培地成分の種類や濃度は、当業者が適宜設定してよい。
 タンパク質生産培地は、天然由来成分を含むことが好ましい。天然由来成分は、天然物(例えば、酵母)そのもの、天然物からの抽出物(例えば、Yeast Extract)等の成分を意味する。天然由来成分は、通常、含まれる成分の種類及びそれぞれの含有量は完全に特定されていないものである。天然由来成分は、例えば、ビタミン類、低分子のペプチド(例えば、アミノ酸残基数2~20のペプチド)及びアミノ酸からなる群より選択される少なくとも1種を含む。
 炭素源としては、グルコース、シュクロース、ラクトース、ガラクトース、フラクトースやでんぷんの加水分解物等の糖類、グリセロール、ソルビトール等のアルコール類、フマール酸、クエン酸、コハク酸等の有機酸類が挙げられる。
 炭素源としては、1種類であってもよく、2種類以上の炭素源を任意の比率で混合してもよい。タンパク質生産培地における炭素源の濃度は、0.1w/v%~50w/v%程度、好ましくは0.5w/v%~40w/v%程度、より好ましくは1w/v%~30w/v%程度、特に好ましくは5w/v%~20w/v%程度であってよい。本実施形態において、炭素源としてグリセロール又はグルコースを用いることが好ましく、グリセロール又はグルコースと他の炭素源とを任意の比率で混合してもよい。炭素源中のグリセロール又はグルコースの比率は、好ましくは10重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上であることが望ましい。培養開始時の炭素源の好ましい初発濃度は上記のとおりであるが、培養中の炭素源の消費に応じて、炭素源を適宜に添加してもよい。
 窒素源としては、硝酸塩、アンモニウム塩、アンモニアガス、アンモニア水等の無機窒素塩、アミノ酸、ペプトン、エキス類、コーンスターチ製造工業における副産物であるコーンスティープリカー(CSL)等の有機窒素源が挙げられる。ペプトン類としては、カゼインペプトン、獣肉ペプトン、心筋ペプトン、ゼラチンペプトン、又は大豆ペプトン等が挙げられる。エキス類としては、肉エキス、酵母エキス、心臓浸出液(ハートインフュージョン)等が挙げられる。アミノ酸又はペプチドを含む窒素源としては、より低分子のペプチド及びアミノ酸の含有量が高いほうが好ましい。
 リン酸源としては、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。
 硫黄源としては、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。
 ビタミン類としては、ビオチン、塩化コリン、シアノコバラミン、葉酸、イノシトール、ニコチン酸、4-アミノ安息香酸、パントテン酸、ピリドキシン、リボフラビン、チアンミン、チムジン等が挙げられる。ビタミン類の源としては、麦芽エキス、ポテトエキス、トマトジュース等の各種エキスが挙げられる。
 ミネラルとしては、リン(P)の他に、イオウ(S)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、鉄(Fe)、ナトリウム(Na)等が挙げられる。
 生産工程における培養は、例えば、通気培養又は振盪培養により、好気的に行うことができる。培養は、回分培養(batch culture)、流加培養(fed-batch culture)、連続培養(continuous culture)、又はそれらの組み合わせにより実施することができる。タンパク質生産培地のpHは、例えば、3.0~9.0であってよい。培養温度は、例えば、15~40℃であってよい。培養時間は、例えば、1~60時間であってよい。
 培養条件は、上記組換え細胞が増殖でき、かつ目的タンパク質を発現している組換え細胞において目的タンパク質を蓄積させることができる限り、特に制限されない。なお、目的タンパク質が発現している期間においては、組換え細胞は増殖してもよく、しなくてもよい。培養条件は、目的タンパク質が発現する前の期間と発現を開始した後の期間において同一であってもよく、同一でなくてもよい。
 培養温度は、通常、細胞の増殖に対して大きな影響を与える。一般的にいえば、増殖の下限の温度は細胞中の水分の凍結温度である0℃又はそれよりやや低い温度であり、上限の温度はタンパク質、核酸などの高分子化合物の変性温度で定まる。ある菌株について増殖可能な温度範囲は比較的せまく、例えば、大腸菌では増殖の下限温度は0~15℃、上限は46℃、増殖至適温度は36~42℃付近にある。増殖至適温度によって微生物を分類すると、20℃以下に至適温度のある好低温菌、20~45℃に至適温度のある好中温菌、45℃以上に至適温度のある好熱菌にわけられる。ここで増殖至適温度とは、培養する微生物が最大の比増殖速度を得られる温度をいい、また、比増殖速度とは、単位微生物量あたりの増殖速度をいい、微生物に固有の値で、培養条件により変化する。
 本発明の一実施形態において、「増殖至適温度」とは、pH、溶存酸素濃度などの培養温度以外の条件が、培養開始時に一定の場合に、微生物が最大の比増殖速度を得ることができる温度をいう。本発明の一実施形態において、組換え細胞が目的タンパク質を発現している際(目的タンパク質の発現が誘導性の場合には発現誘導後)に、培養温度の調整等により、組換え細胞の増殖至適温度よりも低い温度に上記組換え細胞を冷却又は維持することで、組換え細胞において目的タンパク質の発現量を増加させることができる。組換え細胞の増殖至適温度よりも低い温度とは、例えば、組換え細胞の増殖至適温度の下限値よりも3~25℃低い温度であってよく、8~20℃低い温度であってよく、10~18℃低い温度であってよく、12℃~18℃低い温度であってよく、14℃~17℃低い温度であってよく、3~10℃低い温度であってよく、5~8℃低い温度であってよい。
(組換えタンパク質の発現誘導)
 本実施形態に係る組換え細胞は、目的タンパク質の発現が誘導できるものであってもよい。組換えタンパク質の発現の誘導は、誘導性プロモーターによる転写(目的とするタンパク質をコードする核酸の転写)を活性化することにより行われる。誘導性プロモーターの活性化は、誘導性プロモーターの種類に応じて、当該技術分野で公知の方法に従って行うことができる。
 例えば、イソプロピル-β-チオガラクトピラノシド(IPTG)等の誘導物質(発現誘導剤)の存在により活性化される誘導性プロモーターを使用した場合、当該誘導物質を培養液に添加することにより、組換えタンパク質の発現を誘導することができる。誘導物質は、1度に、又は複数回に分けて培養液に添加してもよく、また、連続フィードにより培養液に添加してもよい。流加基質溶液に誘導物質を含有させてフィードしてもよい。添加する誘導物質の量は、誘導物質及び誘導性プロモーターの種類に応じて設定することができるが、例えば、組換え細胞の乾燥重量1g当たり0.1~30μgの範囲とすることができ、好ましくは、0.5~20μgの範囲である。
 また例えば、温度の上昇又は低下により活性化される誘導性プロモーターを使用した場合、培養液の温度を上昇又は低下させることにより、組換えタンパク質の発現を誘導することができる。例えば、温度上昇により活性化されるλファージのPRプロモーター又はPLプロモーターを使用した場合、増殖時の培養液の温度を20~37℃の範囲とすることで増殖時の組換えタンパク質の発現は抑えられ、次いで培養液の温度を38~44℃に上昇させることにより、組換えタンパク質の発現を誘導させることができる。このときに熱ショックタンパク質による影響を緩和させるために、特開平6-292563号公報に記載のように増殖時の培養液のpHを6.5~7.5とし、組換えタンパク質の発現誘導を開始する時点で培養液のpHを4.5~6.5と変動させることにより、より安定した発現誘導を行うことができる。
 組換え細胞の増殖を行う段階から、組換えタンパク質の発現を誘導する段階へ移行する時期には、特に制限はなく、培養システムの構成、生産プロセスの設計に応じて適宜設定することができる。組換えタンパク質の生産を効率よく行う観点からは、組換え細胞の増殖が対数増殖期の中期~後期に達した時に、組換えタンパク質の発現の誘導を開始するのが好ましい。
 組換え細胞の増殖は、遅延期又は誘導期(培養初期の細胞数の増加が遅い時期)から始まり、対数増殖期(単位時間ごとに細胞数が2倍と対数的に増加する時期)を経て、定常期(細胞の正味の数に変動の見られない時期)に至る。対数増殖期の中期とは、遅延期における細胞数と定常期における細胞数の中間程度の細胞数になる時期をいい、対数増殖期の後期とは、中期から定常期までの時期をいう。組換えタンパク質の発現の誘導を開始する時期の具体例として、例えば、定常期におけるOD600の値が約150になる組換え細胞の場合、OD600の値が30~110に達した時期であるのが好ましく、40~90に達した時期であるのがより好ましく、50~80に達した時期であるのが更に好ましい。
 組換えタンパク質の発現を誘導する時間は、使用する宿主、目的タンパク質の種類に応じて、設定した生産量に達するまで行えばよい。培養液の温度等の培養条件により生産速度は変化するため、組換えタンパク質の発現を誘導する時間を一義的に決める必要はない。次工程の組換えタンパク質の分離及び精製の進行に合わせて組換えタンパク質の発現を誘導する時間を設定してもよい。また、並行して行っている組換え細胞の増殖、及び当該増殖した組換え細胞の移送に影響がないように組換えタンパク質の発現を誘導する時間を設定することが、工業的生産においては好ましい。
(前培養工程)
 本実施形態に係る組換えタンパク質の製造方法は、前培養工程を更に備えていてもよい。前培養工程は、増殖抑制工程の前に、組換え細胞を前培養培地で培養する工程である。前培養培地の具体的な態様は、上述したタンパク質生産培地で説明した態様と同様である。
 本実施形態に係る組換えタンパク質の製造方法では、前培養培地として、タンパク質生産培地よりも栄養成分が豊富な培地を用いることが好ましい。これにより、増殖抑制工程及び生産工程に供する組換え細胞の数を増やすことができる。
〔組換えタンパク質の細胞あたりの生産量を増加させる方法〕
 上述した本発明は、組換えタンパク質の細胞あたりの生産量を増加させる方法として捉えることもできる。すなわち、一実施形態に係る組換えタンパク質の細胞あたりの生産量を増加させる方法は、組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して組換えタンパク質を生産する生産工程と、を含み、増殖低減工程において、組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、組換え細胞の細胞増殖を低減させる、方法である。当該方法の具体的な態様及び好ましい態様は、上述したとおりである。
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
[実施例1]
(1)組換え細胞(改変フィブロインを発現する大腸菌株)の作製
(目的タンパク質)
 ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号2で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT966」ともいう。)を設計した。配列番号2で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号3で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。
 次に、PRT966をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。この核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、pET-22b(+)ベクターに組み換えて、pET-22(+)/PRT966ベクターを得た。
(改変フィブロイン発現カセットの大腸菌ゲノムDNA中への組込み)
 宿主として大腸菌(Escherichia coli)BL21(DE3)株を用い、以下(a)~(c)の手法を用いて改変フィブロイン発現カセットをゲノムDNA中の3箇所に組み込み、改変フィブロイン発現カセットを3つ有する組換え細胞を取得した。
(a)attHK022
 1つ目の改変フィブロイン発現カセットは、HK022ファージが溶原化する機構を利用してゲノムDNA中に組み込んだ。当該機構は、宿主ゲノムDNA中の特定部位(attBサイト)とファージゲノムの特定部位(attP(HK022)サイト)との間での配列特異的な組み換えである。
 図11は、HK022ファージが溶原化する機構を利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。まず、pET-22(+)/PRT966ベクターからNdeI及びEcoRIで制限酵素処理して、PRT966をコードする核酸を切り出した後、attP(HK022)サイトを有するプラスミドベクターattHK022-Cm2に組み換えて、attHK022-T7p-PRT966-T7t-FRT-Cm2-ori_R6K-FRTベクターを得た。次に、attHK022-T7p-PRT966-T7t-FRT-Cm2-ori_R6K-FRTベクターを宿主に導入して、宿主ゲノムDNA中のattBサイトと同ベクターのattP(HK022)サイトとの間での配列特異的な組み換えにより改変フィブロイン(PRT966)発現カセットを宿主ゲノムDNA中に組み込んだ。なお、宿主には、あらかじめint遺伝子を有するヘルパープラスミドpAH69(J.Bact 183:6384-6393)を導入してインテグラーゼを発現させた。その後、ヘルパープラスミドpCP20(Proc.Natl.Acad.Sci.USA,97: 6640-6645)を導入してFLPを発現させることにより、FRT配列で挟まれたクロラムフェニコール耐性遺伝子とori_R6K領域を除去した。
(b)attφ80
 2つ目の改変フィブロイン発現カセットは、φ80ファージが溶原化する機構を利用して宿主ゲノムDNA中に組み込んだ。当該機構は、宿主ゲノムDNA中の特定部位(attBサイト)とファージゲノムの特定部位(attP(φ80)サイト)との間での配列特異的な組み換えである。
 図12は、φ80ファージが溶原化する機構を利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。まず、pET-22(+)/PRT966ベクターからNdeI及びEcoRIで制限酵素処理して、PRT966をコードする核酸を切り出した後、attP(φ80)サイトを有するプラスミドベクターattφ80-Km1_1に組み換えて、attφ80-ori_R6K-FRT-Km1-FRT-SPT3p-PRT966-T7t-FRTベクターを得た。次に、上記(a)の方法で1つ目の改変フィブロイン発現カセットを組み込んだ宿主にattφ80-ori_R6K-FRT-Km1-FRT-SPT3p-PRT966-T7t-FRTベクターを導入して、宿主ゲノムDNA中のattBサイトと同ベクターのattP(φ80)サイトとの間での配列特異的な組み換えにより2つ目の改変フィブロイン(PRT966)発現カセットを宿主ゲノムDNA中に組み込んだ。その後、ヘルパープラスミドpCP20を導入してFLPを発現させることにより、FRT配列で挟まれたカナマイシン耐性遺伝子を除去した。
(c)λRed_manX
 3つ目の改変フィブロイン発現カセットは、λファージが有する相同組換えシステムを利用して宿主ゲノムDNA中に組み込んだ。当該相同組換えシステムは、ファージゲノムのRed領域にあるexo、bet、gam遺伝子産物により相同組換えを生じるものである。
 図13は、λファージが有する相同組換えシステムを利用して、改変フィブロイン発現カセットを宿主ゲノムDNA中に組み込む方法の概要を示す概略図である。まず、pET-22(+)/PRT966ベクターを鋳型としてT7プロモーターに改変を導入するプライマーを用いたPCR法により改変フィブロイン発現カセット(manX5’相同配列-SPT3プロモーター-PRT966-T7ターミネータ-をこの順に含む。)を増幅した。同様に、pKD13-Cmベクターを鋳型としてPCR法によりクロラムフェニコール耐性遺伝子発現カセット(T7ターミネーター相同配列-FRT-クロラムフェニコール耐性遺伝子-FRT-manX3’相同配列をこの順に含む。)を増幅した。両PCR産物をIn-Fusion(登録商標)クローニングシステム(タカラバイオ株式会社製)を使用して連結した。次に、上記(a)及び(b)の方法で1つ目の改変フィブロイン発現カセット及び2つ目の改変フィブロイン発現カセットを組み込んだ宿主に連結したDNA断片を導入して、宿主ゲノムDNA中のmanX5’相同配列とDNA断片上のmanX5’相同配列との間の相同組み換え、及び宿主ゲノムDNA中のmanX3’相同配列とDNA断片上のmanX3’相同配列との間の相同組み換えにより、3つ目の改変フィブロイン(PRT966)発現カセットを宿主ゲノムDNA中に組み込んだ。なお、宿主には、あらかじめexo、bet及びgam遺伝子をもつヘルパープラスミドpKD46(Proc.Natl.Acad.Sci.USA,97:6640-6645)を導入して、それぞれの遺伝子を発現させた。その後、ヘルパープラスミドpCP20を導入してFLPを発現させることにより、FRT配列で挟まれたクロラムフェニコール耐性遺伝子を除去した。
(2)MreB変異の導入
 MreB遺伝子のタンパク質をコードする領域(CDS)をPCR法によって取得し、In-Fusion mix(タカラバイオ)を用いてpKOVプラスミド(J.Bacteriology 179:6228-6237)にクローニングした。第53番目のアミノ酸をスレオニンに変換するため、A2T-Fプライマー(5’-AGCGTAACTGCAGTAGGTCATG-3’)及びA2T-Rプライマー(5’-TACTGCAGTTACGCTTTTCGGT-3’)を使用したPCR法により変異を導入したMreBをコードする核酸を増幅した後、In-Fusion mixで反応させた後に上記(1)で取得した組換え細胞を形質転換した。得られた株を用い、J.Bacteriology 179:6228-6237に記載の方法で、当該株のゲノム中にMreB-A53T変異を導入し、MreB(A53T)変異株を得た。
(3)改変フィブロインの発現及び評価
 上記(1)及び(2)の方法で取得した組換え細胞(改変フィブロイン発現カセットを3つゲノムDNA中に有し、かつMreB(A53T)変異を有する組換え細胞。以下、「MreB変異株」ともいう。)を以下の方法で培養し、改変フィブロインの発現量解析を行った。比較として、上記(1)の方法で取得した組換え細胞(改変フィブロイン発現カセットを3つゲノムDNA中に有し、MreBに変異を有しない組換え細胞。以下、「野生型MreB株」ともいう。)も同様に評価した。
 MreB変異株及び野生型MreB株は、それぞれ2mLのLB培地で15時間培養した。当該培養液を、100mLの前培養培地(表2のシード培養用培地)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure JPOXMLDOC01-appb-T000002
 当該シード培養液を500mLのタンパク質生産培地(表3の生産培地)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure JPOXMLDOC01-appb-T000003
 タンパク質生産培地中のグルコースが完全に消費された直後に、フィード液(表4の流加基質溶液)を6g/時間の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、16時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度0.1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする改変フィブロインサイズのバンドの出現により、目的とする改変フィブロインの発現を確認した。
Figure JPOXMLDOC01-appb-T000004
 回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、改変フィブロイン(PRT966)を得た。
 得られた凍結乾燥粉末に対して、ポリアクリルアミドゲル電気泳動を行い、Totallab(nonlinear dynamics ltd.)を用いて画像解析を行い、改変フィブロインの生産量を評価した。凍結乾燥粉末の重量から計算した各改変フィブロインの生産量(細胞あたりの生産量)を、野生型MreB株における誘導時間32時間の値を100%としたときの相対値として、算出した。
 培養期間中、定期的に培養液の一部を取り出し、粒子計数分析装置(CDA―1000、シスメックス)により、組換え細胞の平均粒子径を測定した。
(4)結果
 図1は、MreB変異株及び野生型MreB株の平均粒子径を培養時間に対してプロットしたグラフである。横軸のC0はシード培養から生産培養に切り替わった時点であり、T0は発現誘導剤により組換えタンパク質の生産が始まった時点である。MreB変異株は、シード培養時の栄養豊富な培地において、盛んに細胞分裂して増殖するとともに細胞の幅が野生型MreB株よりも増大した。その後に生産培地に移したところ、図1のC0(生産培地への移植時点)からT0(発現誘導時点)までの間に示されるように、生産培地の栄養成分が資化されても野生型MreB株が細胞分裂を続けたのに対してMreB変異株は増殖が緩やかであった結果として、野生型MreB株の平均粒子径が急速に減少したのに対してMreB変異株はほとんど平均粒子径の変化がなく、改変フィブロインの発現誘導以降、MreB変異株の平均粒子径は野生型MreB株よりも30%程度増大したままであった。
 図2は、生産培養開始後16時間におけるMreB変異株及び野生型MreB株の細胞自体の重量(乾燥菌体重量から生産された組換えタンパク質の重量を除いたもの)を示すグラフである。
 図3は、MreB変異株及び野生型MreB株の生産培養開始後16時間における細胞の増殖を示すグラフである。図2および図3に示すように、MreB変異株の増殖は野生型MreB株よりも低減していることが理解できる。
 図4は、MreB変異株及び野生型MreB株の改変フィブロイン生産量(細胞あたりの生産量)を示すグラフである。図4に示すように、MreB変異株による改変フィブロイン生産量は、野生型MreB株と比べて、発現誘導後16時間で33%、発現誘導後32時間で35%程度上昇した。
 図5は、MreB変異株及び野生型MreB株の改変フィブロイン生産量(培地あたりの生産量)を示すグラフである。図5に示すように、MreB変異株による改変フィブロイン生産量は、野生型MreB株と比べて、発現誘導後16時間で33%程度上昇した。
 結果として、MreB変異株を用いることによって、改変フィブロインの生産培養時に細胞増殖が低減されたことにより、細胞あたりの改変フィブロインの収率が顕著に高まった。加えて、目的タンパク質に比べて菌体数が少ないことから、破砕する操作も軽減できる点でも、野生型MreB株を用いるよりもMreB変異株を用いたほうが改変フィブロインタンパク質の製造において有利であることが確認できた。
[実施例2]
(1)改変フィブロインを誘導発現する大腸菌株の作製
 実施例1と同様に、改変フィブロインPRT966を有するpET-22(+)/PRT966ベクターを得た。また、実施例1と同様に、大腸菌BL21(DE3)株を宿主として、改変フィブロイン発現カセットを3つ有する組換え細胞を取得した。
(2)形態形成制御因子sulAを誘導発現する大腸菌株の作製
(形態形成制御因子の発現カセットベクターの作製)
 下記のsulA_F及びsulA_Rのプライマーセットを用いたPCRによって、sulA遺伝子のタンパク質をコードする領域(CDS)を増幅した。また、下記のRBS-4及びpET-MCS_Fのプライマーセットを用いたPCRによって、attP(P21)サイトを有するプラスミドベクターattP21-KmR2を直鎖化、増幅した。増幅したこれら2断片をNEBuilder HiFi DNA Assembly Master Mix(ニュー・イングランド・バイオラボ・ジャパン株式会社)を用いて、添付マニュアルに従い、連結し、attP21-T7p-sulA-T7t-FRT-KmR2-ori_R6K-FRTベクターを得た。
sulA_F:5’-TTTAAGAAGGAGATATACATATGTACACTTCAGGCTATGCAC-3’(配列番号8)
sulA_R:5’-TGTCGACGGAGCTCGAATTCTTAATGATACAAATTAGAGTGAATTTTTAGCCCGG-3’(配列番号9)
RBS-4:5’-ATGTATATCTCCTTCTTAAAGTTAAACAAA-3’(配列番号10)
pET-MCS_F:5’-GAATTCGAGCTCCGTCGAC-3’(配列番号11)
 sulAを増幅するPCRは、終濃度がそれぞれ0.2μMのプライマー、及びOD~0.01のBL21(DE3)細胞懸濁液を添付のマニュアルに従って、PrimeSTAR(登録商標)Max(タカラバイオ株式会社製)と混合し、98℃10秒、55℃5秒、72℃30秒の条件を30サイクル行った。attP21-KmR2を直鎖化、増幅するPCRも、同様に終濃度がそれぞれ0.2μMのプライマー、及びPrimeSTAR(登録商標)Max(タカラバイオ株式会社製)を用いて、1ngのattP21-KmR2ベクターを鋳型として、98℃10秒、55℃5秒、72℃30秒の条件を30サイクル行った。得られた発現ベクターの塩基配列は、サンガー法によって確認した。
(形態形成制御因子の発現カセットの宿主染色体上への組込み)
 次に、(1)の方法で取得した改変フィブロイン発現カセットを3つ染色体上に有する組換え細胞を宿主細胞として、attP21-T7p-sulA-T7t-FRT-KmR2-ori_R6K-FRTベクターを宿主に導入して、宿主染色体上のattBサイトと同ベクターのattP(P21)サイトとの間での配列特異的な組み換えによりsulA発現カセットを宿主染色体上に組み込んだ。なお、宿主には、あらかじめint遺伝子を有するヘルパープラスミドpAH121(J.Bact 183:6384-6393)を導入してインテグラーゼを発現させた。
(3)改変フィブロインの発現及び評価
 上記(1)及び(2)の方法で取得した組換え細胞(改変フィブロイン発現カセットを3つ染色体上に有し、かつsulAの発現カセットを有する組換え細胞。以下、「sulA誘導発現株」ともいう。)を、実施例1と同様な方法にて培養し、改変フィブロインの発現量解析を行った。比較として、上記(1)の方法で取得した組換え細胞(改変フィブロイン発現カセットを3つ染色体上に有し、sulAの発現カセットを有しない組換え細胞。以下、「Control株」ともいう。)も同様に評価した。
 培養期間中、定期的に培養液の一部を取り出し、粒子計数分析装置(CDA―1000、シスメックス)により、組換え細胞の粒子濃度(細胞濃度)を測定した。
(4)結果
 図6は、sulA誘導発現株及びControl株の平均粒子径を培養時間に対してプロットしたグラフである。横軸のT0は発現誘導剤により組換えタンパク質(改変フィブロイン)の生産が始まった時点であり、Tの後の数字は発現誘導後の経過時間を表す。改変フィブロインの発現誘導以降、sulA誘導発現株の平均粒子径が増大した一方で、Control株にはほとんど変化が見られなかった。
 図7は、改変フィブロインの発現誘導時(T0)のControl株を基準(100%)としたときのControl株及びsulA誘導発現株の細胞濃度(細胞数)の相対値の変化を示すグラフである。図7に示すように、Control株が改変フィブロインの発現誘導後24時間で細胞濃度(細胞数)が127%に増加したのに対して、sulA誘導発現株の細胞濃度(細胞数)はむしろ低減されていた。
 図8は、改変フィブロインの発現誘導後24時間におけるControl株(100%)に対するsulA誘導発現株の細胞濃度(細胞数)の相対値を示すグラフである。
 図9は、Control株を基準(100%)としたときのsulA誘導発現株の改変フィブロインの細胞あたりの生産量の相対値を示すグラフである。図9に示すように、sulA誘導発現株による改変フィブロインの細胞あたりの生産量は、Control株と比べて、発現誘導後24及び28時間で約200%以上に増加した。
 図10は、Control株を基準(100%)としたときのsulA誘導発現株の改変フィブロインの培地あたりの生産量の相対値を示すグラフである。図10に示すように、sulA誘導発現株による改変フィブロインの培地あたりの生産量は、Control株と比べて、発現誘導後24時間で約126%に増加した。
 結果として、sulA誘導発現株を用いることによって、改変フィブロインの生産培養時に細胞増殖が低減されたことにより、細胞あたりの改変フィブロインの収率が顕著に高まった。加えて、目的タンパク質に比べて菌体数が少ないことから、破砕する操作も軽減できる点でも、通常の改変フィブロイン発現組換え細胞(Control株)を用いるよりもsulA誘導発現株を用いたほうが改変フィブロインタンパク質の製造において有利であることが確認できた。

Claims (18)

  1.  組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、
     前記組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して前記組換えタンパク質を生産する生産工程と、を備え、
     前記増殖低減工程において、前記組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、前記組換え細胞の細胞増殖を低減させる、組換えタンパク質の製造方法。
  2.  前記改変された形態形成制御因子が、変異型細胞骨格タンパク質である、請求項1に記載の製造方法。
  3.  前記変異型細胞骨格タンパク質が、変異型MreBである、請求項2に記載の製造方法。
  4.  前記変異型形態形成制御因子が、MreBと少なくとも90%の配列同一性を有するアミノ酸配列を含む、請求項3に記載の製造方法。
  5.  前記変異型形態形成制御因子が、MreBの第53番目のアミノ酸残基アラニンに変異を有するものである、請求項3又は4に記載の製造方法。
  6.  前記変異型形態形成制御因子が、MreBの第53番目のアミノ酸残基アラニンがスレオニンに置換された変異を有するものである、請求項3~5のいずれか一項に記載の製造方法。
  7.  前記組換え細胞は、細胞骨格タンパク質の機能を制御するタンパク質の発現カセットが導入されたものである、請求項1に記載の製造方法。
  8.  前記細胞骨格タンパク質の機能を制御するタンパク質が、sulAである、請求項7に記載の製造方法。
  9.  前記タンパク質生産培地が、天然由来成分を含む、請求項1~8のいずれか一項に記載の製造方法。
  10.  前記組換えタンパク質の疎水度が-1.0以上である、請求項1~9のいずれか一項に記載の製造方法。
  11.  前記組換えタンパク質が構造タンパク質である、請求項1~10のいずれか一項に記載の製造方法。
  12.  前記組換えタンパク質がフィブロインである、請求項1~11のいずれか一項に記載の製造方法。
  13.  前記組換えタンパク質がクモ糸フィブロインである、請求項1~12のいずれか一項に記載の製造方法。
  14.  前記組換え細胞が、桿菌である、請求項1~13のいずれか一項に記載の製造方法。
  15.  前記組換え細胞が、エシェリヒア属に属する微生物である、請求項1~14のいずれか一項に記載の製造方法。
  16.  組換えタンパク質の細胞あたりの生産量を増加させる方法であって、
     組換えタンパク質を発現する組換え細胞の細胞増殖を低減させる増殖低減工程と、
     前記組換え細胞を、細胞増殖が低減された状態で、タンパク質生産培地中で培養して前記組換えタンパク質を生産する生産工程と、を含み、
     前記増殖低減工程において、前記組換え細胞として、少なくとも一つの改変された形態形成制御因子を含む組換え細胞を用いることで、前記組換え細胞の細胞増殖を低減させる、方法。
  17.  前記改変された形態形成制御因子が、変異型細胞骨格タンパク質である、請求項16に記載の方法。
  18.  前記組換え細胞は、細胞骨格タンパク質の機能を制御するタンパク質の発現カセットが導入されたものである、請求項16に記載の方法。

     
PCT/JP2020/003487 2019-01-31 2020-01-30 組換えタンパク質の製造方法 WO2020158877A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202107697UA SG11202107697UA (en) 2019-01-31 2020-01-30 Method for producing recombinant protein
US17/426,610 US20220033870A1 (en) 2019-01-31 2020-01-30 Method for producing recombinant protein
BR112021014805A BR112021014805A2 (pt) 2019-01-31 2020-01-30 Métodos de produção para uma proteína recombinante e para aumentar o volume de produção
JP2020560429A JP6968468B2 (ja) 2019-01-31 2020-01-30 組換えタンパク質の製造方法
EP20749538.3A EP3919506A4 (en) 2019-01-31 2020-01-30 METHOD FOR PRODUCING A RECOMBINATION PROTEIN
CA3127177A CA3127177A1 (en) 2019-01-31 2020-01-30 Method for producing recombinant protein
CN202080011556.4A CN113439087A (zh) 2019-01-31 2020-01-30 重组蛋白的制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019015716 2019-01-31
JP2019-015716 2019-01-31
JP2019-142388 2019-08-01
JP2019142388 2019-08-01

Publications (1)

Publication Number Publication Date
WO2020158877A1 true WO2020158877A1 (ja) 2020-08-06

Family

ID=71840352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003487 WO2020158877A1 (ja) 2019-01-31 2020-01-30 組換えタンパク質の製造方法

Country Status (8)

Country Link
US (1) US20220033870A1 (ja)
EP (1) EP3919506A4 (ja)
JP (2) JP6968468B2 (ja)
CN (1) CN113439087A (ja)
BR (1) BR112021014805A2 (ja)
CA (1) CA3127177A1 (ja)
SG (1) SG11202107697UA (ja)
WO (1) WO2020158877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020546A1 (ja) * 2019-08-01 2021-02-04 Spiber株式会社 組換え細胞及び組換えタンパク質の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023180525A1 (en) * 2022-03-24 2023-09-28 Richter Gedeon Nyrt. Method for the manufacture of biopharmaceuticals

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0231682A (ja) 1988-01-25 1990-02-01 Juzo Udaka ヒトegfの製造法
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPH04278091A (ja) 1991-03-05 1992-10-02 Higeta Shoyu Kk 高発現ベクター及び該高発現ベクター を保有する微生物並びに該微生物を 用いる有用物質の製造法
US5160735A (en) 1989-06-19 1992-11-03 Kyowa Hakko Kogyo Co. Ltd. Plasminogen activator
JPH06133782A (ja) 1992-07-23 1994-05-17 Higeta Shoyu Co Ltd 高発現ベクタ−及び該高発現ベクタ−を 保有する微生物並びに該微生物を用いる 有用物質の製造法
JPH06292563A (ja) 1993-04-09 1994-10-21 Toyo Eng Corp 組換え大腸菌の培養方法
JPH07170984A (ja) 1992-03-31 1995-07-11 Juzo Udaka 新規アミノ酸配列及び該アミノ酸配列をコード するdnaを保有する発現ベクターを 組み込んだバチルス・ブレビスを用いる 有用物質の製造法
JP2002238569A (ja) 2001-02-14 2002-08-27 Higeta Shoyu Co Ltd 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター
WO2018025886A1 (ja) * 2016-08-02 2018-02-08 Spiber株式会社 組換えタンパク質の生産方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101861A (ko) * 1999-01-27 2001-11-15 엘리트라 파마슈티컬즈, 인코포레이티드 대장균 증식을 위한 유전자
KR100723565B1 (ko) * 2002-03-06 2007-06-04 도레이 가부시끼가이샤 유전자 재조합 누에를 이용한 생리 활성 단백질 생산법
CN105331568B (zh) * 2014-06-12 2019-01-04 清华大学 一种通过增大细菌体积而增加微生物胞内内含物积累量的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686191A (en) 1981-12-25 1987-08-11 Hakko Kogyo Co., Ltd. Kyowa Recombinant plasmid containing human interferon-beta gene
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS60221091A (ja) 1983-12-21 1985-11-05 Kyowa Hakko Kogyo Co Ltd 新規プロモ−タ−
US4939094A (en) 1985-08-28 1990-07-03 Kyowa Hakko Kogyo Co., Ltd. Fused antigen polypeptide
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0231682A (ja) 1988-01-25 1990-02-01 Juzo Udaka ヒトegfの製造法
US5160735A (en) 1989-06-19 1992-11-03 Kyowa Hakko Kogyo Co. Ltd. Plasminogen activator
JPH04278091A (ja) 1991-03-05 1992-10-02 Higeta Shoyu Kk 高発現ベクター及び該高発現ベクター を保有する微生物並びに該微生物を 用いる有用物質の製造法
JPH07170984A (ja) 1992-03-31 1995-07-11 Juzo Udaka 新規アミノ酸配列及び該アミノ酸配列をコード するdnaを保有する発現ベクターを 組み込んだバチルス・ブレビスを用いる 有用物質の製造法
JPH06133782A (ja) 1992-07-23 1994-05-17 Higeta Shoyu Co Ltd 高発現ベクタ−及び該高発現ベクタ−を 保有する微生物並びに該微生物を用いる 有用物質の製造法
JPH06292563A (ja) 1993-04-09 1994-10-21 Toyo Eng Corp 組換え大腸菌の培養方法
JP2002238569A (ja) 2001-02-14 2002-08-27 Higeta Shoyu Co Ltd 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター
WO2018025886A1 (ja) * 2016-08-02 2018-02-08 Spiber株式会社 組換えタンパク質の生産方法

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
"NCBI GenBank", Database accession no. NP786966
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669
APPL. ENVIRON. MICROBIOL., vol. 58, 1992, pages 525 - 531
APPL. MICROBIOL. BIOTECHNOL., vol. 30, 1989, pages 75 - 80
APPL. MICROBIOL. BIOTECHNOL., vol. 42, 1994, pages 358 - 363
COHEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110
GENE, vol. 17, 1982, pages 107
HISAKO MASUDA, QIAN TAN, NAOKI AWANO, KUEN-PHON WU, MASAYORI INOUYE: "YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA(YeeV) toxicity in Escherichia coli", MOLECULAR MICROBIOLOGY, vol. 84, no. 5, 2012, pages 979 - 989, XP055728104 *
J. BACT, vol. 183, pages 6384 - 6393
J. BACTERIOL., 1987, pages 1239 - 1245
J. BACTERIOL., vol. 172, 1990, pages 2392
J. BACTERIOL., vol. 177, 1995, pages 745 - 749
J. BACTERIOLOGY, vol. 179, pages 6228 - 6237
J. BIOCHEM., vol. 112, 1992, pages 488 - 491
J. MOL. BIOL., vol. 56, 1971, pages 209
JIANG XIAO-RAN; CHEN GUO-QIANG: "Morphology engineering of bacteria for bio-production", BIOTECHNOLOGY ADVANCES, vol. 34, 2016, pages 435 - 440, XP029549277, DOI: 10.1016/j.biotechadv.2015.12.007 *
JIANG, X. R. ET AL.: "Controlling cell volume for efficient PHB production by Halomonas", METABOLIC ENGINEERING, vol. 44, 2017, pages 30 - 37, XP085285796, DOI: 10.1016/j.ymben.2017.09.004 *
JOURNAL OF BACTERIOLOGY, vol. 175, 1993, pages 1118 - 1125
JOURNAL OF THE AGRICULTURAL CHEMICAL SOCIETY OF JAPAN, vol. 61, 1987, pages 669 - 676
KYTE JDOOLITTLE R: "A simple method for displaying the hydropathic character of a protein", J. MOL. BIOL., vol. 157, 1982, pages 105 - 132, XP024014365, DOI: 10.1016/0022-2836(82)90515-0
METHODS ENZYMOL., vol. 194, 1990, pages 182
MOL. GEN. GENET., vol. 168, 1979, pages 111
MOLECULAR & GENERAL GENETICS, vol. 168, 1979, pages 111
MOLECULAR MICROBIOLOGY, vol. 79, 2011, pages 109 - 118
MYERS, A. M. ET AL., GENE, vol. 45, 1986, pages 299 - 310
OKAMOTO ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 61, 1997, pages 202 - 203
PLOS GENETICS, vol. 13, 2017, pages e1007007
PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 4306
PROC. NATL. ACAD. SCI. USA, vol. 97, pages 6640 - 6645
PROC. NATL. ACAD. SCI., vol. 81, 1984, pages 4889
See also references of EP3919506A4
TAKAGI ET AL., AGRIC. BIOL. CHEM., vol. 53, 1989, pages 3099 - 3100
TAKAHASHI ET AL., J. BACTERIOL., vol. 153, 1983, pages 1130 - 1134

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020546A1 (ja) * 2019-08-01 2021-02-04 Spiber株式会社 組換え細胞及び組換えタンパク質の製造方法

Also Published As

Publication number Publication date
CA3127177A1 (en) 2020-08-06
EP3919506A4 (en) 2022-11-02
JP2021101744A (ja) 2021-07-15
US20220033870A1 (en) 2022-02-03
SG11202107697UA (en) 2021-08-30
JPWO2020158877A1 (ja) 2021-02-18
BR112021014805A2 (pt) 2022-01-04
CN113439087A (zh) 2021-09-24
JP6968468B2 (ja) 2021-11-17
EP3919506A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
KR101632642B1 (ko) 신규한 프로모터 및 그의 용도
WO2020158877A1 (ja) 組換えタンパク質の製造方法
KR102150041B1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
JP7452830B2 (ja) 組換えタンパク質の生産方法
CN108531437B (zh) 一种乙醛酸转氨酶介导的5-氨基乙酰丙酸生物合成途径
JP6923036B2 (ja) フィブロイン様タンパク質の製造法
JP2022081664A (ja) フィブロイン様タンパク質の製造法
KR102078732B1 (ko) 변형된 막 투과성
WO2020158874A1 (ja) 組換えタンパク質の製造方法
WO2021020546A1 (ja) 組換え細胞及び組換えタンパク質の製造方法
KR101973001B1 (ko) 이타콘산을 생산하는 재조합 미생물 및 이를 이용한 이타콘산의 생산방법
JP2020120622A (ja) 組換え細胞、発現構築物、及び組換えタンパク質の製造方法
US20220195479A1 (en) Method for producing recombinant protein
JP6778870B2 (ja) 藍藻変異株及びそれを用いたコハク酸及びd−乳酸産生方法
KR101694461B1 (ko) 분자 진화에 의해 수득된 안전성 균주 유래 효소 및 그를 포함하는 안전성 코리네박테리움 글루타미쿰
KR101755767B1 (ko) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
WO2021241546A1 (ja) 目的タンパク質の製造方法
US11851684B2 (en) Expression cassette
KR101572547B1 (ko) 재조합 코리네박테리움 글루타미쿰 및 그의 용도
Shao et al. Development of chemically defined media to express Trp-analog-labeled proteins in a Lactococcus lactis Trp auxotroph
JP2020080727A (ja) 目的タンパク質の製造方法
KR20180010382A (ko) 아실전이효소의 활성을 갖는 미생물 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3127177

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014805

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020749538

Country of ref document: EP

Effective date: 20210831

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021014805

Country of ref document: BR

Free format text: COM BASE NA PORTARIA 405 DE 21/12/2020, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA)DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO870210068333 DE 27/07/2021 POSSUI AUSENCIA DO CAMPO OBRIGATORIO 150 E 151

ENP Entry into the national phase

Ref document number: 112021014805

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210727