WO2020158795A1 - 液晶配向剤及びそれを用いた液晶配向膜及び液晶表示素子 - Google Patents
液晶配向剤及びそれを用いた液晶配向膜及び液晶表示素子 Download PDFInfo
- Publication number
- WO2020158795A1 WO2020158795A1 PCT/JP2020/003160 JP2020003160W WO2020158795A1 WO 2020158795 A1 WO2020158795 A1 WO 2020158795A1 JP 2020003160 W JP2020003160 W JP 2020003160W WO 2020158795 A1 WO2020158795 A1 WO 2020158795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- aligning agent
- polyamic acid
- crystal aligning
- polyimide
- Prior art date
Links
- 0 CC1(*)C(C)(*)C(C)(*)C(C)(*)C1* Chemical compound CC1(*)C(C)(*)C(C)(*)C(C)(*)C1* 0.000 description 4
- VSTAOWNYNUTGOM-UHFFFAOYSA-N CCC1C(C)C(C)CC1C Chemical compound CCC1C(C)C(C)CC1C VSTAOWNYNUTGOM-UHFFFAOYSA-N 0.000 description 2
- IHFUMOLAWZHWGK-UHFFFAOYSA-N C#[O]N[InH]O[In](NOO)=N Chemical compound C#[O]N[InH]O[In](NOO)=N IHFUMOLAWZHWGK-UHFFFAOYSA-N 0.000 description 1
- BQLXCWZMPJMYIN-UHFFFAOYSA-N CC(CC1C)C2C1C(C)CC2C Chemical compound CC(CC1C)C2C1C(C)CC2C BQLXCWZMPJMYIN-UHFFFAOYSA-N 0.000 description 1
- NCFAMFYCBVOFCN-UHFFFAOYSA-N CC1C(C)OC(C)C1C Chemical compound CC1C(C)OC(C)C1C NCFAMFYCBVOFCN-UHFFFAOYSA-N 0.000 description 1
- NWRQKMIHKWTCQD-UHFFFAOYSA-N CCC(C)C1c2ccc(C)cc2C(C)C(C)C1 Chemical compound CCC(C)C1c2ccc(C)cc2C(C)C(C)C1 NWRQKMIHKWTCQD-UHFFFAOYSA-N 0.000 description 1
- RUDGJUZSNUTCEC-UHFFFAOYSA-N CCC(C)C1c2ccccc2C(C)C(C)C1 Chemical compound CCC(C)C1c2ccccc2C(C)C(C)C1 RUDGJUZSNUTCEC-UHFFFAOYSA-N 0.000 description 1
- JXFVMNFKABWTHD-UHFFFAOYSA-N CCCc1ccc(C)cc1 Chemical compound CCCc1ccc(C)cc1 JXFVMNFKABWTHD-UHFFFAOYSA-N 0.000 description 1
- JRLPEMVDPFPYPJ-UHFFFAOYSA-N CCc1ccc(C)cc1 Chemical compound CCc1ccc(C)cc1 JRLPEMVDPFPYPJ-UHFFFAOYSA-N 0.000 description 1
- ZLCSFXXPPANWQY-UHFFFAOYSA-N CCc1cccc(C)c1 Chemical compound CCc1cccc(C)c1 ZLCSFXXPPANWQY-UHFFFAOYSA-N 0.000 description 1
- YXBIAYXZUDJVEB-UHFFFAOYSA-N Cc(c(C)c1)ccc1-c1cc(C)c(C)cc1 Chemical compound Cc(c(C)c1)ccc1-c1cc(C)c(C)cc1 YXBIAYXZUDJVEB-UHFFFAOYSA-N 0.000 description 1
- RZTDESRVPFKCBH-UHFFFAOYSA-N Cc(cc1)ccc1-c1ccc(C)cc1 Chemical compound Cc(cc1)ccc1-c1ccc(C)cc1 RZTDESRVPFKCBH-UHFFFAOYSA-N 0.000 description 1
- OFDOCXDLDQXWIX-UHFFFAOYSA-N Cc(cc1)ccc1C#Cc1ccc(C)cc1 Chemical compound Cc(cc1)ccc1C#Cc1ccc(C)cc1 OFDOCXDLDQXWIX-UHFFFAOYSA-N 0.000 description 1
- LTTHKDIHUGJTJW-UHFFFAOYSA-N Cc(cc1)ccc1C(Oc1ccc(C)cc1)=O Chemical compound Cc(cc1)ccc1C(Oc1ccc(C)cc1)=O LTTHKDIHUGJTJW-UHFFFAOYSA-N 0.000 description 1
- ZWPWLKXZYNXATK-UHFFFAOYSA-N Cc(cc1)ccc1C(c1ccc(C)cc1)=O Chemical compound Cc(cc1)ccc1C(c1ccc(C)cc1)=O ZWPWLKXZYNXATK-UHFFFAOYSA-N 0.000 description 1
- YWYHGNUFMPSTTR-UHFFFAOYSA-N Cc(cc1)ccc1Oc1ccc(C)cc1 Chemical compound Cc(cc1)ccc1Oc1ccc(C)cc1 YWYHGNUFMPSTTR-UHFFFAOYSA-N 0.000 description 1
- NRXWFTYEJYEOGW-UHFFFAOYSA-N Cc(cc1)ccc1Sc1ccc(C)cc1 Chemical compound Cc(cc1)ccc1Sc1ccc(C)cc1 NRXWFTYEJYEOGW-UHFFFAOYSA-N 0.000 description 1
- PZCRCGZQRHMEDY-UHFFFAOYSA-N Cc(cc1C)ccc1-c1c(C)cc(C)cc1 Chemical compound Cc(cc1C)ccc1-c1c(C)cc(C)cc1 PZCRCGZQRHMEDY-UHFFFAOYSA-N 0.000 description 1
- XAABPYINPXYOLM-UHFFFAOYSA-N Cc1c(c(C)ccc2)c2ccc1 Chemical compound Cc1c(c(C)ccc2)c2ccc1 XAABPYINPXYOLM-UHFFFAOYSA-N 0.000 description 1
- KINZBJFIDFZQCB-VAWYXSNFSA-N Cc1ccc(/C=C/c2ccc(C)cc2)cc1 Chemical compound Cc1ccc(/C=C/c2ccc(C)cc2)cc1 KINZBJFIDFZQCB-VAWYXSNFSA-N 0.000 description 1
- XCCQFUHBIRHLQT-UHFFFAOYSA-N Cc1ccc(CCc2ccc(C)cc2)cc1 Chemical compound Cc1ccc(CCc2ccc(C)cc2)cc1 XCCQFUHBIRHLQT-UHFFFAOYSA-N 0.000 description 1
- DEGFPRMMRHFIBG-UHFFFAOYSA-N Cc1ccc(Cc2cc(C)ccc2)cc1 Chemical compound Cc1ccc(Cc2cc(C)ccc2)cc1 DEGFPRMMRHFIBG-UHFFFAOYSA-N 0.000 description 1
- HZAWPPRBCALFRN-UHFFFAOYSA-N Cc1ccc(Cc2ccc(C)cc2)cc1 Chemical compound Cc1ccc(Cc2ccc(C)cc2)cc1 HZAWPPRBCALFRN-UHFFFAOYSA-N 0.000 description 1
- SDDBCEWUYXVGCQ-UHFFFAOYSA-N Cc1cccc2c1cccc2C Chemical compound Cc1cccc2c1cccc2C SDDBCEWUYXVGCQ-UHFFFAOYSA-N 0.000 description 1
- ARZIVALJTPLLHF-VAWYXSNFSA-N Cc1ccccc1/C=C/c1c(C)cccc1 Chemical compound Cc1ccccc1/C=C/c1c(C)cccc1 ARZIVALJTPLLHF-VAWYXSNFSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
Definitions
- the present invention relates to a liquid crystal aligning agent used in manufacturing a liquid crystal display element, a liquid crystal aligning film obtained from this liquid crystal aligning agent, and a liquid crystal display element using this liquid crystal aligning film.
- the liquid crystal display element is known as a lightweight, thin, and low power consumption display device.
- a liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates having electrodes.
- a liquid crystal alignment film for controlling the alignment state of the liquid crystal is usually provided on the surface of the substrate that is in contact with the liquid crystal.
- the liquid crystal alignment film is mainly a polyimide-based liquid crystal alignment film obtained by coating a substrate or the like with a liquid crystal aligning agent whose main component is a solution of a polyimide precursor such as polyamic acid (also called polyamic acid) or soluble polyimide Is used.
- a polyimide precursor such as polyamic acid (also called polyamic acid) or soluble polyimide Is used.
- the main object of the present invention is to provide a liquid crystal aligning agent having a reliability equal to or higher than that of soluble polyimide, specifically, a high voltage holding ratio characteristic, even when a polyamic acid is used.
- R 1 represents a trialkylsilyl group.
- liquid crystal aligning agent of the present invention without using a complicated manufacturing process such as polyamic acid ester or soluble polyimide, even if using a polyamic acid, reliability equal to or more than soluble polyimide, specifically, A liquid crystal aligning agent having a high voltage holding ratio characteristic can be obtained. The same effect can be obtained by applying the present invention to soluble polyimide.
- the liquid crystal aligning agent of the present invention contains at least one of a polyamic acid having a structure of the following formula (1) and a polyimide which is an imidized product thereof.
- R 1 represents a trialkylsilyl group. Specific examples include the structures of the following formulas (1-1) to (1-4). * Represents a bond. More preferably, it is a t-butylsilyl group.
- a method using a silylating agent is used during and after the polymerization of the polyimide precursor.
- a silylating agent used in the present invention a commercially available silylating agent can be used as long as it can introduce a trialkylsilyl group.
- the polyimide contained in the liquid crystal aligning agent of the present invention is obtained by imidizing a polyimide precursor obtained by reacting a tetracarboxylic acid derivative with a diamine.
- a polyimide precursor obtained by reacting a tetracarboxylic acid derivative with a diamine.
- the tetracarboxylic acid derivative used in the production of the polyimide precursor is not only a tetracarboxylic acid dianhydride, but a derivative thereof, tetracarboxylic acid, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester, a tetracarboxylic acid dialkyl. Ester dihalide is mentioned.
- the structure of X 1 is not particularly limited as long as it is a tetravalent organic group.
- Preferred specific examples include the following formulas (X1-1) to (X1-44). From the viewpoint of liquid crystal alignment, X 1 is (X1-1) to (X1-3), (X1-5), (X1-7) to (X1-10), (X1-18), (X1-24) ) And (X1-27) to (X1-43) are preferable.
- R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
- R 3 to R 23 are preferably hydrogen atom, halogen atom, methyl group or ethyl group, and more preferably hydrogen atom or methyl group.
- (X1-1) examples include the following formulas (X1-1-1) to (X1-1-6). From the viewpoint of liquid crystal alignment, (X1-1-1) is particularly preferable. ..
- the diamine used for producing the polyimide precursor is represented by the following formula (2).
- a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. is there.
- Y 1 The structure of Y 1 is not particularly limited. Preferred structures include (Y-1) to (Y-177) below.
- Me represents a methyl group
- R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
- Y 1 is (Y-7), (Y-8), (Y-16), (Y-17), (Y-18), (Y-20), (Y-21). ), (Y-22), (Y-27), (Y-28), (Y-29), (Y-35), (Y-37), (Y-38), (Y-43), (Y-48), (Y-53) to (Y-56), (Y-61), (Y-64) to (Y-66), (Y-69), (Y-71), (Y -72), (Y-76), (Y-77), (Y-80), (Y-81), (Y-82), (Y-83), (Y-156), (Y-159).
- the polyamic acid which is the polyimide precursor used in the present invention can be produced by the following method.
- tetracarboxylic dianhydride and diamine are reacted in the presence of a solvent at ⁇ 20 to 150° C., preferably 0 to 50° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. It can be synthesized by
- the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
- the solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor. Specific examples of the solvent used in the reaction are shown below, but the solvent is not limited to these examples.
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, or 1,3-dimethyl-imidazolidinone is Can be mentioned.
- the polyimide precursor When the polyimide precursor has high solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3].
- the solvent used can be used.
- D 1 represents an alkyl group having 1 to 3 carbon atoms
- D 2 represents an alkyl group having 1 to 3 carbons
- D 3 represents an alkyl group having 1 to 4 carbon atoms.
- solvents may be used alone or as a mixture. Furthermore, even a solvent that does not dissolve the polyimide precursor may be used as a mixture with the solvent as long as the generated polyimide precursor does not precipitate. Further, water in the solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, and therefore it is preferable to use dehydrated and dried solvent.
- the concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, more preferably from 5 to 20% by mass, because precipitation of the polymer is less likely to occur and a high molecular weight polymer is easily obtained.
- the silylating agent is introduced during or after the polymerization of the polyimide precursor, the introduction amount thereof is preferably 25 to 100 mol%, and particularly preferably 75 to 100% with respect to the amount of the carboxylic acid in the polyimide precursor. Is preferred.
- the silylated polyimide precursor is obtained by stirring at 5° C. to 60° C., preferably 40° C. to 80° C. for 1 to 30 hours, preferably 6 to 24 hours.
- the polyamic acid obtained as described above can be recovered by precipitating a polymer by injecting it into the following poor solvent while stirring the reaction solution well.
- the precipitated polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
- the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like.
- the polyimide used in the present invention can be produced by imidizing the above polyamic acid or polyamic acid ester.
- it can also be produced by imidizing a non-silylated polyamic acid by the method described below, dissolving the isolated imidized polymer in a solvent, and introducing a silylating agent when producing a liquid crystal aligning agent. Can be done.
- the chemical imidization can be performed by stirring the polyamic acid to be imidized in a solvent in the presence of a basic catalyst and an acid anhydride.
- a basic catalyst used in the above-mentioned polymerization reaction can be used.
- the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity to allow the reaction to proceed.
- the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because purification after the reaction is easy.
- the temperature at which the imidization reaction is carried out is ⁇ 20 to 140° C., preferably 0 to 100° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times that of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 times the amic acid group. It is 30 mol times.
- the imidation ratio of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
- the chemical imidization can be performed by stirring the polyamic acid ester to be imidized in a solvent in the presence of a basic catalyst.
- a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferable because it has a basicity sufficient to allow the reaction to proceed.
- the temperature at which the imidization reaction is carried out is ⁇ 20 to 140° C., preferably 0 to 100° C., and the reaction time is 1 to 100 hours, preferably 1 to 5 hours.
- the amount of the basic catalyst is 0.5 to 30 times, preferably 2 to 20 times the amount of the amic acid ester group.
- the imidation ratio of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
- the resulting imidized polymer is recovered by the means described below and redissolved in a solvent to obtain the liquid crystal aligning agent of the present invention. It is preferable that
- imidization promoter can be used in the imidization reaction of polyamic acid or polyamic acid ester.
- Specific examples of the imidization accelerator are shown below, but the imidization accelerator is not limited to these.
- D in the above formulas (B-1) to (B-17) is each independently a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
- a plurality of Ds in formulas (B-14) to (B-17) may be the same or different from each other.
- the added catalyst and the like remain, so by the means described below, the resulting imidized polymer is recovered and redissolved in a solvent.
- the liquid crystal aligning agent of the present invention is preferable.
- a polymer can be precipitated by injecting the solution of the polyimide obtained as described above into the following poor solvent while stirring well. Precipitation can be performed several times, followed by washing with a poor solvent and then drying at room temperature or by heating to obtain a purified polyamic acid ester powder.
- the poor solvent is not particularly limited, but examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene and benzene.
- the solvent (also referred to as a good solvent) is not particularly limited as long as the polymer having the specific structure is uniformly dissolved.
- the solvent also referred to as a good solvent
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
- the temperature during re-dissolution is preferably 5°C to 80°C, more preferably 20°C to 50°C.
- the stirring time for redissolution is preferably 30 minutes to 50 hours, more preferably 3 hours to 12 hours.
- a silylated polyimide solution can be obtained by introducing a silylating agent during stirring during re-dissolution. After the introduction of the silylating agent, stirring at 5° C. to 60° C., preferably 40° C. to 80° C. for 1 to 30 hours, preferably 6 to 24 hours gives a silylated polyimide solution.
- the liquid crystal aligning agent used in the present invention has a form of a solution in which at least one selected from the polyamic acid having the structure of the above formula (1) and a polyimide is dissolved in a solvent.
- the weight average molecular weight of the specific structure polymer is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and further preferably 10,000 to 100,000.
- the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and further preferably 5,000 to 50,000.
- the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but from the viewpoint of forming a uniform and defect-free coating film, It is preferably not less than 10% by mass, and more preferably not more than 10% by mass from the viewpoint of storage stability of the solution. It is particularly preferably 3 to 6.5% by mass.
- the solvent (also referred to as a good solvent) contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polymer having the specific structure is uniformly dissolved therein.
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
- the polymer of the present invention has a high solubility in a solvent
- the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99 mass% of the whole solvent contained in the liquid crystal aligning agent. Above all, 20 to 90 mass% is preferable. More preferably, it is 30 to 80% by mass.
- a solvent also referred to as a poor solvent
- a poor solvent that improves the coating property and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. It can. Specific examples of the poor solvent are shown below, but the invention is not limited to these examples.
- ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethanediol, 1,2-propanediol,
- 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
- the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass, based on the entire solvent contained in the liquid crystal aligning agent.
- liquid crystal aligning agent of the present invention in addition to the above, a polymer other than the polymer described in the present invention, and an electric conductivity such as a dielectric constant or conductivity of the liquid crystal alignment film are included as long as the effects of the present invention are not impaired.
- a compound, and further, an imidization promoter for the purpose of efficiently promoting imidization by heating the polyimide precursor when firing the coating film may be added.
- the liquid crystal alignment film of the present invention can be used for a horizontal alignment type or a vertical alignment type liquid crystal alignment film, and is a liquid crystal alignment film suitable for a vertical alignment type liquid crystal display element such as a VA type or PSA mode among others.
- a method for forming a liquid crystal alignment film of the present invention first, the above liquid crystal alignment agent is applied to a substrate, dried and baked to obtain a coating film.
- the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed in terms of process simplification. Further, in the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used if only one side substrate is used. In this case, a material that reflects light such as aluminum can also be used as an electrode.
- a spin coating method, a printing method, an inkjet method and the like can be mentioned. Any temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the contained solvent, it is dried at 50 to 120° C., preferably 60 to 100° C. for 1 to 10 minutes, preferably 2 to 5 minutes, and then 150 to 300° C., preferably Is baked at 200 to 240° C. for 5 to 120 minutes, preferably 10 to 30 minutes.
- the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may decrease, so it is 5 to 300 nm, preferably 10 to 200 nm.
- the coating film formed above can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment treatment.
- Examples of the method for alignment treatment include a rubbing method and a photo-alignment treatment method.
- the rubbing process can be performed using an existing rubbing device.
- Examples of the material of the rubbing cloth at this time include cotton, nylon, rayon and the like.
- As the conditions for the rubbing treatment generally, conditions of a rotation speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm/s, and a pushing amount of 0.1 to 1.0 mm are used. Then, the residue generated by rubbing is removed by ultrasonic cleaning using pure water, alcohol, or the like.
- the radiation applied to the coating film for example, ultraviolet rays and visible rays containing light with a wavelength of 150 to 800 nm can be used.
- the radiation when the radiation is polarized light, it may be linearly polarized light or partially polarized light.
- the irradiation may be performed in a direction perpendicular to the substrate surface, an oblique direction, or a combination thereof.
- the irradiation direction is an oblique direction.
- the liquid crystal display element of the present invention is manufactured by any one of the following process (1), a combination of the process (2) and the process (4), or a combination of the process (3) and the process (4). be able to.
- the first method is a conventionally known method. First, two substrates are arranged to face each other with a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together with a sealant, and the liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealant to make contact with the film surface, and then the injection hole is sealed. Stop.
- the second method is a method called an ODF (One Drop Fill) method.
- an ultraviolet light curable sealant is applied to a predetermined position on one of the two substrates having the liquid crystal alignment film formed thereon, and the liquid crystal composition is applied to predetermined positions on the surface of the liquid crystal alignment film. Is dripped. After that, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. In either case, it is desirable that the liquid crystal composition used is further heated to a temperature at which the liquid crystal composition has an isotropic phase, and then gradually cooled to room temperature to remove the flow orientation at the time of filling the liquid crystal.
- a liquid crystal display device is manufactured through a step of irradiating ultraviolet rays described below. The method of doing may be adopted. According to this method, as in the case of manufacturing the PSA type liquid crystal display element, a liquid crystal display element having an excellent response speed can be obtained with a small light irradiation amount.
- the compound having a polymerizable group is a compound having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group represented by the formulas (M-1) to (M-7) in the molecule.
- the content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
- the polymerizable group may have a polymer used in the polymer composition, as such a polymer, for example, using a diamine component containing a diamine having a photopolymerizable group at the end in the reaction. The resulting polymer may be mentioned.
- the liquid crystal cell is irradiated with light in a state in which a voltage is applied between the conductive films of the pair of substrates obtained in (2) or (3) above.
- the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
- the light for irradiation for example, ultraviolet rays and visible rays containing light with a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light with a wavelength of 300 to 400 nm are preferable.
- the light source of the irradiation light for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, etc. can be used.
- the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , and more preferably 1,000 to 100,000 J/m 2 .
- a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
- a polarizing plate to be attached to the outer surface of a liquid crystal cell a polarizing film in which a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented to absorb iodine and sandwiched between cellulose acetate protective films or the H film itself is used.
- liquid crystal display device of the present invention can be effectively applied to various devices, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
- the molecular weight of the polyimide in the synthesis example was as follows using a room temperature gel permeation chromatography (GPC) device (SSC-7200) manufactured by Senshu Scientific Co., Ltd., and a column (KD-803, KD-805) manufactured by Shodex. It was measured.
- GPC room temperature gel permeation chromatography
- the imidization ratio of the polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku), and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) was added and completely dissolved. It was
- PAA-1 polyamic acid polymerization liquid
- ⁇ Synthesis example 3> 1.75 g of S-1 was added to PAA-1 (10.0 g), and the mixture was heated and stirred at 50° C. for 12 hours to obtain a polyamic acid silyl ester polymerization solution. (PASE-1)
- Example 1 NMP (14.0 g) and BCS (8.0 g) were added to the polyamic acid silyl ester polymerization solution (PASE-1) (6.0 g) obtained in Synthesis Example 3, and the mixture was stirred at 25° C. for 5 hours. Thereby, the liquid crystal aligning agent [1] of Example 1 was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- Example 2-5 NMP (14.0 g) and BCS (8.0 g) were added to the polyamic acid silyl ester polymerization solution (PASE-2 to PASE-5) (6.0 g) obtained in Synthesis Example 4-7, and the mixture was allowed to stand at 25° C. for 5 hours. Allowed to stir for hours. Thus, a liquid crystal aligning agent [2-5] of Example 2-5 was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- the liquid crystal aligning agent obtained above was spin-coated on the ITO surface of a non-alkali glass substrate with ITO (length 30 mm, width 40 mm, thickness 0.7 mm) washed with pure water and IPA (isopropyl alcohol), respectively, and 70° C. After baking for 90 seconds on a hot plate, it was baked in an infrared heating furnace at 230° C. for 20 minutes to prepare a polyimide-coated substrate having a film thickness of 100 nm.
- thermosetting sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was applied on top of it. Printed. Then, the surface of the other substrate, on which the liquid crystal alignment film was formed, was set to the inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. Liquid crystal MLC-3023 containing a polymerizable compound for PSA (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell. The voltage holding ratio of this liquid crystal cell was measured.
- UV of 7 J/cm 2 was passed through the 325 nm cut filter from the outside of this liquid crystal cell (also referred to as primary PSA treatment).
- the UV illuminance was measured using UV-MO3A manufactured by ORC.
- UV UV lamp: FLR40SUV32/ A-1
- secondary PSA treatment UV lamp: FLR40SUV32/ A-1
- PASE that was silyl esterified with a silylating agent showed a good voltage holding ratio with respect to the comparative example, and particularly, the voltage holding ratios of PASE-1 and PASE-2 having a Tert-Butyl group were higher. It was good.
- the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has reliability equal to or higher than that of soluble polyimide, specifically, high voltage holding ratio characteristics. Therefore, it can be used in a wide range of liquid crystal display devices that require high display quality.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像減少の提言等の要求から、液晶配向膜には、優れた液晶配向性や安定したプレチルト角発現能に加え、高い電圧保持率、交流駆動により発生する残像抑制、直流電圧を印加した際の残留電荷が少ない、等の特性が重要となっている。
ポリイミド系の液晶配向膜としては、そのような要求に応える為に、ポリアミック酸やポリイミドの末端を種々の構造により修飾する技術が提案されてきている。例えば、液晶配向性の向上、高いプレチルト角、小さい残像消去時間、及び高い信頼性を達成する為、モノ酸無水物、モノアミン化合物、及びモノイソシアネート化合物と反応させることにより、末端を修飾したイミド化重合体が提案されている(特許文献1参照)。
高い信頼性を得るには、可溶性ポリイミドを用いた液晶配向剤を用いることが一般的であるが、可溶性ポリイミドの製造は、ポリアミック酸を変質させて得る必要があり、ポリアミック酸の製造と比較してコストが高くなる。しかし、ポリアミック酸を用いた液晶配向膜は、可溶性ポリイミドを用いたものより、膜の信頼性に欠ける点がある。
1.下記式(1)の構造を有するポリアミック酸及びポリイミドから選ばれる少なくとも1種を含有する液晶配向剤。
本発明の液晶配向剤に含有されるポリイミドは、テトラカルボン酸誘導体と、ジアミンとの反応から得られるポリイミド前駆体をイミド化することにより得られる。以下に、用いられる材料の具体例及び製造方法を詳述する。
ポリイミド前駆体の製造に用いられるジアミンは、下記式(2)で表される。
本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造することができる。
ポリイミド前駆体の重合中及び重合後に、シリル化剤を導入する場合、その導入量は、ポリイミド前駆体中のカルボン酸量に対し、25~100モル%が好ましく、特に75~100%であることが好ましい。シリル化剤導入後は、5℃~60℃、好ましくは40℃~80℃で、1~30時間、好ましくは6~24時間攪拌することで、シリル化されたポリイミド前駆体が得られる。
なお、反応中は、ポリアミック酸内のジアミン部分の酸化を防ぐために系内を窒素置換することが好ましく、また、系内の温度を変えないために、還流装置を設置することが好ましい。
本発明に用いられるポリイミドは、前記したポリアミック酸又はポリアミック酸エステルをイミド化することにより製造することができる。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら下記貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。
本発明に用いられる液晶配向剤は、前記した式(1)の構造を有するポリアミック酸及びポリイミドから選ばれる少なくとも1種が、溶媒中に溶解された溶液の形態を有する。
<液晶表示素子>
本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができるが、中でもVA方式又はPSAモード等の垂直配向型の液晶表示素子に好適な液晶配向膜である。本発明の液晶配向膜の形成方法としては、まず上記液晶配向剤を基板に塗布し、乾燥し、焼成して塗膜を得る。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができる。さらに、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミニウム等の光を反射する材料も使用できる。
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(1)と同様にする。重合性化合物としては、例えば下記式(M-1)~(M-7)で表されるような重合性化合物を挙げることができる。
上記(1)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、前記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、前記式(M-1)~(M-7)で表されるようなアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、前記重合性基は重合体組成物に用いる重合体が有していてもよく、このような重合体としては、例えば光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
上記(2)又は(3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/m2であり、より好ましくは1,000~100,000J/m2である。
(特定ジアミン)
DBA:3,5-ジアミノ安息香酸
3AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
DA―1:式[DA―1]で表される化合物(特定側鎖構造を有するジアミン)
PMDA:ピロメリット酸無水物
下記[D1]~[D2]で表される化合物
D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
(シリル化剤成分)
下記式[S-1]~[S-5]で表される化合物(シリル化剤)
NMP:N-メチル-2-ピロリドン
BCS:エチレングリコールモノブチルエーテル
合成例におけるポリイミドの分子量は、(株)センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約9000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS混合品)0.53mlを添加し、完全に溶解させた。
イミド化率(%)=(1-α・x/y)×100
<合成例1>
撹拌装置及び窒素導入管付きの100ml4つ口フラスコに、DBAを2.74g(18.0mmol)、3AMPDAを3.27g(13.5mmol)、DA-1を5.14g(13.5mmol)を量り取り、固形分濃度が20%になるようにNMPで希釈した。30分間の室温撹拌の後にD2を2.25g(8.99mmol)を加え、再度NMPにて固形分濃度20%になるように希釈し、60℃で1時間加熱撹拌を行った。得られた反応液を17℃以下まで冷却した後、PMDAを1.96g(8.99mmol)加え、NMP20%で希釈後に室温で5時間撹拌した。最後にD1を5.11g(26.1mmol)NMPで固形分濃度20%となるように希釈し、40℃で6時間加熱撹拌した。得られた重合液を室温まで冷却することで、ポリアミド酸重合液(PAA-1)を得た。
PAA-1(50.0g)にNMP(103.85g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(6.67g)、ピリジン(2.58g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(570.9g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、合成例1のポリイミド粉末(SPI-1)を得た。このポリイミドのイミド化率は72%であり、数平均分子量は11,800、重量平均分子量は41,800であった。
PAA-1(10.0g)にS-1を1.75g加えた後、50℃で12時間加熱撹拌を行うことにより、ポリアミック酸シリルエステル重合液を得た。(PASE-1)
合成例3においてS-1の代わりにS-2~S-5を下記表中の量を加えた以外は、全て合成例3と同じ処理により、ポリアミック酸シリルエステル重合液を得た。(PASE-2~PASE5)
合成例3で得たポリアミック酸シリルエステル重合液(PASE-1)(6.0g)にNMP(14.0g)とBCS(8.0g)を加え、25℃にて5時間攪拌させた。これにより、実施例1の液晶配向剤[1]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
合成例4-7で得たポリアミック酸シリルエステル重合液(PASE-2~PASE-5)(6.0g)にNMP(14.0g)とBCS(8.0g)を加え、25℃にて5時間攪拌させた。これにより、実施例2-5の液晶配向剤[2-5]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
合成例1で得たポリアミック酸重合液(PAA-1)(6.0g)にNMP(14.0g)とBCS(8.0g)を加え、25℃にて5時間攪拌させた。これにより、比較例1の液晶配向剤を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
上記で得た液晶配向剤を、それぞれ、純水及びIPA(イソプロピルアルコール)で洗浄したITO付き無アルカリガラス基板(縦30mm、横40mm、厚み0.7mm)のITO面にスピンコートし、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmのポリイミド塗布基板を作製した。
上記で作製した液晶セルを用い、60℃の熱風循環オーブン中で1Vの電圧を60μs間印加した後、16.67msec後と1667msec後の電圧をそれぞれ測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。
上記で得た実施例3-7および比較例1の液晶配向剤1g攪拌している中にそれぞれBCSを滴下し、白濁する重量から、下記式で溶解性を算出した。
評価結果を、下表に示す。
溶解度=(液晶配向剤中のBCS量+滴下BCS量)/(液晶配向剤量+滴下BCS量)
Claims (7)
- 上記式(1)のR1が、t-ブチルシリル基である、請求項1に記載の液晶配向剤。
- 前記ポリアミック酸が、ポリアミック酸とシリル化剤との反応物である、請求項1または請求項2に記載の液晶配向剤。
- 請求項1から請求項5のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
- 請求項6に記載の液晶配向膜を具備する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080011288.6A CN113396358A (zh) | 2019-01-31 | 2020-01-29 | 液晶取向剂、使用该液晶取向剂的液晶取向膜及液晶显示元件 |
KR1020217025937A KR20210120012A (ko) | 2019-01-31 | 2020-01-29 | 액정 배향제 및 그것을 사용한 액정 배향막 및 액정 표시 소자 |
JP2020569680A JP7469744B2 (ja) | 2019-01-31 | 2020-01-29 | 液晶配向剤及びそれを用いた液晶配向膜及び液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019015700 | 2019-01-31 | ||
JP2019-015700 | 2019-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158795A1 true WO2020158795A1 (ja) | 2020-08-06 |
Family
ID=71841429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003160 WO2020158795A1 (ja) | 2019-01-31 | 2020-01-29 | 液晶配向剤及びそれを用いた液晶配向膜及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7469744B2 (ja) |
KR (1) | KR20210120012A (ja) |
CN (1) | CN113396358A (ja) |
TW (1) | TW202043332A (ja) |
WO (1) | WO2020158795A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04194822A (ja) * | 1990-11-22 | 1992-07-14 | Fuji Photo Film Co Ltd | 液晶表示素子の製造方法 |
JPH04313756A (ja) * | 1991-04-11 | 1992-11-05 | Shin Etsu Chem Co Ltd | 感光材及びその製造方法 |
JP2002020754A (ja) * | 2000-07-07 | 2002-01-23 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2009075569A (ja) * | 2007-08-24 | 2009-04-09 | Hitachi Displays Ltd | 液晶表示装置及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2787531B2 (ja) * | 1993-02-17 | 1998-08-20 | 信越化学工業株式会社 | 感光性樹脂組成物及び電子部品用保護膜 |
JP4336922B2 (ja) | 2000-04-12 | 2009-09-30 | Jsr株式会社 | 液晶配向剤および液晶表示素子 |
KR20170102041A (ko) * | 2012-10-18 | 2017-09-06 | 닛산 가가쿠 고교 가부시키 가이샤 | 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 |
JP6557963B2 (ja) | 2014-02-25 | 2019-08-14 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2017106941A (ja) * | 2014-04-09 | 2017-06-15 | 日産化学工業株式会社 | アルコキシシリル基を有するウレア化合物及び液晶配向剤 |
-
2020
- 2020-01-29 JP JP2020569680A patent/JP7469744B2/ja active Active
- 2020-01-29 KR KR1020217025937A patent/KR20210120012A/ko unknown
- 2020-01-29 CN CN202080011288.6A patent/CN113396358A/zh active Pending
- 2020-01-29 WO PCT/JP2020/003160 patent/WO2020158795A1/ja active Application Filing
- 2020-01-31 TW TW109102982A patent/TW202043332A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04194822A (ja) * | 1990-11-22 | 1992-07-14 | Fuji Photo Film Co Ltd | 液晶表示素子の製造方法 |
JPH04313756A (ja) * | 1991-04-11 | 1992-11-05 | Shin Etsu Chem Co Ltd | 感光材及びその製造方法 |
JP2002020754A (ja) * | 2000-07-07 | 2002-01-23 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2009075569A (ja) * | 2007-08-24 | 2009-04-09 | Hitachi Displays Ltd | 液晶表示装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020158795A1 (ja) | 2021-12-02 |
JP7469744B2 (ja) | 2024-04-17 |
CN113396358A (zh) | 2021-09-14 |
TW202043332A (zh) | 2020-12-01 |
KR20210120012A (ko) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6520716B2 (ja) | 液晶配向剤及びそれを用いた液晶表示素子 | |
JP6669161B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5831712B2 (ja) | ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子 | |
JP7276666B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5896164B2 (ja) | 機能性ポリマー膜形成用塗布液及び機能性ポリマー膜形成方法 | |
CN109791331B (zh) | 液晶取向剂、液晶取向膜和液晶表示元件 | |
CN109791329B (zh) | 液晶取向剂、液晶取向膜和液晶表示元件 | |
JP7255486B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP2024037908A (ja) | 化合物 | |
JP7435469B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JPWO2018155674A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP7243628B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JP7469744B2 (ja) | 液晶配向剤及びそれを用いた液晶配向膜及び液晶表示素子 | |
WO2015080185A1 (ja) | 液晶配向剤及びそれを用いた液晶表示素子 | |
WO2018062437A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JPWO2018062439A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP7425537B2 (ja) | ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2020184373A1 (ja) | 機能性高分子膜形成用塗布液及び機能性高分子膜 | |
JP7193782B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP7448891B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP7161147B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶配向膜の製造方法 | |
WO2021182267A1 (ja) | ポリイミドワニス | |
WO2022014467A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP2017156437A (ja) | 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748360 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020569680 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217025937 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748360 Country of ref document: EP Kind code of ref document: A1 |