WO2020149269A1 - 硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法 - Google Patents

硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法 Download PDF

Info

Publication number
WO2020149269A1
WO2020149269A1 PCT/JP2020/000923 JP2020000923W WO2020149269A1 WO 2020149269 A1 WO2020149269 A1 WO 2020149269A1 JP 2020000923 W JP2020000923 W JP 2020000923W WO 2020149269 A1 WO2020149269 A1 WO 2020149269A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
curable
steel sheet
mass
parts
Prior art date
Application number
PCT/JP2020/000923
Other languages
English (en)
French (fr)
Inventor
孝昭 東野
研二 加藤
Original Assignee
日本化学塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学塗料株式会社 filed Critical 日本化学塗料株式会社
Priority to JP2020566416A priority Critical patent/JP7264509B2/ja
Priority to EP20740890.7A priority patent/EP3926097A4/en
Priority to AU2020209300A priority patent/AU2020209300A1/en
Priority to US17/422,597 priority patent/US20220089874A1/en
Priority to CA3126379A priority patent/CA3126379A1/en
Publication of WO2020149269A1 publication Critical patent/WO2020149269A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/14Sealing joints between adjacent sheet piles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • E02D5/08Locking forms; Edge joints; Pile crossings; Branch pieces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/104Water-swellable materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

作業員や環境に優しく、金属との接着性に優れ、かつ十分な膨張率および膨潤体膜強度を備えた硬化性水膨張止水材、止水鋼矢板、止水鋼矢板の製造方法および止水工法を提供する。本発明に係る硬化性水膨張止水材は、「-X-CH2-SiR1 Y(OR2)3-Y」で表される加水分解性アルコキシシリル基を有する硬化性樹脂(A)40~100質量部、ポリエーテルポリオール(B)0~60質量部からなる樹脂成分100質量部に対して、アミノシランカップリング剤(C)0.3~25質量部、吸水性樹脂(D)20~250質量部および体質顔料(E)0~160質量部を含む(ただし、前記式において、Xは加水分解性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を示し、R1、R2はそれぞれ炭素数1~3個のアルキル基を示し、Yは0、1または2を示す。)。

Description

硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法
 本発明は、硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法に関する。
 廃棄物処理場、護岸工事、海および河川の締切り工事、橋脚・橋台の新設・撤去等の工事、共同溝設置工事、ビル建設や上下水道管敷設工事に伴う根切り工事などに鋼矢板が用いられている。鋼矢板にはU形鋼矢板、Z形鋼矢板、ハット形鋼矢板、直線形鋼矢板などがあり、いずれも両端に他の鋼矢板との係合を可能にする継手部(爪部)が設けられている。そして、鋼矢板には、この継手部に塗膜状の硬化性水膨張止水材を設けたものがある。このような鋼矢板は止水鋼矢板などと呼ばれている。止水鋼矢板に設けられた硬化性水膨張止水材は、止水鋼矢板の少なくとも一部が地中に打設または圧入(以下単に「打設など」と記載することがある)された後、地下水や海・河川の水を吸水し、膨潤(膨張)して継手部間の隙間を埋め、止水する。
 前記した硬化性水膨張止水材に関する発明が多数提案されている。
 例えば、特許文献1には、芳香族系イソシアネート基末端プレポリマーおよび特定の群から選択される一以上の化合物である脂肪族系有機ポリイソシアネートを含有し、イソシアネート基の含有量および数の比が所定範囲である止水材用有機ポリイソシアネート組成物と、公称平均官能基数が3~6であるアミン系ポリオールとを、イソシアネート基/水酸基の比が所定範囲となるように含有するポリウレタン樹脂形成性組成物が記載されている。そして、このポリウレタン樹脂形成性組成物は、前記芳香族系イソシアネート基末端プレポリマーが、芳香族ポリイソシアネートとポリエーテルポリオールとの反応生成物であり、前記ポリエーテルポリオールが、特定範囲のオキシエチレン基含有量を有し公称平均官能基数が2であるポリエーテルポリオールと、特定範囲のオキシエチレン基含有量を有し公称平均官能基数が3であるポリエーテルポリオールとからなるものである。
 また、例えば、特許文献2には、電離性吸水ポリマー、多価金属化合物およびエラストマーの有機溶剤溶液からなる水膨張性塗料組成物が記載されている。
特許第5447655号公報 特開平1-168766号公報
 しかしながら、特許文献1、2に記載の発明には、打設時に鋼矢板同士の摩擦により硬化性止水材が剥がれることを防止するため、金属との接着性をさらに向上させて欲しいという要望があった。また、止水材の膨張率が低かったり、膨張した止水材の強度が低かったりすると水圧に耐えられず漏水することがあった。さらに、特許文献2に記載の発明は、組成中に揮発性の有機溶剤を含んでいるので作業員や環境に好ましいものとは言えなかった。さらに、特許文献1、2に記載の発明に限らず、硬化性水膨張止水材には、十分な止水性を得るため、水を吸収して膨張し、ある程度の強度(膨潤体膜強度)を保つことが要求される。
 本発明は前記状況に鑑みてなされたものであり、作業員や環境に優しく、金属との接着性に優れ、かつ十分な膨張率および膨潤体膜強度を備えた硬化性水膨張止水材、止水鋼矢板、止水鋼矢板の製造方法および止水工法を提供することを課題とする。
 前記課題を解決した本発明に係る硬化性水膨張止水材は、式(1)で表される加水分解性アルコキシシリル基を有する硬化性樹脂(A)40~100質量部、ポリエーテルポリオール(B)0~60質量部からなる樹脂成分100質量部に対して、アミノシランカップリング剤(C)0.3~25質量部、吸水性樹脂(D)20~250質量部および体質顔料(E)0~160質量部を含む。
    -X-CH-SiR (OR3-Y      ・・・式(1)
 ただし、前記式(1)において、Xは加水分解性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を示し、R、Rはそれぞれ炭素数1~3個のアルキル基を示し、Yは0、1または2を示す。
 本発明に係る止水鋼矢板は、前記した硬化性水膨張止水材からなる塗膜が鋼矢板の継手部に設けられている。
 本発明に係る止水鋼矢板の製造方法は、前記した硬化性水膨張止水材を鋼矢板の継手部に塗布する塗布工程と、前記硬化性水膨張止水材を硬化させて塗膜を形成させる塗膜形成工程と、を含む。
 また、本発明に係る止水工法は、前記した硬化性水膨張止水材を止水鋼矢板の継手部に連続的に塗布しながら当該止水鋼矢板の少なくとも一部を地中に打設または圧入する打設・圧入工程と、前記硬化性水膨張止水材を硬化させて止水する硬化工程と、を含む。
 本発明に係る硬化性水膨張止水材、止水鋼矢板、止水鋼矢板の製造方法および止水工法は、作業員や環境に優しく、金属との接着性に優れ、かつ十分な膨張率および膨潤体膜強度を備えている。
本実施形態に係る止水鋼矢板を複数係合させた様子を示す横断面図である。 図1のII部拡大図である。 図2の拡大図において、硬化性水膨張止水材が水を吸収して膨張した様子を示す説明図である。 本実施形態に係る止水鋼矢板の製造方法の内容を説明するフローチャートである。 本実施形態に係る止水工法の内容を説明するフローチャートである。 打設・圧入工程で圧入を行っている様子を示した説明図である。
 以下、適宜図面を参照して、本発明に係る硬化性水膨張止水材、止水鋼矢板、止水鋼矢板の製造方法および止水工法の一実施形態について詳細に説明する。
 なお、本明細書に記載される「~」は、その前後に記載される数値を下限値および上限値として有する意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。
〔硬化性水膨張止水材〕
 本実施形態に係る硬化性水膨張止水材は、式(1)で表される加水分解性アルコキシシリル基を有する硬化性樹脂(A)40~100質量部、ポリエーテルポリオール(B)0~60質量部からなる樹脂成分100質量部に対して、アミノシランカップリング剤(C)0.3~25質量部、吸水性樹脂(D)20~250質量部および体質顔料(E)0~160質量部を含む組成物である。
    -X-CH-SiR (OR3-Y      ・・・式(1)
 ただし、前記式(1)において、Xは加水分解性珪素基(SiR )に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を示す。また、R、Rはそれぞれ炭素数1~3個のアルキル基を示す。Yは0、1または2を示す。
 硬化性樹脂(A)は、分子末端の前記式(1)で表される加水分解性アルコキシシリル基が水と反応して縮重合し、ポリマーを形成する。つまり、硬化性樹脂(A)は、硬化性水膨張止水材の組成中に揮発性の有機溶剤を含有させなくても縮合反応を進めることができる。また、硬化性樹脂(A)の加水分解性アルコキシシリル基は、縮合反応により硬化性水膨張止水材を硬化させるとともに、金属との接着を行う。そのため、硬化性樹脂(A)は、前記式(1)で表される加水分解性アルコキシシリル基を直鎖状の主鎖の両末端に有していることが好ましい。なお、硬化性樹脂(A)は、前記式(1)で表される加水分解性アルコキシシリル基が側鎖に含まれていてもよい。
 前記した結合官能基は、加水分解性珪素基と主鎖とをつなぐ構造を有している官能基である。そのような結合官能基としては、例えば、(チオ)ウレタン結合、(チオ)尿素結合、(チオ)置換尿素結合、(チオ)エステル結合、(チオ)エーテル結合などのうちの少なくとも1つを有している官能基であることが好ましい。なお、結合官能基は、加水分解性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合していればよく、前記したものに制限されない。ヘテロ原子とは、炭素および水素以外の原子をいい、本実施形態においては、例えば、N、O、F、Si、P、S、Cl、Br、Iなどを用いることができる。
 また、前記式(1)で表されるように、珪素原子は、メチレン基との結合以外に加水分解性基としてアルコキシ基(OR)が1~3個結合するとともに、珪素原子の残りの結合手にアルキル基(R)が2~0個結合している。
 ここで、RおよびRはそれぞれ炭素数1~3個のアルキル基である。そのため、アルコキシ基(OR)としては、メトキシ基、エトキシ基、プロポキシ基が挙げられるが、好ましくはメトキシ基またはエトキシ基である。珪素原子の残りの結合手に結合するアルキル基(R)としては、メチル基、エチル基が挙げられるが、好ましくはメチル基である。
 また、前記した加水分解性珪素基は、アルキルジアルコキシシリル基(前記Yが1)またはトリアルコキシシリル基(前記Yが0)であることが、入手の容易さ、金属との接着性、水を吸収して膨張した後の強度、つまり、膨潤体膜強度を保つなどの点から好ましい。
 硬化性樹脂(A)の添加量は、前記したように、硬化性樹脂(A)と後記するポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、40~100質量部の範囲で任意に調整できる。硬化性樹脂(A)の含有量は、この範囲内で多くするほど金属との接着性を高くできる。また、硬化性樹脂(A)の含有量は、この範囲内で多くするほど硬化性水膨張止水材の粘性が高くなり、硬化時間も早くなる。金属との接着性、粘性、硬化時間を考慮して、硬化性樹脂(A)の添加量は、硬化性樹脂(A)と後記するポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、50~90質量部とすることができ、60~80質量部とすることもできる。
 硬化性樹脂(A)の分子量は特に制限されないが、例えば、1000~80000が好ましく、1500~60000がより好ましく、2000~40000がさらに好ましい。硬化性樹脂(A)の分子量が1000~80000であると、適切な架橋密度であるので金属との接着性や膨潤体膜強度を保つなどの点で好ましく、また、適度な粘度も得られるので作業性が良い。
 硬化性樹脂(A)が前記した化学構造を有していると、通常の加水分解性珪素基よりも極めて高い湿分反応性が得られる。そのため、シラノール縮合触媒として作用する有機錫化合物、例えば、ジブチル錫ジラウレートなどの触媒を使用しなくても、或いは通常よりもはるかに少量の使用量でも充分な硬化速度を得ることができる。
 硬化性樹脂(A)の主鎖骨格は、例えば、ポリオキシアルキレン、ビニル重合体、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサンなどのシリコーン樹脂および変成シリコーン樹脂に一般的に用いられている主鎖骨格から選ばれる1種以上を採用し得るが、これらに限定されない。硬化性樹脂(A)の主鎖骨格は、これらの中でもポリオキシアルキレンであることが、入手の容易さや膨潤体膜強度を保つなどの点から好ましい。なお、ポリオキシアルキレンは、その構造が硬化性樹脂(A)の主鎖骨格である繰り返し単位の主要素であることが好ましい。ポリオキシアルキレンは、硬化性樹脂(A)の中にその構造が単独で含まれていてもよいし、2種以上含まれていてもよい。
 硬化性樹脂(A)は、従来公知の方法で製造することができる。従来公知の方法として、例えば、ポリオール化合物にイソシアネートメチルアルコキシシラン化合物を反応させる方法が挙げられる。また、従来公知の方法として、例えば、ポリオール化合物とポリイソシアネート化合物を反応させてウレタンプレポリマーを合成した後、ウレタンプレポリマーにアミノメチルアルコキシシラン化合物などのα位に活性水素基を有するヘテロ原子が結合している化合物を反応させる方法が挙げられる。
 硬化性樹脂(A)は、例えば、Wacker Chemie AG製のGENIOSIL(登録商標) STP-E10、GENIOSIL STP-E30、GENIOSIL STP-E15、GENIOSIL STP-E35などを好適に用いることができる。
 ポリエーテルポリオール(B)は、硬化性水膨張止水材の粘性や硬化時間などを調整する可塑剤(希釈剤)として添加される。ポリエーテルポリオール(B)を含有させると、硬化性水膨張止水材の塗膜の機械特性、例えば、柔軟性や弾性回復性などが向上する。したがって、止水鋼矢板を打設などするときに剥がれ難く、止水性が低下し難くなる。
 ポリエーテルポリオール(B)は所望する硬化性水膨張止水材の物性に応じて任意に添加することができ、0質量部とすることもできる。つまり、ポリエーテルポリオール(B)の添加量は、前記したように、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、0~60質量部の範囲で調整できる。ポリエーテルポリオール(B)の含有量は、この範囲内で多くするほど硬化性水膨張止水材の粘性が低くなり、硬化時間も長くなる。所望する硬化性水膨張止水材の物性に応じて、ポリエーテルポリオール(B)の添加量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、0~50質量部とすることができ、0~40質量部とすることができ、0~30質量部とすることができる。なお、ポリエーテルポリオール(B)の添加量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に10質量部以上とすることができ、20質量部以上とすることができる。
 ただし、ポリエーテルポリオール(B)の添加量が、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に60質量部を超えると(すなわち、硬化性樹脂(A)の添加量が、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に40質量部未満となると)、硬化性樹脂(A)の式(1)で表される加水分解性アルコキシシリル基が相対的に少なくなるので、金属との接着性が低下する。また、この場合、硬化性樹脂(A)の式(1)で表される加水分解性アルコキシシリル基による縮合反応が十分な架橋密度で行われなくなるので、吸水性樹脂(D)の保持を十分に行うことができず流失等してしまう。そのため、水を吸収しても十分に膨張できない。したがって、十分な止水性が得られないおそれがある。
 ポリエーテルポリオール(B)は、従来公知の方法で製造することができる。例えば、ポリエーテルポリオール(B)は、グリコール、グリセリン、ソルビトール、ショ糖などの分子内に水酸基を2つ以上持った低分子化合物にプロピレンオキサイドやエチレンオキサイドなどのアルキレンオキサイドを付加重合させて製造することができる。ポリエーテルポリオール(B)は、例えば、官能基数2~8、平均分子量200~10000のものを好適に用いることができる。
 ポリエーテルポリオール(B)は、例えば、日油株式会社製ユニオール(登録商標)D-700やユニオールTG-1000Rなどを好適に用いることができる。
 アミノシランカップリング剤(C)は、1分子中にアルコキシ基が結合した珪素原子と、窒素原子を含有する官能基と、を含有している化合物である。硬化性水膨張止水材にアミノシランカップリング剤(C)を含ませることにより、金属との接着性を向上させることができる。
 アミノシランカップリング剤(C)に含まれるアミノ基は、第1級、第2級、第3級のいずれのアミノ基でもよいが、金属への接着性付与効果がより発現し易い第1級または第2級アミノ基が好ましく、第1級アミノ基がより好ましい。また、アミノシランカップリング剤(C)中に含まれるアミノ基は、1個であってもよく2個以上であってもよい。また、アミノシランカップリング剤(C)に含まれる加水分解性珪素基は、例えば、アルキルジアルコキシシリル基またはトリアルコキシシリル基であることが、入手の容易さ、金属との接着性、膨潤体膜強度を保つなどの点から好ましい。アミノシランカップリング剤(C)に含まれる加水分解性珪素基は、1個であってもよく、2個以上であってもよい。
 アミノシランカップリング剤(C)は、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(メチルジメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕ヘキサメチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕ヘキサメチレンジアミンなどを用いることができる。アミノシランカップリング剤(C)は、これらの化合物を単独で用いてもよく、2種以上を併用してもよい。
 アミノシランカップリング剤(C)の含有量は、前記したように、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、0.3~25質量部の範囲で調整できる。アミノシランカップリング剤(C)の含有量は、この範囲内で多くするほど金属との接着性を向上させることができる。
 アミノシランカップリング剤(C)の含有量は、金属との接着性とその他の物性、例えば、硬化時間、貯蔵安定性、作業時の取扱い性などを考慮し、前記範囲内で任意に調整可能である。これらの点から、アミノシランカップリング剤(C)の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、1.5~20質量部とすることができ、2~15質量部とすることができ、4~8質量部とすることができる。
 ただし、アミノシランカップリング剤(C)の含有量が、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に0.3質量部未満となると、アミノシランカップリング剤(C)が少な過ぎるため、金属との接着性が低下する。
 その一方で、アミノシランカップリング剤(C)の含有量が、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に25質量部を超えると、架橋密度が高くなり過ぎてしまうため、水を吸収しても十分に膨張できない。そのため、十分な止水性が得られないおそれがある。また、アミノシランカップリング剤(C)の含有量が多過ぎると硬化時間が極めて短くなることから、貯蔵安定性や作業時の取扱い性などが低下する。
 アミノシランカップリング剤(C)は、例えば、Wacker Chemie AG製のGENIOSIL GF96を好適に用いることができるが、これに限定されない。
 吸水性樹脂(D)は、水を吸収して保持し、硬化性水膨張止水材の体積を増加させる。
 吸水性樹脂(D)は、例えば、ポリエチレンオキシド系樹脂、カルボキシメチルセルロースアルカリ金属塩およびポリアクリル酸アルカリ金属塩から選ばれた少なくとも1種を用いることができる。ポリエチレンオキシド系樹脂は、エチレンオキシドのみによって構成される樹脂であってもよく、また、エチレンオキシドと他のオキシド化合物(例えば、プロピレンオキシド)とがランダム共重合してなるエチレンオキシド・プロピレンオキシドランダム共重合体などであってもよい。カルボキシメチルセルロースアルカリ金属塩としては、例えば、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、カルボキシメチルセルロースカリウム塩などを用いることができる。ポリアクリル酸アルカリ金属塩としては、例えば、ポリアクリル酸ナトリウム塩、ポリアクリル酸リチウム塩、ポリアクリル酸カリウム塩などを用いることができる。
 また、吸水性樹脂(D)は、例えば、澱粉-アクリル酸グラフト重合体加水分解物、酢酸ビニル-アクリル酸エステル共重合体ケン化物、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、およびカチオン性モノマーの架橋重合体などを用いることができる。
 吸水性樹脂(D)は、以上に挙げた化合物を単独で用いてもよく、2種以上を併用してもよい。
 吸水性樹脂(D)の含有量は、前記したように、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、20~250質量部の範囲で調整できる。吸水性樹脂(D)の含有量は、この範囲内で多くするほど水の吸収量を多くすることができ、水を吸収した場合の膨張率を高くすることができるが、膨潤体膜強度が低下する。これらを考慮し、吸水性樹脂(D)の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、35~200質量部とすることができ、50~150質量部とすることができ、60~100質量部とすることができる。
 ただし、吸水性樹脂(D)の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に20質量部未満となると、水を吸収しても膨張が不十分となる。そのため、十分な止水性が得られないおそれがある。
 その一方で、吸水性樹脂(D)の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に250質量部を超えると、水を吸収した場合の膨張率は高くなり体積は増えるものの、それに応じて架橋密度が低下して膨潤体膜強度が低下する。そのため、十分な止水性が得られないおそれがある。
 吸水性樹脂(D)は、例えば、日本製紙株式会社製サンローズ(登録商標)F150LC、住友精化株式会社製アクアコーク(登録商標)TWB-P、テクニカ合同株式会社製TG-SAPなどを好適に用いることができるが、これらに限定されない。
 吸水性樹脂(D)として、前記したカルボキシメチルセルロースアルカリ金属塩およびポリアクリル酸アルカリ金属塩などのイオン性吸水性樹脂を使用する場合は、多価金属化合物を併用することが知られている。このような構成によれば、硬化性水膨張止水材が用いられた止水鋼矢板が水と接触することにより、硬化性水膨張止水材に含まれるイオン性吸水性樹脂および多価金属化合物が水に溶解する。そして、多価金属化合物が水に溶解して生じた多価金属イオンが、イオン化したイオン性吸水性樹脂を架橋することによってイオン性吸水性樹脂は自由な移動が制限される。その結果、水がイオン性吸水性樹脂に取り込まれ、イオン性吸水性樹脂が膨潤する。一方、硬化性樹脂(A)の弾性効果により、膨潤したイオン性吸水性樹脂を鋼矢板の表面に保持する力が働き、膨張力と釣り合って膨潤平衡になり、水の移動ができなくなる。その結果、硬化性水膨張止水材は長期間安定して膨潤状態を保持でき、周囲の空隙を閉塞し続けて、高い止水性能を長期間継続して発現する。
 多価金属化合物は、2価以上の水溶性の金属塩であって、水に溶解することにより2価以上の金属イオンを生じるものである。多価金属化合物が水に溶解することにより生じた多価金属イオンは、イオン性吸水性樹脂に含まれるイオンと置換してイオン性吸水性樹脂を架橋する。そのため、膨潤体膜強度が向上する。また、多価金属化合物が樹脂組成物中に含まれることで、硬化性水膨張止水材が効率よく確実に膨潤状態となる。多価金属化合物は、含んでいなくても(0質量部でも)問題ないが、含有させることによって、これらの効果を得ることができる。
 多価金属化合物は、2価以上の水溶性の金属塩であって、溶解することにより2価以上の金属イオンを生じるものであれば種類に制限なく使用することができる。多価金属化合物としては、例えば、カルシウム化合物、アルミニウム化合物、クロム化合物、鉄化合物、亜鉛化合物などが使用できる。多価金属化合物として具体的には、例えば、酸化カルシウム、水酸化カルシウム、硫酸アルミニウム、硫酸第一鉄、硫酸クロム、硫酸カリウムクロム、硫酸カルシウム、硫酸亜鉛などが使用できる。この中でも、酸化カルシウム、水酸化カルシウム、硫酸クロム、硫酸カリウムクロム、硫酸アルミニウムなどが好ましい。これらの多価金属化合物は、分散性や入手の容易性の点で好ましい。多価金属化合物は、例えば、大明化学工業株式会社製タイエースS150を好適に用いることができるが、これに限定されない。
 多価金属化合物は前記したように任意に添加することができる。多価金属化合物の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、0~18質量部の範囲で調整できる。多価金属化合物の含有量はこの範囲で多くするほどイオン性吸水性樹脂が膨潤し易くなる。多価金属化合物の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、3~15質量部とすることができ、5~10質量部とすることができる。一方、多価金属化合物の含有量は、硬化性樹脂(A)とポリエーテルポリオール(B)とでなる樹脂成分を100質量部とした場合に、18質量部を超えると、イオン性吸水性樹脂の架橋が過度に進むため、水を吸収しても十分に膨張できないおそれがある。
 体質顔料(E)は、硬化性水膨張止水材のレオロジー特性を調整するために用いられる。体質顔料(E)は、含んでいなくても(0質量部でも)問題ないが、含有させることによって硬化性水膨張止水材の粘性を高くすることができ、粘土状にすることも可能である。そのため、体質顔料(E)を含有させることにより、例えば、鋼矢板を垂直に立てた状態で硬化性水膨張止水材を塗布した場合であっても流下し難くできる。これらを考慮して、体質顔料(E)の含有量は、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して0~160質量部の範囲であれば任意に調整することができる。体質顔料(E)の含有量は、所望する硬化性水膨張止水材の物性に応じて調整することができる。例えば、体質顔料(E)の含有量は、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して100質量部以下とすることができ、80質量部以下とすることができ、33.3質量部以下とすることができる。なお、体質顔料(E)の含有量は、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して10質量部以上とすることができ、25質量部以上とすることができる。
 その一方で、体質顔料(E)の含有量が、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して160質量部を超えると、体質顔料(E)の含有量が多過ぎるため十分な架橋密度を得ることができず、膨潤体膜強度が低下する。また、この場合、体質顔料(E)の含有量が多過ぎるため水の吸収が阻害され、十分に膨張することができない。さらに、この場合、体質顔料(E)の含有量が多過ぎるため、金属との接着が阻害されたり、接着点(接着密度)が疎になったりするため接着性が低下する。
 体質顔料(E)は、例えば、ベントナイト、タルク、炭酸カルシウム、シリカなどを用いることができる。体質顔料(E)は、これらのうちの少なくとも1種を用いることができる。
 体質顔料(E)は、例えば、三立礦業株式会社製ベントナイト250SA-B、松村産業株式会社製ハイフィラー#12、株式会社ニューライム製カルフレックスPM、旭化成ワッカーシリコーン株式会社製HDK(登録商標) H18などを好適に用いることができるが、これらに限定されない。
 また、シリカは少量の添加により、粘度調整効果が大きく、好適に用いられる。さらに、乾式シリカが好ましく、シリコーンなどにより表面処理されていると樹脂との親和性が良くより好ましく用いられる。
 本実施形態に係る硬化性水膨張止水材は、脱水剤を含有させることが好ましい。脱水剤は、含んでいなくても(0質量部でも)問題ないが、含有させることによって水捕捉剤として機能するため、保存安定性が向上する。脱水剤の含有量は、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して0~15質量部の範囲であれば任意に調整することができる。脱水剤の含有量は、所望する硬化性水膨張止水材の物性に応じて調整することができる。例えば、脱水剤の含有量は、硬化性樹脂(A)およびポリエーテルポリオール(B)からなる樹脂成分100質量部に対して0~10.0質量部とすることができ、0~6.0質量部とすることができ、0~4.0質量部とすることができ、0~3.0質量部とすることができる。
 脱水剤は、例えば、ビニルトリメトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシランなどのシラン化合物を用いることができる。また、脱水剤は、例えば、オルトギ酸メチル、オルトギ酸エチル、オルト酢酸メチル、オルト酢酸エチルなどのエステル化合物を用いることができる。これらの脱水剤は、単独で用いてもよく、2種以上を併用してもよい。
 脱水剤は、例えば、Wacker Chemie AG製のGENIOSIL XL10を用いることができるが、これに限定されない。なお、脱水剤としてGENIOSIL XL10を用いた場合、これに含まれているビニルメトキシシランが水と反応して加水分解し、シラノールを形成する。形成されたシラノールはそれ自体と反応してシロキサンを生成する。また、GENIOSIL XL10に含まれているビニルメトキシシランがコモノマーとして機能する。したがって、これらにより、硬化性水膨張止水材の強度や耐候性を向上させることができる。
 以上に説明した本実施形態に係る硬化性水膨張止水材は、組成中に揮発性の有機溶剤を含有させなくても縮合反応を進めることができる。そのため、本実施形態に係る硬化性水膨張止水材は、揮発性の有機溶剤の含有量をゼロ乃至極微量とすることができ、作業員や環境に優しい。
 また、本実施形態に係る硬化性水膨張止水材は、前記した組成で構成されているので、金属との接着性に優れ、かつ十分な膨張率および膨潤体膜強度を備えている。そのため、本実施形態に係る硬化性水膨張止水材は、止水鋼矢板の止水材として用いられた場合に優れた止水性を得ることができる。
 以上に説明した本実施形態に係る硬化性水膨張止水材は止水鋼矢板に好適に用いることができるが、これに限定されず、止水や防水を目的とする部材であればどのようなものにも用いることができる。本実施形態に係る硬化性水膨張止水材は、例えば、ボックスカルバートの接合部、ライナープレートの接合部などにも用いることができる。
〔止水鋼矢板〕
 図1は、本実施形態に係る止水鋼矢板1を複数係合させた様子を示す横断面図である。図2は、図1のII部分の拡大図である。図3は、図2の拡大図において、硬化性水膨張止水材が水を吸収して膨張した様子を示す説明図である。
 止水鋼矢板1は、根切り工事で従来使用されているU形鋼矢板、Z形鋼矢板、ハット形鋼矢板、直線形鋼矢板などであればどのような矢板も用いることができる。なお、図1はU形鋼矢板を用いた止水鋼矢板1を例示している。止水鋼矢板1は、矢板の幅方向における両端に一部を折り返してなる継手部2を有している。図1に示すように、止水鋼矢板1は、隣り合う他の止水鋼矢板1と継手部2同士を係合させ、少なくとも一部が地中に打設などされる。
 図2に示すように、止水鋼矢板1は、継手部2の折り返してなる内側部3に、前述した本実施形態に係る硬化性水膨張止水材の塗膜4が設けられている。この塗膜4は、止水鋼矢板1の少なくとも一部が地中に打設などされた後、地下水や海・河川の水を吸水し、図3に示すように膨張して継手部2間の隙間を埋める。このようにして、止水鋼矢板1は、継手部2と継手部2との間における水の通流を止めることができる。
〔止水鋼矢板の製造方法〕
 本実施形態に係る止水鋼矢板1は次のようにすると好適に製造できる。
 図4は、本実施形態に係る止水鋼矢板1の製造方法(以下、「本製造方法」という)の内容を説明するフローチャートである。
 図4に示すように、本製造方法は、塗布工程S41と塗膜形成工程S42とを含んでいる。
 塗布工程S41は、前述した本実施形態に係る硬化性水膨張止水材を止水鋼矢板1の継手部2に塗布する工程である。
 硬化性水膨張止水材の塗布は、例えば、継手部2の端部を養生テープなどでせき止めた後、ここに硬化性水膨張止水材をオイルジョッキなどで注ぎ入れることによって行うことができる。また、刷毛、ヘラなどで継手部2に硬化性水膨張止水材を付着させてもよい。オイルジョッキ、刷毛は、硬化性水膨張止水材の粘性が低く液体状である場合に好適であり、ヘラは、硬化性水膨張止水材の粘性が高く粘土状である場合に好適である。また、硬化性水膨張止水材の塗布は、例えば、硬化性水膨張止水材をシーラント用カートリッジに充填し、電動シーリングガンで押し出すことによって行うことができる。
 塗膜形成工程S42は、塗布工程S41で塗布した硬化性水膨張止水材を硬化させて塗膜4(図2参照)を形成させる工程である。
 硬化性水膨張止水材の硬化は、組成に応じて適宜の条件で行うことができる。硬化性水膨張止水材の硬化は、例えば、塗布後、1時間から24時間放置しておくことで行わせることができるが、季節や気温などに応じて適宜変更できる。
 なお、本製造方法は、塗布工程S41および塗膜形成工程S42以外の工程を含んでいてもよい。例えば、本製造方法は、塗布工程S41の前に、継手部2の異物検査や除去清掃を行う前処理工程(図示せず)を含んでいてもよい。
〔止水工法〕
 本実施形態においては、次のような止水工法を行うことができる。
 図5は、本実施形態に係る止水工法の内容を説明するフローチャートである。図6は、打設・圧入工程S51で圧入を行っている様子を示した説明図である。
 図5に示すように、本実施形態に係る止水工法は、打設・圧入工程S51と硬化工程S52とを含んでいる。
 打設・圧入工程S51は、前述した本実施形態に係る硬化性水膨張止水材を止水鋼矢板1の継手部2に連続的に塗布しながら当該止水鋼矢板1の少なくとも一部を地中に打設または圧入する工程である。つまり、この打設・圧入工程S51においては、硬化性水膨張止水材4aは液体状乃至粘土状のままであってもよい(つまり、塗膜4(図2参照)を形成していなくてもよい)。
 打設・圧入工程S51は、継手部2に連続的に硬化性水膨張止水材を塗布できる塗布手段61(図6参照)を備えた杭打ち機または圧入機を用いて行うことができる。なお、図6は、圧入機62で止水鋼矢板1の少なくとも一部を地中に圧入する様子を図示している。杭打ち機としては、例えば、バイブロハンマーが挙げられる。圧入機62としては、例えば、油圧式杭圧入引抜機が挙げられる。
 塗布手段61は、タンク61aと、圧力付与装置61bと、チューブ61cと、塗着具61dと、を備えている。タンク61aは、硬化性水膨張止水材を収容する容器である。圧力付与装置61bは、タンク61a内の硬化性水膨張止水材に圧力を加えるポンプやコンプレッサーなどである。チューブ61cは、タンク61aから硬化性水膨張止水材を移送させるフレキシブル性を有した中空管である。塗着具61dは、チューブ61cで移送された硬化性水膨張止水材を止水鋼矢板1の継手部2に塗布するスプレー、ノズル、刷毛などである。塗着具61dは、硬化性水膨張止水材の供給が継手部2の内側部3(図2参照)に行えるように設けられていることが好ましい。また、塗布手段61として、硬化性水膨張止水材をシーラント用カートリッジに充填し、電動シーリングガンにセットしたものを用いることができる。塗布手段61は、止水鋼矢板1の圧入スピードに合わせて塗布量を調節することが好ましい。
 図6を参照して打設・圧入工程S51における硬化性水膨張止水材の塗布の一具体例を説明する。打設・圧入工程S51では、図6に示すように、圧入機62を用いて前回圧入を行った止水鋼矢板1aの継手部2aに、今回圧入を行う止水鋼矢板1bの継手部2bを係合させつつ地中に圧入する。圧入機62は、今回圧入を行う際に塗着具61dから止水鋼矢板1bの継手部2bの内側部3に硬化性水膨張止水材を連続的に供給する。このようにして用いられる硬化性水膨張止水材は、垂直に立てた止水鋼矢板1bに塗布しても垂れない程度の粘性を有していることが好ましい。
 硬化工程S52は、打設・圧入工程S51を行った後、硬化性水膨張止水材を硬化させて止水する工程である。本実施形態に係る止水工法においては、硬化性水膨張止水材を速やかに硬化させた方が好ましいため、硬化時間が短い硬化性水膨張止水材を用いることが好ましい。硬化性水膨張止水材は、例えば、アミノシランカップリング剤(C)の含有量や体質顔料(E)の含有量を多めにしたり、ポリエーテルポリオール(B)の含有量をゼロ乃至極微量としたりすることにより、硬化時間を短くできる。
 なお、本実施形態に係る止水方法は、打設・圧入工程S51および硬化工程S52以外の工程を含んでいてもよい。例えば、本実施形態に係る止水方法は、打設・圧入工程S51の前に、継手部2の異物検査や除去清掃を行う前処理工程(図示せず)を含んでいてもよい。
 本実施形態に係る止水工法を採用した工事などが終了したら、止水鋼矢板1を地中から引き抜き、止水鋼矢板1の継手部2に付着している硬化性水膨張止水材をスクレイパーやウォータージェットなどを用いて除去する。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、表1~5は紙面の関係で分けているが、項目は共通している。
(実施例1~24および比較例1~9)
 まず、表1~5に示すように、硬化性樹脂(A)、ポリエーテルポリオール(B)、アミノシランカップリング剤(C)、吸水性樹脂(D)、体質顔料(E)、ウレタン系硬化性樹脂、エチレン-酢酸ビニル共重合体、脱水剤、多価金属化合物、硬化促進剤を適宜用い、表1~5の実施例1~24および比較例1~9に示す組成の水膨張止水材を製造した。なお、硬化性樹脂(A)、ポリエーテルポリオール(B)、アミノシランカップリング剤(C)、吸水性樹脂(D)および体質顔料(E)は実施形態で既に説明したものを用いた。これらの具体的な商品名などを表1~5に記載している。また、これらの製造業者などについては実施形態に記載している。
 製造した実施例1~24および比較例1~9に係る水膨張止水材について、金属接着性、重量膨潤率、膨潤体膜強度、粘度、硬化時間、塗膜強度を測定した。これらの測定は以下のようにして行った。なお、金属接着性は硬化塗膜と金属との接着性を測定した。重量膨潤率は海洋での止水を想定し、塩水(塩濃度3%)で膨潤させた場合の膨張率を測定した。塗膜強度は引張強度を測定した。これらの測定項目のうち、金属接着性、重量膨潤率、膨潤体膜強度について合否の判定を行った。
〔金属接着性(硬化塗膜)〕
 金属接着性の測定は、精密万能試験機オートグラフAG-IS50kN(株式会社島津社製)で塗膜表面に接着したドーリーを引っ張ることにより行った。
 金属接着性は、3.0kgf/cm以上を合格とし、3.0kgf/cm未満を不合格とした。
〔重量膨潤率(塩水)〕
 重量膨潤率の測定は、20℃の3%食塩水に48時間浸漬し、浸漬前と浸漬後の重量を量ることにより行った。
 重量膨潤率は、3.0倍以上を合格とし、3.0倍未満を不合格とした。
〔膨潤体膜強度〕
 膨潤体膜強度は、小型卓上試験機EZ-SXに直径3mmの進入治具を取付け、膨潤塗膜の進入弾性値を測定した。
 膨潤体膜強度は、3.0N以上を合格とし、3.0N未満を不合格とした。
〔粘度〕
 粘度は、20℃を保持した試料をB型粘度計により測定した。
〔硬化時間〕
 硬化時間は、JIS K 5600-3-3の方法で硬化状態を判定した。
〔塗膜強度(引張強度)〕
 塗膜強度(引張強度)は、JIS K 6251ダンベル2号形打抜刃で作製した試験片を小型卓上試験器EZ-SXで引っ張り、破断する強度を測定した。
 実施例1~24および比較例1~9に示す硬化性水膨張止水材の組成と、金属接着性(硬化塗膜)、重量膨潤率(塩水)、膨潤体膜強度、粘度、硬化時間および塗膜強度(引張強度)の測定結果と、を表1~5に示す。表1~5に示す実施例1~24および比較例1~9の組成について、空欄は原料を添加していないことを示している。なお、表1~5中、含有量の検討(含有の有無の検討)の関係から、原料を添加していないことを特に示したいものについては「0.0」と記載している。また、表2の実施例8は、表2中の他の実施例および比較例との比較を容易とするために記載しているが、これは、表1の実施例2と同じものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~24に示す硬化性水膨張止水材は、組成中に揮発性の有機溶剤を含有していないので、作業員や環境に優しい。また、表1~5に示すように、実施例1~24に示す硬化性水膨張止水材は、本発明の要件を満たしていたので、金属接着性、重量膨潤率および膨潤体膜強度が優れていた。
 比較例1、3~9に示す硬化性水膨張止水材は、組成中に揮発性の有機溶剤を含有していないので、作業員や環境に優しいものであった。しかしながら、表1~5に示すように、比較例1~9に示す硬化性水膨張止水材は、本発明の要件を満たしていなかったので、金属接着性、重量膨潤率および膨潤体膜強度のうちの少なくとも1つが劣る結果となった。
 具体的には、比較例1に示す硬化性水膨張止水材は、ウレタン系の従来型の硬化性水膨張止水材であるので、金属接着性が劣っていた。
 比較例2に示す硬化性水膨張止水材は、組成中に揮発性の有機溶剤(トルエン)を含有する従来型の硬化性水膨張止水材である。比較例2に示す硬化性水膨張止水材は、組成中に揮発性の有機溶剤を含有していたので、作業員や環境に優しいものではなかった。また、比較例2に示す硬化性水膨張止水材は、金属接着性が劣っていた。
 比較例3に示す硬化性水膨張止水材は、アミノシランカップリング剤(C)の含有量が下限未満であったため、金属接着性が劣っていた。
 比較例4に示す硬化性水膨張止水材は、アミノシランカップリング剤(C)の含有量が上限を超えていたため、重量膨潤率が劣っていた。
 比較例5に示す硬化性水膨張止水材は、多価金属化合物の含有量が多過ぎたため、重量膨潤率が劣っていた。
 比較例6に示す硬化性水膨張止水材は、ポリエーテルポリオール(B)の含有量が上限を超えていたため(すなわち、硬化性樹脂(A)の添加量が下限未満であったため)、金属接着性および重量膨潤率が劣っていた。
 比較例7に示す硬化性水膨張止水材は、吸水性樹脂(D)の含有量が下限未満であったため、重量膨潤率が劣っていた。
 比較例8に示す硬化性水膨張止水材は、吸水性樹脂(D)の含有量が上限を超えていたため、金属接着性および膨潤体膜強度が劣っていた。
 比較例9に示す硬化性水膨張止水材は、体質顔料(E)の含有量が上限を超えていたため、金属接着性、重量膨潤率および膨潤体膜強度が劣っていた。
(実施例25)
 JIS A 5523に規定されるU形鋼矢板SP-2型(長さ10m)を水平に設置した。次いで、実施例17に示す硬化性水膨張止水材をオイルジョッキに入れ、両方の継手部(爪部)に合計で0.2kg/mの塗布量となるように流し込んだ(片方の継手部に0.1kg/mの塗布量となるように流し込んだ)。そして、24時間放置して十分に硬化させ、塗膜を形成させた。
 このようにして製造した止水鋼矢板28枚を水深4mの湖沼に5枚×9枚の長方形状に、かつ根入れ長5mとなるようバイブロハンマーで打設した。この状態で一日(24時間)放置して十分に止水材を膨潤(膨張)させ、締切部分をポンプで排水した。
 排水後、止水状況を目視で確認したところ、止水材の剥がれも見られず十分膨潤して漏水もなく、止水性は良好であった。
(実施例26)
 実施例20に示す硬化性水膨張止水材をシーラント用カートリッジに充填し、電動シーリングガンにセットした。また、河川の護岸において、JIS A 5523に規定されるU形鋼矢板SP-2型(長さ10m)をバイブロハンマーにセットした。
 そして、この鋼矢板28枚を打設しながら圧入スピードに合わせて片方の継手部の内側(つまり、他の鋼矢板の継手部に係合させつつ圧入している鋼矢板の継手部の内側)に、0.1kg/mの塗布量となるように電動シーリングガンにセットした硬化性水膨張止水材を押し出して塗布し、5枚×9枚の長方形状に打設した。
 一日(24時間)放置後、内部を深さ5m掘削し、地下水の止水状態を目視で確認したところ、止水材の剥がれも見られず十分膨潤して漏水もなく、止水性は良好であった。
 以上、本発明に係る硬化性水膨張止水材、止水鋼矢板、止水鋼矢板の製造方法および止水工法について実施形態および実施例により詳細に説明したが、本発明の主旨はこれに限定されるものではなく、様々な変形例が含まれる。
 1、1a、1b 止水鋼矢板
 2、2a、2b 継手部
 3   内側部
 4   塗膜
 61  塗布手段
 62  圧入機
 S41 塗布工程
 S42 塗膜形成工程
 S51 打設・圧入工程
 S52 硬化工程

Claims (6)

  1.  式(1)で表される加水分解性アルコキシシリル基を有する硬化性樹脂(A)40~100質量部、ポリエーテルポリオール(B)0~60質量部からなる樹脂成分100質量部に対して、アミノシランカップリング剤(C)0.3~25質量部、吸水性樹脂(D)20~250質量部および体質顔料(E)0~160質量部を含む硬化性水膨張止水材。
        -X-CH-SiR (OR3-Y   ・・・式(1)
    (ただし、前記式(1)において、Xは加水分解性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を示し、R、Rはそれぞれ炭素数1~3個のアルキル基を示し、Yは0、1または2を示す。)
  2.  前記吸水性樹脂(D)が、ポリエチレンオキシド系樹脂、カルボキシメチルセルロースアルカリ金属塩およびポリアクリル酸アルカリ金属塩から選ばれた少なくとも1種である請求項1に記載の硬化性水膨張止水材。
  3.  前記体質顔料(E)が、シリカである請求項1または請求項2に記載の硬化性水膨張止水材。
  4.  請求項1から請求項3のいずれか1項に記載の硬化性水膨張止水材からなる塗膜が鋼矢板の継手部に設けられている止水鋼矢板。
  5.  請求項1から請求項3のいずれか1項に記載の硬化性水膨張止水材を鋼矢板の継手部に塗布する塗布工程と、
     前記硬化性水膨張止水材を硬化させて塗膜を形成させる塗膜形成工程と、
     を含む止水鋼矢板の製造方法。
  6.  請求項1から請求項3のいずれか1項に記載の硬化性水膨張止水材を止水鋼矢板の継手部に連続的に塗布しながら当該止水鋼矢板の少なくとも一部を地中に打設または圧入する打設・圧入工程と、
     前記硬化性水膨張止水材を硬化させて止水する硬化工程と、
     を含む止水工法。
PCT/JP2020/000923 2019-01-18 2020-01-14 硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法 WO2020149269A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020566416A JP7264509B2 (ja) 2019-01-18 2020-01-14 硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法
EP20740890.7A EP3926097A4 (en) 2019-01-18 2020-01-14 WATER INFLATABLE TYPE SETTABLE WATER STOP MATERIAL, WATER STOP STEEL SHEET PILE, WATER STOP STEEL SHEET PILE PRODUCTION METHOD AND WATER STOP METHOD
AU2020209300A AU2020209300A1 (en) 2019-01-18 2020-01-14 Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method
US17/422,597 US20220089874A1 (en) 2019-01-18 2020-01-14 Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method
CA3126379A CA3126379A1 (en) 2019-01-18 2020-01-14 Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007316 2019-01-18
JP2019-007316 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020149269A1 true WO2020149269A1 (ja) 2020-07-23

Family

ID=71613142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000923 WO2020149269A1 (ja) 2019-01-18 2020-01-14 硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法

Country Status (6)

Country Link
US (1) US20220089874A1 (ja)
EP (1) EP3926097A4 (ja)
JP (1) JP7264509B2 (ja)
AU (1) AU2020209300A1 (ja)
CA (1) CA3126379A1 (ja)
WO (1) WO2020149269A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168766A (ja) 1987-12-25 1989-07-04 Nippon Kagaku Toryo Kk 水膨張性塗料組成物
JP2003292939A (ja) * 2002-04-05 2003-10-15 Asahi Denka Kogyo Kk 水膨張性止水材
JP2005113464A (ja) * 2003-10-06 2005-04-28 Jfe Steel Kk 遮水壁用鋼矢板の継手部の設計方法及びこの設計方法を用いた遮水壁用鋼矢板の継手部構造
WO2010008079A1 (ja) * 2008-07-18 2010-01-21 コニシ株式会社 硬化性樹脂組成物
WO2010047249A1 (ja) * 2008-10-24 2010-04-29 コニシ株式会社 1液室温湿気硬化型硬化性樹脂組成物
WO2011114849A1 (ja) * 2010-03-18 2011-09-22 日本ポリウレタン工業株式会社 有機ポリイソシアネート組成物及び止水材形成性組成物、並びに、水膨張性止水材
JP5447655B2 (ja) 2010-03-31 2014-03-19 日本ポリウレタン工業株式会社 ポリウレタン樹脂形成性組成物及び鋼矢板用水膨張性止水材
JP2014084345A (ja) * 2012-10-22 2014-05-12 Nippon Shokubai Co Ltd 止水材組成物およびそれらを用いた止水方法
WO2014132736A1 (ja) * 2013-02-28 2014-09-04 日本ポリウレタン工業株式会社 湿気硬化型有機ポリイソシアネート組成物及び水膨張性止水材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725648A (en) * 1985-10-15 1988-02-16 Toshiba Silicone Co., Ltd. Polyorganosiloxane composition
US4788240A (en) * 1986-05-28 1988-11-29 Toshiba Silicone Co., Ltd. Curable polyorganosiloxane compositions
JP2831648B2 (ja) * 1988-03-31 1998-12-02 住友精化株式会社 吸水性保水材
JPH0264160A (ja) * 1988-08-30 1990-03-05 Toshiba Silicone Co Ltd 水膨潤性シリコーンゴム組成物
JPH04164963A (ja) * 1990-10-29 1992-06-10 Toshiba Silicone Co Ltd 吸水性シリコーンゴム組成物
JP3500168B2 (ja) * 1992-07-02 2004-02-23 ジーイー東芝シリコーン株式会社 室温硬化性ポリオルガノシロキサン組成物
EP0934956B1 (en) * 1996-02-21 2011-08-03 Kaneka Corporation Curable composition
JP3207843B1 (ja) * 2000-08-08 2001-09-10 株式会社日本触媒 止水剤用塗料、止水工法用鋼矢板およびそれらを利用した止水工法
DE102009027357A1 (de) * 2009-06-30 2011-01-05 Wacker Chemie Ag Alkoxysilanterminierte Polymere enthaltende Kleb- oder Dichtstoffmassen
CN104789149A (zh) * 2015-04-26 2015-07-22 衡水中铁建工程橡胶有限责任公司 偶联剂改性反应型高分子自粘止水带及其制备工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168766A (ja) 1987-12-25 1989-07-04 Nippon Kagaku Toryo Kk 水膨張性塗料組成物
JP2003292939A (ja) * 2002-04-05 2003-10-15 Asahi Denka Kogyo Kk 水膨張性止水材
JP2005113464A (ja) * 2003-10-06 2005-04-28 Jfe Steel Kk 遮水壁用鋼矢板の継手部の設計方法及びこの設計方法を用いた遮水壁用鋼矢板の継手部構造
WO2010008079A1 (ja) * 2008-07-18 2010-01-21 コニシ株式会社 硬化性樹脂組成物
WO2010047249A1 (ja) * 2008-10-24 2010-04-29 コニシ株式会社 1液室温湿気硬化型硬化性樹脂組成物
WO2011114849A1 (ja) * 2010-03-18 2011-09-22 日本ポリウレタン工業株式会社 有機ポリイソシアネート組成物及び止水材形成性組成物、並びに、水膨張性止水材
JP5447655B2 (ja) 2010-03-31 2014-03-19 日本ポリウレタン工業株式会社 ポリウレタン樹脂形成性組成物及び鋼矢板用水膨張性止水材
JP2014084345A (ja) * 2012-10-22 2014-05-12 Nippon Shokubai Co Ltd 止水材組成物およびそれらを用いた止水方法
WO2014132736A1 (ja) * 2013-02-28 2014-09-04 日本ポリウレタン工業株式会社 湿気硬化型有機ポリイソシアネート組成物及び水膨張性止水材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926097A4

Also Published As

Publication number Publication date
CA3126379A1 (en) 2020-07-23
JP7264509B2 (ja) 2023-04-25
US20220089874A1 (en) 2022-03-24
AU2020209300A1 (en) 2021-08-05
JPWO2020149269A1 (ja) 2021-10-14
EP3926097A4 (en) 2022-10-12
EP3926097A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
TW201718813A (zh) 防水薄片及使用其之防水施工方法
MX2014005307A (es) Plastificantes para composiciones adhesivas, de revestimiento y sellantes aplicadas al asfalto.
CN111607358A (zh) 基于烷氧基硅改性聚合物的免砸砖堵漏防水组合物
JP6783175B2 (ja) 躯体の補修用接着剤シート、およびそれを用いた躯体の補修方法
JP5014039B2 (ja) 湿気硬化型組成物及び湿気硬化型シーリング材
CN113795552A (zh) 室温可固化组合物
JP7007143B2 (ja) コンクリート構造物の止水工法
WO2020149269A1 (ja) 硬化性水膨張止水材、止水鋼矢板、止水鋼矢板製造方法および止水工法
WO1986000328A1 (en) Water-swellable sealant
KR102099669B1 (ko) 유기 및 무기 주입재를 사용한 콘크리트 구조체 배면 주입 누수 및 누유 보수공법
JP6953722B2 (ja) シーリング材組成物
JP2013018879A (ja) 硬化性組成物およびプライマー
JP2012041411A (ja) 硬化性組成物およびプライマー
JP2004346127A (ja) 硬化性組成物及びシーリング材組成物
US20020042347A1 (en) Friction reducing coating for engineering works, and, sheet pile, steel tubular pipe and construction method
JP5636150B2 (ja) 水膨潤性止水剤と止水材
JP5964618B2 (ja) 遮水性コーティング材および遮水性コーティング処理改良方法
JP2017133342A (ja) 目地構造を有する壁、目地施工方法、及び一液常温湿気硬化型シーリング材組成物
JP6777034B2 (ja) 防水施工方法
JP2017137745A (ja) 目地構造を有する壁、及び目地施工方法
KR102040169B1 (ko) 하이브리드 지수재 조성물 및 이를 이용한 지수 공법
JPH08269452A (ja) 止水用薬液
JP7440847B2 (ja) 止水剤組成物およびその硬化物としての弾性止水材
EP4112692B1 (en) Composition for the protection against corrosion of an article and process for protection thereof
JPH1058426A (ja) 水膨張性シールパッキンの使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3126379

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020209300

Country of ref document: AU

Date of ref document: 20200114

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020740890

Country of ref document: EP

Effective date: 20210818