WO2020155427A1 - 散热膜及显示面板 - Google Patents

散热膜及显示面板 Download PDF

Info

Publication number
WO2020155427A1
WO2020155427A1 PCT/CN2019/083990 CN2019083990W WO2020155427A1 WO 2020155427 A1 WO2020155427 A1 WO 2020155427A1 CN 2019083990 W CN2019083990 W CN 2019083990W WO 2020155427 A1 WO2020155427 A1 WO 2020155427A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
layer
dissipation film
substrate
film
Prior art date
Application number
PCT/CN2019/083990
Other languages
English (en)
French (fr)
Inventor
王一佳
曹君
孙佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/484,525 priority Critical patent/US20200251677A1/en
Publication of WO2020155427A1 publication Critical patent/WO2020155427A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling

Definitions

  • the present invention relates to the field of display, in particular to a heat dissipation film and a display panel.
  • TFT Thin film transistors
  • OLEDs OLEDs
  • TFE thin film encapsulation
  • a three-in-one structure of Foam/graphite/copper foil is usually attached to the back of the PI by lami, including acrylic Foam, graphite, and copper foil (Cu coil), but
  • lami including acrylic Foam, graphite, and copper foil (Cu coil)
  • the thickness of the three-in-one structure is large, and the graphite is a sheet-layer structure, and the heat is mainly conducted along the sheet-layer direction, so the heat dissipation effect of the display screen is not ideal.
  • a high thermal conductivity metal foil layer/graphene metal mixed layer composite heat dissipation film is disclosed.
  • a slurry prepared by mixing graphene and metal particles is used as a heat conduction column, but the particle coating method cannot To ensure continuous thermal contact between the particles and the lower layer, the internally constructed heat conduction network is incomplete, the heat transfer effect in the vertical direction is poor, and the preparation method has defects.
  • the purpose of the present invention is to provide a heat dissipation film and a display panel to solve the problems of poor heat dissipation effect of the heat dissipation film and thick heat dissipation film in the prior art.
  • the present invention provides a heat dissipation film comprising: a substrate; a mixed layer, including a plurality of heat-conducting pillars, one end of the heat-conducting pillar is vertically connected to the substrate; and a filling layer filled in the mixed layer.
  • thermally conductive column material includes one of carbon nanotubes, carbon fibers, metal nano columns, and oxide nano rods.
  • the substrate is copper foil or aluminum foil.
  • the thickness of the substrate is 1um-50um.
  • the heat conducting column has a cylindrical solid tube structure.
  • the heat conducting column has a cylindrical hollow tube structure.
  • the filling layer is one of polyurethane, polystyrene, polyvinyl chloride, and polyethylene.
  • the present invention also provides a display panel including the heat dissipation film and a backplane on which the heat dissipation film is placed on the backplane, wherein the base is away from the backplane.
  • it also includes a flexible substrate attached to the side of the back plate away from the heat dissipation film; a thin film transistor attached to the side of the flexible substrate away from the back plate; a thin film packaging layer placed on the film A side of the transistor away from the flexible substrate; a light-emitting layer, the light-emitting layer is placed between the thin-film packaging layer and the thin-film transistor, wherein the thin-film packaging layer completely covers the light-emitting layer;
  • the touch layer is placed on the side of the thin film packaging layer away from the thin film transistor; the polarizer is placed on the touch layer; the cover plate is placed on the polarizer.
  • the optical glue is placed between the cover plate and the polarizer; the optical glue is placed between the film packaging layer and the touch layer.
  • the three-in-one structure of "filling layer/vertical thermal conductive structure material/substrate” is directly constructed to improve the heat dissipation effect.
  • the heat generated by the display panel is directly transferred to the substrate along the longitudinal thermal conductive material, which greatly shortens the heat conduction path.
  • the thermal conductivity column is deposited on the substrate and a filling layer is added to reduce the overall thickness of the three-in-one composite structure.
  • Fig. 1 is a schematic diagram of a composite heat dissipation film in the background art.
  • FIG. 2 is a schematic diagram of the heat dissipation film in Embodiment 1.
  • FIG. 2 is a schematic diagram of the heat dissipation film in Embodiment 1.
  • FIG. 3 is a schematic diagram of the heat dissipation film in Example 2.
  • FIG. 4 is a schematic diagram of the display panel in Embodiment 1.
  • FIG. 4 is a schematic diagram of the display panel in Embodiment 1.
  • FIG. 5 is a schematic diagram of the display panel in Embodiment 2.
  • FIG. 5 is a schematic diagram of the display panel in Embodiment 2.
  • FIG. 6 is a plan view of the heat dissipation film in Example 1.
  • FIG. 7 is a plan view of another heat dissipation film in Embodiment 1.
  • FIG. 7 is a plan view of another heat dissipation film in Embodiment 1.
  • the embodiment of the present invention provides a heat dissipation film and a display panel. The detailed description will be given below.
  • the heat dissipation film 10 of the present invention includes a substrate 110 and a mixed layer 120.
  • the substrate 110 is a copper foil substrate or an aluminum foil substrate, preferably a copper foil substrate.
  • the mixed layer 120 includes a first heat conductive pillar 1210 and a filling layer 1220.
  • the first heat conduction pillar 1210 is a one-dimensional longitudinal structure, and its material includes but is not limited to one of carbon nanotubes, carbon fibers, metal nanometers, and oxide nanometers.
  • the first heat conduction pillar 1210 is The longitudinally arranged hollow cylindrical structure forms a vertical heat transfer effect and shortens the heat conduction path.
  • the projection of the first heat-conducting pillar 1210 on the substrate 110 is a circular shape with an equal spacing on all sides, and the spacing can be adjusted to achieve an optimal heat dissipation effect.
  • the projections of the first thermally conductive pillars 1210 on the substrate 110 are circular shapes arranged at intervals, and the spacing can be adjusted to achieve optimal heat dissipation. effect.
  • a buffer that is, the filling layer 1220
  • the filling layer 1220 is an elastic polymer, which has Good elasticity and flexibility play the role of buffering the stress of the first longitudinal heat conduction column 1210, while reducing the area and thickness of the filling layer 1220, reducing the thickness of the heat dissipation film 10, and improving the The thickness is about 50um-150um.
  • the present invention also provides a flexible display screen 100, which includes the heat dissipation film 10 in this embodiment, and also includes a flexible substrate 20, which includes a backplane 210, a flexible substrate 220, thin film transistor 230, light emitting layer 240, thin film encapsulation layer 250, optical glue 260, touch layer 270, polarizer 280, and cover plate 290.
  • a flexible display screen 100 which includes the heat dissipation film 10 in this embodiment, and also includes a flexible substrate 20, which includes a backplane 210, a flexible substrate 220, thin film transistor 230, light emitting layer 240, thin film encapsulation layer 250, optical glue 260, touch layer 270, polarizer 280, and cover plate 290.
  • the heat dissipation film 10 is placed on the back plate 210, wherein the base 110 is far away from the back plate 210.
  • the flexible substrate 20 is attached to the side of the back plate 110 away from the heat dissipation film 10; the thin film transistor 230 is attached to the side of the flexible substrate 20 away from the back plate 210.
  • the thin film encapsulation layer 230 is placed on the side of the thin film transistor 230 away from the flexible substrate 20.
  • the light emitting layer 240 is placed between the thin film encapsulation layer 250 and the thin film transistor 230, where the thin film encapsulation layer 250 completely covers the light emitting layer 240;
  • the touch layer 270 is placed on the side of the thin film packaging layer 250 away from the thin film transistor 230.
  • the polarizer 280 is placed on the touch layer 270 on one side, and placed on the cover 290 on the other side.
  • the optical glue 260 adheres the cover plate 290 and the polarizer 280, the film encapsulation layer 250 and the touch layer 270.
  • the heat dissipation film 10 of the present invention includes a substrate 110 and a mixed layer 120.
  • the substrate 110 is a copper foil substrate or an aluminum foil substrate, preferably a copper foil substrate;
  • the mixed layer 120 includes a second thermally conductive pillar 1211 and a filling layer 1220.
  • the second heat conduction pillar 1211 is a one-dimensional longitudinal structure, and its material is one of carbon nanotubes, carbon fibers, metal nanometers, and oxide nanometers.
  • the second heat conduction pillars 1211 are longitudinally arranged
  • the solid cylindrical structure forms a vertical heat transfer effect and shortens the heat conduction path.
  • a buffer that is, the filling layer 1220, is filled in the gap of the second heat-conducting column 1211, and the filling layer 1220 is an elastic polymer.
  • Good elasticity and flexibility play the role of buffering the stress of the second longitudinal heat conduction column 1211, while reducing the area and thickness of the filling layer 1220, reducing the thickness of the heat dissipation film 10, and improving the The thickness is about 50um-150um.
  • the present invention also provides a flexible display screen 100, which includes the heat dissipation film 10 in this embodiment, and also includes a flexible substrate 20, which includes a backplane 210, a flexible substrate 220, thin film transistor 230, light emitting layer 240, thin film encapsulation layer 250, optical glue 260, touch layer 270, polarizer 280, and cover plate 290.
  • a flexible display screen 100 which includes the heat dissipation film 10 in this embodiment, and also includes a flexible substrate 20, which includes a backplane 210, a flexible substrate 220, thin film transistor 230, light emitting layer 240, thin film encapsulation layer 250, optical glue 260, touch layer 270, polarizer 280, and cover plate 290.
  • the heat dissipation film 10 is placed on the back plate 210, wherein the base 110 is far away from the back plate 210.
  • the flexible substrate 20 is attached to the side of the back plate 110 away from the heat dissipation film 10; the thin film transistor 230 is attached to the side of the flexible substrate 20 away from the back plate 210.
  • the thin film encapsulation layer 230 is placed on the side of the thin film transistor 230 away from the flexible substrate 20.
  • the light emitting layer 240 is placed between the thin film encapsulation layer 250 and the thin film transistor 230, where the thin film encapsulation layer 250 completely covers the light emitting layer 240;
  • the touch layer 270 is placed on the side of the thin film packaging layer 250 away from the thin film transistor 230.
  • the polarizer 280 is placed on the touch layer 270 on one side, and placed on the cover 290 on the other side.
  • the optical glue 260 adheres the cover plate 290 and the polarizer 280, the film encapsulation layer 250 and the touch layer 270.

Abstract

本发明公开了一种散热膜及显示面板,所述散热膜包括基底;若干导热柱,所述导热柱的一端垂直连接于所述基底;填充层,填充于所述混合层内。本发明的有益效果在于提供了一种散热膜及显示面板,采用直接构建"填充层/纵向导热结构材料/基底"三合一结构来提高散热效果,显示面板的产生的热量沿着纵向的导热材料直接传递到基底,大大缩短了导热路径,同时采用直接在基底上沉积导热柱并添加填充层,降低三合一复合结构的整体厚度。

Description

散热膜及显示面板 技术领域
本发明涉及显示领域,特别涉及散热膜及显示面板。
背景技术
柔性OLED显示屏由于具有低功耗、高分辨率、快速响应、可弯折等特性,是显示行业热门的发展方向,其厚度越薄则市场竞争力越大。目前常采用PI或PET等柔性材料作为基板,在其上方依次制备薄膜晶体二极管(Thin film transistor, TFT)、OLED、薄膜封装层(Thin film encapsulation, TFE),然后在上方继续bonding偏光片和cover window,为了驱动TFT,需要在柔性基板底部bonding IC电路,从而构成了panel。显示屏工作时,电流通过TFT电路会发热,为了方便散热通常在PI背面通过lami方式附加Foam/石墨/铜箔三合一结构,包括亚克力材质的Foam、石墨、铜箔(Cu coil),但是三合一结构的厚度较大,且石墨为片层结构,热量主要沿着片层方向传导,因此显示屏的散热效果不够理想。
如图1所示,公开了一种高导热金属箔层/石墨烯金属混合层复合散热膜,利用石墨烯与金属颗粒混合制备出的浆料作为导热柱,但是采用颗粒涂覆的方式并不能保证颗粒与下层之间产生连续的热接触,内部构建的导热网络不完全,垂直方向热传递效果较差,制备方法存在缺陷。
技术问题
本发明的目的在于提供一种散热膜及显示面板,解决现有技术中散热膜散热效果不佳以及散热膜较厚的问题。
技术解决方案
本发明提供了一种散热膜包括:基底 ;混合层,包括若干导热柱,所述导热柱的一端垂直连接于所述基底;填充层,填充于所述混合层内。
进一步地,所述导热柱材料包括碳纳米管、碳纤维、金属纳米柱、氧化物纳米棒中的一种。
进一步地,所述基底为铜箔或铝箔。
进一步地,所述基底厚度为1um-50um。
进一步地,所述导热柱为圆柱状的实心管体结构。
进一步地,所述导热柱为圆柱状的空心管体结构。
进一步地,所述填充层为聚氨酯、聚苯乙烯、聚氯乙烯、聚乙烯中的一种。
本发明还提供了一种显示面板包括所述散热膜,还包括背板,所述散热膜置于所述背板上,其中所述基底远离所述背板一侧。
进一步地,还包括柔性基板,贴附于所述背板远离所述散热膜一侧;薄膜晶体管,贴附于所述柔性基板远离所述背板一侧;薄膜封装层,置于所述薄膜晶体管远离所述柔性基板一侧;发光层,所述发光层置于所述薄膜封装层与所述薄膜晶体管之间,其中,所述薄膜封装层完全覆盖所述发光层;
触摸层,置于所述薄膜封装层远离所述薄膜晶体管一侧;偏光片,置于所述触摸层上;盖板,置于所述偏光片上。
进一步地,还包括光学胶,所述光学胶置于所述盖板与所述偏光片之间;所述光学胶置于所述薄膜封装层与所述触摸层之间。
有益效果
采用直接构建“填充层/纵向导热结构材料/基底”三合一结构来提高散热效果,显示面板的产生的热量沿着纵向的导热材料直接传递到基底,大大缩短了导热路径,同时采用直接在基底上沉积导热柱并添加填充层,降低三合一复合结构的整体厚度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是背景技术中的复合散热膜示意图。
图2是实施例1中的散热膜示意图。
图3是实施例2中的散热膜示意图。
图4是实施例1中的显示面板示意图。
图5是实施例2中的显示面板示意图。
图6是实施例1中的散热膜俯视图。
图7是实施例1中的另一散热膜俯视图。
图中
100 柔性显示屏;
10 散热膜;
110 基底;                                    120 混合层;
1210 第一导热柱;       1211 第二导热柱;       1220 填充层;
20 柔性基板;           210 背板;         220 柔性基板;
230 薄膜晶体管;        240 发光层;          250 薄膜封装层;
260 光学胶;            270 触摸层;        280 偏光片;
290 盖板;
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在本专利文档中,下文论述的附图以及用来描述本发明公开的原理的各实施例仅用于说明,而不应解释为限制本发明公开的范围。所属领域的技术人员将理解,本发明的原理可在任何适当布置的系统中实施。将详细说明示例性实施方式,在附图中示出了这些实施方式的实例。此外,将参考附图详细描述根据示例性实施例的终端。附图中的相同附图标号指代相同的元件。
本发明说明书中使用的术语仅用来描述特定实施方式,而并不意图显示本发明的概念。除非上下文中有明确不同的意义,否则,以单数形式使用的表达涵盖复数形式的表达。在本发明说明书中,应理解,诸如“包括”、“具有”以及“含有”等术语意图说明存在本发明说明书中揭示的特征、数字、步骤、动作或其组合的可能性,而并不意图排除可存在或可添加一个或多个其他特征、数字、步骤、动作或其组合的可能性。附图中的相同参考标号指代相同部分。
本发明实施例提供一种散热膜及显示面板。以下将分别进行详细说明。
实施例1
如图2所示,本实施例中,本发明的散热膜10包括基底110、混合层120。
所述基底110为铜箔基底或铝箔基底,优选铜箔基底。
所述混合层120包括第一导热柱1210和填充层1220。
所述第一导热柱1210为一维纵向结构,其材料包括但不限于碳纳米管、碳纤维、金属纳米、氧化物纳米中的一种,在本实施例中,所述第一导热柱1210为纵向排列的空心圆柱形结构,形成垂直方向的热传递效果,缩短了导热路径。如图6所示,所述第一导热柱1210在所述基底110上的投影为四周间距相等的圆形形状,其间距可以调节以达到最优的散热效果。如图7所示,在本发明的另一实施例中,所述第一导热柱1210在所述基底110上的投影为间隔排布的圆形形状,其间距可以调节以达到最优的散热效果。
为了减小所述第一导热柱1210在竖直方向的应力作用,在所述第一导热柱1210间隙中填充缓冲剂即所述填充层1220,所述填充层1220为弹性聚合物,既有良好的弹性和柔韧性,起到缓冲纵向第一导热柱1210所受应力的作用,同时减小了所述填充层1220的面积和厚度,降低了所述散热膜10的厚度,其改善后的厚度约为50um-150um。
如图4所示,本实施例中,本发明还提供了一种柔性显示屏100,包括本实施例中的散热膜10,还包括柔性基板20,所述柔性基板包括背板210、柔性基板220、薄膜晶体管230、发光层240、薄膜封装层250、光学胶260、触摸层270、偏光片280、盖板290。
所述散热膜10置于所述背板210上,其中所述基底110远离所述背板210一侧。
所述柔性基板20贴附于所述背板110远离所述散热膜10一侧;所述薄膜晶体管230贴附于所述柔性基板20远离所述背板210一侧。
所述薄膜封装层230置于所述薄膜晶体管230远离所述柔性基板20一侧。
所述发光层240置于所述薄膜封装层250与所述薄膜晶体管230之间,其中,所述薄膜封装层250完全覆盖所述发光层240;
所述触摸层270置于所述薄膜封装层250远离所述薄膜晶体管230一侧。
所述偏光片280一面置于所述触摸层270上,另一面置于所述盖板290上。
所述光学胶260粘结所述盖板290与所述偏光片280、所述薄膜封装层250与所述触摸层270。
实施例2
如图3所示,本实施例中,本发明的散热膜10包括基底110、混合层120。
所述基底110为铜箔基底或铝箔基底,优选铜箔基底;
所述混合层120包括第二导热柱1211和填充层1220。
所述第二导热柱1211为一维纵向结构,其材料为碳纳米管、碳纤维、金属纳米、氧化物纳米中的一种,在本实施例中,所述第二导热柱1211为纵向排列的实心圆柱结构,形成垂直方向的热传递效果,缩短了导热路径。为了减小所述第二导热柱1211在竖直方向的应力作用,在所述第二导热柱1211间隙中填充缓冲剂即所述填充层1220,所述填充层1220为弹性聚合物,既有良好的弹性和柔韧性,起到缓冲纵向第二导热柱1211所受应力的作用,同时减小了所述填充层1220的面积和厚度,降低了所述散热膜10的厚度,其改善后的厚度约为50um-150um。
如图5所示,本实施例中,本发明还提供了一种柔性显示屏100,包括本实施例中的散热膜10,还包括柔性基板20,所述柔性基板包括背板210、柔性基板220、薄膜晶体管230、发光层240、薄膜封装层250、光学胶260、触摸层270、偏光片280、盖板290。
所述散热膜10置于所述背板210上,其中所述基底110远离所述背板210一侧。
所述柔性基板20贴附于所述背板110远离所述散热膜10一侧;所述薄膜晶体管230贴附于所述柔性基板20远离所述背板210一侧。
所述薄膜封装层230置于所述薄膜晶体管230远离所述柔性基板20一侧。
所述发光层240置于所述薄膜封装层250与所述薄膜晶体管230之间,其中,所述薄膜封装层250完全覆盖所述发光层240;
所述触摸层270置于所述薄膜封装层250远离所述薄膜晶体管230一侧。
所述偏光片280一面置于所述触摸层270上,另一面置于所述盖板290上。
所述光学胶260粘结所述盖板290与所述偏光片280、所述薄膜封装层250与所述触摸层270。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种散热膜,其中,包括:
    基底 ;
    混合层,包括若干导热柱,所述导热柱的一端垂直连接于所述基底;
    填充层,填充于所述混合层内。
  2. 如权利要求1所述的散热膜,其中,
    所述导热柱材料包括碳纳米管、碳纤维、金属纳米柱、氧化物纳米棒中的一种。
  3. 如权利要求1所述的散热膜,其中,
    所述基底为铜箔或铝箔。
  4. 如权利要求1所述的散热膜,其中,
    所述基底厚度为1um-50um。
  5. 如权利要求1所述的散热膜,其中,
    所述导热柱为圆柱状的实心管体结构。
  6. 如权利要求1所述的散热膜,其中,
    所述导热柱为圆柱状的空心管体结构。
  7. 如权利要求1所述的散热膜,其中,
    所述填充层包括聚氨酯、聚苯乙烯、聚氯乙烯、聚乙烯中的一种。
  8. 一种显示面板,其中,包括如权利要求1所述的散热膜,还包括
    背板,所述散热膜置于所述背板上,其中所述基底远离所述背板一侧。
  9. 如权利要求8所述的显示面板,其中,还包括
    柔性基板,贴附于所述背板远离所述散热膜一侧;
    薄膜晶体管,贴附于所述柔性基板远离所述背板一侧;
    薄膜封装层,置于所述薄膜晶体管远离所述柔性基板一侧;
    发光层,所述发光层置于所述薄膜封装层与所述薄膜晶体管之间,其中,所述薄膜封装层完全覆盖所述发光层;
    触摸层,置于所述薄膜封装层远离所述薄膜晶体管一侧;
    偏光片,置于所述触摸层上;
    盖板,置于所述偏光片上。
  10. 如权利要求9所述的显示面板,其中,还包括
    光学胶,所述光学胶置于所述盖板与所述偏光片之间;所述光学胶置于所述薄膜封装层与所述触摸层之间。
PCT/CN2019/083990 2019-01-31 2019-04-24 散热膜及显示面板 WO2020155427A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/484,525 US20200251677A1 (en) 2019-01-31 2019-04-24 Heat dissipation film and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910096619.X 2019-01-31
CN201910096619.XA CN109817829A (zh) 2019-01-31 2019-01-31 散热膜及显示面板

Publications (1)

Publication Number Publication Date
WO2020155427A1 true WO2020155427A1 (zh) 2020-08-06

Family

ID=66606121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083990 WO2020155427A1 (zh) 2019-01-31 2019-04-24 散热膜及显示面板

Country Status (2)

Country Link
CN (1) CN109817829A (zh)
WO (1) WO2020155427A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234152A (zh) * 2020-10-19 2021-01-15 京东方科技集团股份有限公司 一种散热膜、曲面屏显示装置
CN114122303A (zh) * 2021-11-26 2022-03-01 深圳市深科达智能装备股份有限公司 一种散热片与面板的贴合工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200139569A (ko) * 2019-06-04 2020-12-14 엘지디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
CN110494014A (zh) * 2019-07-30 2019-11-22 武汉华星光电半导体显示技术有限公司 一种用于显示面板的散热结构及其制备方法和应用
CN111180600B (zh) 2020-01-06 2021-09-03 武汉华星光电半导体显示技术有限公司 有机发光二极管器件结构及其制造方法
CN111370594B (zh) * 2020-03-19 2023-04-07 重庆京东方显示技术有限公司 显示面板和显示装置
CN112339359A (zh) * 2020-09-23 2021-02-09 中国电子科技集团公司第二十九研究所 一种增强纵向导热系数的铝-石墨铝复合材料构型
CN114627768B (zh) * 2022-04-06 2024-03-15 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087511A (zh) * 2006-06-08 2007-12-12 保力马科技株式会社 导热性成形体及其制造方法
CN101768427A (zh) * 2009-01-07 2010-07-07 清华大学 热界面材料及其制备方法
CN109101142A (zh) * 2018-08-03 2018-12-28 武汉华星光电半导体显示技术有限公司 触控面板、显示面板、显示装置和触控检测方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
US20090302295A1 (en) * 2003-08-25 2009-12-10 Peter Schwartz Structures & Methods for Combining Carbon Nanotube Array and Organic Materials as a Variable Gap Interposer for Removing Heat from Solid-State Devices
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
JP5104688B2 (ja) * 2007-10-22 2012-12-19 富士通株式会社 シート状構造体及びその製造方法並びに電子機器
CN101989583B (zh) * 2009-08-05 2013-04-24 清华大学 散热结构及使用该散热结构的散热系统
CN101864280A (zh) * 2010-05-20 2010-10-20 中国科学院苏州纳米技术与纳米仿生研究所 芯片封装与散热用热界面材料及其制法
JP5899804B2 (ja) * 2011-10-28 2016-04-06 富士通株式会社 放熱シート及び該放熱シートの製造方法
JP6244651B2 (ja) * 2013-05-01 2017-12-13 富士通株式会社 シート状構造体及びその製造方法、並びに電子装置及びその製造方法
KR102111022B1 (ko) * 2014-01-17 2020-05-15 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104538432B (zh) * 2015-01-05 2019-03-15 昆山工研院新型平板显示技术中心有限公司 显示装置
CN106158666A (zh) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 高导热组件的制作方法
EP3310857B1 (en) * 2015-06-18 2022-06-22 Dow Global Technologies LLC Thermally conductive elastomeric composites
JP6720717B2 (ja) * 2016-06-20 2020-07-08 富士通株式会社 放熱シートの製造方法
JP6810343B2 (ja) * 2016-10-17 2021-01-06 富士通株式会社 カーボンナノチューブ構造、放熱シート及びカーボンナノチューブ構造の製造方法
CN106531902B (zh) * 2016-11-16 2020-12-29 广州宏庆电子有限公司 一种极薄柔性散热膜及其制作方法
KR102316864B1 (ko) * 2017-04-10 2021-10-26 삼성디스플레이 주식회사 표시 장치
CN107059004B (zh) * 2017-04-19 2021-09-24 江苏联科纳米科技有限公司 一种高辐射率散热金属箔及其制备方法与应用
CN107195795B (zh) * 2017-06-07 2019-06-14 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
KR102343509B1 (ko) * 2017-06-19 2021-12-27 삼성디스플레이 주식회사 패널 하부 시트 및 이를 포함하는 표시 장치
CN107785500B (zh) * 2017-09-21 2019-11-05 京东方科技集团股份有限公司 一种散热结构以及oled显示装置
CN207766639U (zh) * 2017-10-31 2018-08-24 泰州市博泰电子有限公司 一种基于Cds-SiO2纳米复合板的多层电路板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087511A (zh) * 2006-06-08 2007-12-12 保力马科技株式会社 导热性成形体及其制造方法
CN101768427A (zh) * 2009-01-07 2010-07-07 清华大学 热界面材料及其制备方法
CN109101142A (zh) * 2018-08-03 2018-12-28 武汉华星光电半导体显示技术有限公司 触控面板、显示面板、显示装置和触控检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234152A (zh) * 2020-10-19 2021-01-15 京东方科技集团股份有限公司 一种散热膜、曲面屏显示装置
CN112234152B (zh) * 2020-10-19 2023-06-30 京东方科技集团股份有限公司 一种散热膜、曲面屏显示装置
CN114122303A (zh) * 2021-11-26 2022-03-01 深圳市深科达智能装备股份有限公司 一种散热片与面板的贴合工艺

Also Published As

Publication number Publication date
CN109817829A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020155427A1 (zh) 散热膜及显示面板
CN205303466U (zh) 一种柔性显示基板、显示装置
EP2922089B1 (en) Manufacturing method for and substrate structure of flexible display
CN106681067B (zh) 显示装置
TW201834237A (zh) 一種可撓性顯示面板以及可撓性顯示裝置
CN206193724U (zh) 触控面板及包括触控面板的显示装置
WO2022007474A1 (zh) 阵列基板、显示面板及电子设备
CN104317088B (zh) 一种背光模组以及显示装置
CN106530972B (zh) 柔性阵列基板的制作方法
TWI232694B (en) Active matrix organic electroluminescent device and fabricating method thereof
TW201030697A (en) Flexible pixel array substrate and flexible display
WO2016176876A1 (zh) Oled显示装置
Robinson et al. Hybrid stretchable circuits on silicone substrate
WO2016082338A1 (zh) 导电柔性基板及其制作方法与oled显示装置及其制作方法
WO2018171268A1 (zh) 基板及其制备方法、显示面板和显示装置
US20200251677A1 (en) Heat dissipation film and display panel
TW200416466A (en) Pixel structure of in-plane switching liquid crystal display device
WO2021017151A1 (zh) 一种用于显示面板的散热结构及其制备方法和应用
WO2020232945A1 (zh) 一种显示屏及电子装置
WO2020248431A1 (zh) 显示面板的制备方法及显示面板
CN102569668B (zh) 显示装置及其组装方法
US20200371570A1 (en) Display screen and electronic device
WO2020124805A1 (zh) 显示屏及显示装置
WO2017193439A1 (zh) 双面显示器、显示模组及其tft阵列基板
TW200904308A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913618

Country of ref document: EP

Kind code of ref document: A1