WO2020155720A1 - 一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法 - Google Patents

一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法 Download PDF

Info

Publication number
WO2020155720A1
WO2020155720A1 PCT/CN2019/115265 CN2019115265W WO2020155720A1 WO 2020155720 A1 WO2020155720 A1 WO 2020155720A1 CN 2019115265 W CN2019115265 W CN 2019115265W WO 2020155720 A1 WO2020155720 A1 WO 2020155720A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
dual
gasoline
hydrodesulfurization
active metal
Prior art date
Application number
PCT/CN2019/115265
Other languages
English (en)
French (fr)
Inventor
赵亮
高金森
夏步田
董立霞
陈京业
张宇豪
徐春明
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Publication of WO2020155720A1 publication Critical patent/WO2020155720A1/zh
Priority to US17/390,123 priority Critical patent/US20210354118A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • This application relates to petrochemical technology, in particular to an in-situ dual-functional catalyst for deep desulfurization and increasing gasoline octane number and its preparation method and application, and in particular to a dual-functional catalyst with both hydrodesulfurization activity and isomerization activity Catalyst and its preparation method and application.
  • the main blending component of commercial gasoline in my country is catalytic cracking (FCC) gasoline, which accounts for about 75% of the commercial gasoline composition, but contributes more than 90% of sulfur-containing components and more than 95% of olefins.
  • FCC gasoline In order to meet increasingly stringent gasoline quality standards, FCC gasoline must be deeply desulfurized and olefin reduced.
  • HDS high-performance hydrodesulfurization
  • the most widely used HDS catalyst in the gasoline hydrodesulfurization process is the presulfurized CoMo HDS catalyst, which generally uses ⁇ -Al 2 O 3 as a carrier and supports active metals Co and Mo.
  • the traditional CoMo-based HSD catalyst has the advantages of good thermal stability and low price, but the disadvantage is that it is difficult to achieve deep desulfurization when used for the desulfurization of feedstock oil, especially when FCC gasoline is used, and it will also cause a large amount of olefin saturation , which in turn brings a greater loss of octane number.
  • the present application provides a dual-functional catalyst for hydrodesulfurization coupled with isomerization and a preparation method thereof.
  • the dual-functional catalyst With the dual-functional catalyst, the purposes of deep desulfurization, olefin reduction and octane preservation can be achieved.
  • This application also provides a gasoline hydrodesulfurization method.
  • the purpose of deep desulfurization, olefin reduction and octane preservation can be achieved, thereby facilitating obtaining ultra-low sulfur or even sulfur-free clean gasoline products.
  • the present application provides a dual-functional catalyst for hydrodesulfurization coupled with isomerization, comprising a modified catalyst support and a supported active metal, wherein the modified catalyst support is ⁇ -Al 2 O 3 and acid molecular sieve are mixed and roasted to prepare a composite carrier.
  • the bifunctional catalyst provided by this application adopts acidic molecular sieve as the dopant of ⁇ -Al 2 O 3 , which not only makes the bifunctional catalyst more acidic It can also adjust the ratio of Bronsted (BAS) and Lewis acid sites (LAS) on the bifunctional catalyst surface.
  • BAS Bronsted
  • LAS Lewis acid sites
  • the dual-functional catalyst used for gasoline hydrodesulfurization can not only promote the hydrogenation reaction and increase the desulfurization rate, but also promote the olefin isomerization reaction. , Thereby reducing the olefin content and ensuring that the octane number is almost not lost or even slightly increased, and finally achieves deep desulfurization, olefin reduction and octane protection.
  • Acidic molecular sieves refer to molecular sieves with acid catalysis.
  • the acidic molecular sieves used in this application can be specifically selected from but not limited to the following molecular sieves: ZSM series molecular sieves, MCM series molecular sieves, SAPO series molecular sieves, beta molecular sieves ( ⁇ molecular sieves, Beta molecular sieves) One or more of.
  • ZSM series molecular sieves can be one or more of ZSM-5, ZSM-8, ZSM-11, ZSM-35 molecular sieves, etc.
  • MCM series molecular sieves can be MCM-22, MCM-36, MCM-41 molecular sieves, etc.
  • SAPO series molecular sieves can be one or more of SAPO-5, SAPO-11, SAPO-34 molecular sieves, etc.
  • the mass of ⁇ -Al 2 O 3 is preferably greater than or equal to the mass of the acidic molecular sieve.
  • the inventor found that as the proportion of acidic molecular sieve in the composite carrier increases, more acid centers can be obtained, so the bifunctional catalyst can show more excellent isomerization performance; but it may be due to ⁇ -Al 2
  • the decrease in the proportion of O 3 leads to a decrease in hydrogenation active sites, which in turn leads to a decrease in hydrodesulfurization performance. Therefore, considering desulfurization performance and isomerization performance comprehensively, the mass ratio of ⁇ -Al 2 O 3 to acid molecular sieve is generally controlled to be 1-9:1, preferably 4-8:1.
  • the application does not specifically limit the specific selection of the binder, and conventional binders can be selected.
  • a suitable binder it is beneficial to obtain a composite carrier with excellent performance, uniform distribution and moderate acidity, so that the dual-functional catalyst exhibits good isomerization performance.
  • the binder used may be, for example, one or more of amino trimethylene phosphonic acid (ATMP), polyvinylpyrrolidone (PVP), sesame powder, and the like.
  • the active metal supported in the bifunctional catalyst of the present application can be specifically selected from at least two elements of group VIB and group VIII of the periodic table. Among them, in terms of oxides, the active metal accounts for 3-30% of the total mass of the bifunctional catalyst.
  • the above-mentioned active metal may include at least one VIB group element and at least one group VIII element.
  • the VIB group elements may be Cr, Mo, W, for example;
  • the VIII group elements may be Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, for example.
  • the molar ratio of VIB elements and VIII elements is usually controlled to be 1:0.1-0.6.
  • Mo and Co are used as active metals, where the atomic molar ratio of Mo to Co is 1:0.1-0.6 .
  • the dual-functional catalyst provided in the present application can be obtained by impregnating the active metal on a modified catalyst carrier, and then aging, drying, and calcining.
  • This application also provides a method for preparing the aforementioned dual-functional catalyst for hydrodesulfurization coupled with isomerization, which includes the following steps:
  • the impregnating liquid containing the active metal is loaded on the modified catalyst carrier, and then aging, drying and roasting are carried out to obtain a dual-functional catalyst.
  • ⁇ -Al 2 O 3 and acid molecular sieve can be mixed through a binder, washed and dried, and calcined at 450-700° C. for 6-12 hours to obtain a modified catalyst carrier.
  • ⁇ -Al 2 O 3 and acid molecular sieve can be mixed in proportion and ground to a certain mesh, and then an appropriate amount of binder can be added and mixed uniformly.
  • a small amount of nitric acid can be added, and then vacuum filtration can be used for washing. After drying, it is put into a roasting furnace and roasted to obtain a modified catalyst carrier.
  • the above process of preparing the dual-functional catalyst further includes the step of preparing an impregnation liquid:
  • the above-mentioned compounds containing active metals can be metal salts such as carbonates and nitrates corresponding to the active metals.
  • the Co source can be, for example, basic cobalt carbonate and cobalt nitrate.
  • the Mo source may be ammonium heptamolybdate, for example.
  • the atomic molar ratio of Mo to Co can be 1:0.1-0.6.
  • the mass fraction of MoO 3 in the impregnating solution is generally 8-14%
  • the mass fraction of CoO in the impregnating solution is generally 1 to 6% based on the oxide of the metal active component.
  • the organic complexing agent is used to improve the dispersion of the metal active component on the composite support, so as to reduce the interaction force between the metal active component and the composite support, thereby increasing the sulfidation degree and desulfurization effect of the dual-functional catalyst.
  • the organic complexing agent that meets the above requirements may be, for example, at least one of citric acid (CA), tartaric acid (TA), nitrilotriacetic acid, and sulfamic acid.
  • the mass ratio of the organic complexing agent to water is generally controlled to be 1:1 to 3.
  • the molar ratio of the organic complexing agent to the metal molybdenum is generally 0.5-2:1.
  • the isometric impregnation method can be used to load the impregnation solution on the composite carrier, and then age at room temperature for 6-12h, dry at 100-120°C for 6-12h, and roast at 450-600°C 4 ⁇ 8h.
  • the roasting can adopt a temperature-programming method, such as first holding at 200°C for about 50 minutes, then at 300°C for about 30 minutes, and finally at 500°C for about 4 hours.
  • the firing atmosphere may specifically be one of nitrogen, argon, and helium.
  • the bifunctional catalyst of the present application can be extruded and formed into a shape that meets the application environment, for example, can be prepared into clover, columnar, spherical and other particles.
  • This application also provides a gasoline hydrodesulfurization method, which uses the aforementioned dual-function catalyst.
  • the dual-function catalyst can be presulfided first, and then the gasoline can be hydrodesulfurized.
  • the gasoline can be full-distillate gasoline or heavy-distillate gasoline.
  • the dual-function catalyst of the present application can adopt a fixed-bed process during hydrodesulfurization, select a dual-function catalyst with an appropriate shape and structure, and adopt a fixed-bed packing.
  • the optimal process conditions for gasoline hydrodesulfurization using the dual-function catalyst are: temperature 250-300°C, pressure 1.5-3.0MPa (that is, hydrogen partial pressure 1.5-3.0MPa), volumetric space velocity 3 ⁇ 8h -1 , the volume ratio of hydrogen to oil is 150-350.
  • this application provides an in-situ dual-functional catalyst for deep desulfurization and gasoline octane improvement, and its preparation method and application, which have the following beneficial effects:
  • the dual-functional catalyst for hydrodesulfurization coupled with isomerization uses acidic molecular sieve as the dopant of ⁇ -Al 2 O 3 , which not only makes the dual-functional catalyst have more acid centers, but also can adjust the dual-functionality
  • the BAS/LAS value on the surface of the catalyst enables the desulfurization rate to reach about 90% or higher, and it can also saturate more than 30% of olefins.
  • the octane loss is within 0.1 units or even slightly increased, thus achieving a deep The purpose of desulfurization, olefin reduction and octane preservation.
  • the dual-function catalyst can achieve deep desulfurization, olefin reduction and octane-preserving value of full-distilled gasoline or heavy-distilled gasoline under relatively mild conditions, so it is very suitable for the production of ultra-low sulfur or even sulfur-free clean gasoline products. So that the obtained gasoline products meet increasingly stringent gasoline quality standards.
  • the preparation method of the dual-functional catalyst of hydrodesulfurization coupled with isomerization provided in this application has simple steps and is very suitable for actual industrial production and promotion.
  • the gasoline hydrodesulfurization method provided by the present application adopts the above-mentioned dual-function catalyst, so that deep desulfurization, olefin reduction and octane-preserving value of full-distilled gasoline or heavy-distilled gasoline are realized, thereby facilitating obtaining high-quality gasoline products.
  • Figure 1 is a Py-FTIR diagram of the total acid content of the catalysts provided in Examples 1-3 and Comparative Examples of this application;
  • This embodiment provides a method for preparing a dual-functional catalyst coupled with hydrodesulfurization and isomerization, which includes the following steps:
  • This comparative example provides a traditional CoMo/ ⁇ -Al 2 O 3 catalyst. Its preparation method is as follows: without any treatment on ⁇ -Al 2 O 3 , the preparation process of the dipping solution and the equal volume dipping method are respectively the same as those of Example 1. The steps 2-3 are the same, and the composition of the CoMo/ ⁇ -Al 2 O 3 catalyst is shown in Table 1.
  • This embodiment provides a method for preparing a dual-functional catalyst for hydrodesulfurization coupled with isomerization.
  • the process steps are basically the same as those in Example 1, except that the ZSM-5 molecular sieve used in Example 1 is replaced with MCM-41 molecular sieve. And the mass ratio of ⁇ -Al 2 O 3 to ZSM-5 is about 7.9:1, the prepared dual-functional catalyst is named AM, and its specific composition is shown in Table 1.
  • the pyridine adsorption infrared spectrogram (Py-FTIR) of the total acid content of the catalyst provided in Examples 1-3 and the comparative example is shown in FIG. 1, and the H 2 -TPR diagram is shown in FIG. 2.
  • the model oil (olefin content is 19.3wt%, thiophene sulfur content is 996ppm, solvent is n-heptane) and North China heavy distillate gasoline (above 100°C, sulfur content is 1078ppm, and the group composition is shown in Table 2)
  • the bifunctional catalysts provided in Examples 1-3 of the present application have excellent hydrodesulfurization and isomerization performances for the mixed model oil of thiophene and olefin, and the desulfurization rate is above 90%, even As high as 98%.
  • the bifunctional catalysts provided in Examples 1-3 can significantly inhibit the progress of the olefin hydrogenation saturation reaction, and greatly promote the progress of the olefin isomerization reaction. Therefore, the dual-functional catalysts provided by Examples 1-3 are significantly better than the comparative examples in terms of hydrodesulfurization performance and olefin isomerization performance.
  • the dual-functional catalyst provided in Examples 1-3 of the present application has excellent desulfurization and olefin reduction performance for the North China heavy fraction, while ensuring that the octane number is not lost or even slightly increased. From the perspective of the composition of the product oil, the dual-functional catalysts of Examples 1-3 have a better desulfurization effect than the traditional catalysts in the comparative example, of which:
  • the desulfurization rate of the AZ-1 dual-function catalyst is as high as 96.2%, and the sulfur content in the North China heavy fraction can be reduced to about 40 ppm after a desulfurization reaction.
  • a large amount of branched alkanes are generated due to the progress of the isomerization reaction.
  • the isomerization reaction of olefins the higher the degree of branching of the isomerized olefins produced, the greater the contribution to the octane number. Therefore, the octane number loss caused during the hydrogenation process is effectively alleviated and protected The octane number of the oil. Specifically for AZ-1, the octane loss after gasoline hydrogenation is only 0.1 units.
  • Example 2 because the content of ZSM-5 molecular sieve was increased compared with Example 1, the acidity of the composite carrier was further enhanced, so AZ-2 showed a stronger isomerization effect than AZ-1.
  • the product oil of AZ-2 contains more isoparaffins; on the other hand, the octane value of the product oil of AZ-2 is 84.7, which is higher than that of AZ.
  • -1 is 84.1, which is even 0.5 units higher than the feedstock oil, indicating that the outstanding isomerization activity of AZ-2 can ensure that the octane number of FCC gasoline does not drop but rises during the hydrogenation process. This phenomenon is shown in the examples.
  • the AM dual-function catalyst in 3 is more obvious.
  • the dual-function catalyst provided by the present application can be used to solve the problems of deep desulfurization, olefin reduction, and octane protection in the process of FCC gasoline quality upgrade.
  • the hydrodesulfurization rate and the isomerization conversion rate both show an upward trend, indicating that the B acid on the surface of ⁇ -Al 2 O 3 should be appropriately increased
  • reducing the L acid center is beneficial to the progress of gasoline hydrogenation reaction and isomerization, so as to realize the deep desulfurization, olefin reduction and octane protection of gasoline, and finally obtain high-quality gasoline products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

提供一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法和应用。该双功能催化剂包含经改性处理的催化剂载体,以及负载的活性金属,其中前述经改性处理的催化剂载体是γ-Al 2O 3和酸性分子筛通过粘结剂混合焙烧制备成的复合载体。本申请提供的双功能催化剂在用于汽油加氢脱硫时,能够同时实现深度脱硫、降烯烃和保辛烷值,获得高品质油品。

Description

一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法 技术领域
本申请涉及石油化工技术,具体涉及一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法和应用,尤其涉及一种兼具加氢脱硫活性和异构化活性的双功能催化剂及其制备方法和应用。
背景技术
近年来,机动车尾气排放造成了严重的大气污染,比如雾霾天气频发就和机动车排放的尾气有着密切的关系。已有研究证明,油品中的硫含量几乎决定了机动车排放的所有污染物水平。鉴于此,世界各国家和地区都制定了愈加严格的汽油质量标准,比如我国在2017年01月实施的国V标准中就规定,汽油硫含量降至10ppm以下、烯烃降至≯25v%、芳烃≯40v%。而2019年实施的国VI车用汽油标准除了要求硫含量在10ppm以下之外,还进一步要求烯烃含量降低至18v%以下,且辛烷值保持在92以上。因此,今后我国清洁汽油发展趋势主要表现为:保证汽油中的硫含量维持在10ppm以下,同时大幅度降低烯烃含量并保持高辛烷值。
我国商品汽油的主要调和组分是催化裂化(FCC)汽油,约占商品汽油组成的75%,却贡献了90%以上的含硫组分和95%以上的烯烃。为了满足越来越严格的汽油质量标准,必须对FCC汽油进行深度脱硫和降烯烃处理。而加氢脱硫技术发展的核心就在于高性能加氢脱硫(HDS)催化剂的研发。
目前汽油加氢脱硫过程中应用最广泛的HDS催化剂是经过预硫化处理的CoMo系HDS催化剂,其一般是以γ-Al 2O 3作为载体,负载有活性金属Co和Mo。传统的CoMo系HSD催化剂具有热稳定性好、价格低廉等优势,但不足之处在于,在用于原料油脱硫时,尤其是FCC汽油时,难以实现深度脱硫,而且还会造成大量的烯烃饱和,进而带来较大的辛烷值损失。
为解决上述问题,目前已经开发出了其它品种的加氢脱硫催化剂,但多是单纯的追求高脱硫率,或者进一步通过降低芳烃损失率以保证辛烷值不明 显下降,但仍旧难以满足当前FCC汽油脱硫、降烯烃的同时保辛烷值的严格要求。为满足日益严格的汽油质量标准,生产超低硫(硫含量≯10ppm)甚至无硫清洁汽油产品,研发新型加氢脱硫催化剂变得越来越重要。
发明创造内容
针对上述缺陷,本申请提供一种加氢脱硫耦合异构化的双功能催化剂及其制备方法,采用该双功能催化剂,能够实现深度脱硫、降烯烃和保辛烷值的目的。
本申请还提供一种汽油加氢脱硫方法,通过采用上述双功能催化剂,能够实现深度脱硫、降烯烃和保辛烷值的目的,从而有利于获得超低硫甚至无硫清洁汽油产品。
为实现上述目的,本申请提供一种加氢脱硫耦合异构化的双功能催化剂,包含经改性处理的催化剂载体,以及负载的活性金属,其中该经改性处理的催化剂载体是γ-Al 2O 3和酸性分子筛通过粘结剂混合焙烧制备成的复合载体。
与传统的γ-Al 2O 3作为载体的催化剂相比,本申请提供的双功能催化剂,通过采用酸性分子筛作为γ-Al 2O 3的掺杂剂,不仅使双功能催化剂具有更多的酸中心,而且还能够调节双功能催化剂表面布朗斯台德(BAS)和路易斯酸位点(LAS)的比值。发明人经进一步研究发现,随着双功能催化剂表面BAS/LAS比值在一定范围内增加,双功能催化剂的加氢脱硫效率和烯烃异构化转化率都随之上升。因此将该双功能催化剂用于汽油的加氢脱硫,尤其是用于FCC汽油的加氢脱硫处理,不仅能够促进加氢反应的进行,提高脱硫率,而且还能够促进烯烃异构化反应的进行,从而降低烯烃含量并保证辛烷值几乎不损失甚至略有提高,最终实现了深度脱硫、降烯烃和保辛烷值。
酸性分子筛是指具有酸催化功能的分子筛,本申请所用的酸性分子筛,具体可以选自但不限于下列分子筛:ZSM系列分子筛、MCM系列分子筛、SAPO系列分子筛、贝塔分子筛(β分子筛、Beta分子筛)中的一种或多种。其中,ZSM系列分子筛可以为ZSM-5、ZSM-8、ZSM-11、ZSM-35分子筛等中的一种或多种;MCM系列分子筛可以为MCM-22、MCM-36、MCM-41分子筛等中的一种或多种;SAPO系列分子筛可以为SAPO-5、SAPO-11、SAPO-34分子筛等中的一种或多种。在本申请的一些示例中,优先选择具有 较强B酸中心、且孔道结构可调控的酸性分子筛,比如ZSM-5分子筛、MCM-41分子筛、SAPO-34分子筛、Bata分子筛等中的至少一种。
在复合载体中,γ-Al 2O 3的质量最好大于或等于酸性分子筛的质量。发明人研究发现,随着酸性分子筛在复合载体中的占比增加,能够获得更多的酸中心,因此能够使双功能催化剂表现出更加优异的异构化性能;但是可能是由于γ-Al 2O 3的占比下降导致加氢活性位减少,进而导致加氢脱硫性能有所下降。因此,综合考虑脱硫性能和异构化性能,一般控制γ-Al 2O 3与酸性分子筛的质量比为1~9:1,优选为4~8:1。
本申请对于粘结剂的具体选择不做特别限定,可以选择常规的粘结剂。通过选择合适的粘结剂,有利于获得性能优异、分布均匀、酸性适中的复合载体,从而使得双功能催化剂表现出良好的异构化性能。在本申请一些示例中,所用的粘结剂比如可以是氨基三亚甲基膦酸(ATMP)、聚乙烯吡咯烷酮(PVP)、田菁粉等中的一种或多种。
合理控制粘结剂的用量,有利于提高双功能催化剂的脱硫性能和异构化性能,在本申请具体实施过程中,粘结剂的质量跟γ-Al 2O 3与酸性分子筛的质量之和的比例尤其可以控制在1.5~3:1。或者说,粘结剂:(γ-Al 2O 3+酸性分子筛)=1.5~3:1。
本申请的双功能催化剂中负载的活性金属,具体可选自元素周期表VIB族和VIII族元素中的至少两种。其中以氧化物计,活性金属占双功能催化剂总质量的3~30%。
进一步的,上述活性金属可以包括至少一种VIB族元素和至少一种VIII族元素。其中VIB族元素比如可以是Cr、Mo、W;VIII族元素比如可以是Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt。
合理调整活性金属的元素组成,有利于进一步改善双功能催化剂的加氢脱硫效果。在本申请具体实施过程中,通常控制VIB族元素和VIII族元素的摩尔比为1:0.1~0.6,比如使用Mo和Co作为活性金属,其中Mo与Co的原子摩尔比为1:0.1~0.6。
在本申请优选的实施方式中,是选择Mo和Co共同作为活性金属。进一步的,MoO 3的质量分数为5~14%,CoO的质量分数为1~10%。
本申请提供的双功能催化剂,其具体可以是采用浸渍法,将活性金属负 载于经改性处理的催化剂载体上,并经陈化、干燥、焙烧而得到。
本申请还提供一种前述加氢脱硫耦合异构化的双功能催化剂的制备方法,包括如下步骤:
将γ-Al 2O 3与酸性分子筛通过粘结剂混合、焙烧,制成经改性处理的催化剂载体;
采用浸渍法,将含有活性金属的浸渍液负载到经改性处理的催化剂载体上,再经陈化、干燥、焙烧,得到双功能催化剂。
具体的,可将γ-Al 2O 3与酸性分子筛通过粘结剂混合,再经洗涤、干燥后,于450~700℃下焙烧6~12h,得到改性处理的催化剂载体。比如可将γ-Al 2O 3与酸性分子筛按比例混合并研磨至一定目数,然后加入适量的粘结剂并混合均匀,此外还可加入少量硝酸,然后采用真空抽滤的方式进行洗涤,干燥后放入焙烧炉中焙烧,即可得到改性处理的催化剂载体。
其中,上述在制备改性处理的催化剂载体过程中所加入的硝酸用于在焙烧时造孔,减少外扩散阻力。为避免硝酸造成硅铝比大幅度变化,并确保在焙烧时造孔,硝酸用量较少,一般为Al 2O 3质量的1~5%左右,比如3wt%左右。
进一步的,上述制备双功能催化剂的过程,还包括配制浸渍液的步骤:
将含有活性金属的化合物、有机络合剂和水混合,得到浸渍液;
其中上述有机络合剂的分子结构中至少含有两个羧基,且有机络合剂能够溶于水。
具体的,上述含有活性金属的化合物,可以是活性金属所对应的碳酸盐、硝酸盐等金属盐,比如选择Co和Mo共同作为活性金属,则Co源比如可以是碱式碳酸钴、硝酸钴等,Mo源比如可以是七钼酸铵。其中,Mo与Co的原子摩尔比可以为1:0.1~0.6。在本申请具体实施过程中,以金属活性组分的氧化物计算,MoO 3在浸渍液中的质量分数一般为8~14%,CoO在浸渍液中的质量分数一般为1~6%。
具体的,有机络合剂用于改善金属活性组分在复合载体上的分散度,以降低金属活性组分与复合载体间的相互作用力,从而提高双功能催化剂的硫化度以及脱硫效果。满足上述要求的有机络合剂比如可以是柠檬酸(CA)、酒石酸(TA)、氮川三乙酸、氨基磺酸中的至少一种。
在本申请一些示例中,在配制浸渍液时,一般控制有机络合剂与水的质量比为1:1~3。当选择Co和Mo共同作为金属活性组分时,一般有机络合剂与金属钼的摩尔比为0.5~2:1。
浸渍液的配制温度一般为40~100℃,比如60~100℃。具体可采用搅拌的方式实现浸渍液中各组分的均匀混合,比如在40~100℃下搅拌1~2h。当然,若有少量金属盐未能完全溶解,一般还可加入少量氨水以促进金属盐的溶解。
浸渍液配制完成后,可采用等体积浸渍法,将浸渍液负载到复合载体上,然后在室温下陈化6~12h、在100~120℃下干燥6~12h、在450~600℃下焙烧4~8h。在本申请具体实施过程中,焙烧可采用程序升温的方式,比如首先在200℃下保温50min左右,然后在300℃下保温30min左右,最后在500℃下焙烧4小时左右。焙烧气氛具体可以为氮气、氩气、氦气中的一种。
本申请的双功能催化剂,可以经挤条成型为满足应用环境的形状,例如可制备成三叶草、柱形、球形等颗粒。
本申请还提供一种汽油加氢脱硫方法,是采用前述双功能催化剂。
具体的,可首先对双功能催化剂进行预硫化,然后再对汽油实施加氢脱硫处理。该汽油可以是全馏分汽油,也可以是重馏分汽油。
其中预硫化反应条件可以为:温度300~500℃,氢气分压1.5~2.5MPa,氢油体积比(即氢气体积与油品体积之比,简写为H/O)200~350,预硫化时间8~12h。
本申请的双功能催化剂在加氢脱硫时可以采用固定床工艺,选择适当形状和结构的双功能催化剂,采用固定床装填。
经进一步研究,使用该双功能催化剂对汽油进行加氢脱硫的最优工艺条件为:温度250~300℃,压力1.5~3.0MPa(即氢气分压为1.5~3.0MPa),体积空速3~8h -1,氢油体积比为150~350。通过在上述工艺条件下进行加氢脱硫,能够更好地实现加氢脱硫、降烯烃和保辛烷值。
综上所述,本申请提供了一种深度脱硫与提高汽油辛烷值的原位双功能催化剂及其制备方法和应用,具有以下有益效果:
本申请提供的加氢脱硫耦合异构化的双功能催化剂,通过采用酸性分子 筛作为γ-Al 2O 3的掺杂剂,不仅使双功能催化剂具有更多的酸中心,而且还能够调节双功能催化剂表面的BAS/LAS值,使脱硫率可达到90%左右或者更高,并且还能饱和了30%以上的烯烃,此外辛烷值损失在0.1个单位以内甚至略有提升,因而实现了深度脱硫、降烯烃和保辛烷值的目的。
并且,该双功能催化剂可在较为温和的条件下实现全馏分汽油或重馏分汽油的深度脱硫、降烯烃和保辛烷值,因此非常适合用于超低硫甚至无硫清洁汽油产品的生产,从而使获得的汽油产品满足日益严格的汽油质量标准。
本申请提供的加氢脱硫耦合异构化的双功能催化剂的制备方法,步骤简单,非常适合实际工业化的生产和推广。
本申请提供的汽油加氢脱硫方法,由于采用了上述双功能催化剂,因此实现了全馏分汽油或重馏分汽油的深度脱硫、降烯烃和保辛烷值,从而有利于获得高品质的汽油产品。
附图说明
图1为本申请实施例1-3和对比例中提供的催化剂总酸量的Py-FTIR图;
图2为本申请实施例1-3和对比例所制备的催化剂的H 2-TPR图;
图3为本申请实施例1-3和对比例所制备的催化剂在加氢脱硫反应后的硫化态的HRTEM图;
图4为加氢脱硫率和烯烃异构化转化率随BAS/LAS的变化规律图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
本实施例提供一种加氢脱硫耦合异构化的双功能催化剂的制备方法,包括如下步骤:
1、称取16g的γ-Al 2O 3,然后将γ-Al 2O 3和ZSM-5按照质量比约为7.8:1的比例混合,再加入田菁粉28.6g和3%稀硝酸12mL,经120℃干燥8h左右、500℃焙烧4h,获得γ-Al 2O 3/ZSM-5复合载体。
2、取适量水,开启搅拌加热至40℃,加入柠檬酸CA搅拌至完全溶解;再加入2.5g碳酸钴(CA/Co=1.5),搅拌反应至无气泡生成为止;将溶液缓慢升温至沸腾状态使物料全部溶解(无气泡生成),停止加热,降至室温后停止搅拌;加入氨水至终体积的85%,再缓慢加入6.2g七钼酸铵搅拌至完全溶解,补加氨水至终体积,密封保存、备用。
3、将步骤2制得的浸渍液通过等体积浸渍法负载到步骤1制得的AZ复合载体上,饱和后再搅拌10min,室温下陈化8h、120℃干燥6h、程序升温焙烧:首先在200℃下焙烧50min,然后在300℃下焙烧30min,最后在500℃下焙烧4h,得到双功能催化剂,记为AZ-1,该双功能催化剂AZ-1具体组成参见表1。
对比例
本对比例提供一种传统的CoMo/γ-Al 2O 3催化剂,其制备方法为:对γ-Al 2O 3不做任何处理,浸渍液的配制过程以及等体积浸渍方法分别与实施例1的步骤2-3相同,该CoMo/γ-Al 2O 3催化剂组成见表1。
实施例2
本实施例提供一种加氢脱硫耦合异构化的双功能催化剂的制备方法,其工艺步骤与实施例1基本相同,不同之处仅为:γ-Al 2O 3和ZSM-5的质量比约为4.1:1,所得双功能催化剂命名为AZ-2,具体组成参见表1。
实施例3
本实施例提供一种加氢脱硫耦合异构化的双功能催化剂的制备方法,其工艺步骤与实施例1基本相同,只是将实施例1中所用的ZSM-5分子筛替换为MCM-41分子筛,且γ-Al 2O 3与ZSM-5的质量比约为7.9:1,制得的双功能催化剂命名为AM,其具体组成参见表1。
实施例1-3和对比例中提供的催化剂总酸量的吡啶吸附红外光谱图(Py-FTIR)如图1所示,H 2-TPR图如图2所示。
对实施例1-3和对比例中提供的催化剂进行脱硫效果和烯烃异构化评价,具体为:
取3.2g催化剂放入内径为8mm的固定床反应器中的恒温区,上下有石英砂填充。以3wt%CS 2溶液作为预硫化液对催化剂进行预硫化,预硫化反应条件为:温度300℃,压力2.5MPa,H/O=300,空速3h -1,预硫化时间为6h。
预硫化反应完成后,分别以模型油(烯烃含量为19.3wt%,噻吩硫含量996ppm,溶剂为正庚烷)和华北重馏分汽油(100℃以上,硫含量为1078ppm,族组成见表2)为原料测试各催化剂的加氢反应性能。加氢反应工艺条件为:温度270℃,压力2MPa,H/O=300,空速3.5h -1,各催化剂对模型油和华北重馏分汽油的加氢反应结果分别如表3-1、3-2所示。取反应完成后的催化剂样品进行表征测试,所得HRTEM结果见图3。
在Py-FTIR图中,在1450和1622cm -1附近的特征峰为Lewis酸(简称L酸)的特征吸收峰。由图1可知,与对比例提供的传统CoMo/γ-Al 2O 3催化剂相比,实施例1-3所提供的双功能催化剂具有更多的酸中心及更高的B/L值,从而赋予双功能催化剂更优异的酸催化活性,体现在FCC汽油加氢处理过程中,表现为更有利于促进烃类异构化反应的进行,这点也可从表3-1和表3-2中得到直接证实。
并且,对比实施例1和实施例2中的双功能催化剂,AZ-2具有更强的酸性中心,表现出了更加优异的异构化性能,但是由于复合载体中γ-Al 2O 3所占比例下降,会导致加氢活性位大量减少,因此AZ-2的加氢脱硫性能相比于AZ-1有所下降,这点也可从表3-1和表3-2中得到证实。
根据氧化态催化剂的H 2-TPR结果(图2),相比于对比例提供的传统CoMo/γ-Al 2O 3催化剂,实施例1-3所提供的双功能催化剂上Mo物种的低温特征峰(Mo 6+→H xMoO 3→Mo 4+)有所降低,从553℃分别降至542℃(AZ-1)、536℃(AZ-2)、538℃(AM),说明在双功能催化剂上高价态Mo物种更易被还原成硫化态产物MoS 2,具有更高的硫化度,从而有利于加氢脱硫反应的进行。
根据高分辨率的透射电镜HRTEM结果(图3,图中的标尺均为5nm), 传统的CoMo/γ-Al 2O 3催化剂的MoS 2活性相的平均长度
Figure PCTCN2019115265-appb-000001
平均堆垛层数
Figure PCTCN2019115265-appb-000002
而实施例1所提供的双功能催化剂的MoS 2活性相的平均长度
Figure PCTCN2019115265-appb-000003
平均堆垛层数
Figure PCTCN2019115265-appb-000004
实施例2所提供的双功能催化剂的MoS 2活性相的平均长度
Figure PCTCN2019115265-appb-000005
平均堆垛层数
Figure PCTCN2019115265-appb-000006
实施例3所提供的双功能催化剂的MoS 2活性相的平均长度
Figure PCTCN2019115265-appb-000007
平均堆垛层数
Figure PCTCN2019115265-appb-000008
AZ双功能催化剂和AM双功能催化剂MoS 2活性相的平均长度
Figure PCTCN2019115265-appb-000009
和平均堆垛层数
Figure PCTCN2019115265-appb-000010
都要超过对比例的催化剂,说明在双功能催化剂上,复合载体与活性金属之间的相互作用力较弱,形成了更多的MoS 2活性相,因此具有更强的加氢脱硫效果,优于对比例。
并且,AM双功能催化剂相对于AZ-1和AZ-2双功能催化剂具有更多的B酸中心,因此表现出最强的异构化性能。但是过多的酸性位占据了原有的加氢活性位,导致AM双功能催化剂的加氢脱硫活性相对于AZ-1和AZ-2双功能催化剂均有所下降,这点也可从表3-1和表3-2中得到证实。
表1 催化剂的组成(wt%)
  γ-Al 2O 3 ZSM-5 MCM-41 CoO MoO 3
对比例 77.4 - - 3.3 13.2
实施例1(AZ-1) 68.9 8.8 - 3.4 13.3
实施例2(AZ-2) 62.4 15.3 - 3.3 13.1
实施例3(AM) 68.1 - 8.6 3.5 13.3
注释:“-”代表无;上述催化剂的组成中还含有因使用工业级γ-Al 2O 3原料所引入的不可避免的杂质。
表2 华北重馏分汽油族组成
Figure PCTCN2019115265-appb-000011
表3-1 不同催化剂对模型油的加氢反应性能
Figure PCTCN2019115265-appb-000012
表3-2 不同催化剂对华北重馏分的加氢反应性能
Figure PCTCN2019115265-appb-000013
由表3-1可知,本申请实施例1-3所提供的双功能催化剂,对噻吩和烯烃的混合模型油具有优异的加氢脱硫和异构化性能,脱硫率均在90%以上,甚至高达98%以上。并且从产品油组成分布来看,实施例1-3所提供的双功能催化剂能够显著抑制烯烃加氢饱和反应的进行,大大促进了烯烃异构化反应的进行。因此,实施例1-3所提供的双功能催化剂,在加氢脱硫性能和烯烃异构化性能方面都显著优于对比例。
结合表2和表3-2可知,本申请实施例1-3所提供的双功能催化剂,对华北重馏分具有优异的脱硫降烯性能,同时可以保证辛烷值不损失甚至略有提升。从产品油的组成看,实施例1-3的双功能催化剂具有比对比例中传统催化剂更加优异的脱硫效果,其中:
对于实施例1,AZ-1双功能催化剂的脱硫率高达96.2%,经一次脱硫反应后可将华北重馏分中的硫含量降低至40ppm左右。而且由于异构化反应的进行生成了大量的支链烷烃。对烯烃的异构化反应而言,生成的异构烯烃的 支链化程度越高,对辛烷值的贡献越大,因此有效地缓解了加氢过程中造成的辛烷值损失,保护了油品的辛烷值。具体对于AZ-1,汽油加氢反应后辛烷值损失仅为0.1个单位。
对于实施例2,由于ZSM-5分子筛含量较实施例1有所增加,导致复合载体的酸性进一步增强,因此AZ-2表现出了比AZ-1更强的异构化效果。这点主要体现在两方面:一方面,从产品分布来看,AZ-2的产品油中异构烷烃含量更多;另一方面,AZ-2的产品油辛烷值为84.7,高于AZ-1的84.1,甚至比原料油还高出0.5个单位,说明AZ-2突出的异构化活性可以保证FCC汽油在加氢反应过程中辛烷值不降反升,这一现象在实施例3中的AM双功能催化剂上体现的更加明显。
实施例3中的AM双功能催化剂经加氢反应后,产品油的辛烷值增加了1.0个单位。但是,由于AM双功能催化剂表面过多的酸中心取代了原本的加氢活性中心,导致该催化剂的加氢脱硫活性不如AZ-1和AZ-2。
综上所述,本申请提供的双功能催化剂可以用于解决FCC汽油质量升级过程中深度脱硫、降烯、保辛烷值这一难题。
基于前述实施例中获得的双功能催化剂的性能研究,总结其加氢脱硫率(HDS%)和烯烃异构化转化率(conversion of isomerization%)随BAS/LAS的变化规律,该变化规律大致如图4所示。具体而言,在一定范围内,随着双功能催化剂表面BAS/LAS比值增加,加氢脱硫率和异构化转化率均呈上升趋势,说明适当地增加γ-Al 2O 3表面的B酸中心、同时降低L酸中心,有利于汽油加氢反应的进行和异构化的进行,从而能够实现汽油的深度脱硫、降烯、保辛烷值,最终获得高品质汽油产品。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种加氢脱硫耦合异构化的双功能催化剂,其特征在于,包含经改性处理的催化剂载体,以及负载的活性金属,其中所述经改性处理的催化剂载体是γ-Al 2O 3和酸性分子筛通过粘结剂混合焙烧制备成的复合载体。
  2. 根据权利要求1所述的双功能催化剂,其特征在于,所述γ-Al 2O 3与所述酸性分子筛之间的质量比为(1~9):1;和/或,所述酸性分子筛选自ZSM-5、MCM-41、SAPO-34和Bata分子筛中的一种或多种。
  3. 根据权利要求1所述的双功能催化剂,其特征在于,所述活性金属选自元素周期表VIB族和VIII族元素中的两种以上的元素。
  4. 根据权利要求1-3任一项所述的双功能催化剂,其特征在于,所述加氢脱硫催化剂是采用浸渍法,将活性金属负载于所述经改性处理的催化剂载体上,并经陈化、干燥、焙烧而得到。
  5. 一种权利要求1-4任一项所述加氢脱硫耦合异构化的双功能催化剂的制备方法,其特征在于,包括:
    将γ-Al 2O 3与酸性分子筛通过粘结剂混合、焙烧,制成所述经改性处理的催化剂载体;
    采用浸渍法,将含有所述活性金属的浸渍液负载到所述经改性处理的催化剂载体上,再经陈化、干燥、焙烧,得到所述双功能催化剂。
  6. 根据权利要求5所述的制备方法,其特征在于,还包括配制所述浸渍液的步骤:
    将含有所述活性金属的化合物、有机络合剂和水混合,得到所述浸渍液;
    其中所述有机络合剂的分子结构中至少含有两个羧基,且所述有机络合剂能够溶于水。
  7. 根据权利要求6所述的制备方法,其特征在于,所述有机络合剂选自柠檬酸、酒石酸、氮川三乙酸和氨基磺酸中的至少一种。
  8. 根据权利要求5所述的制备方法,其特征在于,将含有所述活性金属的浸渍液负载到所述经改性处理的催化剂载体上之后,再经室温陈化6~12h、于100~120℃下干燥6~12h、于450~600℃下焙烧4~8h,得到所述双功能催化剂。
  9. 一种汽油加氢脱硫方法,其特征在于,采用了权利要求1-4任一项所 述的双功能催化剂。
  10. 根据权利要求9所述的汽油加氢脱硫方法,其特征在于,在操作过程中,控制温度为250~300℃,压力为1.5~3.0MPa,体积空速为3~8h -1,氢油体积比为150~350。
PCT/CN2019/115265 2019-02-01 2019-11-04 一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法 WO2020155720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/390,123 US20210354118A1 (en) 2019-02-01 2021-07-30 In situ bifunctional catalyst for deep desulfurization and increasing octane number of gasoline and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910105544.7 2019-02-01
CN201910105544 2019-02-01
CN201910711695.7A CN110404578A (zh) 2019-02-01 2019-08-02 加氢脱硫耦合异构化的双功能催化剂及其制备方法和应用
CN201910711695.7 2019-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/390,123 Continuation US20210354118A1 (en) 2019-02-01 2021-07-30 In situ bifunctional catalyst for deep desulfurization and increasing octane number of gasoline and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2020155720A1 true WO2020155720A1 (zh) 2020-08-06

Family

ID=68365523

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/115265 WO2020155720A1 (zh) 2019-02-01 2019-11-04 一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法
PCT/CN2019/115275 WO2020155721A1 (zh) 2019-02-01 2019-11-04 一种深度脱硫与提高汽油品质的双功能催化剂及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115275 WO2020155721A1 (zh) 2019-02-01 2019-11-04 一种深度脱硫与提高汽油品质的双功能催化剂及其制备方法

Country Status (3)

Country Link
US (1) US20210354118A1 (zh)
CN (2) CN110404578A (zh)
WO (2) WO2020155720A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298800B (zh) * 2020-03-26 2022-05-06 中国石油大学(北京) 一种加氢脱硫催化剂及其制备方法和应用
CN114029083B (zh) * 2021-12-03 2022-11-04 中国石油大学(北京) 一种加氢脱硫催化剂及其制备方法和应用
CN116328851A (zh) * 2021-12-23 2023-06-27 中国石油天然气股份有限公司 一种含b酸的加氢催化剂载体及其制备与应用
CN114768863B (zh) * 2022-06-02 2023-10-31 润和科华催化剂(上海)有限公司 一种重油加氢脱硫催化剂及其制备方法
CN117181306B (zh) * 2023-11-07 2024-03-15 明硕环境科技集团股份有限公司 一种高炉煤气用水解脱硫双功能催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439293A (zh) * 2007-11-19 2009-05-27 中国石油天然气集团公司 含有介孔分子筛的选择性加氢脱硫催化剂及其制备方法
CN101898148A (zh) * 2009-05-27 2010-12-01 中国石油天然气股份有限公司 一种含l分子筛催化裂化汽油选择性加氢脱硫改质催化剂
WO2011095688A2 (en) * 2010-02-02 2011-08-11 Upm-Kymmene Corporation Process and apparatus for producing hydrocarbons
WO2011122446A1 (ja) * 2010-03-29 2011-10-06 Jx日鉱日石エネルギー株式会社 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法、炭化水素の製造方法及び潤滑油基油の製造方法
CN106607096A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106890660A (zh) * 2015-12-17 2017-06-27 中国石油天然气股份有限公司 一种加氢脱硫催化剂及其制备方法
CN108421557A (zh) * 2017-02-15 2018-08-21 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3562987D1 (en) * 1984-10-30 1988-07-07 Eurecat Europ Retrait Catalys Method for presulfiding a catalyst for the treatment of hydrocarbons
US5897768A (en) * 1997-02-28 1999-04-27 Exxon Research And Engineering Co. Desulfurization process for removal of refractory organosulfur heterocycles from petroleum streams
AU1461201A (en) * 1999-12-28 2001-07-09 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
CN101844088A (zh) * 2010-04-14 2010-09-29 中国科学院大连化学物理研究所 一种汽油选择性脱硫催化剂
CN101885983B (zh) * 2010-07-02 2013-04-24 中国石油大学(北京) 用于生产超低硫且高辛烷值汽油的高效耦合加氢改质方法
US20120048778A1 (en) * 2010-08-25 2012-03-01 Catalytic Distillation Technologies Selective desulfurization of fcc gasoline
CA2890626C (en) * 2012-11-08 2022-06-28 China Petroleum & Chemical Corporation A hydrotreating catalyst, production and use thereof
CN104667956B (zh) * 2013-11-26 2017-02-15 中国石油化工股份有限公司 一种烃油加氢改质催化剂及其制备方法
CN108479846B (zh) * 2018-02-08 2019-12-31 中国石油大学(北京) 一种芳构化催化剂及其制备方法和再生方法及芳构化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439293A (zh) * 2007-11-19 2009-05-27 中国石油天然气集团公司 含有介孔分子筛的选择性加氢脱硫催化剂及其制备方法
CN101898148A (zh) * 2009-05-27 2010-12-01 中国石油天然气股份有限公司 一种含l分子筛催化裂化汽油选择性加氢脱硫改质催化剂
WO2011095688A2 (en) * 2010-02-02 2011-08-11 Upm-Kymmene Corporation Process and apparatus for producing hydrocarbons
WO2011122446A1 (ja) * 2010-03-29 2011-10-06 Jx日鉱日石エネルギー株式会社 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法、炭化水素の製造方法及び潤滑油基油の製造方法
CN106607096A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106890660A (zh) * 2015-12-17 2017-06-27 中国石油天然气股份有限公司 一种加氢脱硫催化剂及其制备方法
CN108421557A (zh) * 2017-02-15 2018-08-21 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法

Also Published As

Publication number Publication date
CN110404527A (zh) 2019-11-05
US20210354119A1 (en) 2021-11-18
WO2020155721A1 (zh) 2020-08-06
CN110404578A (zh) 2019-11-05
US20210354118A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020155720A1 (zh) 一种深度脱硫与增加汽油辛烷值的原位双功能催化剂及其制备方法
JP5228221B2 (ja) 炭化水素油の水素化処理触媒の製造方法
CN104941654A (zh) 一种氧化铝基加氢精制催化剂及其制备方法与应用
WO2006111093A1 (fr) Catalyseur d’hydrogenation et son application
RU2573561C2 (ru) Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
CN101590433A (zh) 改性氧化铝载体和由该载体制成的加氢催化剂及制备方法
CN108714434A (zh) 一种轻油型加氢裂化催化剂及其制备方法
CN101591560A (zh) 一种柴油加氢精制催化剂及其制备方法
CN108435244B (zh) 一种提高十六烷值加氢改质催化剂、制备方法及其应用
JP5825572B2 (ja) 水素化処理触媒の再生方法
JP3911217B2 (ja) 水素転化反応触媒及びプロセス
CN107224992A (zh) 适于高效生产生物柴油的加氢催化剂及其制备方法和应用
JP5863096B2 (ja) 水素化処理触媒の製造方法
JP2000042413A (ja) 水素化精製触媒
CN108654636B (zh) 一种负载型三金属催化剂及其制备方法和催化环烷烃氢解开环方法
JP4778605B2 (ja) 軽油留分の水素化脱硫触媒
JP2567291B2 (ja) 炭化水素油の水素化処理方法
US11998899B2 (en) Bifunctional catalyst for deep desulfurization and gasoline quality improvement and preparation method therefor
CN112745905B (zh) 一种选择性脱硫醇的方法
JP3990675B2 (ja) 軽油の水素化脱硫方法
CN114621784B (zh) 一种柴油超深度加氢脱硫方法
CN114471670B (zh) 一种用于加氢裂化的催化剂及其制备方法和应用
CN116060117B (zh) 一种催化柴油加氢裂化催化剂及其制备方法
CN112742370B (zh) 催化剂组合物及其应用和选择性脱硫醇的方法
RU2662234C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912534

Country of ref document: EP

Kind code of ref document: A1