WO2020153714A1 - 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름 - Google Patents

비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름 Download PDF

Info

Publication number
WO2020153714A1
WO2020153714A1 PCT/KR2020/001017 KR2020001017W WO2020153714A1 WO 2020153714 A1 WO2020153714 A1 WO 2020153714A1 KR 2020001017 W KR2020001017 W KR 2020001017W WO 2020153714 A1 WO2020153714 A1 WO 2020153714A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mol
repeating unit
vinyl alcohol
vinyl
Prior art date
Application number
PCT/KR2020/001017
Other languages
English (en)
French (fr)
Inventor
전문석
권경안
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200007547A external-priority patent/KR102405288B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020552883A priority Critical patent/JP6970837B2/ja
Priority to US17/049,077 priority patent/US11905403B2/en
Priority to CN202080002078.0A priority patent/CN111918888B/zh
Priority to EP20745542.9A priority patent/EP3766907A4/en
Publication of WO2020153714A1 publication Critical patent/WO2020153714A1/ko
Priority to US18/391,068 priority patent/US20240124701A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to a vinyl alcohol-based copolymer capable of exhibiting high gas barrier properties with reduced penetration of moisture, and a gas barrier film comprising the same.
  • Saponified products of vinyl alcohol-based copolymers represented by ethylene-vinyl acetate copolymers are used in various applications such as films, sheets, and containers based on excellent gas barrier properties.
  • a gas barrier film using a saponified product of a conventional ethylene vinyl acetate copolymer it is produced by a method of hydrolyzing it after preparing a copolymer of ethylene and vinyl acetate.
  • the film produced by the above method includes a vinyl alcohol-based polymer such as an ethylene vinyl alcohol copolymer (EVOH) produced by hydrolysis of an ethylene vinyl acetate copolymer, and the vinyl alcohol-based polymers contain hydroxyl groups contained in the molecule. Crystallizes by hydrogen bonding of and shows gas barrier properties.
  • the vinyl alcohol-based polymer exhibits high gas barrier properties in a dry state, but is absorbed by water vapor or the like in humid conditions, and there is a problem in that gas permeability rapidly increases as the hydrogen bond becomes loose.
  • Patent Document 1 a method for preservation in a humid environment is known by modifying a modified ethylene-vinyl ester copolymer saponified product with caprolactone or the like.
  • Patent Document 2 a vinyl alcohol-based polymer composition having improved gas barrier properties in a humid environment by introducing a metal alkoxide such as tetramethoxysilane into a functional group, Disclosed is a coating agent and a laminate comprising the same.
  • Patent Document 3 discloses a film material exhibiting transparency with gas barrier properties by reducing the content of the copolymer as a method for producing the vinyl alcohol copolymer.
  • the present invention is intended to provide a vinyl alcohol-based copolymer capable of reducing moisture permeation and exhibiting high gas barrier properties and a method for manufacturing the same.
  • the present invention is to provide a gas barrier film and a composition for forming a gas barrier film that exhibits excellent gas barrier properties even in a humid environment, including the vinyl alcohol-based copolymer.
  • the first repeating unit derived from olefins; A second repeating unit represented by Chemical Formula 1, including a hydroxy group; And a third repeating unit represented by the following Chemical Formula 2, which includes a cyanoalkyloxy group, wherein the content of the third repeating unit is 2 mol with respect to 100 mol% of the total amount of the second repeating unit and the third repeating unit. % Or less and less than 10 mol%.
  • L is C 1-10 alkylene
  • a basic substance is added to a copolymer of an olefin-vinyl carboxylic acid compound to perform hydrolysis by saponification, but is unsaturated when the saponification is 95% or more.
  • a method for preparing a vinyl alcohol-based copolymer comprising the step of introducing a nitrile-based compound and reacting such that the cyanoalkyl substitution rate according to Equation 1 is 2 mol% or more and less than 10 mol%:
  • Cyanoalkyl substitution rate [(molar% of the third repeating unit)/(molar% of the second repeating unit + mol% of the third repeating unit)] ⁇ 100
  • the mole percentages of the second repeating unit and the third repeating unit are values based on 100 mol% of the total amount of repeating units in the vinyl alcohol-based copolymer to be produced, respectively.
  • composition for forming a gas barrier film comprising the vinyl alcohol-based copolymer and a gas barrier film prepared using the same.
  • the vinyl alcohol-based copolymer according to the present invention is combined with a cyanoalkyl group having excellent water stability to the side chain, so that the permeation of water is reduced, and thus can exhibit excellent gas barrier properties even in a humid environment. Accordingly, the aforementioned vinyl alcohol-based copolymer is useful as a gas barrier film.
  • the saponification reaction for the copolymer of the olefin and the vinyl carboxylic acid compound proceeds more than 95%, by reacting by introducing an unsaturated nitrile-based compound such as acrylonitrile, vinyl alcohol-based A cyanoalkyl group was introduced into the side chain of the copolymer.
  • an unsaturated nitrile-based compound such as acrylonitrile
  • vinyl alcohol-based A cyanoalkyl group was introduced into the side chain of the copolymer.
  • the vinyl alcohol-based copolymer to be produced has an increased moisture stability, and the permeation of moisture during film production is reduced, so it can exhibit excellent gas barrier properties even in a humid environment.
  • the vinyl alcohol-based copolymer according to an embodiment of the present invention may be prepared by a Michael addition reaction between an unsaturated nitrile-based compound represented by acrylonitrile and a polymer having a hydroxy group in the molecule, and within the molecule
  • the polymer having a hydroxy group may be, for example, a polymer (EVA-ONa) produced by a hydrolysis reaction of an ethylene-vinyl acetate copolymer.
  • EVA-ONa is an intermediate in which a copolymer of ethylene and vinyl acetate is hydrolyzed under a caustic soda catalyst, which is a basic substance. Since it exists as a salt of an oxyanion and a sodium cation derived from caustic soda, it can easily bind acrylonitrile. have.
  • the vinyl alcohol-based copolymer according to an embodiment of the present invention comprises the steps of copolymerizing an olefin and a vinyl carboxylic acid compound to prepare a copolymer of an olefin-vinyl carboxylic acid compound; And adding a basic substance to the copolymer of the olefin-vinyl carboxylic acid vinyl-based compound to perform hydrolysis by saponification, and reacting by introducing an unsaturated nitrile-based compound when the saponification reaction proceeds by 95% or more. It can be manufactured by a manufacturing method including.
  • the vinyl alcohol-based copolymer according to an embodiment of the present invention is a repeating unit (first repeating unit) derived from the olefin, a repeating unit including a hydroxyl group (second repeating unit) derived from the vinyl carboxylic acid compound.
  • the unsaturated nitrile compound is a ternary copolymer containing a repeating unit (third repeating unit) containing a cyanoalkyloxy group, which is produced by reacting with the second repeating unit containing the hydroxy group, or together with the repeating unit, It may be a quaternary copolymer further comprising a repeating unit (fourth repeating unit) derived from a vinyl carboxylic acid compound not participating in the saponification reaction.
  • the first repeating unit is a repeating unit derived from an olefinic monomer having 2 to 20 carbon atoms or 2 to 10 carbon atoms such as ethylene, propylene, butylene, pentene, hexene, or octene. It increases the properties and increases the hydrophobicity, thereby reducing hygroscopicity.
  • the first repeating unit may include an ethylene-derived repeating unit, and optionally, is derived from an olefinic monomer having 3 to 20 carbon atoms or 3 to 10 carbon atoms, such as propylene, butylene, pentene, hexene, or octene. It may further include one or more repeating units.
  • the first repeating unit is 100 mol% of the total amount of repeating units constituting the copolymer. With respect to 10 to 70 mol%. If the content of the olefin-derived repeating unit is less than 10 mol%, there is a fear of deterioration in mechanical properties and increased hygroscopicity, and if it exceeds 70 mol%, there is a fear of gas barrier deterioration.
  • the content of the repeating unit derived from olefin in the copolymer can be calculated from the results of 1H-nuclear magnetic resonance spectroscopy (1H-NMR) analysis. Specifically, using a Bruker Avance III HD 700Mhz 1H-NMR analyzer, the sample was dissolved in a tetrahydrofuran solvent (THF-d8), the 1H spectrum was measured at room temperature, and the content of the repeating unit derived from olefin was calculated from the analysis results. Did.
  • the second repeating unit including a hydroxy group is a structural unit formed as a result of saponification of a repeating unit derived from a vinyl carboxylic acid compound such as vinyl acetate, vinyl It serves to increase the gas barrier properties of the alcohol-based copolymer.
  • the vinyl carboxylic acid compound may be specifically a vinyl acetate-based compound having 4 to 10 carbon atoms, such as vinyl acetate (or vinyl acetate), vinyl propionate, or 2-methyl propylonate, and more specifically acetic acid. It can be vinyl.
  • the vinyl carboxylate is vinyl acetate
  • the second repeating unit of the vinyl alcohol structure may have a structure represented by Formula 1 below.
  • the second repeating unit may be included in an amount of 25 to 85 mol% based on 100 mol% of the total amount of repeating units constituting the vinyl alcohol-based copolymer.
  • the content of the repeating unit including a hydroxy group is less than 25 mol%, there is a fear of gas barrier deterioration, and when it exceeds 85 mol%, there is a fear of gas barrier deterioration in a humid environment due to increased hygroscopicity, and film processing is difficult.
  • it is 25 mol% or more, or 45 mol% or more, or 60 mol% or more, and may be included in an amount of 85 mol% or less, or 80 mol% or less, or 75 mol% or less.
  • the content of the repeating unit including a hydroxy group in the copolymer can be calculated through 1H-nuclear magnetic resonance spectroscopy as described above, specifically, using a Bruker Avance III HD 700Mhz 1H-NMR analyzer, a sample After dissolving in tetrahydrofuran solvent (THF-d8), 1H spectrum can be measured at room temperature and calculated from the analysis results.
  • the third repeating unit is a repeating unit formed by combining a cyanoalkyl group as a result of the reaction of an unsaturated nitrile-based compound to the second repeating unit including the hydroxy group.
  • the unsaturated nitrile compound include acrylonitrile, methacrylonitrile, 2-cyanopropene, or 3-cyanopropene, and any one or a mixture of two or more of them may be used.
  • Chemical Formula 3 may be represented by Chemical Formula 2:
  • L may be C 1-10 alkylene, more specifically C 2-6 alkylene, and more specifically C 2 such as ethylene, 1-methylethylene, or n-propylene. 3 alkylene.
  • the third repeating unit may have a cyanoethyl group-containing structure represented by the following Chemical Formula 2-1.
  • the third repeating unit serves to prevent a decrease in gas barrier properties in a humid environment by increasing the moisture stability of the copolymer due to the cyanoalkyl group attached to the terminal.
  • such an effect can be further enhanced by controlling the content of the third repeating unit or controlling the substitution rate (or cyanoalkylation) by a cyanoalkyl group.
  • the cyanoalkyl substitution rate that is, the ratio of the repeating unit substituted with the cyanoalkyl group among the repeating units including the hydroxy group included in the copolymer before the cyanoalkyl group is substituted with the second repeating unit in the vinyl alcohol copolymer to be finally produced.
  • the content of the third repeating unit (mole %) relative to the total total amount of the third repeating units of 100 mol%, may be calculated according to Equation 1 below.
  • the cyanoalkyl substitution ratio of the vinyl alcohol copolymer that is, the content of the third repeating unit relative to the total total amount of 100 mol% of the second and third repeating units is 2 mol% or more and less than 10 mol% Can. If the cyanoalkyl substitution rate is less than 2 mol%, the water blocking effect is weak, and if it is 10 mol% or more, there is a fear that the gas barrier property is rather lowered. More specifically, it is 2.5 mol% or more, or 3 mol% or more, and may be 9 mol% or less, or 8 mol% or less.
  • Cyanoalkyl substitution rate [(molar% of the third repeating unit)/(molar% of the second repeating unit + mol% of the third repeating unit)] ⁇ 100
  • the mole percentages of the second repeating unit and the third repeating unit are values based on 100 mol% of the total amount of repeating units in the vinyl alcohol-based copolymer to be produced, respectively.
  • the cyanoalkyl substitution rate of the vinyl alcohol-based copolymer is obtained by nitrogen content by the Kjeldahl method, and the value of the third repeating unit in the copolymer and the cyanoalkyl substitution rate are calculated from the value.
  • the vinyl alcohol-based polymer according to an embodiment of the present invention may further include the fourth repeating unit derived from the vinyl carboxylic acid compound having no saponification reaction.
  • the fourth repeating unit derived from the vinyl carboxylic acid compound When the fourth repeating unit derived from the vinyl carboxylic acid compound is further included, the effect of improving the processability can be obtained, but the total amount of the repeating units constituting the copolymer, that is, the first, second, and third And when the total amount of the fourth repeating unit exceeds 1 mol% with respect to 100 mol%, there is a fear that the gas barrier property is deteriorated. Accordingly, the fourth repeating unit is 1 mol% or less, more specifically 0.1 mol% or more, 1 mol% or less, or 0.5 mol% or less with respect to 100 mol% of the total total amount of repeating units constituting the copolymer. Content.
  • the content of the fourth repeating unit derived from the vinyl carboxylic acid compound can be calculated by a method of 1H-nuclear magnetic resonance spectroscopy as described above.
  • Vinyl alcohol-based copolymer according to an embodiment of the invention comprising a repeating structure as described above can be improved moisture stability by including a cyanoalkyl group in the side chain, as a result, the penetration of moisture during film production is reduced and humid It can show excellent gas barrier properties even in the environment.
  • According to another embodiment of the invention provides a method for producing the vinyl alcohol-based copolymer.
  • a basic substance is introduced into a copolymer of an olefin-vinyl carboxylic acid compound to perform hydrolysis by saponification, but when the saponification reaction proceeds by 95% or more, an unsaturated nitrile compound And adding, and reacting such that the cyanoalkyl substitution rate according to Equation 1 is 2 mol% or more and less than 10 mol%.
  • Cyanoalkyl substitution rate [(molar% of the third repeating unit)/(molar% of the second repeating unit + mol% of the third repeating unit)] ⁇ 100
  • the mole percentages of the second repeating unit and the third repeating unit are values based on 100 mol% of the total amount of repeating units in the vinyl alcohol-based copolymer.
  • a copolymer of an olefin-vinyl carboxylic acid vinyl-based compound is prepared.
  • the copolymer of the olefin-vinyl carboxylic acid-based compound may be prepared through a polymerization reaction between an olefin and a vinyl carboxylic acid-based compound, and accordingly, the production method may be applied to a copolymer of an olefin-vinyl carboxylic acid-based compound. Before the hydrolysis step, it may further include a step of preparing a copolymer of an olefin-vinyl carboxylic acid compound through polymerization of an olefin and a vinyl carboxylic acid compound.
  • the olefin and vinyl carboxylic acid compounds are as described above.
  • the polymerization reaction of the olefin and the vinyl carboxylic acid compound may be performed according to a conventional method, and specifically, may be performed using a radical initiator in a solvent.
  • the input amount of the olefin and the vinyl carboxylate compound may be determined in consideration of the content of the repeating units derived from each compound in the final produced copolymer. For example, a molar ratio of 5:95 to 40:60, and more specifically, a molar ratio of 7:93 to 30:70 may be added.
  • a molar ratio of 5:95 to 40:60 and more specifically, a molar ratio of 7:93 to 30:70 may be added.
  • the hygroscopicity of the polymer can be lowered to prevent the gas barrier from being deteriorated under a high humidity environment.
  • the initiators are 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis-(4-methoxy Azo compounds such as -2,4-dimethylvaleronitrile) and 2,2'-azobis-(2-methyl isobutyrate); Bis-(4-t-butyl cyclohexyl) peroxy-di-carbonate, di-cyclohexyl peroxy-di-carbonate, bis(2-ethylhexyl) di-sec-butylperoxy-di-carbonate, di- Peroxy-di-carbonates such as isopropyl peroxy-di-carbonate; And radical initiators such as acetyl peroxide, lauroyl peroxide, di-lauroyl peroxide, di-decanoyl peroxide, and peroxides of di-octanoyl peroxide. Any one or
  • the initiator may be added in a ratio of 0.001 to 1 mole with respect to 100 moles of the total amount of monomers containing the olefin and vinyl carboxylic acid compound, more specifically 0.001 mole ratio or more, or 0.01 mole ratio or more, and 1 mole ratio Or, it may be added in an amount of 0.1 mol or less.
  • a ratio of 0.001 to 1 mole with respect to 100 moles of the total amount of monomers containing the olefin and vinyl carboxylic acid compound more specifically 0.001 mole ratio or more, or 0.01 mole ratio or more, and 1 mole ratio Or, it may be added in an amount of 0.1 mol or less.
  • a solvent having a high solubility with respect to the monomer compound may be used as the solvent.
  • alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, t-butyl alcohol, n-pentyl alcohol, and the like; Ketones such as methyl ethyl ketone and acetone; Or sulfoxides such as dimethyl sulfoxide, and the like, or a mixture of any one or more of them may be used.
  • alcohols showing better solubility may be used, and more specifically, t-butyl alcohol may be used.
  • the solvent may be added in an amount of 30 to 60 parts by weight based on 100 parts by weight of the total amount of monomers containing the olefin and vinyl carboxylic acid compound, more specifically 30 parts by weight or more, or 40 parts by weight or more , And may be added in an amount of 60 parts by weight or less, or 50 parts by weight or less.
  • the polymer can be prepared with excellent polymerization efficiency by completely dissolving the monomer materials when introduced within the above-described content range.
  • the polymerization reaction of the olefin and the vinyl carboxylic acid compound may be performed at 50 to 80°C, more specifically, 50°C or higher, or 60°C or higher, and 80°C or lower, or 70°C or lower. have. There is no fear of deterioration in polymerization efficiency due to unreacted or overreacted reactions in the above-mentioned temperature range.
  • the copolymer of the olefin and the vinyl carboxylic acid compound is prepared by the mid-reaction process described above, and the copolymer produced by controlling the content of the monomer material and the manufacturing conditions during the manufacturing process optimizes the weight average molecular weight and molecular weight distribution. And the content of structural units derived from ethylene.
  • the copolymer of the olefin and the vinyl carboxylic acid compound may have a weight average molecular weight of 100,000 to 350,000 g/mol, more specifically 150,000 g/mol or more, or 200,000 g/mol or more, and 350,000 g /mol or less, or 320,000 g/mol or less.
  • the molecular weight distribution (MWD) may be 1.5 to 2.5, more specifically 1.5 or more, or 1.8 or more, and 2.5 or less or 2.2 or less.
  • the content of the repeating unit derived from olefin is 10 mol% or more, or 15 mol% or more, or 20 mol% or more, based on 100 mol% of the total amount of repeating units in the copolymer of the olefin-vinyl carboxylic acid compound, or It may be 25 mol% or more, 70 mol% or less, or 50 mol% or less, or 45 mol% or less.
  • the copolymer of the olefin and the vinyl carboxylic acid compound may be an ethylene-vinyl acetate copolymer satisfying the above properties.
  • step 2 the copolymer of the olefin prepared in step 1 and the vinyl carboxylic acid compound is hydrolyzed through a saponification reaction, and when the saponification reaction proceeds to 95% or more, an unsaturated nitrile-based compound is added to a cyanoalkyl group. It is a step of preparing a copolymer having a.
  • the hydrolysis may be performed by adding a basic substance such as caustic soda or a base.
  • a basic substance such as caustic soda or a base.
  • the copolymerization of the olefin and the vinyl carboxylic acid-based compound is hydrolyzed by the saponification reaction by the introduction of the basic substance, and some or all of the repeating units derived from the vinyl-carboxylic acid-based compound in the copolymer are converted into a repeating unit including a hydroxy group.
  • the basic material may be added in a ratio of 5 to 15 moles with respect to 100 moles of the copolymer of the olefin and vinyl carboxylic acid compound, more specifically 5 moles or more, or 7 moles or more, 15 moles or less, or 12 moles It may be added in the following content. If the amount of the basic substance is less than 5 mole ratio, hydrolysis does not occur sufficiently, and if it exceeds 15 mole ratio, excessive wastewater may be generated in the process of removing the catalyst, and insufficient catalyst removal may cause discoloration or protrusion of the film. Can be
  • the basic substance may be added in a solution phase dissolved in an alcohol-based solvent such as methanol to increase reaction efficiency.
  • the hydrolysis may be performed at a temperature of 50 to 70°C, more specifically 50°C or more, or 60°C or more, and 70°C or less, or 65°C or less.
  • a hydrolysis reaction may occur sufficiently at an appropriate reaction rate.
  • a cyanoalkyl group is bonded to a side chain of a copolymer prepared by adding an unsaturated nitrile-based compound.
  • the cyanoalkyl group is bonded to the side chain of the copolymer through reaction with the unsaturated nitrile compound, thereby providing excellent copolymer. While maintaining the physical properties, it is possible to implement an improvement effect by introducing a cyanoalkyl group.
  • the timing of the introduction of the unsaturated nitrile compound affects the degree of saponification and cyanoalkylation of the copolymer.
  • the unsaturated nitrile-based compound reacts with the hydrolysis intermediate of the olefin-carboxylic acid vinyl-based compound copolymer, that is, the intermediate in which the copolymer is present as a salt of an oxyanion and a cation derived from a basic substance. Accordingly, when the content of the intermediate in the reaction system is insufficient or too large, it is difficult to satisfy the aforementioned cyanoalkyl substitution rate.
  • the unsaturated nitrile compound acrylonitrile as a representative example, is present in the salt form of an oxyanion and a cation derived from a basic substance, which is produced during hydrolysis of the olefin-vinyl carboxylic acid compound copolymer.
  • cyanoalkyl substitution is difficult because it exists as a saponified polymer having a hydroxyl group at the terminal, rather than an intermediate present in the salt form of an oxyanion and a cation derived from a basic substance. Accordingly, for cyanoalkyl substitution, cationic substitution for the saponified polymer, for example, NaOH substitution through addition of a basic substance such as caustic soda should be preceded.
  • a basic substance such as caustic soda
  • the unsaturated nitrile-based compound is preferably added when an intermediate present in the salt form of an oxyanion and a basic material-derived cation in the reaction system is present in an optimum content, specifically, the saponification reaction is 95% or more and saponification reaction It is preferably added until the completion time, that is, until the saponification reaction reaches 100%, or when the saponification reaction is 95% or more, and immediately before completion of the saponification reaction, that is, less than 100% or 99% or less.
  • an unsaturated nitrile-based compound is introduced to prevent side reactions caused by free NaOH. More specifically, 3 hours after the completion of the input of the reactant for saponification reaction, and more specifically, 3 to 4 hours after the completion of the reactant input, an unsaturated nitrile-based compound may be added.
  • the reaction after the introduction of the unsaturated nitrile-based compound, the cyanoalkyl substitution rate according to the formula (1) is carried out so that it is more than 2 mol%, less than 10 mol%.
  • an additive capable of increasing the solubility of ethylene vinyl alcohol-based copolymers such as acetone and increasing the cyanoalkyl substitution rate is additionally added.
  • the cyanoalkyl substitution rate is 10 mol% or more, gas barrier properties may be deteriorated.
  • the cyanoalkyl substitution rate is less than 2 mol%, the water blocking effect is weak.
  • the reaction after addition of the unsaturated nitrile-based compound is such that the cyanoalkyl substitution rate according to Equation 1 is 2.5 mol% or more, or 3 mol% or more, and 9 mol% or less, or 8 mol% or less. Can be performed.
  • the progress of the saponification reaction can be confirmed from the intensity change of the peak of the functional group generated or disappeared as a result of the saponification reaction through 1H-nuclear magnetic resonance spectroscopy, and the progress of the saponification reaction from the repeated analysis results It can be estimated by reaction time. Specifically, the time at which the saponification reaction is 50% is 1 hour after the completion of the reactant addition, and the time at 95% is 3 hours after the completion of the reaction addition.
  • Examples of the unsaturated nitrile-based compound include acrylonitrile, methacrylonitrile, 1-cyanopropene, and 3-cyanopropene, and any one or a mixture of two or more of them may be used.
  • the unsaturated nitrile-based compound, the degree of cyanoalkylation in the final vinyl alcohol-based copolymer, specifically, the content of the third repeating unit including a cyanoalkyloxy group is 100 mol% of the total amount of the second and third repeating units It may be added in an amount of 2 mol% or more, or 2.5 mol% or more, or 3 mol% or more, and 10 mol% or less, or 9 mol% or less, or 8 mol% or less.
  • the reaction is performed at a temperature in the range of 0°C or higher, or 40°C or higher, and 60°C or lower, for 2 hours or longer, or 24 hours or longer and 48 hours or shorter, or 30 hours or shorter. Can be.
  • reaction product particles are prepared in a form dispersed in a solvent.
  • the cyanoalkyl group is optionally further provided.
  • Vinyl alcohol-based copolymers can be obtained.
  • cyanoalkyl group As the cyanoalkyl group is bonded to the side chain of the copolymer, a peak of the cyanoethyl group (-CH 2 -CN) bound to the side chain appears at 2.7 ppm in 1H-nuclear magnetic resonance spectroscopy.
  • the vinyl alcohol copolymer may contain by-products in a content of 20% or less, more specifically 0% by weight or more and 15% by weight or less, or 12% by weight or less, based on the total weight of the copolymer,
  • the by-product may be a cyano group-containing compound such as cyanoethanol, 2-cyanohexanone, cyanoethyl ether, and dicyanoethylated acetone, or a mixture thereof.
  • the vinyl alcohol-based copolymer prepared by the above-described manufacturing method has a cyanoalkyl group having excellent water stability and is bonded to the side chain, so that the penetration of moisture is reduced, and it can be applied to gases such as oxygen, water vapor, carbon dioxide, and nitrogen even in a humid environment. Excellent gas barrier properties. Accordingly, it can be used for various applications such as film, sheet, container, fiber, etc., which require gas barrier properties.
  • a gas barrier film and a composition for forming a gas barrier film comprising the vinyl alcohol-based copolymer.
  • the film can be produced according to conventional molding methods such as injection molding, compression molding, and extrusion molding.
  • the double extrusion molding method include a T-die method, a blow molding method, a pipe extrusion method, a linear extrusion method, a release die extrusion method, an inflation method, and the like, and also the co-extrusion molding of the vinyl alcohol copolymer with another thermoplastic resin layer. It is also possible.
  • the composition for forming the gas barrier film is not particularly limited as long as it is used in a composition for forming a film applied to a conventional film forming method, except that the vinyl alcohol-based copolymer is used as a base resin. It can contain.
  • a known additive such as a stabilizer such as a glass fiber, a carbon fiber, a filler, a colorant, a hydrotalcite, a blowing agent, a drying agent, or a thermoplastic resin may be further added to the composition for forming a film.
  • the film may be used in the form of an independent film, may be used in the form of a coating film for the substrate, or may be used in the form of a multi-layer structure with other films.
  • the film can be used as packaging materials such as food packaging films, sheets, cosmetic containers, gasoline tank containers, etc. because it can maintain excellent gas barrier properties even under humid conditions.
  • the film has a 95% RH oxygen permeability of 0.05 cc ⁇ 20 ⁇ m/m 2 ⁇ 24 hr ⁇ atm or less, more specifically 0.03 cc ⁇ 20 ⁇ m/m 2 ⁇ 24 hr ⁇ atm or less, and 0.001 cc ⁇ 20 ⁇ m/m 2 ⁇ 24 hr ⁇ atm or more, or 0.01 cc ⁇ 20 ⁇ m/m 2 ⁇ 24 hr ⁇ atm or more.
  • copolymers prepared in Examples and Comparative Examples were analyzed in the following manner:
  • Mw Weight average molecular weight
  • Mw/Mn molecular weight distribution
  • the copolymer sample was dissolved in dimethylformamide (DMF) at a concentration of 1 mg/ml and filtered through a 0.45 ⁇ m syringe filter. 2) GPC chromatogram is obtained by injecting sample solution. 3) GPC chromatogram was obtained by injecting a standard solution. 4) A calibration curve and an equation were obtained from the chromatogram of a standard solution, and the retention time of the sample solution was substituted into the equation to obtain the weight average molecular weight and number average molecular weight of the sample, respectively. The molecular weight distribution (Mw/Mn) was calculated from the measured weight average molecular weight (Mw) and number average molecular weight (Mn) values.
  • MMF dimethylformamide
  • the nitrogen content is obtained by the Kjeldahl method for the produced copolymer, and from the value, the cyanoethyl substitution rate, that is, the second repeating unit including a hydroxy group and the cyanoalkyloxy group in the final produced vinyl alcohol-based copolymer are included.
  • the content (mole %) of the third repeating unit including the cyanoalkyloxy group with respect to 100 mol% of the total total amount of the third repeating units was calculated according to Equation 1 below.
  • Cyanoalkyl substitution rate [(molar% of the third repeating unit)/(molar% of the second repeating unit + mol% of the third repeating unit)] ⁇ 100
  • the mole percentages of the second repeating unit and the third repeating unit are values based on 100 mol% of the total amount of repeating units in the vinyl alcohol-based copolymer that is finally produced.
  • N(ethylene) is the molar content of repeat units derived from ethylene
  • n(VAc) is the molar content of repeat units derived from vinyl acetate
  • I 0.74-2.1ppm is the integral of the peak area appearing between 0.74 and 2.1ppm
  • I 4.78ppm is the integral value of the peak area at 4.78ppm.
  • the obtained ethylene-vinyl acetate polymer had a Mw of 263,000 g/mol, a molecular weight distribution (MWD) of 2.09, and a content of ethylene-derived repeating units in the copolymer was 27.6 mol%.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-cyanoethyl group-containing vinyl alcohol-based copolymer.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-alanoethyl group-containing vinyl alcohol copolymer.
  • the obtained ethylene-vinyl acetate polymer had a Mw of 240,000 g/mol, a molecular weight distribution (MWD) of 2.1, and a content of ethylene-derived repeating units in the copolymer was 44.1 mol%.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-cyanoethyl group-containing vinyl alcohol-based copolymer.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-alanoethyl group-containing vinyl alcohol copolymer.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a vinyl alcohol-based copolymer.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-alanoethyl group-containing vinyl alcohol copolymer.
  • reaction solution was neutralized with acetic acid, and water vapor was blown to volatilize alcohol, followed by precipitation of particles dispersed in water.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-alanoethyl group-containing vinyl alcohol copolymer.
  • the caustic soda catalyst was dissolved in 30 g of water in an amount corresponding to 9 mole ratio based on 100 moles of the vinyl alcohol-based copolymer prepared in Comparative Example 1-2. While stirring the resulting solution, 10 g of acrylonitrile and 20 g of the vinyl alcohol-based copolymer prepared in Comparative Example 1-2 were added and reacted at 60° C. for 5 hours. At this time, the vinyl alcohol-based copolymer was made into a film form, and then chopped into small pieces.
  • reaction solution was neutralized with acetic acid, and the reaction residue was volatilized in vacuo, dissolved in acetone and precipitated in water to obtain.
  • the obtained particles were washed with a large amount of water, and then dried to obtain a 2-alanoethyl group-containing vinyl alcohol copolymer.
  • a film was prepared using the 2-cyanoethyl group-containing vinyl alcohol-based copolymer prepared in Example 1-1.
  • Example 1-1 0.5 g of the vinyl alcohol-based copolymer in Example 1-1 was compressed at 190°C for 3 minutes using a compression molding machine to prepare a film.
  • Example 2-1 Films were performed in the same manner as in Example 2-1, except that the vinyl alcohol-based copolymers prepared in Examples 1-2 to 2-3 or Comparative Examples 1-1 to 1-5 were used. Was prepared.
  • the peak of the cyanoethyl group (-CH 2 -CN) bound to the side chain of the vinyl alcohol-based copolymer appeared at 2.7 ppm, where the proton peak of -CH 2 -CN was usually acrylic. It was observed to be higher than the proton peak of -CH(CN)-, which appeared when polymerizing the nitrile as a comonomer. This difference in peak structure is because the amount of proton in -CH 2 -CN is twice as large as -CH(CN)-.
  • the sample was analyzed by GC/MS (EQC-0291) under the following conditions as the stock solution, and toluene was used as a standard solution.
  • Oven temperature Initial Value & Time: 50°C, 5 min
  • each by-product is weight% based on the total weight of the vinyl alcohol copolymer.
  • Example 1-2 Example 1-3 Comparative Example 1-1 Comparative Example 1-2 Comparative Example 1-3 Comparative Example 1-4 Comparative Example 1-5
  • the content of the repeating units derived from ethylene is based on 100 mol% of the total amount of repeating units constituting the vinyl alcohol-based copolymer.
  • the films of Examples 2-1 to 2-3 prepared using the cyanoethyl group-containing copolymer according to the present invention have an environment with high humidity due to improvement in hygroscopicity as compared with Comparative Examples 2-1 to 2-5. It also showed excellent oxygen barrier properties. From these results, it can be confirmed that it is useful as a packaging material in a humid environment.

Abstract

본 발명에서는, 올레핀 유래 제1반복단위, 히드록시기 포함 제2반복단위, 및 상기 히드록시기 포함 반복단위와 불포화 니트릴계 화합물의 반응으로 형성된, 시아노알킬옥시기 포함 제3반복단위를 포함하되, 상기 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량이 2몰% 이상이고 10몰% 미만인, 비닐 알코올계 공중합체, 이의 제조방법 및 이를 포함하는 기체 차단성 필름이 제공된다. 상기 비닐 알코올계 공중합체는 우수한 수분 안정성을 가져, 다습한 환경 하에서도 우수한 기체 차단성을 나타낼 수 있다.

Description

비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
관련 출원(들)과의 상호 인용
본 출원은 2019년 1월 22일자 한국 특허 출원 제 10-2019-0008233호 및 2020년 1월 20일자 한국 특허 출원 제10-2020-0007547호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 수분의 침투가 감소되고, 높은 기체 차단성을 나타낼 수 있는 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름에 관한 것이다.
에틸렌-비닐아세테이트 공중합체로 대표되는 비닐 알코올계 공중합체의 비누화물은 우수한 기체 차단 특성을 기반으로 필름, 시트, 용기 등의 각종 용도에 이용되고 있다.
종래 에틸렌 비닐아세테이트 공중합체의 비누화물을 이용한 기체 차단성 필름의 경우, 에틸렌과 비닐 아세테이트의 공중합체 제조 후, 이를 가수분해하는 방법으로 제조되고 있다. 상기한 방법으로 제조된 필름은 에틸렌 비닐아세테이트 공중합체의 가수분해에 의해 제조되는 에틸렌 비닐알코올 공중합체(EVOH)과 같은 비닐 알코올계 중합체를 포함하고, 상기 비닐 알코올계 중합체는 분자 중의 포함된 수산기끼리의 수소 결합에 의해 결정화하여 기체 차단성을 나타낸다. 그러나, 상기 비닐 알코올계 중합체는 건조한 상태에서는 높은 기체 차단성을 나타내지만, 다습한 조건에서는 수증기 등에 의해 흡습되어, 상기 수소결합이 느슨해 지면서 기체 투과도가 급격히 상승하는 문제가 있다.
이를 해결하기 위하여 다양한 방법들이 제안되었다. 구체적으로, 일본 특허 공개 제2015-093389호(특허문헌 1)에서는, 변성 에틸렌-비닐에스테르계 공중합체 비누화물을 카프로락톤 등으로 변성함으로써 다습 환 환경에서의 보존 방법을 공지한 바 있다. 또, 일본 특허 공개 제2002-138109호(특허문헌 2)에서는 테트라메톡시실란(Tetramethoxysilane) 등과 같은 금속알콕사이드를 관능기로 도입하는 방법을 통해 다습 환경 하에서의 기체 차단성을 개선시킨 비닐 알코올계 중합체 조성물, 이를 포함하는 코팅제 및 적층체를 개시하고 있다.
또, 미국 등록 특허 제4,746,700호(특허문헌 3)에서는 비닐 알코올 공중합체의 제조 방법으로서 공중합체의 함량을 감소시킴으로써, 기체 차단성과 함께 투명성을 나타내는 필름 소재를 개시하고 있다.
그러나, 제안된 방법으로도 기체 차단성 필름의 다습 환경하에서의 기체 차단성 저하를 방지하기에는 충분하지 않았다.
본 발명에서는 수분의 침투가 감소되고, 높은 기체 차단성을 나타낼 수 있는 비닐 알코올계 공중합체 및 이의 제조 방법을 제공하고자 한다.
또 본 발명에서는 상기 비닐 알코올계 공중합체를 포함하여, 다습 환경에서도 우수한 기체 차단성을 나타내는 기체 차단성 필름 형성용 조성물 및 기체 차단성 필름을 제공하고자 한다.
상기와 같은 문제를 해결하기 위해서 본 발명의 일 구현예에 따르면, 올레핀 유래 제1반복단위; 하기 화학식 1로 표시되는, 히드록시기 포함 제2반복단위; 및 하기 화학식 2로 표시되는, 시아노알킬옥시기 포함 제3반복단위;를 포함하며, 상기 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량이 2몰% 이상이고 10몰% 미만인, 비닐 알코올계 공중합체를 제공한다.
[화학식 1]
Figure PCTKR2020001017-appb-img-000001
[화학식 2]
Figure PCTKR2020001017-appb-img-000002
(상기 화학식 2에서, L은 C 1-10 알킬렌이다)
또, 본 발명의 다른 일 구현예에 따르면, 올레핀-카르복실산 비닐계 화합물의 공중합체에 염기성 물질을 투입하여 비누화 반응에 의한 가수분해를 수행하되, 상기 비누화 반응이 95% 이상 진행되었을 때 불포화 니트릴계 화합물을 투입하고, 하기 수학식 1에 따른 시아노알킬 치환율이 2몰% 이상이고 10몰% 미만이 되도록 반응시키는 단계를 포함하는, 상기한 비닐 알코올계 공중합체의 제조방법을 제공한다:
[수학식 1]
시아노알킬 치환율=[(제3반복단위의 몰%)/(제2반복단위의 몰%+제3반복단위의 몰%)] × 100
상기 수학식 1에서, 제2반복단위 및 제3반복단위의 몰%는 각각 최종 제조되는 비닐 알코올계 공중합체 내 반복단위의 총 합계량 100몰%를 기준으로 한 값이다.
본 발명의 또 다른 일 구현예에 따르면, 상기 비닐 알코올계 공중합체를 포함하는 기체 차단성 필름 형성용 조성물 및 이를 이용하여 제조한 기체 차단성 필름을 제공한다.
본 발명에 따른 비닐 알코올계 공중합체는 측쇄에 우수한 수분안정성을 갖는 시아노알킬기가 결합됨으로써, 수분의 침투가 감소되어 다습한 환경하에서도 우수한 기체 차단성을 나타낼 수 있다. 이에 따라 상기한 비닐 알코올계 공중합체는 기체 차단성 필름으로 유용하다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하 발명의 구체적인 구현예에 따른 비닐 알코올계 공중합체 및 그 제조방법, 이를 이용하여 제조한 기체 차단성 필름에 관하여 보다 상세하게 설명하기로 한다.
종래 에틸렌-비닐아세테이트 공중합체의 비누화물로 대표되는 비닐 알코올계 공중합체를 이용한 기체 차단성 필름은, 에틸렌 등의 올레핀과 비닐아세테이트 등의 카르복실산 비닐계 화합물의 공중합 후, 염기성 물질로 이를 가수분해하여 비닐 알코올계 공중합체를 제조하고, 이를 이용하여 필름상으로 제조하였다.
이에 대해, 본 발명에서는 상기 올레핀과 카르복실산 비닐계 화합물의 공중합체에 대한 비누화 반응이 95% 이상 진행되었을 때, 아크릴로니트릴과 같은 불포화 니트릴계 화합물을 투입하여 반응시킴으로써, 제조되는 비닐 알코올계 공중합체의 측쇄에 시아노알킬기를 도입하였다. 그 결과, 제조되는 비닐 알코올계 공중합체는 수분 안정성이 증가되어, 필름 제조시 수분의 침투가 감소되어 다습한 환경에서도 우수한 기체 차단성을 나타낼 수 있다.
구체적으로, 발명의 일 구현예에 따른 비닐 알코올계 공중합체는, 아크릴로니트릴로 대표되는 불포화 니트릴계 화합물과, 분자 내에 히드록시기를 갖는 중합체와의 마이클 부가 반응에 의해서 제조될 수 있으며, 상기 분자 내 히드록시기를 갖는 중합체는, 일례로 에틸렌-비닐 아세테이트 공중합체의 가수분해 반응에 의해 제조되는 중합체(EVA-ONa)일 수 있다.
EVA-ONa는 에틸렌과 비닐 아세테이트의 공중합체가 염기성 물질인 가성소다 촉매 하에서 가수분해되어 나타나는 중간체로, 옥시 음이온과 가성소다 유래 나트륨 양이온의 염으로 존재하기 때문에, 아크릴로니트릴과 용이하게 결합할 수 있다.
보다 구체적으로, 발명의 일 구현예에 따른 비닐 알코올계 공중합체는, 올레핀과 카르복실산 비닐계 화합물을 공중합하여 올레핀-카르복실산 비닐계 화합물의 공중합체를 제조하는 단계; 및 상기 올레핀-카르복실산 비닐계 화합물의 공중합체에 염기성 물질을 투입하여 비누화 반응에 의한 가수분해를 수행하되, 비누화 반응이 95% 이상 진행되었을 때 불포화 니트릴계 화합물을 투입하여 반응시키는 단계;를 포함하는 제조방법에 의해 제조될 수 있다.
이에 따라 발명의 일 구현예에 따른 비닐 알코올계 공중합체는, 상기 올레핀으로부터 유래된 반복단위(제1반복단위), 상기 카르복실산 비닐계 화합물로부터 유래된, 히드록시기 포함 반복단위(제2반복단위), 그리고 불포화 니트릴계 화합물이 상기 히드록시기 포함 제2반복단위와 반응하여 생성된, 시아노알킬옥시기 포함 반복단위(제3반복단위)를 포함하는 삼원 공중합체이거나, 또는 상기 반복단위와 함께, 비누화 반응에 참여하지 않은 카르복실산 비닐계 화합물 유래 반복단위(제4반복단위)를 더 포함하는 사원 공중합체일 수 있다.
상기 제1반복단위는, 에틸렌, 프로필렌, 부틸렌, 펜텐, 헥센, 또는 옥텐 등과 같은 탄소수 2 내지 20, 또는 탄소수 2 내지 10의 올레핀계 단량체로부터 유래된 반복단위로, 비닐 알코올계 공중합체의 기계적 특성을 증가시키고, 또 소수성을 증가시켜 흡습성을 감소시키는 작용을 한다.
구체적으로 상기 제1반복단위는 에틸렌 유래 반복단위를 포함할 수 있으며, 선택적으로, 프로필렌, 부틸렌, 펜텐, 헥센, 또는 옥텐 등과 같은 탄소수 3 내지 20, 또는 탄소수 3 내지 10의 올레핀계 단량체로부터 유래된 반복단위를 1종 이상 더 포함할 수 있다.
상기 올레핀 유래 반복단위의 함량 제어를 통해, 비닐 알코올계 공중합체의 기계적 특성 및 소수성을 증가시킬 수 있는데, 구체적으로는 상기 제1반복단위는, 공중합체를 구성하는 반복단위들의 총 합계량 100몰%에 대하여 10 내지 70몰%로 포함될 수 있다. 올레핀 유래 반복단위의 함량이 10몰% 미만이면 기계적 특성 저하 및 흡습성 증가의 우려가 있고, 또 70몰%를 초과하면 기체 차단성 저하의 우려가 있다. 보다 구체적으로는 10몰% 이상, 또는 15몰% 이상, 또는 20몰% 이상, 또는 25몰% 이상이고, 70몰% 이하, 또는 50몰% 이하, 또는 45몰% 이하의 함량으로 포함될 수 있다.
본 발명에 있어서 공중합체내 올레핀 유래 반복단위의 함량은, 1H-핵자기 공명 분광(1H-NMR) 분석 결과로부터 산출할 수 있다. 구체적으로 Bruker Avance III HD 700Mhz 1H-NMR 분석기기를 사용하여, 시료를 테트라하이드로퓨란 용매(THF-d8)에 녹인 후, 상온에서 1H spectrum을 측정하고, 분석 결과로부터 올레핀 유래 반복단위의 함량을 계산하였다.
또, 발명의 일 구현예에 따른 비닐 알코올계 공중합체에 있어서, 상기 히드록시기 포함 제2반복단위는, 비닐아세테이트와 같은 카르복실산 비닐계 화합물 유래 반복단위의 비누화 반응 결과로 형성된 구조 단위로서, 비닐 알코올계 공중합체의 기체 차단성을 증가시키는 작용을 한다.
상기 카르복실산 비닐계 화합물은 구체적으로 아세트산 비닐(또는 비닐 아세테이트), 프로피온산 비닐, 또는 2-메틸 프로필온산 비닐과 같은 탄소수 4 내지 10의 카르복실산 비닐계 화합물일 수 있으며, 보다 구체적으로는 아세트산 비닐일 수 있다. 상기 카르복실산 비닐이 아세트산 비닐인 경우, 상기 비닐 알코올 구조의 제2반복단위는 하기 화학식 1로 표시되는 구조를 가질 수 있다.
[화학식 1]
Figure PCTKR2020001017-appb-img-000003
상기 제2반복단위는 비닐 알코올계 공중합체를 구성하는 반복단위들의 총 합계량 100몰%에 대하여 25 내지 85몰%로 포함될 수 있다. 히드록시기 포함 반복단위의 함량이 25몰% 미만이면 기체 차단성 저하의 우려가 있고, 또 85몰%를 초과할 경우 흡습성 증가로 인해 다습 환경에서 기체 차단성 저하의 우려가 있을뿐더러, 필름 가공이 어려울 수 있다. 보다 구체적으로는 25몰% 이상, 또는 45몰% 이상, 또는 60몰% 이상이고, 85몰% 이하, 또는 80몰% 이하, 또는 75몰% 이하의 함량으로 포함될 수 있다.
본 발명에 있어서 공중합체내 히드록시기 포함 반복단위의 함량은, 앞서 설명한 바와 같이 1H-핵자기 공명 분광 분석을 통해 산출할 수 있으며, 구체적으로는 Bruker Avance III HD 700Mhz 1H-NMR 분석기기를 사용하여, 시료를 테트라하이드로퓨란 용매(THF-d8)에 녹인 후, 상온에서 1H spectrum을 측정하고, 분석 결과로부터 산출할 수 있다.
또, 발명의 일 구현예에 따른 비닐 알코올계 공중합체에 있어서, 상기 제3반복단위는 상기 히드록시기 포함 제2반복단위에 대한 불포화 니트릴계 화합물의 반응의 결과로서 시아노알킬기가 결합되어 형성된 반복단위이다. 상기 불포화 니트릴계 화합물로는 아크릴로니트릴, 메타크릴로니트릴, 2-시아노프로펜, 또는 3-시아노프로펜 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
구체적으로 상기 화학식 3의 반복단위는 하기 화학식 2로 표시될 수 있다:
[화학식 2]
Figure PCTKR2020001017-appb-img-000004
상기 화학식 2에서, L은 C 1-10 알킬렌일 수 있으며, 보다 구체적으로는 C 2-6 알킬렌일 수 있으며, 보다 더 구체적으로는 에틸렌, 1-메틸에틸렌, 또는 n-프로필렌 등과 같은 C 2-3 알킬렌일 수 있다.
일례로서, 아크릴로니트릴이 사용될 경우, 상기 제3반복단위는 하기 화학식 2-1로 표시되는, 시아노에틸기 포함 구조를 가질 수 있다.
[화학식 2-1]
Figure PCTKR2020001017-appb-img-000005
상기 제3반복단위는, 말단에 결합된 시아노알킬기로 인해 공중합체의 수분 안정성을 높여 다습 환경 하에서 기체 차단성 저하를 방지하는 역할을 한다.
또, 상기 제3반복단위의 함량 제어 또는 시아노알킬기에 의한 치환율(또는 시아노알킬화) 제어를 통해 이 같은 효과를 더욱 증진시킬 수 있다. 상기 시아노알킬 치환율, 즉 시아노알킬기로 치환 전 공중합체 내 포함된 히드록시기 포함 반복 단위 중에서 상기 시아노알킬기로 치환된 반복단위의 비율은, 최종 제조되는 비닐 알코올계 공중합체 내 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량(몰%)로서, 하기 수학식 1에 따라 계산될 수 있다. 구체적으로, 비닐 알코올계 공중합체의 시아노알킬 치환율, 즉 상기 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량은, 2몰% 이상이고 10몰% 미만일 수 있다. 시아노알킬 치환율이 2몰% 미만이면 수분 차단 효과가 미약하고, 10몰% 이상이면 기체 차단성이 오히려 저하될 우려가 있다. 보다 구체적으로는 2.5몰% 이상, 또는 3몰% 이상이고, 9몰% 이하, 또는 8몰% 이하일 수 있다.
[수학식 1]
시아노알킬 치환율=[(제3반복단위의 몰%)/(제2반복단위의 몰%+제3반복단위의 몰%)] × 100
상기 수학식 1에서, 제2반복단위 및 제3반복단위의 몰%는 각각 최종 제조되는 비닐 알코올계 공중합체 내 반복단위의 총 합계량 100몰%를 기준으로 한 값이다.
본 발명에 있어서, 상기 비닐 알코올계 공중합체의 시아노알킬 치환율은 켈달법(Kjeldahl method)에 의해 질소 함유량을 구하고, 그의 값으로부터 공중합체 내 제3 반복단위의 함량 및 시아노알킬 치환율을 산출할 수 있다.
한편, 발명의 일 구현예에 따른 비닐 알코올계 중합체는, 비누화 반응이 일어나지 않은 카르복실산 비닐계 화합물 유래 제4반복단위를 잔부로 더 포함할 수 있다.
카르복실산 비닐계 화합물 유래 제4반복단위를 더 포함할 경우, 가공성 개선의 효과를 얻을 수 있지만, 그 함량이 공중합체를 구성하는 반복단위의 총 합계량, 즉 즉 제1, 제2, 제3 및 제4 반복단위의 총 합계량 100몰%에 대하여 1몰%를 초과할 경우 기체 차단성이 저하될 우려가 있다. 이에 따라 상기 제4반복단위는, 공중합체를 구성하는 반복단위의 총 합계량 100몰%에 대하여 1몰% 이하, 보다 구체적으로는 0.1몰% 이상이고, 1몰% 이하, 또는 0.5몰% 이하의 함량으로 포함될 수 있다.
상기 카르복실산 비닐계 화합물 유래 제4반복단위의 함량은 앞서 설명한 바와 같이 1H-핵자기 공명 분광 분석의 방법으로 산출할 수 있다.
상기와 같은 반복구조를 포함하는 발명의 일 구현예에 따른 비닐 알코올계 공중합체는 측쇄에 시아노알킬기를 포함함으로써 수분 안정성이 개선될 수 있고, 그 결과 필름 제조시 수분의 침투가 감소되어 다습한 환경에서도 우수한 기체 차단성을 나타낼 수 있다.
발명의 또 다른 일 구현예에 따르면 상기 비닐 알코올계 공중합체의 제조방법을 제공한다.
상기 제조방법은 상술한 바와 같이, 올레핀-카르복실산 비닐계 화합물의 공중합체에 염기성 물질을 투입하여 비누화 반응에 의한 가수분해를 수행하되, 비누화 반응이 95% 이상 진행되었을 때 불포화 니트릴계 화합물을 투입하고, 하기 수학식 1에 따른 시아노알킬 치환율이 2몰% 이상이고 10몰% 미만이 되도록 반응시키는 단계를 포함한다.
[수학식 1]
시아노알킬 치환율=[(제3반복단위의 몰%)/(제2반복단위의 몰%+제3반복단위의 몰%)] × 100
상기 수학식 1에서, 제2 반복단위 및 제3 반복단위의 몰%는 비닐 알코올계 공중합체 내 반복단위의 총 합계량 100몰%를 기준으로 한 값이다.
먼저, 발명의 일 구현예에 따른 비닐 알코올계 공중합체 제조를 위해 올레핀-카르복실산 비닐계 화합물의 공중합체를 준비한다.
상기 올레핀-카르복실산 비닐계 화합물의 공중합체는, 올레핀과 카르복실산 비닐계 화합물의 중합 반응을 통해 제조될 수 있으며, 이에 따라 상기 제조방법은 올레핀-카르복실산 비닐계 화합물의 공중합체에 대한 가수분해 단계 전, 올레핀과 카르복실산 비닐계 화합물의 중합을 통해 올레핀-카르복실산 비닐계 화합물의 공중합체를 제조하는 단계를 더 포함할 수 있다. 상기 올레핀 및 카르복실산 비닐계 화합물은 앞서 설명한 바와 같다.
상기 올레핀과 카르복실산 비닐계 화합물의 중합 반응은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 용매 중에서 라디칼 개시제를 이용하여 수행될 수 있다.
또 상기 중합시 올레핀과 카르복실산 비닐계 화합물은 최종 제조되는 공중합체 내 각 화합물 유래 반복단위의 함량을 고려하여 그 투입량이 결정될 수 있다. 일례로 5:95 내지 40:60의 몰비, 보다 구체적으로는 7:93 내지 30:70의 몰비로 투입될 수 있다. 또, 상기한 몰비로 반응시 제조되는 올레핀과 카르복실산 비닐계 화합물 내 올레핀 유래 반복단위 함량의 최적화로 중합체의 흡습성을 낮추어 고습 환경하에서 기체 차단성 저하를 방지할 수 있다.
또, 상기 개시제로는 2,2' -아조비스-(2,4-디메틸발레로니트릴), 2,2' -아조비스이소부티로니트릴, 2,2'-아조비스-(4-메톡시-2,4-디메틸발레로니트릴), 2,2'-아조비스-(2-메틸 이소부티레이트) 등의 아조 화합물; 비스-(4-t-부틸 사이클로헥실) 퍼옥시-디-카보네이트, 디-사이클로헥실 퍼옥시-디-카보네이트, 비스(2-에틸헥실) 디-sec-부틸퍼옥시-디-카보네이트, 디-이소프로필퍼옥시-디-카보네이트 등의 퍼옥시-디-카보네이트류; 아세틸 퍼옥사이드, 라우로일(lauroyl) 퍼옥사이드, 디-라우로일(lauroyl) 퍼옥사이드, 디-데카노일 퍼옥사이드, 디-옥타노일 퍼옥사이드의 퍼옥사이드류 등의 라디칼 개시제를 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 개시제는, 상기 올레핀 및 카르복실산 비닐계 화합물을 포함하는 단량체의 총 합계량 100몰에 대하여 0.001 내지 1몰비로 투입될 수 있으며, 보다 구체적으로는 0.001몰비 이상, 또는 0.01몰비 이상이고, 1몰비 이하, 또는 0.1몰비 이하로 투입될 수 있다. 상기한 함량 범위 내로 투입시 보다 우수한 효율로 중합체를 제조할 수 있다.
또, 상기 용매로는 단량체 화합물에 대해 높은 용해도를 갖는 용매가 사용될 수 있다. 구체적으로는 메틸알코올, 에틸알코올, 프로필알코올, 이소프로필알코올, t-부틸알코올, n-펜틸알코올 등과 같은 알코올; 메틸에틸케톤, 아세톤 등과 같은 케톤; 또는 디메틸설폭사이드 등과 같은 설폭사이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 보다 우수한 용해도를 나타내는 알코올이 사용될 수 있으며, 보다 구체적으로는 t-부틸알코올이 사용될 수 있다.
상기 용매는, 상기 올레핀 및 카르복실산 비닐계 화합물을 포함하는 단량체 총 합계량 100중량부에 대하여 30 내지 60중량부의 함량으로 투입될 수 있으며, 보다 구체적으로는 30중량부 이상, 또는 40중량부 이상이고, 60중량부 이하, 또는 50중량부 이하의 함량으로 투입될 수 있다. 상기한 함량 범위 내로 투입시 단량체 물질들의 완전한 용해로 우수한 중합 효율로 중합체를 제조할 수 있다.
또 상기 올레핀과 카르복실산 비닐계 화합물의 중합 반응은 50 내지 80℃에서 수행될 수 있으며, 보다 구체적으로는 50℃ 이상, 또는 60℃ 이상이고, 80℃ 이하, 또는 70℃ 이하에서 수행될 수 있다. 상기한 온도 범위에서 반응시 미반응 또는 과반응 발생에 의한 중합 효율 저하의 우려가 없다.
상기한 중반 반응 공정에 의해 올레핀과 카르복실산 비닐계 화합물의 공중합체가 제조되게 되며, 제조 공정시 단량체 물질의 함량 및 제조 조건의 제어로 인해 제조되는 공중합체는 최적화된 중량평균 분자량, 분자량 분포 및 에틸렌 유래 구조단위의 함량 등을 나타낼 수 있다.
구체적으로, 상기 올레핀과 카르복실산 비닐계 화합물의 공중합체는 중량평균 분자량이 100,000 내지 350,000 g/mol일 수 있으며, 보다 구체적으로는 150,000 g/mol 이상, 또는 200,000 g/mol 이상이고, 350,000 g/mol 이하, 또는 320,000 g/mol 이하일 수 있다. 또, 분자량 분포(MWD)가 1.5 내지 2.5일 수 있으며, 보다 구체적으로는 1.5 이상, 또는 1.8 이상이고, 2.5 이하 또는 2.2 이하일 수 있다. 또, 올레핀 유래 반복단위의 함량이 상기 올레핀-카르복실산 비닐계 화합물의 공중합체 내 반복단위의 총 합계량 100몰%에 대하여 10몰% 이상, 또는 15몰% 이상, 또는 20몰% 이상, 또는 25몰% 이상이고, 70몰% 이하, 또는 50몰% 이하, 또는 45몰% 이하일 수 있다. 상기한 범위의 높은 중량평균 분자량과 함께 좁은 분자량 분포 및 최적화된 올레핀 유래 반복단위의 함량을 가짐으로써 필름 제조시 우수한 기계적 강도 특성을 유지하면서도 개선된 기체 차단성을 나타낼 수 있다.
보다 구체적으로 상기 올레핀과 카르복실산 비닐계 화합물의 공중합체는 상기한 물성을 충족하는 에틸렌-비닐아세테이트 공중합체일 수 있다.
다음으로, 단계 2는 단계 1에서 제조한 올레핀과 카르복실산 비닐계 화합물의 공중합체를 비누화 반응을 통해 가수분해하고, 비누화 반응이 95% 이상 진행되었을 때 불포화 니트릴계 화합물을 투입하여 시아노알킬기를 갖는 공중합체를 제조하는 단계이다.
상기 가수분해는 가성소다 등의 염기성 물질 또는 염기의 투입에 의해 수행될 수 있다. 상기 염기성 물질 투입에 의한 비누화 반응으로 올레핀과 카르복실산 비닐계 화합물의 공중합체가 가수분해 되어, 공중합체내 카르복실산 비닐계 화합물 유래 반복단위의 일부 또는 전부가 히드록시기 포함 반복단위로 변환되게 된다.
상기 염기성 물질은 올레핀과 카르복실산 비닐계 화합물의 공중합체 100몰에 대하여 5 내지 15몰비로 투입될 수 있으며, 보다 구체적으로는 5몰비 이상, 또는 7몰비 이상이고, 15몰비 이하, 또는 12몰비 이하의 함량으로 투입될 수 있다. 염기성 물질의 투입량이 5몰비 미만이면 가수분해가 충분히 일어나지 않고, 15몰비를 초과할 경우, 촉매를 제거하는 공정에서 과도한 폐수가 발생할 수 있고, 촉매 제거가 불충분할 경우 필름의 변색 혹은 돌기 발생의 원인이 될 수 있다.
상기 염기성 물질은 반응 효율을 높이기 위하여, 메탄올 등의 알코올계 용매에 용해시킨 용액상으로 투입될 수 있다.
또 상기 가수분해는 50 내지 70℃, 보다 구체적으로는 50℃ 이상, 또는 60℃ 이상이고, 70℃ 이하, 또는 65℃ 이하의 온도에서 수행될 수 있다. 상기한 온도범위에서 수행시 적절한 반응속도로 가수분해 반응이 충분히 일어날 수 있다.
발명의 일 구현예에 따른 제조방법은, 상기한 비누화 반응이 95% 이상 진행된 시점에, 불포화 니트릴계 화합물을 투입하여 제조되는 공중합체의 측쇄를 시아노알킬기를 결합시킨다.
시아노알킬기 도입을 위하여, 시아노기를 포함하는 불포화 단량체를 공단량체로서 사용하여 올레핀과 카르복실산 비닐계 화합물의 공중합체를 제조할 경우, 비누화 반응시 투입되는 염기성 물질의 침탈을 받아 니트릴기 구조가 분해되기 쉽고, 얻고자 하는 수분 방지 효과를 얻지 못하는 등 공중합체의 물성 저하의 우려가 있다.
이에, 본 발명에서는 올레핀과 카르복실산 비닐계 화합물의 공중합체에 대한 일정 수준 이상의 비누화 반응 수행 후 불포화 니트릴계 화합물과의 반응을 통해 시아노알킬기를 공중합체의 측쇄에 결합시킴으로써, 공중합체의 우수한 물성을 유지하면서도 시아노알킬기 도입에 따른 개선 효과를 구현할 수 있다.
또, 상기 불포화 니트릴계 화합물의 투입 시점은 공중합체의 비누화도 및 시아노알킬화에 영향을 미친다. 전술한 바와 같이, 불포화 니트릴계 화합물은 올레핀-카르복실산 비닐계 화합물 공중합체의 가수 분해 중간체, 즉 공중합체가 옥시 음이온과 염기성 물질 유래 양이온의 염으로 존재하는 중간체와 반응한다. 이에 따라 반응계 내 상기 중간체의 함량이 충분하지 않거나 지나치게 많을 경우에는 상기한 시아노알킬 치환율을 충족하기 어렵다. 구체적으로 공중합체의 비누화도가 95% 미만이면, 용융 성형을 통한 필름 제조시 열안정성이 열화되고, 기계적 강도 및 기체 차단성이 저하될 우려가 있다. 또, 상술한 바와 같이, 불포화 니트릴계 화합물, 대표예로서 아크릴로니트릴은, 올레핀-카르복실산 비닐계 화합물 공중합체의 가수분해 동안에 생성되는, 옥시 음이온과 염기성 물질 유래 양이온의 염 형태로 존재하는 중간체와 반응하기 때문에, 비누화 반응이 95% 미만일 때 불포화 니트릴계 화합물로서 아크릴로니트릴이 투입될 경우, 비누화 반응에 사용되는 염기성 물질이, 아크릴로니트릴과 미리 반응하여 시아노에탄올(Cyanoethanol; HO-CH 2-CH 2-CN), 2-시아노에틸에테르(2-Cyanoethyl ether; (CN-CH 2-CH 2) 2-O), 시아노헥사논(Cyanohexanone) 또는 시아노에틸화된 아세톤(Dicyanoethylated acetone) 등의 부반응물을 형성하게 되고, 그 결과 상기 중간체가 충분히 생성되지 않아 시아노알킬화가 저하될 수 있다. 이 경우 시아노알킬화로 인한 수분안정화 증가 및 수분 침투 감소 효과를 얻기 어렵고, 또 상기 부반응으로 인해 부산물 발생량이 증가하게 된다.
한편, 비누화 반응이 완전히 완료된 이후에는, 옥시 음이온과 염기성 물질 유래 양이온의 염 형태로 존재하는 중간체 아닌, 말단에 히드록시기를 갖는 비누화된 중합체로서 존재하기 때문에, 시아노알킬 치환이 어렵다. 이에 따라 시아노알킬 치환을 위해, 비누화된 중합체에 대한 양이온 치환, 일례로 가성 소다 등 염기성 물질 투입을 통한 NaOH 치환이 선행되어야 한다. 그러나 비누화된 중합체는 용매에 대한 용해도가 낮기 때문에, 비누화된 중합체가 NaOH로 치환되기 전에, NaOH가 불포화 니트릴계 화합물과 먼저 반응하여 부반응물을 생성한다. 이에 따라 부반응물 제거를 위한 추가의 정제 공정이 요구되며, 이에 따라 다량의 폐수가 발생되는 문제가 있다.
이에 따라 상기 불포화 니트릴계 화합물은, 반응계 내에옥시 음이온과 염기성 물질 유래 양이온의 염 형태로 존재하는 중간체가 최적 함량으로 존재할 때 투입되는 것이 바람직하며, 구체적으로는 상기 비누화 반응이 95% 이상이고 비누화 반응 완료 시점까지, 즉 비누화 반응 100% 도달 시점까지 투입되거나, 또는 비누화 반응이 95% 이상이고, 비누화 반응 완료 직전, 즉 100% 미만이거나, 또는 99% 이하일 때 투입되는 것이 바람직하다. 이 경우 NaOH가 공중합체 사슬에 치환되어 있는 상황에서 불포화 니트릴계 화합물이 투입됨으로써 free NaOH에 의한 부반응물 발생을 방지할 수 있다. 보다 구체적으로는 비누화 반응을 위한 상기 반응물의 투입 완료 후 3시간 이후, 보다 더 구체적으로는 반응물 투입 완료 후 3시간에서 4시간일 때 불포화 니트릴계 화합물이 투입될 수 있다.
또, 상기 불포화 니트릴계 화합물의 투입 후 반응은, 상기 수학식 1에 따른 시아노알킬 치환율이 2몰% 이상이고, 10몰% 미만이 되도록 수행된다.
만약 상기 불포화 니트릴계 화합물의 투입 조건을 충족하지 않거나, 또는 불포화 니트릴계 화합물의 투입 시 아세톤 등 에틸렌 비닐 알코올계 공중합체의 용해도를 높이고 시아노알킬 치환율을 높일 수 있는 첨가제가 추가로 투입되는 등의 방법으로, 시아노알킬 치환율이 10몰% 이상 진행되는 경우에는, 오히려 기체 차단성이 저하될 수 있다. 또 시아노알킬 치환율이 2몰% 미만이면 수분 차단 효과가 미약하다.
보다 구체적으로는 상기 불포화 니트릴계 화합물의 투입 후 반응은, 상기 수학식 1에 따른 시아노알킬 치환율이 2.5몰% 이상, 또는 3몰% 이상이고, 9몰% 이하, 또는 8몰% 이하가 되도록 수행될 수 있다.
본 발명에 있어서 비누화 반응의 진행 정도는, 1H-핵자기 공명 분광 분석을 통해 비누화 반응의 결과로 생성되거나, 소멸되는 작용기 피크의 강도 변화로부터 확인할 수 있으며, 반복된 분석 결과로부터 비누화 반응 진행 정도를 반응 시간으로 추정할 수 있다. 구체적으로 비누화 반응이 50%인 시점은 반응물 투입 완료 후 1시간이며, 95%인 시점은 반응물의 투입 완료 후 3시간이다.
상기 불포화 니트릴계 화합물로는 아크릴로니트릴, 메타크릴로니트릴, 1-시아노프로펜, 및 3-시아노프로펜 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또 상기 불포화 니트릴계 화합물은, 최종 제조되는 비닐 알코올계 공중합체 내 시아노알킬화도, 구체적으로는 시아노알킬옥시기 포함 제3반복단위의 함량이 제2 및 제3 반복단위 총 합계량 100몰%에 대해 2몰% 이상, 또는 2.5몰% 이상, 또는 3몰% 이상이고, 10몰% 이하, 또는 9몰% 이하, 또는 8몰% 이하가 되도록 하는 양으로 투입될 수 있다.
또 상기 불포화 니트릴계 화합물 투입 후 반응은 0℃ 이상, 또는 40℃ 이상이고, 60℃ 이하의 온도 범위에서, 2시간 이상, 또는 24시간 이상이고 48시간 이하, 또는 30시간 이하의 시간 동안 수행될 수 있다.
상기와 같은 반응의 결과로, 반응 생성물 입자가 용매 중에 분산된 형태로 제조되게 된다.
이에 대해 아세트산 등의 산을 이용한 중화 공정, 수증기를 불어 넣어 용매를 휘발 제거하는 공정, 결과로 물에 분산된 입자를 침전시키고, 분리 세척하는 공정 등을 선택적으로 더 수행함으로써, 시아노알킬기를 갖는 비닐 알코올계 공중합체를 수득할 수 있다.
상기 비닐 알코올 공중합체는 시아노알킬기가 공중합체의 측쇄에 결합됨에 따라 1H-핵자기 공명 분광 분석 시, 2.7ppm 에서 측쇄에 결합된 시아노에틸기(-CH 2-CN)의 피크가 나타난다.
또, 시아노니트릴계 화합물의 투입 시기가 제어됨에 따라 제조되는 비닐 알코올 공중합체 내 부산물의 함량을 최소화할 수 있다. 구체적으로는 상기 비닐 알코올 공중합체는 공중합체 총 중량에 대하여 20% 이하의 함량, 보다 구체적으로는 0중량% 초과이며 15중량% 이하, 또는 12중량% 이하의 함량으로 부산물을 포함할 수 있으며, 이때 상기 부산물은 시아노에탄올, 2-시아노헥사논, 시아노에틸에테르, 디시아노에틸화된 아세톤과 같은 시아노기 포함 화합물, 또는 이들의 혼합물일 수 있다.
상기한 제조방법에 의해 제조되는 비닐 알코올계 공중합체는 우수한 수분안정성을 갖는 시아노알킬기가 측쇄에 결합됨으로써, 수분의 침투가 감소되어 다습한 환경에서도 산소, 수증기, 탄산가스, 질소 등의 기체에 대해 우수한 기체 차단성을 나타낼 수 있다. 이에 따라 기체 차단성이 요구되는 필름, 시트, 용기, 섬유 등의 각종 용도에 사용될 수 있다.
이에 따라 발명의 또 다른 일 구현예에 따르면, 상기한 비닐 알코올계 공중합체를 포함하는 기체 차단성 필름 형성용 조성물 및 기체 차단성 필름을 제공한다.
상기 필름은 사출 성형법, 압축 성형법, 압출 성형법 등의 통상의 성형 방법에 따라 제조될 수 있다. 이중 압출 성형법으로서는 T-다이법, 중공 성형법, 파이프 압출법, 선압출법, 이형 다이 압출법, 인플레이션법 등을 들 수 있으며, 또 상기 비닐 알코올계 공중합체와 다른 열가소성 수지층과의 공압출 성형도 가능하다.
이에 따라, 상기 기체 차단성 필름 형성용 조성물은, 상기한 비닐 알코올계 공중합체를 베이스 수지로서 포함하는 것을 제외하고는, 통상의 필름 성형 방법에 적용되는 필름 형성용 조성물에 사용되는 것이라면 특별한 제한 없이 포함할 수 있다.
또, 상기 필름 형성용 조성물에는 필요에 따라 유리 섬유, 탄소섬유 등의 보강재, 필러, 착색제, 하이드로탈사이트 등의 안정제, 발포제, 건조제, 열가소성 수지 등의 공지의 첨가제가 더 첨가될 수도 있다.
또, 상기 필름은 독립된 필름 형태로 사용될 수도 있고, 기재에 대한 코팅필름의 형태로 사용될 수도 있으며, 또는 다른 필름과의 다층 구조체 형태로 사용될 수도 있다.
상기 필름은 우수한 기체 차단성을 다습 조건에서도 유지할 수 있기 때문에 식품 포장용 필름 등의 포장재, 시트, 화장품용기, 가솔린 탱크 용기 등으로 활용될 수 있다. 구체적으로 상기 필름은 95% RH 산소투과도가 0.05 cc·20μm/m 2·24hr·atm 이하, 보다 구체적으로는 0.03 cc·20μm/m 2·24hr·atm 이하이며, 0.001 cc·20μm/m 2·24hr·atm 이상, 또는 0.01 cc·20μm/m 2·24hr·atm 이상이다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
이하 실시예 및 비교예에서 제조한 공중합체에 대해 하기와 같은 방법으로 분석하였다:
(1) 중량평균 분자량(Mw) 및 분자량 분포(MWD; Mw/Mn)
<분석 조건>
-컬럼: PL mixed B x 2
-용매: DMF / 0.05M LiBr (0.45 μm filtered)
-유속: 1.0 ml/min
-시료 농도: 1.0 mg/ml
-주입량: 100 μl
-컬럼 온도: 65℃
-Detector: Waters 굴절률 검출기
-Standard: 폴리스티렌(PS) (3차 함수로 보정)
-폴리스티렌 표준품의 분자량(g/mol)은 9,600 / 31,420 / 113,300 / 327,300 / 1,270,000 / 4,230,000의 6종을 사용하였다.
-Data processing:
1) 공중합체 시료를 디메틸포름아미드(DMF)에 1 mg/ml 농도로 녹여 0.45 μm syringe filter로 여과하였다. 2) 시료 용액을 주입하여 GPC chromatogram을 얻는다. 3) 표준 용액을 주입하여 GPC chromatogram을 얻었다. 4) 표준 용액의 chromatogram으로부터 calibration curve와 식을 구하고 그 식에 시료 용액의 머무름 시간을 대입하여 시료의 중량평균 분자량, 수평균 분자량을 각각 얻었다. 측정한 중량평균 분자량(Mw)과 수평균 분자량(Mn) 값으로부터 분자량 분포(Mw/Mn)을 계산하였다.
(2) 시아노에틸 치환율
제조한 공중합체에 대해 켈달법(Kjeldahl method)에 의해 질소 함유량을 구하고, 그 값으로부터 시아노에틸 치환율, 즉 최종 제조된 비닐 알코올계 공중합체 내 히드록시기 포함 제2반복단위와 시아노알킬옥시기 포함 제3반복단위의 총 합계량 100몰%에 대한 시아노알킬옥시기 포함 제3반복단위의 함량(몰%)을, 하기 수학식 1에 따라 산출하였다.
[수학식 1]
시아노알킬 치환율=[(제3반복단위의 몰%)/(제2반복단위의 몰%+제3반복단위의 몰%)] × 100
상기 수학식 1에서, 제2 반복단위 및 제3 반복단위의 몰%는 최종 제조되는 비닐 알코올계 공중합체 내 반복단위의 총 합계량 100몰%를 기준으로 한 값이다.
(3) 공중합체 내 에틸렌 유래 반복단위의 함량: 분석기기로서 1H NMR (Bruker Avance III HD 700Mhz)을 사용하여, 시료를 테트라하이드로퓨란 용매(THF-d8)에 녹인 후, 상온에서 1H-NMR spectrum을 측정하였다. 0.74~2.1 ppm 사이의 피크에 에틸렌 단량체의 양성자 4개와 비닐아세테이트(VA) 단량체의 양성자 5개가 나타나고 4.78 ppm에서 VA 단량체의 양성자 하나가 나타나므로, 하기 수학식 2를 이용하여 공중합체내 에틸렌 유래 반복단위 함량(몰%)을 구하였다.
[수학식 2]
에틸렌 유래 반복단위의 함량(몰%)=[r/(r+1)] ×100
상기 수학식 2에서
Figure PCTKR2020001017-appb-img-000006
이고, n(ethylene)은 에틸렌 유래 반복단위의 몰 함량이고, n(VAc)은 비닐아세테이트 유래 반복단위의 몰 함량이며, I 0.74-2.1ppm은 0.74~2.1ppm 사이에서 나타나는 피크 면적의 적분값이고, I 4.78ppm은 4.78ppm에서 나타나는 피크 면적의 적분값이다.
(4) 95% RH 산소투과도 : 산소 투과량 측정 장치로서 모던 컨트롤사의 MOCON OX-TRAN 2/20를 이용하여, 필름의 임의 위치에서 채취한 5매의 샘플에 대해 온도 20℃, 습도 95%RH 및 산소압 2.5 kg/cm 2의 조건에서 산소 투과도(단위: cc·20μm/m 2·24hr·atm)를 측정하고, 이들 중 최소값을 산소 투과도 값으로 인용하였다.
< 비닐 알코올계 공중합체의 제조>
실시예 1-1
단계 1
에틸렌 8.9몰%와 아세트산 비닐 91.1몰%를 혼합 후, 상기 에틸렌과 아세트산 비닐 총 합계량 100중량부를 기준으로 용매로서 t-부탄올 45중량부를, 그리고 상기 에틸렌과 아세트산 비닐 총 합계량 100몰을 기준으로 2,2'-아조비스(2,4-디메틸발레로니트릴)(2,2'-Azobis(2,4-dimethylvaleronitrile); ADMVN) 개시제 0.043 몰비를 이용하여 60~70℃에서 공중합 하였다. 결과의 중합 용액에서 용매와 미반응물을 휘발시켜 제거하여 에틸렌-비닐 아세테이트 공중합체를 수득하였다.
수득한 에틸렌-비닐 아세테이트 중합체의 Mw는 263,000g/mol이고, 분자량 분포(MWD)는 2.09이며, 공중합체 내 에틸렌 유래 반복단위의 함량은 27.6몰%이었다.
단계 2
상기 단계 1에서 제조한 에틸렌-비닐 아세테이트 공중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 공중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 계속해서 비누화 반응이 95% 이상 진행된 것으로 확인되는 반응시간인, 상기 반응물 투입 완료 후 3시간의 시점에 아크릴로니트릴 10g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코올계 공중합체를 수득하였다.
실시예 1-2
상기 실시예 1-1의 단계 1에서 제조한 중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 비누화 반응이 95% 이상 진행된 것으로 확인되는 반응시간인, 상기 반응물 투입 완료 후 3시간의 시점에 아크릴로니트릴 5g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코계 공중합체를 수득하였다.
실시예 1-3
단계 1
에틸렌 18.5몰%와 아세트산 비닐 81.5몰%를 혼합 후, 상기 에틸렌과 아세트산 비닐 총 합계량 100중량부를 기준으로 용매로서 t-부탄올 45중량부를, 그리고 상기 에틸렌과 아세트산 비닐 총 합계량 100몰을 기준으로 2,2'-아조비스(2,4-디메틸발레로니트릴)(2,2'-Azobis(2,4-dimethylvaleronitrile); ADMVN) 개시제 0.048 몰비를 이용하여 60~70℃에서 공중합 하였다. 결과의 중합 용액에서 용매와 미반응물을 휘발시켜 제거하여 에틸렌-비닐 아세테이트 공중합체를 수득하였다.
수득한 에틸렌-비닐 아세테이트 중합체의 Mw는 240,000g/mol이고, 분자량 분포(MWD)는 2.1이며, 공중합체 내 에틸렌 유래 반복단위의 함량은 44.1몰%이었다.
단계 2
상기 단계 1에서 제조한 에틸렌-비닐 아세테이트 공중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 공중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 계속해서 비누화 반응이 95% 이상 진행된 것으로 확인되는 반응시간인, 상기 반응물 투입 완료 후 3시간의 시점에 아크릴로니트릴 10g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코올계 공중합체를 수득하였다.
비교예 1-1
상기 실시예 1-1의 단계 1에서 제조한 공중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 공중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 비누화 반응이 95% 이상 진행된 것으로 확인되는 반응시간인, 상기 반응물 투입 완료 후 3시간의 시점에, 공중합체의 용해도를 증대하고 치환율을 증가시키기 위한 아세톤을 서서히 투입하면서 아크릴로니트릴 10g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코계 공중합체를 수득하였다.
비교예 1-2
상기 실시예 1의 단계 1에서 제조한 중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 비닐 알코올계 공중합체를 수득하였다.
비교예 1-3
상기 실시예 1-1의 단계 1에서 제조한 중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 비누화 반응이 50% 정도 진행된 것으로 확인되는 반응시간인, 반응물 투입 완료 후 1시간이 지난 시점에 아크릴로니트릴 5g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코계 공중합체를 수득하였다.
비교예 1-4
상기 실시예 1-1의 단계 1에서 제조한 공중합체 20g을 다시 180g의 메탄올에 녹여 10% 농도의 용액을 만들고, 공중합체 100몰에 대하여 9몰비의 함량으로 가성소다 촉매를 180g의 메탄올에 녹여서 투입하여 60℃에서 가수분해를 수행하였다. 비누화 반응이 95% 이상 진행된 것으로 확인되는 반응시간인, 상기 반응물 투입 완료 후 3시간의 시점에, 공중합체의 용해도를 증대하고 치환율을 증가시키기 위한 아세톤을 서서히 투입하면서 아크릴로니트릴 5g을 첨가하고, 60℃에서 24시간 반응을 수행하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 수증기를 불어 넣어 알코올을 휘발시킨 후, 물에 분산된 입자를 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코계 공중합체를 수득하였다.
비교예 1-5
상기 비교예 1-2에서 제조한 비닐 알코올계 공중합체 100몰을 기준으로 9몰비에 해당하는 함량으로 가성소다 촉매를 30g의 물에 용해시켰다. 결과의 용액을 교반하면서, 아크릴로니트릴 10g 및 상기 비교예 1-2에서 제조한 비닐 알코올계 공중합체 20g을 투입하고, 60℃에서 5시간 동안 반응시켰다. 이때 상기 비닐 알코올계 공중합체는 필름 형태로 만든 후 잘게 잘라 조금씩 투입하였다.
반응 종료 후, 반응액을 아세트산으로 중화하고, 반응 잔류물을 진공에서 휘발시킨 후, 아세톤에 녹이고 물에 침전시켜 수득하였다. 수득한 입자를 다량의 물로 세정한 후, 건조하여 2-시아노에틸기 함유 비닐 알코계 공중합체를 수득하였다.
<필름 제조>
실시예 2-1
상기 실시예 1-1에서 최종 제조한 2-시아노에틸기 포함 비닐 알코올계 공중합체를 이용하여 필름을 제조하였다.
구체적으로는 실시예 1-1에서의 비닐 알코올계 공중합체 0.5g을 압축성형기를 이용하여 190℃에서 3분간 압축하여 필름을 제조하였다.
실시예 2-2 내지 2-3, 및 비교예 2-1 내지 2-5
상기 실시예 1-2 내지 2-3, 또는 비교예 1-1 내지 1-5에서 제조한 비닐 알코올계 공중합체를 사용하는 것을 제외하고는 상기 실시예 2-1에서와 동일한 방법으로 수행하여 필름을 제조하였다.
시험예 1
상기 실시예 1-1에서 제조한 비닐 알코올계 공중합체에 대한 1H-핵자기 공명 분광 분석을 수행하였다.
그 결과, 비닐 알코올계 공중합체의 측쇄에 결합된 시아노에틸기(-CH 2-CN)의 피크가 2.7ppm 에서 나타났으며, 이때 -CH 2-CN의 프로톤 피크(proton peak)가, 통상 아크릴로니트릴을 공단량체로서 중합했을 때 나타나는 -CH(CN)-의 프로톤 피크보다 더 높게 관찰되었다. 이 같은 피크 구조의 차이는 -CH 2-CN에서의 프로톤 양이 -CH(CN)-에 비해 2배로 많기 때문이다.
시험예 2
상기 실시예 및 비교예에서 각각 제조한 비닐 알코올계 공중합체 10g을 톨루엔 100g과 함께 넣고 70℃에서 1시간 교반한 후, 공중합체를 제거하고, 톨루엔 층에 녹아있는 부산물을 GC(Gas Chromatography) 분석 하였다. 톨루엔의 피크를 기준으로 한, 각 부산물 성분 피크의 상대적인 면적으로부터 부산물 성분들의 함량을 예측하였다.
<실험 방법>
시료를 원액으로 다음 조건 하에서 GC/MS(EQC-0291)로 분석하였으며, 표준 용액으로는 톨루엔을 사용하였다.
Column: HP-5MS (0.25 mm ID x 30 mL, 0.25 m d.f. capillary)
Injector: split/splitless
Gas Flow rate: Column (He): 1 mL/min
Oven temperature: Initial Value & Time: 50℃, 5 min
Program Rate: 15℃/min
Final Value & Time: 300℃, 20 min
Injector temperature: 300℃
Interface temperature: 300℃
Ionization mode: EI
Mass range: 20-700 m/z
Injector Split ratio: 1/100
Injection volume: 0.2μL
부산물 종류 Cyanoethanol Cyanohexanone 2-Cyanoethyl ether Dicyanoethylated acetone
실시예 1-1 5 5 5 5
실시예 1-2 4 3 5 0
비교예 1-1 5 6 5 7
비교예 1-3 57 48 60 56
비교예 1-5 105 108 130 120
상기 표 1에서 각 부산물의 함량은 비닐 알코올 공중합체 총 중량을 기준으로 한 중량% 이다.
실험결과, 아크릴로니트릴을 비누화 반응이 95% 이상 진행되었을 때 투입한 실시예 1-1, 1-2 및 비교예 1-1과 비교하여, 아크릴로니트릴을 비누화 반응이 50% 진행되었을 때 투입한 비교예 1-3의 경우와, 비누화 반응이 이미 완료된 중합체를 사용한 비교예 1-5의 경우, 부산물 발생량이 크게 증가하였다.
이 같은 결과로부터 아크릴로니트릴의 투입 시기 제어를 통해 부산물 발생량을 감소시킬 수 있을 확인할 수 있다.
시험예 3
상기 실시예 2-1 내지 2-3, 및 비교예 2-1 내지 2-5의 필름 제조시 사용된 공중합체의 시아노에틸 치환율을 산출하였다. 그 결과를 하기 표 2에 나타내었다.
또, 실시예 2-1 내지 2-3, 및 비교예 2-1 내지 2-5에서 제조한 필름에 대해 산소투과도를 각각 측정하고, 그 결과를 하기 표 2에 나타내었다.
실시예 비교예
2-1 2-2 2-3 2-1 2-2 2-3 2-4 2-5
공중합체 종류 실시예 1-1 실시예 1-2 실시예 1-3 비교예 1-1 비교예 1-2 비교예 1-3 비교예 1-4 비교예 1-5
시아노에틸 치환율(몰%) 8 3 7 19 0 1 11 10
에틸렌 유래 반복단위의 함량(몰%) 27.6 27.6 44.1 27.6 27.6 27.6 27.6 27.6
95% RH 산소투과도(cc·20μm/m 2·24hr·atm) 0.02 0.01 0.03 0.14 0.08 - 0.12 0.18
상기 표 2에서 에틸렌 유래 반복단위의 함량은, 비닐 알코올계 공중합체를 구성하는 반복단위들의 총 합계량 100몰%를 기준으로 한 것이다.
또 "-"는 측정하지 않았음을 의미한다.
본 발명에 따른 시아노에틸기 포함 공중합체를 이용하여 제조된 실시예 2-1 내지 2-3의 필름은, 비교예 2-1 내지 2-5과 비교하여, 내흡습성의 개선으로 습도가 높은 환경에서도 우수한 산소 차단성을 나타내었다. 이 같은 결과로부터 다습한 환경의 포장 소재 등으로 유용함을 확인할 수 있다.

Claims (18)

  1. 올레핀 유래 제1반복단위;
    하기 화학식 1로 표시되는, 히드록시기 포함 제2반복단위;
    하기 화학식 2로 표시되는, 시아노알킬옥시기 포함 제3반복단위;를 포함하며,
    상기 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량이 2몰% 이상이고 10몰% 미만인, 비닐 알코올계 공중합체:
    [화학식 1]
    Figure PCTKR2020001017-appb-img-000007
    [화학식 2]
    Figure PCTKR2020001017-appb-img-000008
    상기 화학식 2에서, L은 C 1-10 알킬렌이다.
  2. 제1항에 있어서,
    상기 제2반복단위와 제3반복단위의 총 합계량 100몰%에 대한 제3반복단위의 함량이 2 내지 9몰%인, 비닐 알코올계 공중합체.
  3. 제1항에 있어서,
    상기 화학식 2에서 L은 에틸렌, 1-메틸에틸렌, 또는 n-프로필렌인, 비닐 알코올계 공중합체.
  4. 제1항에 있어서,
    상기 제3반복단위는 하기 화학식 2-1로 표시되는 구조를 갖는, 비닐 알코올계 공중합체.
    [화학식 2-1]
    Figure PCTKR2020001017-appb-img-000009
  5. 제1항에 있어서,
    상기 제1반복단위는 상기 공중합체 내 반복단위의 총 합계량 100몰%에 대하여 10 내지 70몰%로 포함되는, 비닐 알코올계 공중합체.
  6. 제1항에 있어서,
    상기 제1반복단위는 에틸렌 유래 반복단위인, 비닐 알코올계 공중합체.
  7. 제1항에 있어서,
    상기 제2반복단위는 상기 공중합체 내 반복단위의 총 합계량 100몰%에 대하여 25 내지 85몰%로 포함되는, 비닐 알코올계 공중합체.
  8. 제1항에 있어서,
    상기 공중합체는 카르복실산 비닐계 화합물 유래 반복단위를 더 포함하는, 비닐 알코올계 공중합체.
  9. 제8항에 있어서,
    상기 카르복실산 비닐계 화합물은 비닐 아세테이트인, 비닐 알코올계 공중합체.
  10. 올레핀-카르복실산 비닐계 화합물의 공중합체에 염기성 물질을 투입하여 비누화 반응에 의한 가수분해를 수행하되, 상기 비누화 반응이 95% 이상 진행되었을 때 불포화 니트릴계 화합물을 투입하고, 하기 수학식 1에 따른 시아노알킬 치환율이 2몰% 이상이고 10몰% 미만이 되도록 반응시키는 단계;를 포함하는, 제1항에 따른 비닐 알코올계 공중합체의 제조방법.
    [수학식 1]
    시아노알킬 치환율=[(제3반복단위의 몰%)/(제2반복단위의 몰%+제3반복단위의 몰%)] × 100
    상기 수학식 1에서, 제2반복단위 및 제3반복단위의 몰%는 각각 비닐 알코올계 공중합체 내 반복단위의 총 합계량 100몰%를 기준으로 한 값이다.
  11. 제10항에 있어서,
    상기 올레핀-카르복실산 비닐계 화합물의 공중합체는, 중량평균 분자량이 100,000 내지 350,000 g/mol이고, 분자량 분포가 1.5 내지 2.5이며, 올레핀 유래 제1반복단위의 함량이 상기 올레핀-카르복실산 비닐계 화합물의 공중합체 내 반복단위의 총 합계량 100몰%에 대하여 10 내지 70몰%인, 비닐 알코올계 공중합체의 제조방법.
  12. 제10항에 있어서,
    상기 올레핀-카르복실산 비닐계 화합물의 공중합체에 대한 가수분해 단계 전, 올레핀과 카르복실산 비닐계 화합물을 5:95 내지 40:60의 몰비로 투입하고, 알코올계 용매 중에서 라디칼 개시제의 존재 하에 중합반응 시켜 올레핀-카르복실산 비닐계 화합물의 공중합체를 제조하는 단계를 더 포함하며,
    상기 라디칼 개시제는 상기 올레핀과 카르복실산 비닐계 화합물을 포함하는 단량체의 총 합계량 100몰에 대하여 0.001 내지 1몰비로 사용되는, 비닐 알코올계 공중합체의 제조방법.
  13. 제10항에 있어서, 상기 올레핀-카르복실산 비닐계 화합물의 공중합체가 에틸렌-비닐아세테이트 공중합체인, 비닐 알코올계 공중합체의 제조방법.
  14. 제10항에 있어서,
    상기 불포화 니트릴계 화합물은 아크릴로니트릴, 메타크릴로니트릴, 1-시아노프로펜, 및 3-시아노프로펜로 이루어진 군에서 선택되는 1종 이상을 포함하는, 비닐 알코올계 공중합체의 제조방법.
  15. 제10항에 있어서,
    상기 가수분해는, 올레핀-카르복실산 비닐계 화합물의 공중합체 100몰에 대하여 염기성 물질을 5 내지 15몰비로 투입하여 수행되는, 비닐 알코올계 공중합체의 제조방법.
  16. 제10항에 있어서,
    상기 염기성 물질은 가성소다를 포함하는, 비닐 알코올계 공중합체의 제조방법.
  17. 제1항 내지 제9항 중 어느 한 항에 따른 비닐 알코올계 공중합체를 포함하는 기체 차단성 필름 형성용 조성물.
  18. 제1항 내지 제9항 중 어느 한 항에 따른 비닐 알코올계 공중합체를 포함하는 기체 차단성 필름.
PCT/KR2020/001017 2019-01-22 2020-01-21 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름 WO2020153714A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020552883A JP6970837B2 (ja) 2019-01-22 2020-01-21 ビニルアルコール系共重合体、その製造方法およびそれを含む気体遮断性フィルム
US17/049,077 US11905403B2 (en) 2019-01-22 2020-01-21 Vinyl alcohol based copolymer, method for preparing the same and gas barrier film comprising the same
CN202080002078.0A CN111918888B (zh) 2019-01-22 2020-01-21 基于乙烯醇的共聚物、其制备方法和包含所述共聚物的气体阻隔膜
EP20745542.9A EP3766907A4 (en) 2019-01-22 2020-01-21 VINYL ALCOHOL-BASED COPOLYMER, ITS PREPARATION PROCESS, AND GAS BARRIER FILM CONTAINING IT
US18/391,068 US20240124701A1 (en) 2019-01-22 2023-12-20 Vinyl Alcohol Based Copolymer, Method for Preparing the Same and Gas Barrier Film Comprising the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190008233 2019-01-22
KR10-2019-0008233 2019-01-22
KR10-2020-0007547 2020-01-20
KR1020200007547A KR102405288B1 (ko) 2019-01-22 2020-01-20 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/049,077 A-371-Of-International US11905403B2 (en) 2019-01-22 2020-01-21 Vinyl alcohol based copolymer, method for preparing the same and gas barrier film comprising the same
US18/391,068 Continuation US20240124701A1 (en) 2019-01-22 2023-12-20 Vinyl Alcohol Based Copolymer, Method for Preparing the Same and Gas Barrier Film Comprising the Same

Publications (1)

Publication Number Publication Date
WO2020153714A1 true WO2020153714A1 (ko) 2020-07-30

Family

ID=71736351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001017 WO2020153714A1 (ko) 2019-01-22 2020-01-21 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름

Country Status (1)

Country Link
WO (1) WO2020153714A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413090A (en) * 1981-04-06 1983-11-01 Kureha Kagaku Kogyo Kabushiki Kaisha Cyanoethylated olefin-vinyl alcohol copolymer and dielectric material and adhesive comprising the same
US4746700A (en) 1985-02-26 1988-05-24 Nippon Fohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing vinyl alcohol copolymer
JP2002138109A (ja) 2000-07-28 2002-05-14 Kuraray Co Ltd ビニルアルコール系重合体組成物の製造方法
WO2002092643A1 (en) * 2001-05-14 2002-11-21 Kuraray Co., Ltd. Modified ethylene-vinyl alcohol copolymer and method for the production thereof
JP2015093389A (ja) 2013-11-08 2015-05-18 日本合成化学工業株式会社 変性エチレン−ビニルエステル系共重合体ケン化物の保存方法
US20190010305A1 (en) * 2015-12-28 2019-01-10 The Nippon Synthetic Chemical Industry Co., Ltd. Ethylene-vinyl alcohol copolymer composition, multilayer structure produced by using the composition, and hot-water sterilizable package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413090A (en) * 1981-04-06 1983-11-01 Kureha Kagaku Kogyo Kabushiki Kaisha Cyanoethylated olefin-vinyl alcohol copolymer and dielectric material and adhesive comprising the same
US4746700A (en) 1985-02-26 1988-05-24 Nippon Fohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing vinyl alcohol copolymer
JP2002138109A (ja) 2000-07-28 2002-05-14 Kuraray Co Ltd ビニルアルコール系重合体組成物の製造方法
WO2002092643A1 (en) * 2001-05-14 2002-11-21 Kuraray Co., Ltd. Modified ethylene-vinyl alcohol copolymer and method for the production thereof
JP2015093389A (ja) 2013-11-08 2015-05-18 日本合成化学工業株式会社 変性エチレン−ビニルエステル系共重合体ケン化物の保存方法
US20190010305A1 (en) * 2015-12-28 2019-01-10 The Nippon Synthetic Chemical Industry Co., Ltd. Ethylene-vinyl alcohol copolymer composition, multilayer structure produced by using the composition, and hot-water sterilizable package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3766907A4 *

Similar Documents

Publication Publication Date Title
WO2016195434A1 (ko) 염화비닐계 공중합체의 제조방법 및 이로부터 제조된 염화비닐계 공중합체
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2019240405A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016195435A1 (ko) 비닐계 중합체 및 그 제조방법
WO2020153714A1 (ko) 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
WO2009107987A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2021060917A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022080711A1 (ko) 변성 에틸렌-비닐알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 성형품
WO2020153707A1 (ko) 전지 포장재
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2023120887A1 (ko) 에틸렌-비닐알코올 공중합체의 제조방법
KR102405288B1 (ko) 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2023191506A1 (ko) 염소화 폴리염화비닐 수지 조성물의 제조방법
WO2023277530A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2023096395A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2023106715A1 (ko) 가소제 조성물 및 이를 포함하는 염화비닐계 수지 조성물
WO2023229219A1 (ko) 수지 조성물 및 성형품
WO2022114813A1 (ko) 중합체의 제조방법
WO2020076023A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2019190292A1 (ko) 블록 공중합체 조성물의 제조방법
WO2024014810A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552883

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020745542

Country of ref document: EP

Effective date: 20201015

NENP Non-entry into the national phase

Ref country code: DE