WO2020155404A1 - 一种柔性oled器件及其制备方法 - Google Patents

一种柔性oled器件及其制备方法 Download PDF

Info

Publication number
WO2020155404A1
WO2020155404A1 PCT/CN2019/082802 CN2019082802W WO2020155404A1 WO 2020155404 A1 WO2020155404 A1 WO 2020155404A1 CN 2019082802 W CN2019082802 W CN 2019082802W WO 2020155404 A1 WO2020155404 A1 WO 2020155404A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic layer
organic layer
inorganic
flexible oled
Prior art date
Application number
PCT/CN2019/082802
Other languages
English (en)
French (fr)
Inventor
王一佳
汪衎
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/495,277 priority Critical patent/US11258038B2/en
Publication of WO2020155404A1 publication Critical patent/WO2020155404A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to the field of light-emitting display technology, in particular, a flexible OLED device and a preparation method thereof.
  • OLED Organic Light Emitting Diode
  • the organic layer in the external encapsulation layer is particularly sensitive to external water and oxygen, and requires stricter encapsulation conditions to protect it to prevent external water and oxygen from passing through it.
  • the encapsulation layer goes into it.
  • the display substrate generally uses flexible materials such as PI or PET, and then thin film transistors (TFT), OLED devices and Thin film packaging layer encapsulation, TFE).
  • TFT thin film transistors
  • OLED devices OLED devices
  • TFE Thin film packaging layer encapsulation
  • the commonly used thin film encapsulation method is formed by overlapping inorganic/organic/inorganic three-layer films, as disclosed in patent US9419247, where the main function of the inorganic layer is to block the intrusion of external water and oxygen, and the organic layer Its main function is to encapsulate the particles generated in the front-end process and relieve the stress generated when the film is bent.
  • the three-layer film packaging structure When the three-layer film packaging structure is subjected to a bending test, since the outermost inorganic film layer is in the outermost layer of the packaging structure, it will bear the greatest bending stress. Due to its own material properties, the film layer has the risk of cracking, and once it fails to withstand the bending stress, the entire package structure will fail.
  • One aspect of the present invention is to provide a flexible OLED device, which adopts a novel outer inorganic layer shape structure, and reduces the outer layer by increasing the contact area between the outer inorganic layer and the inner organic layer. Risk of fracture of the inorganic layer.
  • a flexible OLED device includes a substrate, an array (Array) unit layer, a light emitting device (OLED) layer and an encapsulation layer which are arranged in sequence.
  • the encapsulation layer includes a first inorganic layer, a first organic layer and a second inorganic layer arranged in sequence.
  • the first inorganic layer wraps the light-emitting device layer inside and is connected to the array unit layer at both ends, and the first organic layer is disposed on the first inorganic layer, and the same The light-emitting device layer is wrapped inside; the second inorganic layer wraps the first organic layer inside and connects with the first inorganic layer outside the two sides of the first organic layer.
  • the second inorganic layer is a continuous wave-like undulating curved configuration
  • the interface between the second inorganic layer and the first organic layer is a continuous wave-like undulating curved surface shape.
  • the heights of the crests and troughs and the bending angles of the wavy curved surfaces can be determined as needed, and are not limited.
  • the film thermal stress value S1 of the first organic layer there is a stress difference between the film thermal stress value S1 of the first organic layer and the film thermal stress value S2 of the second inorganic layer, and because the first organic layer
  • the existence of the difference in the thermal stress value of the film layer between the second inorganic layer and the second inorganic layer makes the second inorganic layer spontaneously bend configuration during the preparation process, and further makes the connection between it and the first organic layer
  • the film thermal stress value of the first organic layer is greater than the film thermal stress value of the second inorganic layer.
  • the thermal stress value S1 of the first organic layer is between -10 and Within 10 Mpa.
  • the thermal stress value of the film of the second inorganic layer S2 ⁇ -20Mpa is the thermal stress value of the film of the second inorganic layer S2 ⁇ -20Mpa.
  • an optical adhesive layer is provided on the second inorganic layer for filling the curved configuration surface of the second inorganic layer.
  • the encapsulation layer further includes a second organic layer and a third inorganic layer disposed on the second inorganic layer, wherein the third inorganic layer has a curved configuration, which is similar to The interface between the second organic layers is also a continuous undulating curved surface shape.
  • an optical adhesive layer is provided on the third inorganic layer for filling the curved configuration surface of the third inorganic layer.
  • the materials used include but are not limited to SiNx, SiOxNy, SiOx, SiCNx, AlOx, TiOx, and the preparation methods include but not Limited to PECVD, ALD, PLD, Sputter and other processes.
  • the thickness of the first organic layer is 1-100 ⁇ m.
  • the constituent material of the first organic layer includes hexamethyldisiloxane (pp-HMDSO:F) polymerized by fluorinated plasma, and its preparation method includes a PECVD process.
  • pp-HMDSO:F hexamethyldisiloxane
  • the reaction gas in the PECVD preparation process of the first organic layer contains at least one oxygen-containing gas, such as O 2 , N 2 O, and a Si-containing gas, such as SiH 4 .
  • the flow ratio of the Si-containing gas to the O-containing gas during the preparation of the first organic layer changes in a stepwise gradient.
  • the ratio of N 2 O/SiH 4 gas flow rate can be divided into 0.8, 1.2, 1.5, 1.8, 2.5, and 4 in order to form a film in six steps.
  • the film formation time between each step is not specified, and the first organic film is preferred.
  • the thermal stress value S1 of the layer is between -10 and 10 MPa.
  • the materials used include but are not limited to SiNx, SiOxNy, SiOx, SiCNx, AlOx, TiOx, and the preparation methods include but are not limited to PECVD, ALD, PLD, Sputter and other processes.
  • the thermal stress value of the second inorganic layer is S2 ⁇ -20Mpa.
  • the array unit layer includes a buffer layer, a TFT layer, a planarization layer, an anode, a pixel definition layer, and the like.
  • the light-emitting device layer includes a hole injection/transport layer, a light-emitting layer, an electron transport/injection layer, a cathode, and the like.
  • Another aspect of the present invention is to provide a method for preparing the flexible OLED device involved in the present invention, which includes the following steps:
  • the array unit layer and the light emitting device layer are sequentially prepared on a substrate;
  • the second inorganic layer is arranged above the first organic layer, which wraps the first organic layer in it, and is connected to the first inorganic layer outside the side of the first organic layer .
  • the prepared first organic layer and the second inorganic layer have a difference in thermal stress value, so that the second inorganic layer forms a continuous undulating curved structure during the preparation process.
  • the interface between the first organic layer and the first organic layer is a continuous wave-like undulating curved surface shape.
  • the preparation method of the first inorganic layer includes but not limited to PECVD, ALD, PLD, Sputter and other processes.
  • the preparation process of the first organic layer is a PECVD process, and the reaction gas included therein contains at least one oxygen-containing gas, such as O 2 , N 2 O, and a Si-containing gas, Such as SiH 4 .
  • the flow ratio of the Si-containing gas and the O-containing gas changes stepwise and gradient.
  • the ratio of N 2 O/SiH 4 gas flow rate can be divided into 0.8, 1.2, 1.5, 1.8, 2.5, and 4 in order to form a film in six steps.
  • the film formation time between each step is not specified, and the first organic film is preferred.
  • the layer thermal stress value S1 is between -10 and 10 MPa.
  • the preparation method of the second inorganic layer includes but is not limited to PECVD, ALD, PLD, Sputter, and other processes.
  • the thermal stress value of the second inorganic layer is S2 ⁇ -20Mpa.
  • the second inorganic layer spontaneously becomes a continuous undulating curved configuration during the preparation process , So that the interface between it and the first organic layer is a continuous wavy undulating curved surface shape.
  • the present invention relates to a flexible OLED device and a preparation method thereof, wherein the outer inorganic layer of the flexible OLED device encapsulation layer adopts a curved configuration, on the one hand, the bending of the flexible OLED device can be reduced through its own configuration and structure
  • the stress that the inorganic encapsulation layer bears, and its curved surface shape increases the contact surface area between the outer inorganic layer and the inner organic layer, thereby effectively reducing the occurrence of the outer inorganic layer in the bending area. Risk of breakage.
  • the curved configuration of the outer inorganic layer and the formation of the wavy curve junction surface between the outer inorganic layer and the inner organic layer are determined by the difference in thermal stress between the two layers during the preparation process. It is realized spontaneously, which makes it unnecessary to add additional processing steps to its bending configuration during its preparation, and the entire operation is simple and easy.
  • FIG. 1 is a schematic structural diagram of a flexible OLED device according to an embodiment of the present invention.
  • Substrate 100 Array unit layer 200
  • Light emitting device layer 300
  • Encapsulation layer 400 First inorganic layer 410 First organic layer 420
  • one embodiment of the present invention provides a flexible OLED device, which includes a substrate 100, an array unit layer 200, a light emitting device layer 300, and an encapsulation layer 400 arranged in sequence.
  • the array unit layer 200 includes a buffer layer, a TFT layer, a planarization layer, an anode, a pixel definition layer and the like.
  • the light emitting device layer 300 includes a hole injection/transport layer, a light emitting layer, an electron transport/injection layer, a cathode, and the like.
  • the encapsulation layer 400 includes a first inorganic layer 410, a first organic layer 420, and a second inorganic layer 430. The interface between the first organic layer 420 and the second inorganic layer 430 is a continuous undulating curved surface.
  • the flexible OLED device related to the present invention will be further described below in conjunction with the method for preparing the flexible OLED device related to the present invention.
  • the array unit layer 200 and the light emitting device layer 300 are prepared on the provided flexible OLED device substrate 100 known in the industry.
  • the first inorganic layer 410 of the encapsulation layer 400 is prepared on the light-emitting device layer 300, and it is required to completely cover the light-emitting device layer 300 with a thickness of 0.1-10 ⁇ m.
  • the materials used include but are not limited to SiNx, SiOxNy , SiOx, SiCNx, AlOx, TiOx, preparation methods include but are not limited to PECVD, ALD, PLD, Sputter and other processes.
  • a first organic layer 420 is prepared on the first inorganic layer 410, and the deposited first organic layer 420 is required to completely cover the light-emitting area of the light-emitting device layer 300, but cannot completely cover the first organic layer.
  • the inorganic layer 410 that is, the first inorganic layer 410 still exists on both sides thereof; the thickness of the first inorganic layer 410 is 1-100 ⁇ m.
  • the first organic layer 420 includes hexamethyldisiloxane (pp-HMDSO:F) polymerized by fluorinated plasma, and its preparation process is a PECVD process.
  • the reaction gas involved in the PECVD preparation process of the first organic layer 420 contains at least one oxygen-containing gas, such as O 2 , N 2 O, and a Si-containing gas, such as SiH 4 .
  • the flow ratio of the Si-containing gas and the O-containing gas changes step by step, for example: the ratio of N 2 O/SiH 4 gas flow can be divided into 0.8, 1.2, 1.5, 1.8, 2.5 and 4
  • the film is formed sequentially in six steps, and the film forming time between each step is not specified.
  • the thermal stress S1 value of the first organic film layer 420 is preferably between -10 and 10 MPa.
  • the second inorganic layer 430 is prepared on the first organic layer 420, and it is required to completely cover the light-emitting device layer 300 and the first organic layer 420, and is on the surface of the first organic layer 420.
  • the outer sides of the two sides are connected to the first inorganic layer 410; its thickness is 0.1-10 ⁇ m, the materials used include but are not limited to SiNx, SiOxNy, SiOx, SiCNx, AlOx, TiOx, and the preparation methods include but are not limited to PECVD, ALD, PLD, Sputter and other processes.
  • the thermal stress value of the second inorganic layer 430 is preferably S2 ⁇ -20Mpa. Furthermore, due to the difference in the thermal stress of the film between the second inorganic layer 430 and the first organic layer 420, the second inorganic layer 430 spontaneously becomes a continuous layer during the preparation process.
  • the wavy and undulating curved configuration makes the interface between the first organic layer 420 and the first organic layer a continuous undulating curved shape without special intervention in the manufacturing process.
  • an OCA layer is coated on the second inorganic film layer 430 to fill in the concave area on the upper surface of the "wave” undulating curved configuration formed by the thermal stress difference between the film layers, and pass the OCA layer to cover Later, the OCA layer has a flat surface shape, which facilitates bonding with the upper module film layer.
  • the encapsulation layer 400 involved in the present invention above has a three-layer laminated structure, but in other embodiments, it can repeat 2 ⁇ 4 steps to obtain a thin-film encapsulation structure with different layer structures, and the specific number of layers , Can be determined as needed, and there is no limit.
  • the present invention relates to a flexible OLED device and a preparation method thereof, wherein the outer inorganic layer of the flexible OLED device encapsulation layer adopts a curved configuration, on the one hand, the bending of the flexible OLED device can be reduced through its own configuration and structure
  • the stress that the inorganic encapsulation layer bears, and its curved surface shape increases the contact surface area between the outer inorganic layer and the inner organic layer, thereby effectively reducing the occurrence of the outer inorganic layer in the bending area. Risk of breakage.
  • the curved configuration of the outer inorganic layer and the formation of the wavy curve junction surface between the outer inorganic layer and the inner organic layer are determined by the difference in thermal stress between the two layers during the preparation process. It is realized spontaneously, which makes it unnecessary to add additional processing steps to its bending configuration during its preparation, and the entire operation is simple and easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种柔性OLED器件及其制备方法,其中所述柔性OLED器件,包括依次设置的基板、阵列(Array)单元层、发光器件(OLED)层和封装层。其中所述封装层包括依次设置的第一无机层、第一有机层和第二无机层。其中所述第二无机层为一种连续的波浪状起伏弯曲构型,其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。本发明提供了一种柔性OLED器件,其采用新型的外层无机层形状结构,通过增加所述外层无机层与内层有机层之间的接触面积,从而实现降低所述外层无机层发生断裂的风险。

Description

一种柔性OLED器件及其制备方法 技术领域
本发明涉及发光显示技术领域,尤其是,其中的一种柔性OLED器件及其制备方法。
背景技术
已知,由于柔性OLED(有机发光二极管)显示器件具有低功耗、高分辨率、快速响应、可弯折等特性,使得其成为显示行业热门的发展方向,并逐渐成为业界的主流。
其中所述OLED显示器件的发光单元中,其外部封装层中的有机层对外界的水、氧特别敏感,需要较为严苛的封装条件对其进行保护,以防止外界的水、氧透过其封装层进入到其中。
进一步的,为了实现柔性OLED显示屏的可弯折特性,其显示屏基板一般采用的是PI或PET等柔性材料,然后在其上方依次制备薄膜晶体二极管(Thin film transistor, TFT)、OLED器件及薄膜封装层(Thin film encapsulation, TFE)。
其中常用的薄膜封装方式为无机/有机/无机三层膜层交叠而成,如专利US9419247所公开的,其中所述无机层的主要作用是阻隔外界水、氧的侵入,而所述有机层的主要作用是包覆前段制程过程中产生的particle及缓解膜层弯曲时产生的应力。
这种三层薄膜封装结构在进行弯折测试时,由于最外层的无机膜层处于封装结构的最外层,因此,其会承受最大的弯折应力。而由于其本身的材料特性,其膜层存在发生断裂(crack)的风险,而一旦其因承受不了弯折应力而发生断裂,就会造成整个封装结构失效。
因此,确有必要来开发一种新型的柔性OLED器件,来克服现有技术中的缺陷。
技术问题
本发明的一个方面是提供一种柔性OLED器件,其采用新型的外层无机层形状结构,通过增加所述外层无机层与内层有机层之间的接触面积,从而实现降低所述外层无机层发生断裂的风险。
技术解决方案
本发明采用的技术方案如下:
一种柔性OLED器件,包括依次设置的基板、阵列(Array)单元层、发光器件(OLED)层和封装层。其中所述封装层包括依次设置的第一无机层、第一有机层和第二无机层。其中所述第一无机层将所述发光器件层包裹于内并在两侧端与所述阵列单元层相接,所述第一有机层设置在所述第一无机层上,并同样将所述发光器件层包裹于其内;所述第二无机层将所述第一有机层包裹于内并在所述第一有机层两侧部外与所述第一无机层相接。其中所述第二无机层为一种连续的波浪状起伏弯曲构型,其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。其中所述波浪曲面的波峰、波谷的高度以及弯曲角度可随需要而定,并无限定。
进一步的,在不同实施方式中,其中所述第一有机层的膜层热应力值S1与所述第二无机层的膜层热应力值S2之间存在应力差,并且由于所述第一有机层和第二无机层之间的膜层热应力值差的存在,使得所述第二无机层在制备过程中自发为弯曲构型,并进而使得其与所述第一有机层间的相接面自发的成为所述连续的波浪状起伏曲面形状。
进一步的,在不同实施方式中,其中所述第一有机层的膜层热应力值大于所述第二无机层的膜层热应力值。
进一步的,在不同实施方式中,其中所述第一有机层的膜层热应力值S1在-10 ~ 10 Mpa范围内。
进一步的,在不同实施方式中,其中所述第二无机层的膜层热应力值S2 < -20Mpa。
进一步的,在不同实施方式中,其中所述第二无机层上设置有光学胶层(OCA层),用于填平所述第二无机层的弯曲构型表面。
进一步的,在不同实施方式中,其中所述封装层还包括设置在所述第二无机层上的第二有机层和第三无机层,其中所述第三无机层为弯曲构型,其与所述第二有机层间的相接面也为一种连续的波浪状起伏曲面形状。
进一步的,在不同实施方式中,其中所述第三无机层上设置有光学胶层(OCA层),用于填平所述第三无机层的弯曲构型表面。
进一步的,在不同实施方式中,其中所述第一无机层的厚度为0.1~10 μm,其采用的材料包括且不限于SiNx、SiOxNy、SiOx、SiCNx、AlOx、TiOx,其制备方式包括且不限于PECVD、ALD、PLD、Sputter等制程工艺。
进一步的,在不同实施方式中,其中所述第一有机层的厚度为1~100μm。
进一步的,在不同实施方式中,其中所述第一有机层的构成材料包括含有氟化等离子体聚合的六甲基二硅氧烷(pp-HMDSO:F),其制备方式包括PECVD制程工艺。
进一步的,在不同实施方式中,其中所述第一有机层的PECVD制备工艺中的反应气体至少含有一种含氧气体,如O 2、N 2O,和一种含Si气体,如SiH 4
进一步的,在不同实施方式中,其中所述第一有机层的制备过程中含Si的气体与含O的气体流量比例呈分步梯度变化。例如:N 2O/SiH 4气体流量比例可从小到大分成0.8、1.2、1.5、1.8、2.5以及4六步依次成膜,各步间成膜时间无特别指定,其中优选所述第一有机层的热应力值S1在-10 ~ 10 MPa之间。
进一步的,在不同实施方式中,其中所述第二无机层的厚度为0.1~10 μm,采用的材料包括且不限于SiNx、SiOxNy、SiOx、SiCNx、AlOx、TiOx,其制备方式包括且不限于PECVD、ALD、PLD、Sputter等工艺。且,其中优选所述第二无机层的膜层热应力值S2 < -20Mpa。其中由于所述第二无机层与所述第一有机层之间存在膜层热应力值差,使得所述第二无机层在制备过程中自发的成为弯曲构型,进而使得其与所述第一有机层间的相接面自发形成所述连续的波浪状起伏曲面形状。
进一步的,在不同实施方式中,其中所述阵列单元层包括缓冲层、TFT层、平坦化层、阳极、像素定义层等。
进一步的,在不同实施方式中,其中所述发光器件层包括空穴注入/传输层、发光层、电子传输/注入层、阴极等。
进一步的,本发明的又一方面是提供一种用于制备本发明涉及的所述柔性OLED器件的制备方法,其包括以下步骤:
在一基板上依次制备阵列单元层和发光器件层;
在所述发光器件层上制备封装层中的第一无机层,其将所述发光器件层包裹于其内;
在所述第一无机层上制备所述第一有机层,其将所述发光器件层包裹于其内,但其侧部外还存有所述第一无机层;
在所述第一有机层上方设置所述第二无机层,其将所述第一有机层包裹于其内,并在所述第一有机层的侧部外与所述第一无机层相接。
其中制备出的所述第一有机层和所述第二无机层在热应力值上存有差值,因而使得所述第二无机层在制备过程中形成一种连续的波浪状起伏的弯曲构型,进而使得其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。
进一步的,在不同实施方式,其中所述第一无机层的制备方式包括但不限于PECVD、ALD、PLD、Sputter等工艺。
进一步的,在不同实施方式,其中所述第一有机层的制备工艺为PECVD制程,其中包括的反应气体至少含有一种含氧气体,如O 2、N 2O,和一种含Si气体,如SiH 4
进一步的,在不同实施方式,其中在所述第一有机层的制备过程中,所述含Si气体与含O气体流量比例呈分步梯度变化。例如:N 2O/SiH 4气体流量比例可从小到大分成0.8、1.2、1.5、1.8、2.5以及4六步依次成膜,各步间成膜时间无特别指定,其中优选所述第一有机层的膜层热应力值S1在-10 ~ 10 MPa之间。
进一步的,在不同实施方式,其中在所述第二无机层的制备方式包括且不限于PECVD、ALD、PLD、Sputter等工艺。其中优选所述第二无机层的膜层热应力值S2 < -20Mpa。其中由于所述第二无机层与所述第一有机层间存在膜层热应力值差,使得所述第二无机层在制备过程中,自发的成为一种连续的波浪状起伏的弯曲构型,进而使得其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。
有益效果
本发明涉及的一种柔性OLED器件及其制备方法,其中所述柔性OLED器件封装层中外层无机层采用弯曲构型,一方面能够通过自身的构型结构来降低所述柔性OLED器件弯折处所述无机封装层所承受的应力,同时其弯曲表面形状又增加了所述外层无机层与内层有机层之间的接触表面积,从而有效降低了所述外层无机层在弯折区发生断裂的风险。
进一步的,其中所述外层无机层的弯曲构型,以及其与所述内层有机层间的波浪型曲线相接面的形成,是通过制备过程中两者间的膜层热应力值差而自发实现的,这就使得其制备过程中无需为其弯曲构型而添加额外的加工步骤,整个操作简单易行。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施方式涉及的一种柔性OLED器件的结构示意图。
图1中的附图标记说明如下:
基板        100    阵列单元层   200   发光器件层    300
封装层      400    第一无机层   410   第一有机层    420
第二无机层   430
本发明的实施方式
以下将结合附图和实施例,对本发明涉及的一种柔性OLED器件及其制备方法的技术方案作进一步的详细描述。
请参阅图1所示,本发明的一个实施方式提供了一种柔性OLED器件,其包括依次设置的基板100、阵列(Array)单元层200、发光器件层300和封装层400。
其中所述阵列单元层200包括缓冲层、TFT层、平坦化层、阳极、像素定义层等。所述发光器件层300包括空穴注入/传输层、发光层、电子传输/注入层、阴极等。所述封装层400包括第一无机层410、第一有机层420、第二无机层430。其中所述第一有机层420和第二无机层430间的相接面为一种连续的起伏波浪状曲面。
为避免不必要的重复赘述,以下将结合本发明涉及的所述柔性OLED器件的制备方法来对本发明涉及的所述柔性OLED器件做进一步的说明。
首先,在提供的业界已知的柔性OLED器件基板100上制备所述阵列(Array)单元层200和发光器件层300。
其次,在所述发光器件层300上方制备所述封装层400的第一无机层410,要求完全覆盖所述发光器件层300,其厚度为0.1~10μm,采用的材料包括且不限于SiNx、SiOxNy、SiOx、SiCNx、AlOx、TiOx,制备方式包括且不限于PECVD、ALD、PLD、Sputter等工艺。
第三,在所述第一无机层410上方制备第一有机层420,要求所沉积的所述第一有机层420完全覆盖所述发光器件层300的发光区,但不能完全覆盖所述第一无机层410,即在其两侧外还存有所述第一无机层410;其厚度为1~100μm。其中所述第一有机层420包括包含氟化等离子体聚合的六甲基二硅氧烷(pp-HMDSO:F),其制备工艺为PECVD制程。
进一步的,其中所述第一有机层420的PECVD制备工艺中涉及的反应气体至少含有一种含氧气体,如O 2、N 2O,和一种含Si气体,如SiH 4。且在制备过程中,其中所述含Si气体与含O气体流量比例呈分步梯度变化,例如:N 2O/SiH 4气体流量比例可从小到大分成0.8、1.2、1.5、1.8、2.5以及4六步依次成膜,各步间成膜时间无特别指定,其中所述第一层有机膜层420热应力S1值优选在-10 ~ 10 MPa之间。
第四,在所述第一有机层420上方制备所述第二无机层430,要求其完全覆盖所述发光器件层300与所述第一有机层420,并在所述第一有机层420的两侧部外与所述第一无机层410相接;其厚度为0.1~10μm,采用的材料包括且不限于SiNx、SiOxNy、SiOx、SiCNx、AlOx、TiOx,其制备方式包括且不限于PECVD、ALD、PLD、Sputter等工艺。
其中所述第二无机层430的膜层热应力值优选S2 < -20Mpa。进一步的,其中由于所述第二无机层430与所述第一有机层420间存在膜层热应力值差,因此,使得所述第二无机层430在制备过程中,自发的成为一种连续的波浪状起伏的弯曲构型,进而使得其与所述第一有机层420间的相接面为一种连续的波浪状起伏曲面形状,而无需在其制程中特别介入额外的操作步骤。
最后,在所述第二无机膜层430上方涂覆OCA层,填平其因膜层间热应力差而形成的“波浪”起伏型弯曲构型上表面的凹陷区,经过所述OCA层覆盖后,所述OCA层为一个平面表面形状,从而便于与上方模组膜层进行贴合。
进一步的,以上本发明涉及的所述封装层400为3层叠层结构,而在其他实施方式中,其可以重复2~4步,即可得到不同层数结构的薄膜封装结构,具体叠层数量,可随需要而定,并无限定。
本发明涉及的一种柔性OLED器件及其制备方法,其中所述柔性OLED器件封装层中外层无机层采用弯曲构型,一方面能够通过自身的构型结构来降低所述柔性OLED器件弯折处所述无机封装层所承受的应力,同时其弯曲表面形状又增加了所述外层无机层与内层有机层之间的接触表面积,从而有效降低了所述外层无机层在弯折区发生断裂的风险。
进一步的,其中所述外层无机层的弯曲构型,以及其与所述内层有机层间的波浪型曲线相接面的形成,是通过制备过程中两者间的膜层热应力值差而自发实现的,这就使得其制备过程中无需为其弯曲构型而添加额外的加工步骤,整个操作简单易行。
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种柔性OLED器件,包括依次设置的基板、阵列单元层、发光器件层和封装层,其中所述封装层包括依次设置的第一无机层、第一有机层和第二无机层;
    其中所述第一无机层将所述发光器件层包裹于内并在两侧端与所述阵列单元层相接;
    其中所述第一有机层设置在所述第一无机层上,并同样将所述发光器件层包裹于其内;
    其中所述第二无机层将所述第一有机层包裹于内并在所述第一有机层两侧部外与所述第一无机层相接;
    其中所述第二无机层为一种连续的波浪状起伏弯曲构型,其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。
  2. 根据权利要求1所述的柔性OLED器件,其中所述第一有机层的膜层热应力值S1与所述第二无机层的膜层热应力值S2之间存在应力差,并且由于所述第一有机层和第二无机层之间的膜层热应力值差的存在,使得所述第二无机层在制备过程中自发为弯曲构型,并进而使得其与所述第一有机层间的相接面自发的成为所述连续的波浪状起伏曲面形状。
  3. 根据权利要求2所述的柔性OLED器件,其中所述第一有机层的膜层热应力值大于所述第二无机层的膜层热应力值。
  4. 根据权利要求2所述的柔性OLED器件,其中所述第一有机层的膜层热应力值S1在-10 ~ 10 Mpa范围内。
  5. 根据权利要求2所述的柔性OLED器件,其中所述第二无机层的膜层热应力值S2 < -20Mpa。
  6. 根据权利要求1所述的柔性OLED器件,其中所述第二无机层上设置有光学胶层,用于填平所述第二无机层的表面弯曲构型。
  7. 根据权利要求1所述的柔性OLED器件,其中所述封装层还包括设置在所述第二无机层上的第二有机层和第三无机层,其中所述第三无机层为弯曲构型,其与所述第二有机层间的相接面也为一种连续的波浪状起伏曲面形状。
  8. 根据权利要求1所述的柔性OLED器件,其中所述第一无机层的厚度为0.1~10 μm,其中所述第一有机层的厚度为1~100μm,其中所述第二无机层的厚度为0.1~10 μm。
  9. 一种用于制备根据权利要求1所述的柔性OLED器件的制备方法,其包括以下步骤:
    在一基板上依次制备阵列单元层和发光器件层;
    在所述发光器件层上制备封装层中的第一无机层,其将所述发光器件层包裹于其内;
    在所述第一无机层上制备所述第一有机层,其将所述发光器件层包裹于其内,但其侧部外还存有所述第一无机层;
    在所述第一有机层上方设置所述第二无机层,其将所述第一有机层包裹于其内,并在所述第一有机层的侧部外与所述第一无机层相接;
    其中制备出的所述第一有机层和所述第二无机层在热应力值上存有差值,因而使得所述第二无机层在制备过程中形成一种连续的波浪状起伏的弯曲构型,进而使得其与所述第一有机层间的相接面为一种连续的波浪状起伏曲面形状。
  10. 根据权利要求9所述的柔性OLED器件的制备方法,其中所述第一有机层的制备工艺为PECVD制程,其中包括的反应气体包括一种含氧气体和一种含Si气体;其中所述含Si气体与含O气体流量比例呈分步梯度变化。
PCT/CN2019/082802 2019-01-30 2019-04-16 一种柔性oled器件及其制备方法 WO2020155404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/495,277 US11258038B2 (en) 2019-01-30 2019-04-16 Flexible organic light-emitting diode (OLED) device of reduced stess at bending place and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910093582.5 2019-01-30
CN201910093582.5A CN109817817A (zh) 2019-01-30 2019-01-30 一种柔性oled器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020155404A1 true WO2020155404A1 (zh) 2020-08-06

Family

ID=66605912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082802 WO2020155404A1 (zh) 2019-01-30 2019-04-16 一种柔性oled器件及其制备方法

Country Status (3)

Country Link
US (1) US11258038B2 (zh)
CN (1) CN109817817A (zh)
WO (1) WO2020155404A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335967B (zh) * 2019-07-02 2021-08-03 深圳市华星光电半导体显示技术有限公司 Oled面板及其制作方法
CN110289373A (zh) * 2019-07-31 2019-09-27 京东方科技集团股份有限公司 有机发光二极管的薄膜封装结构、方法及显示面板
CN110429205B (zh) * 2019-07-31 2021-06-01 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN111739415A (zh) * 2020-06-17 2020-10-02 昆山国显光电有限公司 显示面板和显示装置
CN113270466B (zh) * 2021-05-25 2023-04-07 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552246A (zh) * 2015-12-07 2016-05-04 上海天马微电子有限公司 柔性显示装置及柔性显示装置的制作方法
CN105977398A (zh) * 2016-07-08 2016-09-28 京东方科技集团股份有限公司 一种封装盖板及其制备方法、显示装置
CN207834361U (zh) * 2017-11-09 2018-09-07 深圳市柔宇科技有限公司 柔性薄膜封装结构

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250084A1 (en) * 2005-05-04 2006-11-09 Eastman Kodak Company OLED device with improved light output
TWI492374B (zh) * 2012-12-03 2015-07-11 Au Optronics Corp 電激發光顯示面板
KR102279921B1 (ko) * 2014-02-12 2021-07-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102271659B1 (ko) * 2014-08-29 2021-06-30 엘지디스플레이 주식회사 터치 패널 내장형 유기 발광 표시 장치
EP4258844A3 (en) * 2014-09-30 2023-11-15 LG Display Co., Ltd. Flexible organic light emitting display device
KR102416112B1 (ko) * 2014-10-02 2022-07-04 삼성전자주식회사 스트레처블/폴더블 광전자소자와 그 제조방법 및 광전자소자를 포함하는 장치
KR102330331B1 (ko) * 2015-07-17 2021-11-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN105140417A (zh) * 2015-08-20 2015-12-09 京东方科技集团股份有限公司 一种有机发光二极管器件及制作方法和显示装置
CN105259700A (zh) * 2015-10-27 2016-01-20 深圳市华星光电技术有限公司 液晶显示装置及电子设备
KR102453924B1 (ko) * 2015-11-11 2022-10-17 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102461970B1 (ko) * 2015-11-27 2022-10-31 엘지디스플레이 주식회사 유기발광 표시장치
CN105977394A (zh) * 2016-06-15 2016-09-28 信利(惠州)智能显示有限公司 一种柔性oled器件及其封装方法
CN106450036B (zh) * 2016-11-24 2019-01-22 武汉华星光电技术有限公司 Oled器件封装结构、oled器件及显示屏
DE102016122901A1 (de) * 2016-11-28 2018-05-30 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
WO2018179288A1 (ja) * 2017-03-30 2018-10-04 シャープ株式会社 表示装置及びその製造方法
CN107104199A (zh) * 2017-04-19 2017-08-29 武汉华星光电技术有限公司 显示面板及其制造方法
CN109004099B (zh) * 2017-06-07 2021-06-22 上海和辉光电有限公司 一种柔性显示面板及其制备方法
CN109427989A (zh) * 2017-08-22 2019-03-05 中华映管股份有限公司 封装层结构
US20190088901A1 (en) * 2017-09-20 2019-03-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Encapsulation method for oled thin film, oled thin film encapsulation structure and oled structure
US10446790B2 (en) * 2017-11-01 2019-10-15 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED encapsulating structure and manufacturing method thereof
KR102462421B1 (ko) * 2017-11-15 2022-11-03 삼성디스플레이 주식회사 디스플레이 장치
US20190393278A1 (en) * 2018-06-26 2019-12-26 Innolux Corporation Display device
CN208444841U (zh) * 2018-08-09 2019-01-29 云谷(固安)科技有限公司 显示屏及显示装置
CN109786575A (zh) * 2019-01-21 2019-05-21 京东方科技集团股份有限公司 有机封装层、显示基板的形成方法、显示基板、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552246A (zh) * 2015-12-07 2016-05-04 上海天马微电子有限公司 柔性显示装置及柔性显示装置的制作方法
CN105977398A (zh) * 2016-07-08 2016-09-28 京东方科技集团股份有限公司 一种封装盖板及其制备方法、显示装置
CN207834361U (zh) * 2017-11-09 2018-09-07 深圳市柔宇科技有限公司 柔性薄膜封装结构

Also Published As

Publication number Publication date
US20210336206A1 (en) 2021-10-28
US11258038B2 (en) 2022-02-22
CN109817817A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020155404A1 (zh) 一种柔性oled器件及其制备方法
US10818876B2 (en) Organic light-emitting diode (OLED) display panel and manufacturing method thereof
WO2019223456A1 (zh) 显示面板及其制备方法、显示装置
WO2016101395A1 (zh) 柔性oled显示器件及其制造方法
TWM529276U (zh) 顯示模組封裝結構
CN104576684B (zh) 有机发光显示器及其制造方法
WO2019218455A1 (zh) Oled显示面板及其制作方法、oled显示装置
CN106848088B (zh) 显示模组封装结构及其制备方法
US7671364B2 (en) Thin film transistor substrate for display unit
WO2018086191A1 (zh) Oled显示器及其制作方法
JP6896635B2 (ja) フレキシブル表示パネル、フレキシブル表示パネルを有するフレキシブル表示装置、並びにその製造方法
WO2017035866A1 (zh) 薄膜封装方法及有机发光装置
WO2019051940A1 (zh) 柔性oled面板的制作方法
US11322718B2 (en) Flexible display panel and preparation method
EP3557645A1 (en) Film packaging structure and display apparatus having same
US10615351B2 (en) Flexible display assembly including a first inorganic layer formed in bending region having a thickness less than a second inorganic layer formed in non-bending region, a manufacturing method for forming the same, and a display panel
WO2019205425A1 (zh) Woled显示面板及其制作方法
WO2020232913A1 (zh) 显示面板及制作方法
WO2020228235A1 (zh) 阵列基板及其制备方法、柔性显示面板
WO2019075853A1 (zh) 柔性oled面板的封装方法及封装结构
KR20160065436A (ko) 플렉서블 유기 발광 표시 장치
WO2020237827A1 (zh) 有机发光二极管显示面板
WO2021031417A1 (zh) 一种柔性封装结构及柔性显示面板
WO2020124805A1 (zh) 显示屏及显示装置
WO2021026996A1 (zh) 一种显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913989

Country of ref document: EP

Kind code of ref document: A1