WO2020151515A1 - 激光模组及电子设备 - Google Patents

激光模组及电子设备 Download PDF

Info

Publication number
WO2020151515A1
WO2020151515A1 PCT/CN2020/071689 CN2020071689W WO2020151515A1 WO 2020151515 A1 WO2020151515 A1 WO 2020151515A1 CN 2020071689 W CN2020071689 W CN 2020071689W WO 2020151515 A1 WO2020151515 A1 WO 2020151515A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
side plate
extension piece
heat
laser module
Prior art date
Application number
PCT/CN2020/071689
Other languages
English (en)
French (fr)
Inventor
周锋
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20745019.8A priority Critical patent/EP3916934B1/en
Priority to KR1020217026756A priority patent/KR102507604B1/ko
Priority to JP2021543259A priority patent/JP7208407B2/ja
Publication of WO2020151515A1 publication Critical patent/WO2020151515A1/zh
Priority to US17/381,536 priority patent/US12015241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing

Definitions

  • the present disclosure relates to the technical field of laser equipment, and in particular to a laser module and electronic equipment.
  • the laser module is an indispensable core component for 3D recognition. It is mainly used to emit ultra-short femtosecond pulses or project specific light shapes so that the system can obtain depth information. As one of the most important components in the laser module, the laser chip plays a key role in the working process of the laser module.
  • the laser chip is a semiconductor device, which is sensitive to temperature. The higher the temperature, the lower the photoelectric conversion efficiency of the laser chip. High temperature can easily damage the lattice structure of the laser chip and reduce the service life of the laser chip.
  • most of the laser chip is dissipated through the circuit board connected to it, resulting in low heat dissipation efficiency of the laser chip.
  • the embodiments of the present disclosure provide a laser module and an electronic device to solve the problem of low heat dissipation efficiency of the laser chip in the laser module in the related art.
  • a laser module including:
  • the laser chip is arranged on one side of the optical component
  • the power supply structure includes a first electrode and a second electrode, and the first electrode and the second electrode are both connected to the laser chip;
  • the packaging structure is formed with a containing cavity, and the optical component is at least partially contained in the containing cavity;
  • the heat dissipation structure is sleeved on the outside of the packaging structure, and the heat dissipation structure abuts the first electrode and the second electrode.
  • embodiments of the present disclosure also provide an electronic device, which includes the laser module as described in the first aspect.
  • the heat dissipation structure abuts the first electrode and the second electrode of the power supply structure, and the first electrode and the second electrode can conduct the heat generated by the laser chip and itself to the heat dissipation structure, and dissipate heat.
  • the structure is sleeved on the outside of the package structure, which enables the heat dissipation structure to have a larger heat dissipation area for heat dissipation, which improves the heat dissipation efficiency of the laser module to ensure the working performance and service life of the laser chip; in addition, the heat dissipation structure is sleeved Outside the packaging structure, it can fix and support the packaging structure.
  • Figure 1 is a cross-sectional view of a laser module provided by an embodiment of the present disclosure
  • Figure 2 is a top view of the laser module in Figure 1;
  • FIG. 3 is a structural diagram of the heat sink in the laser module provided in FIG. 1;
  • Figure 4 is a front view of the laser module provided in Figure 1 when the heat sink is not assembled;
  • Fig. 5 is a left side view of Fig. 4.
  • Figure 1 is a cross-sectional view of a laser module provided by an embodiment of the present disclosure
  • Figure 2 is a top view of the laser module in Figure 1
  • Figure 3 is a heat sink in the laser module provided in Figure 1
  • Figure 4 is a front view of the laser module provided in Figure 1 when the heat sink is not assembled
  • Figure 5 is a left view of Figure 4.
  • an embodiment of the present disclosure provides a laser module, including an optical assembly 10, a laser chip 20, a power supply structure 30, a packaging structure 40, and a heat dissipation structure 50.
  • the laser chip 20 is arranged on one side of the optical component 10
  • the power supply structure 30 includes a first electrode 31 and a second electrode 32.
  • the first electrode 31 and the second electrode 32 are both connected to the laser chip 20 to supply power to the laser chip 20;
  • the packaging structure 40 is formed with a receiving cavity in which the optical component 10 is at least partially received; the heat dissipation structure 50 is sleeved on the outside of the packaging structure 40, and the heat dissipation structure 50 abuts the first electrode 31 and the second electrode 32.
  • the heat dissipation structure 50 abuts the first electrode 31 and the second electrode 32, and the first electrode 31 and the second electrode 32 can conduct the heat generated by the laser chip 20 and itself to the heat dissipation
  • the structure 50 and the heat dissipation structure 50 are sleeved on the outside of the packaging structure 40, which enables the heat dissipation structure 50 to have a larger heat dissipation area for heat dissipation, which improves the heat dissipation efficiency of the laser module to ensure the working performance of the laser chip 20 and Service life.
  • the heat dissipation structure 50 is sleeved on the outside of the packaging structure 40, which can fix and support the packaging structure 40.
  • the heat dissipation structure 50 may be a tubular structure sleeved on the outer surface of the packaging structure 40 to surround the packaging structure 40 and fix the packaging structure 40.
  • the heat dissipation structure 50 may be a material that does not have electrical conductivity, but has better thermal conductivity. In this way, while ensuring the heat dissipation performance of the heat dissipation structure 50, it can also prevent the power supply structure 30 from leaking through the heat dissipation structure 50 and ensure the laser module Safe to use.
  • the power supply structure 30 may be provided on the side of the laser chip 20 facing away from the optical assembly 10.
  • the power supply structure 30 may be a circuit board, and the laser chip 20 may be attached to the circuit board, so that the laser chip 20 and the power supply structure 30 have a larger contact area, and the relationship between the power supply structure 30 and the laser chip 20 is improved.
  • the heat transfer efficiency is more conducive to the improvement of the heat dissipation efficiency of the laser chip 20.
  • the laser chip 20 and the power supply structure 30 may be located outside the package structure 40; or as shown in FIG. 1, the laser chip 20 and the power supply structure 30 may also be located in the package structure 40, so that the laser chip can be fixed by the package structure 40 20 and the power supply structure 30 to ensure the overall stability of the laser module.
  • the heat dissipating structure 50 includes a heat dissipating body 51 and a heat conducting body 52, the heat dissipating body 51 is sleeved on the outside of the packaging structure 40, and one side of the heat conducting body 52 abuts the heat dissipating body 51. The other side is in contact with the first electrode 31 and the second electrode 32.
  • a heat conductor 52 is provided between the power supply structure 30 and the heat sink 51.
  • the heat conductor 52 may have a ring structure, the inner wall of the heat conductor 52 abuts the first electrode 31 and the second electrode 32, and the outer wall of the heat conductor 52 abuts the heat sink 51; in this way, the first electrode 31 and the second electrode 31 There is a larger contact area between the electrode 32 and the heat conductor 52, and the heat conductor 52 can absorb the heat conducted to the first electrode 31 and the second electrode 32 faster by the first electrode 31, the second electrode 32 and the laser chip 20 , It can also speed up the heat dissipation efficiency of the laser module.
  • the heat conductor 52 is made of non-conductive material, and the heat sink 51 is made of metal.
  • the thermal conductor 52 made of non-conductive material does not have electrical conductivity, which can prevent the power supply structure 30 from leaking through the thermal conductor 52 and ensure the safety of the laser module.
  • the heat sink 51 made of metal material has better thermal conductivity, and the heat sink 51 made of metal material has better electromagnetic shielding effect.
  • the material of the heat sink 51 may be copper, which has a relatively high thermal conductivity, and has good stability and low price, which can save the manufacturing cost of the laser module.
  • the heat sink 51 is sleeved on the outside of the packaging structure 40. As shown in FIG. 1, the laser chip 20 is contained in the housing cavity of the packaging structure 40.
  • the heat sink 51 made of metal material can reduce the impact of the laser module on other devices in the electronic equipment. Electromagnetic interference.
  • the heat sink 51 includes a substrate 511 and an extension 512.
  • the substrate 511 is sleeved on the outside of the packaging structure 40.
  • the substrate 511 includes opposite first and second ends. The first end abuts the heat conductor 52, and the second The end is connected to the extension piece 512, and the extension piece 512 is located on the side of the optical assembly 10 opposite to the laser chip 20.
  • the substrate 511 may be a tubular structure sleeved on the outer surface of the packaging structure 40; the substrate 511 of the tubular structure includes a first end and a second end that are relatively far away. Abuts the thermal conductor 52 to absorb the heat of the thermal conductor 52; the second end is close to the optical assembly 10 and is provided with an extension 512, and the extension 512 is located on the side of the optical assembly 10 opposite to the laser chip 20, that is, The optical assembly 10 can be fixed to ensure the stability of the installation of the optical assembly 10.
  • the base plate 511 includes a first side plate 5111, a second side plate 5112, a third side plate 5113, and a fourth side plate 5114 that are connected in sequence.
  • the plate 5111, the second side plate 5112, the third side plate 5113, and the fourth side plate 5114 are surrounded by a first through hole 513, the packaging structure 40 is located in the first through hole 513, the first side plate 5111 and/or the third
  • the side plate 5113 is provided with 512.
  • the through hole is square, and the package structure 40 is also a tetragonal structure.
  • the first side plate 5111, the second side plate 5112, the third side plate 5113, and the fourth side plate 5114 are sequentially connected to form a square-shaped substrate 511, and,
  • the substrate 511 can cover the outer surface of the packaging structure 40, which makes the substrate 511 have a larger surface area, which increases the heat dissipation area of the heat sink 51, improves the heat dissipation efficiency of the laser module, and can better package
  • the structure 40 plays a supporting and fixing role.
  • the extension member 512 may be provided on the first side plate 5111 or the third side plate 5113, or both the first side plate 5111 and the third side plate 5113 are provided with the extension member 512.
  • the extension piece 512 is provided on the first side plate 5111, and the extension piece 512 is connected to the third side plate 5113, so that the extension piece 512 is attached to the optical assembly 10, and can press the optical assembly 10 to align the optical components.
  • the assembly 10 plays a fixed role.
  • the first side plate 5111, the second side plate 5112, the third side plate 5113, and the fourth side plate 5114 are provided with an extension piece 512, and the extension piece 512 is attached to a side of the optical assembly 10 that faces away from the laser chip 20.
  • the extension piece 512 can also fix the optical assembly 10.
  • the first side plate 5111 is provided with a first extension member 5121 and a second extension member 5122
  • the third side plate 5113 is provided with a third extension member 5123 and a fourth extension member 5124.
  • An extension piece 5121 is connected to the third extension piece 5123 and the second side plate 5112
  • the third extension piece 5123 is connected to the second side plate 5112
  • the second extension piece 5122 is connected to the fourth extension piece 5124 and the fourth side plate 5114
  • the fourth extension The piece 5124 is connected to the fourth side plate 5114.
  • the first side plate 5111, the second side plate 5112, the third side plate 5113, and the fourth side plate 5114 are all welded to form a hollow quadrangular prism structure, and the packaging structure 40 and part of the optical assembly 10 are all received In the quadrangular prism structure; the first extension piece 5121 and the third extension piece 5123 are welded to the top end of the second side plate 5112, and the second extension piece 5122 and the fourth extension piece 5124 are both welded to the top end of the fourth side plate 5114 ,
  • the top view of the laser module is shown in Figure 2.
  • the first extension piece 5121 and the third extension piece 5123, the second extension piece 5122 and the fourth extension piece 5124 will also be pressed on the top of the optical assembly 10, thereby fixing the optical assembly 10 to prevent the optical assembly 10 from falling off.
  • the stability of the laser module is ensured; and, with this arrangement, there is no need to add additional fixing parts to fix the optical assembly 10, which saves the hardware cost of the laser module.
  • the heat conductor 52 is formed with a second through hole, the first electrode 31 and the second electrode 32 are located in the second through hole, and the first electrode 31 and the second electrode 32 abut the inner wall of the heat conductor 52 .
  • the first electrode 31 can be a positive electrode, and the second electrode 32 can be a negative electrode to supply power to the laser chip 20; the first electrode 31 and the second electrode 32 can have a plate-like structure, and the first electrode 31 and the second electrode 32 can be It is packaged in the package structure 40.
  • the laser chip 20 is attached to the first electrode 31, so that the laser chip 20 and the first electrode 31 have a larger contact area, and the heat generated by the laser chip 20 can be conducted faster To the first electrode 31, and then to be conducted to the heat conductor 52 through the first electrode 31.
  • the optical assembly 10 includes an optical element 11 and a collimating element 12.
  • the collimating element 12 is provided on the side of the laser chip 20, and the collimating element 12 is accommodated in the receiving cavity, and the optical element 11 is disposed on the side of the collimating element 12.
  • the extension piece 512 abuts on the side of the optical element 11 facing away from the alignment element 12.
  • the laser light emitted by the laser chip 20 is projected to the optical element 11 in the form of parallel light after passing through the collimating element 12.
  • the optical element 11 is used to project the parallel light in the form of scattered light, so that the laser chip 20 emits
  • the laser can have a larger coverage area.
  • the optical element is provided with a light divergence element 13 on one side of the alignment element.
  • the light divergence element 13 is used to diverge the laser light emitted by the laser chip 20, so that the laser light emitted by the light divergence element 13 has a larger The launch angle.
  • the light divergent element 13 may be a micro galvanometer.
  • the process flow of each component in the laser module can be as follows: first attach the laser chip 20 to the first electrode 31, and connect the laser chip 20 and the second electrode 32 through a wire; A thermal conductor 52 is provided on the outside of the second electrode 32; the first electrode 31, the second electrode 32, the thermal conductor 52, and the laser chip 20 are packaged with a packaging material to form a package structure 40; the laser chip 20 is opposite to the first electrode 31
  • the collimating element 12 is mounted on one side; the optical element 11 is mounted on the side of the collimating element 12 opposite to the laser chip 20; the substrate 511 and the extension 512 are bent, and the substrate 511 is attached to the outer wall of the packaging structure 40 Attach the extension piece 512 to the optical element 11; solder the substrate 511 and the extension piece 512.
  • the laser module provided by the embodiments of the present disclosure has a simpler process and lower cost.
  • the heat generated by the laser chip 20 can be conducted to the heat conductor 52 through the power supply structure 30, and to the heat sink 51 through the heat conductor 52, and the heat sink 51 is sleeved outside the packaging structure 40, With a larger overall area, it also has a larger heat dissipation area for heat dissipation, thereby improving the heat dissipation efficiency of the laser module to ensure the working performance and service life of the laser chip 20; and, the higher heat dissipation efficiency, also more Conducive to the development of high-power laser modules, 3D recognition can be applied to long-distance shooting.
  • the embodiments of the present disclosure also provide an electronic device.
  • the electronic device includes the laser module in the embodiment described in FIGS. 1 to 5, and has all the technical features of the laser module in the above embodiment, and can achieve the same The technical effect will not be repeated here.
  • Electronic equipment can include: mobile phones, tablet computers, e-book readers, MP3 players, MP4 players, digital cameras, laptop computers, car computers, desktop computers, set-top boxes, smart TVs, wearable devices, smart home appliances At least one of the products.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光模组及电子设备,激光模组包括光学组件(10)、激光芯片(20)、供电结构(30)、封装结构(40)及散热结构(50)。其中,激光芯片(20)设于光学组件(10)一侧,供电结构(30)连接激光芯片(20);封装结构(40)形成有收容腔,光学组件(10)至少部分收容于收容腔内;散热结构(50)套设于封装结构(40)的外侧,且散热结构(50)抵接供电结构(30)。

Description

激光模组及电子设备
相关申请的交叉引用
本申请主张在2019年1月25日在中国提交的中国专利申请No.201910073154.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及激光设备技术领域,尤其涉及一种激光模组及电子设备。
背景技术
3D识别技术在人脸识别解锁、支付等领域被广泛应用。激光模组是3D识别不可或缺的核心元件,主要用于发射超短飞秒脉冲或投射特定光形,以使系统获得深度信息。激光芯片作为激光模组中最重要的元件之一,在激光模组的工作过程中发挥这关键作用。
激光芯片为半导体器件,对温度敏感,温度越高,激光芯片的光电转换效率越低;高温也容易破坏激光芯片晶格结构,降低激光芯片的使用寿命。但是,相关技术中的激光模组中,激光芯片大多是通过与其连接的电路板来进行散热,导致激光芯片的散热效率低。
发明内容
本公开实施例提供一种激光模组及电子设备,以解决相关技术中的激光模组中激光芯片散热效率低的问题。
为了解决以上技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种激光模组,包括:
光学组件;
激光芯片,设于所述光学组件一侧;
供电结构,包括第一电极及第二电极,所述第一电极及所述第二电极均连接所述激光芯片;
封装结构,形成有收容腔,所述光学组件至少部分收容于所述收容腔内;
散热结构,套设于所述封装结构的外侧,且所述散热结构抵接所述第一电极及所述第二电极。
第二方面,本公开实施例还提供了一种电子设备,所述电子设备包括如第一方面中所述的激光模组。
本公开实施例提供的技术方案,散热结构与供电结构的第一电极及第二电极抵接,进而第一电极及第二电极能够将激光芯片以及其自身产生的热量传导至散热结构,且散热结构套设于封装结构外侧,也就使得散热结构能够具有较大的散热面积用于散热,提高了激光模组的散热效率,以确保激光芯片的工作性能和使用寿命;另外,散热结构套设于封装结构外侧,能够对封装结构起到固定和支撑作用。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1是本公开实施例提供的一种激光模组的剖视图;
图2是图1中激光模组的俯视图;
图3是图1提供的激光模组中散热体的结构图;
图4是图1提供的激光模组中散热体未组装时的主视图;
图5是图4的左视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
请参照图1至图5,图1是本公开实施例提供的一种激光模组的剖视图;图2是图1中激光模组的俯视图;图3是图1提供的激光模组中散热体的结 构图;图4是图1提供的激光模组中散热体未组装时的主视图;图5是图4的左视图。
请具体参照图1,本公开实施例提供了一种激光模组,包括光学组件10、激光芯片20、供电结构30、封装结构40及散热结构50。其中,激光芯片20设于光学组件10一侧,供电结构30包括第一电极31及第二电极32,第一电极31及第二电极32均连接激光芯片20,用以给激光芯片20供电;封装结构40形成有收容腔,光学组件10至少部分收容于该收容腔内;散热结构50套设于封装结构40的外侧,且散热结构50抵接第一电极31及第二电极32。
本公开实施例提供的技术方案中,散热结构50与第一电极31及第二电极32抵接,进而第一电极31及第二电极32能够将激光芯片20以及其自身产生的热量传导至散热结构50,且散热结构50套设于封装结构40外侧,也就使得散热结构50能够具有较大的散热面积用于散热,提高了激光模组的散热效率,以确保激光芯片20的工作性能和使用寿命。
另外,散热结构50套设于封装结构40外侧,能够对封装结构40起到固定和支撑作用。例如,当封装结构40为柱状结构时,散热结构50可以是套设在封装结构40外表面上的管状结构,以包围住封装结构40,对封装结构40起到固定作用。
散热结构50可以是不具备导电性能、但具有较优导热性能的材质,这样,在确保散热结构50散热性能的同时,还能够防止供电结构30通过散热结构50发生漏电等情况,确保激光模组的使用安全。
可选地,供电结构30可以是设于激光芯片20的背对光学组件10的一侧。例如,供电结构30可以是电路板,激光芯片20可以是贴附于电路板上,这样使得激光芯片20与供电结构30之间具有更大的接触面积,提高了供电结构30与激光芯片20之间的传热效率,更有利于激光芯片20的散热效率的提高。
激光芯片20及供电结构30可以是位于封装结构40的外部;或者如图1所示,激光芯片20及供电结构30也可以是位于封装结构40内,这样,能够通过封装结构40来固定激光芯片20以及供电结构30,进而以确保激光模组 整体的稳固性。
在一种可选的实施方式中,散热结构50包括散热体51和导热体52,散热体51套设于封装结构40的外侧,导热体52的一侧抵接散热体51,导热体52的另一侧抵接第一电极31及第二电极32。也就是说,供电结构30与散热体51之间设有导热体52。例如,导热体52可以为环状结构,导热体52的内壁与第一电极31及第二电极32抵接,导热体52的外壁抵接散热体51;这样,使得第一电极31及第二电极32与导热体52之间具有较大的接触面积,导热体52能够更快地吸收第一电极31、第二电极32及激光芯片20传导至第一电极31和第二电极32上的热量,也就能加快激光模组的散热效率。
其中,导热体52为非导电材质,散热体51为金属材质。非导电材质的导热体52也就不具备导电性能,进而能够避免供电结构30通过导热体52发生漏电等情况,确保激光模组的使用安全。
金属材质的散热体51具有更好的导热性能,且金属材质的散热体51具有较好的电磁屏蔽作用。例如,散热体51的材质可以为铜,铜具有较高的导热系数,且铜的稳定性好,价格较低,能够节省激光模组的制造成本。
另外,散热体51套设于封装结构40外侧,如图1所示,激光芯片20收容于封装结构40的收容腔中,金属材质的散热体51可降低激光模组对电子设备中其他器件的电磁干扰。
可选地,散热体51包括基板511及延伸件512,基板511套设于封装结构40的外侧,基板511包括相对的第一端及第二端,第一端抵接导热体52,第二端连接延伸件512,且延伸件512位于光学组件10的背对激光芯片20的一侧。
例如,当封装结构40为空心的柱状结构时,基板511可以是套设在封装结构40外表面上的管状结构;管状结构的基板511包括相对远离的第一端和第二端,第一端抵接导热体52,以吸收导热体52的热量;第二端靠近光学组件10,并设有延伸件512,且该延伸件512位于光学组件10的背对激光芯片20的一侧,也就能够对光学组件10起到固定作用,以确保光学组件10安装的稳固性。
请参照图3至图5,在一种具体的实施方式中,基板511包括依次连接 的第一侧板5111、第二侧板5112、第三侧板5113及第四侧板5114,第一侧板5111、第二侧板5112、第三侧板5113及第四侧板5114围成有第一通孔513,封装结构40位于第一通孔513内,第一侧板5111和/或第三侧板5113设有512。通孔为方形,封装结构40也就为四方体结构,第一侧板5111、第二侧板5112、第三侧板5113及第四侧板5114依次连接形成方框形的基板511,并且,基板511可以是覆盖封装结构40的外表面,也就使得基板511具有更大的表面积,也就增大了散热体51的散热面积,提高激光模组的散热效率,也能更好地对封装结构40起到支撑和固定作用。
延伸件512可以是设于第一侧板5111上或第三侧板5113上,或者第一侧板5111和第三侧板5113上都设有延伸件512。例如,延伸件512设于第一侧板5111上,且延伸件512连接第三侧板5113,也就使得延伸件512贴合于光学组件10上,进而能够压住光学组件10,以对光学组件10起到固定作用。
或者,第一侧板5111、第二侧板5112、第三侧板5113及第四侧板5114上均设有延伸件512,延伸件512贴合于光学组件10的背对激光芯片20的一侧,也就能够通过延伸件512对光学组件10起到固定作用。
请具体参照图2和图3,第一侧板5111上设有第一延伸件5121和第二延伸件5122,第三侧板5113上设有第三延伸件5123和第四延伸件5124,第一延伸件5121连接第三延伸件5123及第二侧板5112,第三延伸件5123连接第二侧板5112,第二延伸件5122连接第四延伸件5124及第四侧板5114,第四延伸件5124连接第四侧板5114。
本实施例中,第一侧板5111、第二侧板5112、第三侧板5113及第四侧板5114均是通过焊接以形成空心的四棱柱结构,封装结构40及部分光学组件10均收容在该四棱柱结构内;第一延伸件5121及第三延伸件5123均与第二侧板5112的顶端焊接,第二延伸件5122及第四延伸件5124均与第四侧板5114的顶端焊接,激光模组的顶部视图也就是如图2所示。这样,第一延伸件5121及第三延伸件5123、第二延伸件5122及第四延伸件5124,也就会压在光学组件10的顶部,进而固定住光学组件10,避免光学组件10脱落,确保了激光模组的稳固性;并且,这样的设置,也无需再增加额外的固定件来固定光学组件10,节省了激光模组的硬件成本。
请再次参照图1,导热体52形成有第二通孔,第一电极31及第二电极32位于第二通孔内,且第一电极31及第二电极32均抵接导热体52的内壁。第一电极31可以为正极,第二电极32可以为负极,进而以对激光芯片20供电;第一电极31及第二电极32可以为板状结构,且第一电极31及第二电极32可以是封装于封装结构40内。
可选地,激光芯片20贴附于第一电极31上,这样,也就使得激光芯片20与第一电极31具有更大的接触面积,也就能够更快地将激光芯片20产生的热量传导至第一电极31,进而以通过第一电极31传导至导热体52上。
可选地,光学组件10包括光学元件11及准直元件12,准直元件12设于激光芯片20一侧,且准直元件12收容于收容腔中,光学元件11设于准直元件12的背对激光芯片20的一侧,延伸件512抵接光学元件11的背对准直元件12的一侧。可以理解地,激光芯片20发射的激光经准直元件12后,会以平行光的形式投射至光学元件11,光学元件11用以将平行光以散射光的形式投射出去,使得激光芯片20发射的激光能够具有较大的覆盖范围。
另外,光学元件的面对准直元件的一侧设有光线发散元件13,光线发散元件13用于对激光芯片20发射的激光进行发散,以使得通过光线发散元件13发射出去的激光具有更大的发射角度。可选地,光线发散元件13可以为微振镜。
本实施例中,激光模组中各部件的工艺流程可以是:首先将激光芯片20贴附在第一电极31上,并通过电线连接激光芯片20与第二电极32;在第一电极31与第二电极32的外侧设置导热体52;采用封装材料封装第一电极31、第二电极32、导热体52及激光芯片20,形成封装结构40;在激光芯片20的背对第一电极31的一侧搭载准直元件12;在准直元件12的背对激光芯片20的一侧搭载光学元件11;将基板511以及延伸件512弯折,并将基板511贴附在封装结构40的外壁上,将延伸件512贴附在光学元件11上;焊接基板511以及延伸件512。本公开实施例提供的激光模组,工艺流程更为简单,成本也更低。
本公开实施例提供的技术方案中,激光芯片20产生的热量能够通过供电结构30传导至导热体52,并通过导热体52传导至散热体51上,散热体51 套设在封装结构40外侧,整体面积较大,也就具有更大的散热面积用于散热,进而提高了激光模组的散热效率,以确保激光芯片20的工作性能和使用寿命;并且,较高的散热效率,也更有利于激光模组向大功率发展,也就能够将3D识别应用于远距离拍摄中。
本公开实施例还提供一种电子设备,所述电子设备包括如图1至图5所述实施例中的激光模组,并且具有上述实施例中激光模组的全部技术特征,能达到相同的技术效果,在此不再赘述。
电子设备可以包括:手机、平板电脑、电子书阅读器、MP3播放器、MP4播放器、数码相机、膝上型便携计算机、车载电脑、台式计算机、机顶盒、智能电视机、可穿戴设备、智能家电产品中的至少一项。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (8)

  1. 一种激光模组,包括:
    光学组件;
    激光芯片,设于所述光学组件一侧;
    供电结构,包括第一电极及第二电极,所述第一电极及所述第二电极均连接所述激光芯片;
    封装结构,形成有收容腔,所述光学组件至少部分收容于所述收容腔内;
    散热结构,套设于所述封装结构的外侧,且所述散热结构抵接所述第一电极及所述第二电极;
    所述散热结构包括散热体和导热体,所述散热体套设于所述封装结构的外侧,所述导热体的一侧抵接所述散热体,所述导热体的另一侧抵接所述第一电极及所述第二电极;
    所述散热体包括基板及延伸件,所述基板套设于所述封装结构的外侧,所述基板包括相对的第一端及第二端,所述第一端抵接所述导热体,所述第二端连接所述延伸件,且所述延伸件位于所述光学组件的背对所述激光芯片的一侧。
  2. 根据权利要求1所述的激光模组,其中,所述基板包括依次连接的第一侧板、第二侧板、第三侧板及第四侧板,所述第一侧板、所述第二侧板、所述第三侧板及所述第四侧板围成有第一通孔,所述封装结构位于所述第一通孔内,所述第一侧板和/或所述第三侧板设有所述延伸件。
  3. 根据权利要求2所述的激光模组,其中,所述第一侧板上设有第一延伸件和第二延伸件,所述第三侧板上设有第三延伸件和第四延伸件,所述第一延伸件连接所述第三延伸件及所述第二侧板,所述第三延伸件连接所述第二侧板,所述第二延伸件连接所述第四延伸件及所述第四侧板,所述第四延伸件连接所述第四侧板。
  4. 根据权利要求2所述的激光模组,其中,所述导热体形成有第二通孔,所述第一电极及所述第二电极位于所述第二通孔内,且所述第一电极及所述第二电极均抵接所述导热体的内壁。
  5. 根据权利要求1所述的激光模组,其中,所述光学组件包括光学元件及准直元件,所述准直元件设于所述激光芯片一侧,且所述准直元件收容于所述收容腔中,所述光学元件设于所述准直元件的背对所述激光芯片的一侧,所述延伸件抵接所述光学元件的背对所述准直元件的一侧。
  6. 根据权利要求5所述的激光模组,其中,所述光学元件的面对所述准直元件的一侧设有光线发散元件。
  7. 根据权利要求1所述的激光模组,其中,所述导热体为非导电材质,所述散热体为金属材质。
  8. 一种电子设备,包括如权利要求1至7中任一项所述的激光模组。
PCT/CN2020/071689 2019-01-25 2020-01-13 激光模组及电子设备 WO2020151515A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20745019.8A EP3916934B1 (en) 2019-01-25 2020-01-13 Laser module and electronic device
KR1020217026756A KR102507604B1 (ko) 2019-01-25 2020-01-13 레이저 모듈 및 전자 장치
JP2021543259A JP7208407B2 (ja) 2019-01-25 2020-01-13 レーザモジュール及び電子機器
US17/381,536 US12015241B2 (en) 2019-01-25 2021-07-21 Laser module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910073154.6A CN109586165B (zh) 2019-01-25 2019-01-25 一种激光模组及电子设备
CN201910073154.6 2019-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/381,536 Continuation US12015241B2 (en) 2019-01-25 2021-07-21 Laser module and electronic device

Publications (1)

Publication Number Publication Date
WO2020151515A1 true WO2020151515A1 (zh) 2020-07-30

Family

ID=65917413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071689 WO2020151515A1 (zh) 2019-01-25 2020-01-13 激光模组及电子设备

Country Status (6)

Country Link
US (1) US12015241B2 (zh)
EP (1) EP3916934B1 (zh)
JP (1) JP7208407B2 (zh)
KR (1) KR102507604B1 (zh)
CN (1) CN109586165B (zh)
WO (1) WO2020151515A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586165B (zh) * 2019-01-25 2020-04-07 维沃移动通信有限公司 一种激光模组及电子设备
CN110190503A (zh) * 2019-04-23 2019-08-30 维沃移动通信有限公司 固定座、激光投射模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341636A (zh) * 2005-12-20 2009-01-07 菲尼萨公司 具有内部器件的模块化晶体管外形罐
US20150109680A1 (en) * 2013-10-23 2015-04-23 Lasermax, Inc. Laser module and system
CN106486886A (zh) * 2015-08-28 2017-03-08 日亚化学工业株式会社 半导体激光装置
CN109586165A (zh) * 2019-01-25 2019-04-05 维沃移动通信有限公司 一种激光模组及电子设备
US20190148909A1 (en) * 2017-11-14 2019-05-16 Nichia Corporation Optical member holding device, semiconductor laser device, method of manufacturing optical member holding device, and method of manufacturing semiconductor laser device
US10495271B2 (en) * 2017-12-25 2019-12-03 Nichia Corporation Light emitting device and method for detecting abnormality in light emitting device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132088A (en) * 1979-03-30 1980-10-14 Canon Inc Semiconductor laser device
US4918702A (en) * 1987-12-02 1990-04-17 Canon Kabushiki Kaisha Laser unit
JP2560136B2 (ja) * 1990-06-14 1996-12-04 ローム株式会社 半導体レーザ装置
JP2560135B2 (ja) * 1990-06-14 1996-12-04 ローム株式会社 半導体レーザ装置における透明樹脂の充填方法
EP1282206A1 (en) * 2001-07-30 2003-02-05 Agilent Technologies, Inc. (a Delaware corporation) Method and apparatus for cooling electronic or optoelectronic devices
JP3972814B2 (ja) * 2002-12-26 2007-09-05 ソニー株式会社 半導体集積装置
JP5106094B2 (ja) * 2007-02-22 2012-12-26 シャープ株式会社 表面実装型発光ダイオードおよびその製造方法
KR20090017246A (ko) * 2007-08-14 2009-02-18 김정수 방열부재가 부착된 레이저 다이오드 패키지
US7855394B2 (en) 2009-06-18 2010-12-21 Bridgelux, Inc. LED array package covered with a highly thermal conductive plate
US8811439B2 (en) * 2009-11-23 2014-08-19 Seminex Corporation Semiconductor laser assembly and packaging system
US8482924B2 (en) * 2010-10-11 2013-07-09 Richard Redpath Heat spreader facet plane apparatus
DE102011116534B4 (de) 2011-10-20 2022-06-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes Bauelement
KR101621712B1 (ko) * 2012-05-01 2016-05-17 미쓰비시덴키 가부시키가이샤 반도체 패키지
JP6135032B2 (ja) 2013-02-19 2017-05-31 スタンレー電気株式会社 発光装置、車両用灯具及び応力逃がし部成型方法
JP6789970B2 (ja) 2015-03-30 2020-11-25 ルミレッズ ホールディング ベーフェー 高輝度発光デバイス用の周辺ヒートシンク装置
JP6319257B2 (ja) * 2015-09-30 2018-05-09 ウシオ電機株式会社 半導体レーザ装置
JPWO2018173913A1 (ja) 2017-03-21 2019-06-27 日本特殊陶業株式会社 発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341636A (zh) * 2005-12-20 2009-01-07 菲尼萨公司 具有内部器件的模块化晶体管外形罐
US20150109680A1 (en) * 2013-10-23 2015-04-23 Lasermax, Inc. Laser module and system
CN106486886A (zh) * 2015-08-28 2017-03-08 日亚化学工业株式会社 半导体激光装置
US20190148909A1 (en) * 2017-11-14 2019-05-16 Nichia Corporation Optical member holding device, semiconductor laser device, method of manufacturing optical member holding device, and method of manufacturing semiconductor laser device
US10495271B2 (en) * 2017-12-25 2019-12-03 Nichia Corporation Light emitting device and method for detecting abnormality in light emitting device
CN109586165A (zh) * 2019-01-25 2019-04-05 维沃移动通信有限公司 一种激光模组及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916934A4 *

Also Published As

Publication number Publication date
EP3916934A4 (en) 2022-03-23
US12015241B2 (en) 2024-06-18
JP7208407B2 (ja) 2023-01-18
US20210351565A1 (en) 2021-11-11
CN109586165B (zh) 2020-04-07
EP3916934A1 (en) 2021-12-01
KR20210116627A (ko) 2021-09-27
CN109586165A (zh) 2019-04-05
KR102507604B1 (ko) 2023-03-09
EP3916934B1 (en) 2024-09-18
JP2022520020A (ja) 2022-03-28

Similar Documents

Publication Publication Date Title
EP3200226B1 (en) Heat dissipation shielding structure and communication product
WO2020151515A1 (zh) 激光模组及电子设备
TWI525355B (zh) 光電轉換模組
TWM459412U (zh) 光連接器封裝結構
WO2017206682A1 (zh) 移动显示设备
TWI495423B (zh) 散熱模組及採用該散熱模組之電子裝置
US20190223325A1 (en) Optical module
JP5904146B2 (ja) 通信モジュール及びそれを備えた信号伝送装置
TW201441705A (zh) 光學通訊模組
CN116247013A (zh) 芯片封装模组及电子设备
TWM469509U (zh) 具散熱結構之攝像模塊
TWM522552U (zh) 手持通訊裝置及其薄型化散熱器
CN204595282U (zh) 一种光收发模块
US10130010B2 (en) Internal heat-dissipation terminal
CN212183801U (zh) 一种具有散热功能的多层印制线路板
TWM500284U (zh) 可攜式電子裝置
JP3162593U (ja) 放熱装置
CN214672591U (zh) 一种功率器件封装结构
WO2023241486A1 (zh) 天线散热组件及基站
TW201328577A (zh) 散熱裝置及帶有該散熱裝置的電子設備
WO2023141769A1 (zh) 封装器件、功率模组及电子装置
CN210468205U (zh) 电子设备及其充电插座
CN211557841U (zh) 具有倒扣式散热结构的户外移动电源及倒扣式散热器结构
TWM652149U (zh) 電子裝置
KR20110020416A (ko) Usb모뎀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026756

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020745019

Country of ref document: EP

Effective date: 20210825