WO2020145563A1 - 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법 - Google Patents

내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법 Download PDF

Info

Publication number
WO2020145563A1
WO2020145563A1 PCT/KR2019/018823 KR2019018823W WO2020145563A1 WO 2020145563 A1 WO2020145563 A1 WO 2020145563A1 KR 2019018823 W KR2019018823 W KR 2019018823W WO 2020145563 A1 WO2020145563 A1 WO 2020145563A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
sample
adsorbent
electrode layer
circumferential surface
Prior art date
Application number
PCT/KR2019/018823
Other languages
English (en)
French (fr)
Inventor
박한오
김태만
김재하
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Priority to EP19909471.5A priority Critical patent/EP3910313A4/en
Priority to US17/309,965 priority patent/US20220065759A1/en
Priority to JP2021539348A priority patent/JP2022516345A/ja
Priority to CN201980088301.5A priority patent/CN113286996A/zh
Publication of WO2020145563A1 publication Critical patent/WO2020145563A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40096Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by using electrical resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite

Definitions

  • the present invention relates to a sample concentration tube to which a heat-resistant planar heating element is adhered, an analysis device including the same, and an analysis method using the same.
  • GC gas chromatography
  • MS mass spectrometer
  • the cold trap method is a method of condensing and collecting a gas sample by cooling the condensing tube to a low temperature, and then raising the temperature again to vaporize it in the form of gas, and the method using the adsorbent adsorbs volatile substances to the adsorbent at a temperature below or below normal temperature. It is a method of desorption by heating to high temperature.
  • a sample concentrating device using an adsorbent in order to prevent thermal damage of the adsorbent for sample adsorption, it is ideal to be able to quickly, uniformly, accurately and raise the desorption temperature.
  • the amount of the sample to be detected is extremely small, whether or not detection is determined by adsorption/desorption characteristics, such high performance is required.
  • a short heat desorption time and a high temperature increase rate are required, but it is necessary to prevent the problem of degeneration of the adsorbent due to thermal shock applied to the adsorbent by overheating. For example, when too high heat is applied to the adsorbent, the adsorbent or adsorbent is denatured, and analysis of the adsorbed material cannot be properly performed.
  • An object of the present invention is to provide a sample condensation tube with a heat-resistant planar heating element capable of quickly and accurately raising the temperature with a desorption temperature of a sample adsorbent, an analysis device including the same, and an analysis method using the same.
  • Another object of the present invention is to minimize the temperature difference between the plurality of adsorbents provided in the tube as heat energy can be effectively transferred from the outer surface of the tube, regardless of where the adsorbent is located, from the inner surface of the tube to the center of the tube. , To provide a sample condensation tube to which a heat-resistant planar heating element capable of applying a uniform temperature to the sample adsorbent is adhered, and an analysis device including the same, and an analysis method using the same.
  • Another object of the present invention is to precisely control the adsorbent to the desorption target temperature, prevent the thermal degeneration of the adsorbed sample and the adsorbent, and a sample condensation tube with a heat-resistant planar heating element capable of minimizing chemical noise and an analysis device comprising the same And an analysis method using the same.
  • Another object of the present invention is to provide a sample condensation tube to which a heat-resistant planar heating element with excellent temperature reproducibility, which is capable of precise temperature control, and which has excellent reproducibility, and an analysis apparatus including the same, and an analysis method using the same.
  • Another object of the present invention is to provide an inexpensive, economical, energy-efficient, heat-resistant planar heating element-attached sample condensation tube, an analysis device comprising the same, and an analysis method using the same.
  • the sample-concentrated tube to which the heat-resistant planar heating element according to the present invention is adhered includes: a tube having an internal structure that allows an adsorbent to which a volatile substance is adsorbed to be filled; A heating layer including a heat-resistant planar heating element adhered to an outer peripheral surface of the tube; And an electrode layer formed on an outer circumferential surface of the heating layer.
  • the tube may be an electrically insulating material, or an outer peripheral surface of a tube on which a heating layer is formed may include an electric insulating layer.
  • the tube has a tubular structure including an inner circumferential surface portion and an outer circumferential surface portion, the inner circumferential surface portion is made of a metal material, and the outer circumferential surface portion includes an electrically insulating layer formed of a metal oxide by anodizing the inner circumferential surface portion Can.
  • Sample concentrating tube according to an embodiment of the present invention is formed in the opening of the tube, may further include a heat-resistant gas-permeable sealing member having a plurality of pores are formed.
  • the heating layer may be formed in a tubular shape surrounding the outer peripheral surface of the tube.
  • the electrode layer may be formed in a tubular shape surrounding the outer peripheral surface of the heating layer.
  • the electrode layer may include a first electrode layer and a second electrode layer, and the first electrode layer and the second electrode layer may be formed at both ends of the heating layer.
  • the planar heating element may include a carbon nanotube or a carbon nanotube-metal composite, wherein the metal is selected from silver, platinum, gold, copper, nickel, iron, and cobalt. It may include one or more.
  • the heating layer may have a sheet resistance of 2 to 15 ⁇ /sq.
  • the average thickness of the heating layer may be 20 to 100 ⁇ m.
  • the sample concentrating tube according to an example of the present invention may further include a temperature measuring unit provided on the outer circumferential surface or the inner circumferential surface of the tube.
  • an adsorbent may be provided on the inner circumferential surface of the tube to adsorb and concentrate volatile substances in the air.
  • It includes a volatile material analysis device using a sample concentration tube to which the heat-resistant planar heating element according to an embodiment of the present invention is adhered.
  • the sample condensation tube including a temperature measuring portion provided on the outer peripheral surface or the inner peripheral surface of the tube; A detection unit through which the sample flows from the sample concentration tube; And a control unit that receives a measurement value for the temperature inside the tube from the temperature measurement unit and compares the measurement value with a preset value to adjust a voltage applied to the electrode layer.
  • the method for analyzing volatiles includes: s1) a step in which an adsorbent suitable for a sample to be concentrated is accommodated in the tube; s2) a step in which the opening of the tube is sealed with a heat-resistant gas-permeable sealing member in which a plurality of pores are formed; s3) the gas containing the sample passes through the inside of the tube to adsorb and concentrate the sample on the adsorbent; s4) applying a voltage to the electrode layer to thermally desorb the concentrated sample from the adsorbent; And s5) the thermally desorbed concentrated sample is introduced into the detector and analyzed.
  • the sample condensation tube to which the heat-resistant planar heating element is adhered according to the present invention, an analysis device including the same, and an analysis method using the same have an effect capable of precisely controlling the target temperature by minimizing the deviation between the measured value and the actual temperature value of the sample.
  • the sample-concentrated tube according to the present invention and an analysis device including the same and an analysis method using the same can effectively transfer heat energy from the outer surface of the tube, regardless of where the adsorbent is located, from the inner surface of the tube to the center of the tube. Accordingly, by minimizing the local temperature difference in the sample receiving space in the tube, there is an effect of having a uniform temperature in a plurality of adsorbents located in any part of the sample receiving space.
  • the sample condensation tube according to the present invention and an analysis device including the same and an analysis method using the same can be uniformly and accurately controlled to a target temperature, thereby preventing thermal degeneration of the adsorbent for sample adsorption and minimizing chemical noise. It works.
  • the sample condensation tube according to the present invention and an analysis device including the same and an analysis method using the same can also be quickly heated to a desorption temperature, and have excellent reproducibility.
  • the sample concentrating tube according to the present invention and an analysis device including the same and an analysis method using the same are inexpensive, economical, and have excellent energy efficiency.
  • FIG. 1 is a view showing a sample concentration tube according to the present invention.
  • Figure 2 is a cross-sectional perspective view showing a sample enrichment tube according to the present invention.
  • FIG. 3 is a cross-sectional perspective view showing a sample concentrating tube including a tube including a plurality of sample receiving spaces formed by a partition wall according to the present invention.
  • FIG. 4 is an actual image of a sample condensation tube in which a heat-resistant planar heating element is adhered to a glass tube according to the present invention.
  • FIG. 5 is an actual image taken using an infrared camera of the heating state of the sample condensation tube to which the heat-resistant planar heating element specified in FIG. 4 of the present invention is adhered.
  • layer or “membrane” referred to herein means that each material forms a continuum and has a relatively small dimension to width and length. Accordingly, in this specification, the term “layer” or “film” should not be interpreted as a two-dimensional flat plane.
  • the sample-concentrated tube to which the heat-resistant planar heating element is adhered includes: a tube 100 having an internal structure that is filled with an adsorbent to which volatile substances are adsorbed; A heating layer 200 including a heat-resistant planar heating element adhered to an outer circumferential surface of the tube 100; And an electrode layer 300 formed on an outer circumferential surface of the heating layer 200.
  • the volatile material means a material containing an inorganic compound, an organic compound, and the like that may exist in a gas phase to be analyzed in a conventional sample analyzer.
  • volatile substances include organic compounds including hydrocarbon compounds that can be volatilized in the atmosphere, and specific examples include benzene, formaldehyde, toluene, xylene, ethylene, styrene, and acetaldehyde. have.
  • inorganic compounds include various substances such as hydrochloric acid, hydrofluoric acid, ammonia, and hydrogen sulfide. That is, the volatile substances referred to in this specification are volatile and may collectively refer to all detectable substances that may exist in the gas phase.
  • the geometry of the tube 100 has a sample receiving space 130 therein, and any sample may have an opening that can be introduced into the sample receiving space 130. That is, the tube 100 may literally mean a tubular structure, in which case both ends of the tube may be open.
  • the shape of one end of the tube 100 that is, the shape of the cut surface of the tube 100 in the direction perpendicular to the length direction of the tube 100 is not limited and may be generally circular.
  • the shape may be various, such as an oval shape, an n-sided shape (n is 2 or more), a star shape, a shape in which a plurality of arcs having different degrees of curvature are connected to each other, a shape in which one or more lines and one or more arcs are connected to each other, and the like.
  • the inner diameter of the tube 100 is not greatly limited, but satisfies 1 to 5 mm is good because it can efficiently and effectively transfer thermal energy to a sample, but the present invention is not necessarily limited to this.
  • the length and thickness of the tube 100 is not limited since it can be appropriately adjusted according to the scale of the analysis device or a specific use (portable, experimental, large-scale facility measurement, etc.), and is not limited.
  • a tube 100 having an outer diameter is not greatly limited, but satisfies 1 to 5 mm is good because it can efficiently and effectively transfer thermal energy to a sample, but the present invention is not necessarily limited to this.
  • the length and thickness of the tube 100 is not limited since it can be appropriately adjusted according to the scale of the analysis device or a specific use (portable, experimental, large-scale facility measurement, etc.), and is not limited.
  • a tube 100 having an outer diameter is not limited.
  • the material of the tube 100 may be largely divided into a transparent material or an opaque material from the optical side.
  • a transparent material may be selected from the aspect of easy identification of a sample or an adsorbent, and specific examples thereof include glass having heat resistance to withstand temperatures of 250° C., preferably 350° C. or higher, and heat-resistant transparent polymer materials.
  • Specific examples of the opaque material include ceramic materials, metal materials, metal oxide materials, and thermosetting polymer materials.
  • the tube 100 is preferably insulating so that the current applied to the electrode does not pass through the heating layer 200 to the tube 100.
  • the outer circumferential surface of the metal tube 100 on which the heating layer 200 is formed may include an electrically insulating layer, that is, an insulating layer may be formed to cover the metal layer.
  • a structure that prevents the current applied to the heating layer 200 from flowing to the tube 100 or a member that serves such a role may be added, and when the structure does not cause the problem, the tube
  • the material of itself 100 may not be limited.
  • insulation means a property in which electricity is substantially impervious, that is, electrical resistance is usually very high.
  • the outer circumferential surface of the tube 100 on which the heating layer 200 is formed may be preferably insulating, and in terms of further improving energy efficiency, temperature control precision and reproducibility, preferably ,
  • the tube 100 may have a structure having an electric insulating layer including a metal having good heat conduction and a porous anodic oxide film (PAOF) on which the metal is anodized.
  • PAOF porous anodic oxide film
  • the tube 100 may have a tubular structure including an inner peripheral surface portion 110 and an outer peripheral surface portion 120, the inner peripheral surface portion 110 may be aluminum metal, and the outer peripheral surface portion 120 May be an aluminum-based porous anodized film formed by anodizing the aluminum metal.
  • the thickness of the inner circumferential surface portion 110 and the outer circumferential surface portion 120 is not greatly limited, but the inner circumferential surface portion 110 has a thickness of 200 to 1000 ⁇ m, the outer circumferential surface portion 120 It may be preferred that the thickness of 0.1 to 20 ⁇ m, specifically 0.3 to 10 ⁇ m, and more specifically 0.5 to 5 ⁇ m. If it satisfies this, it is possible to minimize the flow of current to the inner circumferential surface portion 110 while improving the precision of temperature control, and thus has an effect of improving energy efficiency and improving precision of temperature control.
  • the aluminum-based porous anodized film formed by anodizing may be formed by anodization, which is one of the metal surface treatment technologies, and a tube including a metal surface formed with various and regular nanostructures using this ( 100) can be used.
  • the interior of the tube 100 may include first to nth sample receiving spaces formed by providing one or more partition walls 140.
  • n is a natural number of 2 or more, and may be selected from 2 to 20 as a specific example, but is not limited thereto.
  • the partition wall 140 may be the same or different material from the above-described tube material, and may be more preferable if it has excellent thermal conductivity such as metal. In order to detect with high sensitivity of various substances present in a trace amount in the air, and to lower the limit of detection, a large amount of air must be adsorbed by passing through a tube and adsorbed to desorb and analyze.
  • a large amount of adsorbent may be used, and thus an increase in the tube inner diameter may be required.
  • the heat energy transferred between the adsorbents located in each portion decreases from the inner circumferential surface of the tube to the center of the tube, so local temperature difference is inevitably caused. Therefore, due to the time difference between heat transfer to the adsorbent, simultaneous thermal desorption of volatile substances is difficult, which is not only limited in maximizing instantaneous concentration for analysis, but also significantly lowers precision.
  • the first to nth sample receiving spaces (where n is a natural number of 2 or more) formed by providing one or more partitions 140 inside the tube 100 include a heating layer
  • the thermal energy from 200 can be quickly and effectively transferred to the adsorbent filled in each sample receiving space through a metal structure having good thermal conductivity. Therefore, volatile substances adsorbed on the adsorbent can be desorbed at the same time, thereby having the effect of analyzing very small amounts of volatile substances. That is, as the heat energy converted from the heating layer 200 is adhered to the tube 100, it is efficiently transferred to the adsorbent in each sample receiving space through the tube having high thermal conductivity immediately without heat resistance, resulting in high energy efficiency.
  • the sample can be thermally desorbed, the stability of the adsorbent can be improved, and the reproducibility can be improved.
  • the shape and structure of the partition 140 are not particularly limited, and may be any shape and structure that is connected to the inner circumferential surface of the tube so that the adsorbent can be provided in each sample receiving space and can partition each sample receiving space.
  • the cutting surface of the tube 100 in the longitudinal direction and the vertical direction of the tube 100 is a circular ellipse, an n-angle (n is 2 or more), a star, a form in which a plurality of arcs having different degrees of curvature are connected to each other, one or more
  • the partition wall 140 may be formed to have various shapes such as a line and one or more arcs connected to each other.
  • the sample concentration tube according to the present invention is provided on the inner circumferential surface of the tube 100, and may include an adsorbent to which volatile substances are adsorbed or concentrated. After the gas sample is adsorbed to the adsorbent in an amount necessary for detection at a normal temperature or below, the sample is vaporized in the form of gas through heat desorption by heating to be detected and analyzed. Therefore, a precise temperature control of the sample is required. At this time, the sample concentration tube to which the heat-resistant planar heating element according to the present invention is adhered is used, thereby preventing precise temperature control and preventing thermal damage of the adsorbent.
  • the specific type of adsorbent is not widely limited because it is well known in the field of analytical technology through sample concentration.
  • the adsorbent may have a specific surface area of 10 to 2,000 m 2 /g, an adsorbent having a density of 0.2 to 0.8 g/cm 3 may be used, and as a material, a thermosetting polymer material such as an aromatic polymer, And carbon materials such as activated carbon and graphite.
  • the inner circumferential surface of the tube 100 may be hydrophobic or hydrophilic so that the sample or adsorbent is not adsorbed.
  • hydrophobic surface treatment include coatings such as fluorine-based compounds, and examples of the hydrophilic surface treatment include plasma treatment using water vapor, nitrogen, and the like, and acid treatment.
  • plasma treatment using water vapor, nitrogen, and the like, and acid treatment.
  • the adsorbent may be used repeatedly, but as described above, it may be thermally damaged or degraded when frequently used, and thus should be periodically changed. Therefore, the concentration tube should be easily detachable and attached from the analytical equipment, and the structure should not be complicated so as to minimize the problems that may occur, as well as the tight adhesion of each layer that can withstand particularly large physical impact. . Therefore, the concentrated tube to which the heat-resistant planar heating element according to the present invention is adhered includes a planar heating layer 200 including a carbon nanotube or a carbon nanotube-metal composite, whereby high stability can be expected even in various parameters.
  • the adsorbent may be filled and accommodated inside the tube 100, or may be filled to seal the inside of the tube 100, or may be filled not to seal.
  • the sample condensation tube to which the heat-resistant planar heating element is adhered may further include a sealing member that can be opened and closed.
  • the sample condensation tube to which the heat-resistant planar heating element according to an embodiment of the present invention is adhered is formed at the open portion of the tube 100, specifically at both open ends, and a heat-resistant gas-permeable sealing member having a plurality of pores is formed. It may further include.
  • the sealing member may be coupled to both open ends of the tube 100 to seal the inside of the tube 100, and may be accommodated inside the tube 100 at both ends of the tube 100, for example, to seal the inside of the tube 100. You may.
  • the size of the pores may be sufficient as long as the air can pass through and the adsorbent or the like can be fixed.
  • the material of the sealing member is not limited as long as it can be used above the desorption temperature, for example, glass fiber.
  • the heating layer 200 may include a planar heating element including at least one selected from carbon nanotubes and a carbon nanotube-metal composite, and for example, may be formed of a carbon nanotube-based heat-resistant planar heating element. .
  • the planar heating element means that when current flows, it can stably generate heat at around 350°C, and may be formed on the heating layer to have a layered structure.
  • the method of formation thereof is not limited, and may be, for example, a film (thin film) formed by applying a liquid composition of a planar heating element and drying (heat treatment). At this time, the application conditions (temperature, humidity, time, etc.), and drying (heat treatment) conditions (temperature, humidity, time, etc.) are not limited since those skilled in the art can properly adjust.
  • the heating layer 200 may include a planar heating element formed of AccuPasteTM CNT Heating Paste (TC-1010, Bionica). have. However, this is only described as a preferred example, and in addition, various planar heating elements may be used.
  • the planar heating element may be formed of a heating composition to be described later.
  • the heating composition may include a carbon nanotube or a carbon nanotube-metal composite; And a silicone pressure sensitive adhesive.
  • the heating composition may include 20 to 80% by weight of a carbon nanotube or a carbon nanotube-metal composite and 20 to 80% by weight of a silicone adhesive.
  • the silicone adhesive may contain 0.1 to 10% by weight of a silanol group in 100% by weight of the adhesive, and the ratio of the phenyl group to the methyl group may be 0.3 to 2.5 molar ratio.
  • the metal contained in the carbon nanotube-metal composite is not particularly limited, and may include, for example, any one or two or more selected from silver, platinum, gold, copper, nickel, iron, cobalt, and aluminum.
  • the content of the metal contained in the carbon nanotube-metal composite may include 1 to 80 parts by weight based on 100 parts by weight of the carbon nanotube-metal composite.
  • the heating composition may further include any one or two or more of the selective tung in organic binders, dispersants and organic solvents.
  • the organic binder may be any one or more selected from ethyl cellulose, nitrocellulose, and mixtures thereof, and the dispersing agent is a phosphorus ester salt of an amino-containing oligomer or polymer, a monoester or diester of phosphoric acid, an acidic dicarboxylic acid mono Ester, polyurethane-polyamine adduct, polyalkoxylated monoamine or may include any one or two or more selected from the group consisting of diamine, the organic solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, iso Propyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, Trimethylbenzene, pyridine,
  • the composition ratio is not significantly limited, for example, carbon nanotube or carbon nanotube-metal composite 1 to 50% by weight, organic binder 1 to 20 Weight%, silicone adhesive 1 to 30% by weight, dispersant 1 to 20% by weight and may be to include 1 to 90% by weight of an organic solvent.
  • the heating layer 200 including the planar heating element in the tube is formed by coating the heating composition on the tube 100 to form the heating layer 200 including the planar heating element, or by attaching a heating sheet made of the heating composition to the tube through means such as adhesion. ) May be formed.
  • this is merely a preferred example, and of course, the present invention is not limited thereto.
  • the conventional sample condensation tube in the form of a coiled wire is not in close contact with the heating wire and the tube 100 due to the linear expansion of the heating wire, and a partial separation phenomenon occurs, so that the heat resistance of the separation portion is increased and the heating time is longer. There is a problem in that the heating speed becomes uneven.
  • the heating layer 200 may include a carbon nanotube or a carbon nanotube-metal composite, and may include a silicone-based adhesive.
  • the metal thereof may include any one or two or more selected from silver, platinum, gold, copper, nickel, iron, cobalt, and aluminum. .
  • the heating layer 200 may have a lower sheet resistance, and may be, for example, 2 to 15 ⁇ /sq, but this is only an example, and the present invention is not limited thereto.
  • the heating layer 200 may be formed in a form surrounding the outer circumferential surface of the tube 100, and the electrode layer 300 is also formed in a form surrounding the outer circumferential surface of the heating layer 200.
  • the heating layer 200 may be formed in a tubular shape surrounding the outer peripheral surface of the tube 100, and the electrode layer 300 may also be formed in a tubular shape surrounding the outer peripheral surface of the heating layer 200.
  • the thickness of the heating layer 200 is inversely proportional to the electrical resistance, and may be as long as it receives electrical energy from the electrode layer 300 and converts it into thermal energy to be transferred to the tube 100, for example, 20 to 100 ⁇ m. However, this is only described as a specific example, and the present invention is not necessarily limited to this.
  • the electrode layer 300 is capable of applying a voltage to the heating layer 200, it is greatly limited to the material of the electrode layer 300 and the structure and shape of the electrode layer 300 formed on the heating layer 200.
  • the electrode layer 300 may include a first electrode layer 310 and 300 and a second electrode layer 320 and 300.
  • the first electrode layer 310, 300 and the second electrode layer 320, 300 may be formed on the outer circumferential surface of the heating layer 200 spaced apart from each other, preferably both ends of the heating layer 200 Can be formed on.
  • the formation positions of the first electrode layers 310 and 300 and the second electrode layers 320 and 300 are not greatly limited as long as a voltage is applied to each electrode layer 300 so that the heating layer 200 can be heated.
  • the distance between the first electrode layer 310 and 300 and the second electrode layer 320 and 300 is considered in consideration of various variables such as the length of the tube 100 and the heating layer 200 and the area of each electrode layer 300. It can be adjusted so it is not very limited.
  • the electrode layer 300 may be formed of an electrode that is generally used, and may be formed of a conductive material such as copper or iron, but the present invention is not limited thereto. Also, in some cases, a noble metal layer covering the metal layer may be further formed in terms of improving energy efficiency. Examples of the metal used in the noble metal layer include gold and platinum, but other precious metals that can improve energy efficiency can be used without limitation.
  • the thickness of the electrode layer 300 may be stably coupled to the tube and may be applied as long as it can apply electricity to the heating layer, for example, 50 ⁇ m to 5 mm, specifically 100 ⁇ m to 1,000 ⁇ m, but is not limited thereto. Of course not.
  • the electrode layer 300 may be formed in contact with the heating layer 200 in various ways.
  • the electrode layer 300 may be formed using a plating method, a brush plating method, a vacuum deposition method or the like, or may be formed by fixing a metal ring with conductive epoxy, etc.
  • the present invention is not limited to this.
  • the sample condensation tube to which the heat-resistant planar heating element according to an embodiment of the present invention is adhered may further include an insulating layer for protecting the heating layer on the outer peripheral surface of the heating layer 200.
  • the sample condensation tube to which the heat-resistant planar heating element according to an embodiment of the present invention is adhered may further include a temperature measuring unit provided on the outer circumferential surface or the inner circumferential surface of the tube 100.
  • the temperature measuring unit may be any sensor capable of sensing temperature, and for example, any one or two selected from a thermocouple temperature sensor, a resistive temperature detector (RTD), and a thermistor temperature sensor. Any one or more selected from a non-contact temperature sensor including a contact type temperature sensor and an infrared temperature sensor including the above may be used.
  • the apparatus for analyzing volatile substances according to the present invention includes a sample concentration tube to which the heat-resistant planar heating element is adhered.
  • the apparatus for analyzing volatile substances according to an embodiment of the present invention includes: a sample condensation tube to which the heat-resistant planar heating element is attached, including a temperature measuring unit provided on an outer circumferential surface or an inner circumferential surface of the tube 100; A detection unit through which the sample flows from the sample concentration tube; And a control unit that receives a measurement value for the temperature inside the tube 100 from the temperature measurement unit and compares the measurement value with a preset value to adjust a voltage applied to the electrode layer 300.
  • the detection unit may mean a device capable of detecting and analyzing a sample, which is not limited since it is well known in the field of gas sample analysis technology.
  • the detection unit may include a detection/analysis device such as gas chromatography (GC), mass spectrometer (MS), or ion mobility spectrometry.
  • the control unit may monitor the temperature through the temperature measurement unit, and control the temperature of the tube 100 to a target temperature by feeding back a current or voltage control device. Specifically, the control unit increases the voltage applied to the electrode layer 300 when the measured value from the temperature measuring unit is less than the preset value, and increases the voltage applied to the electrode layer 300 when the measured value is greater than the preset value. It can play a decreasing role.
  • the method for analyzing volatiles includes: s1) a step in which an adsorbent suitable for a sample to be concentrated is accommodated inside the tube 100; s2) sealing the opening of the tube 100 with a heat-resistant gas-permeable sealing member having a plurality of pores formed thereon; s3) the gas containing the sample passes through the inside of the tube 100 to adsorb and concentrate the sample on the adsorbent; s4) applying a voltage to the electrode layer 300 to thermally desorb the concentrated sample from the adsorbent; And s5) the thermally desorbed concentrated sample is introduced into the detector and analyzed.
  • the temperature when the sample is concentrated, the temperature may be sufficient as long as the sample is condensed and adsorbed to the adsorbent in a liquid phase or a solid phase, and is usually room temperature, for example, 0 to 25°C. However, other than that, the temperature at which the sample can be adsorbed is not particularly limited.
  • the temperature when the sample is thermally desorbed, the temperature may be sufficient as the sample is desorbed from the adsorbent and can be introduced to the outside, and may be, for example, 100 to 350°C. There are no restrictions.

Abstract

본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브, 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 시료농축튜브를 빠른 속도로 균일하게 탈착 목표온도로 가열하여 정밀한 온도제어가 가능하며, 튜브 내 흡착제의 국부적인 온도차를 극소화함으로써 흡착제 어느 부위에서나 거의 동시에 흡착된 시료를 탈착시킬 수 있는 효과가 있다. 또한 과열로 인한 흡착제의 열변성을 방지하여 화학적 노이즈를 최소화할 수 있고 재현성이 뛰어난 장점이 있을 뿐만 아니라, 저렴하고 경제적이며, 에너지 효율이 우수한 효과가 있다.

Description

내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법
본 발명은 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법에 관한 것이다.
공기 중의 기체 시료를 측정하는 방법은 일반적으로 가스크로마토그래피(Gas chromatography, GC), 질량분석기(Mass spectrometer, MS) 등의 분석 장비가 많이 사용되고 있으나, 극미량의 가스의 경우 검출기의 검출 한계 때문에 측정이 어려운 문제가 있다.
따라서 검출기 센서 자체의 감도 향상을 위한 다양한 연구가 진행되었다. 그러나 일정 수준 이상의 민감도는 외란에도 쉽게 영향을 받음에 따라 노이즈 증가를 피할 수 없다. 이와 같은 문제를 해결하기 위해, 가스 크로마토그래피, 이온 이동성 분광계(ion mobility spectrometry) 등과 같은 고감도 분석 장치에서는 저농도의 시료를 고농도로 농축시키기 위한 시료농축장치가 사용된다.
구체적으로, 시료농축장치는 콜드트랩(Cold trap)법과, 흡착제를 이용한 방법이 사용된다. 콜드트랩법은 농축관을 저온으로 냉각시켜 가스 시료를 응축하여 모은 후 다시 온도를 높여 가스 형태로 기화하는 방법이며, 흡착제를 이용한 방법은 상온 또는 그 이하의 온도에서 휘발성 물질을 흡착제에 흡착시키고 이를 고온으로 가열하여 탈착시키는 방법이다.
흡착제를 이용하는 시료농축장치에서, 시료 흡착을 위한 흡착제의 열손상을 방지하기 위해서는 탈착온도로 빠르고 균일하고 정확하고 올릴 수 있어야 이상적이다. 검출하고자 하는 시료가 극미량일수록 흡착/탈착 특성에 의해 검출여부가 결정되기 때문에 상기와 같은 높은 성능이 요구된다. 특히 효율적인 분석을 위해서는 짧은 열탈착 시간 및 높은 승온 속도가 필요하지만, 과열에 의해 흡착제에 가해지는 열충격에 의해 흡착제가 변성되는 문제를 방지해야 한다. 예를 들어 흡착제에 너무 높은 열이 가해질 경우, 흡착제나 흡착 물질이 변성되어 흡착된 물질의 분석을 제대로 수행할 수 없게 된다.
종래의 시료농축장치들은 시료가 수용되는 관의 외면에 열선이 권취된 구조로 개발되었으며, 시료의 탈착을 위한 가열 시 열선은 선팽창하여 튜브와의 밀착성이 떨어지므로, 실제 시료 온도의 정밀한 제어가 어렵고 효율적으로 농축튜브에 열을 전달하는 데에 한계가 있었다.
[선행기술문헌]
[특허문헌]
KR10-1814964B1 (2017.12.27)
본 발명의 목적은 시료 흡착제의 탈착 온도로 빠르고 정확하게 온도를 올릴 수 있는 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 제공하는 것이다.
본 발명의 다른 목적은 튜브의 내면부에서 튜브의 중심부에 이르기까지 흡착제가 어느 부분에 위치하더라도 튜브의 외면부로부터 열에너지가 효과적으로 전달될 수 있음에 따라 튜브 내에 구비되는 다수의 흡착제의 온도차를 극소화함으로써, 시료 흡착제에 균일한 온도를 인가할 수 있는 내열성 면상발열체가 접착된 시료농축튜브, 그리고 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 제공하는 것이다.
본 발명의 다른 목적은 흡착제를 탈착 목표온도로 정밀하게 제어하여, 흡착된 시료와 흡착제의 열적 변성을 방지하여 화학적 노이즈를 최소화할 수 있는 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 제공하는 것이다.
본 발명의 다른 목적은 정밀한 온도 제어가 가능하면서도 신속한 가열이 가능하며, 재현성이 우수한 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 제공하는 것이다.
본 발명의 다른 목적은 저렴하고 경제적이며, 에너지 효율이 우수한 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 제공하는 것이다.
본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브는, 휘발성 물질이 흡착되는 흡착제가 충진되도록 하는 내부 구조를 갖는 튜브; 상기 튜브의 외주면에 접착되는 내열성 면상발열체를 포함하는 발열층; 및 상기 발열층의 외주면에 형성되는 전극층;을 포함한다.
본 발명의 일 예에 있어서, 상기 튜브는 전기절연성 재질이거나, 발열층이 형성되는 튜브의 외주면이 전기절연층을 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 튜브는 내주면부 및 외주면부를 포함하는 관형 구조를 가지고, 상기 내주면부는 금속 재질이며, 상기 외주면부는 상기 내주면부가 양극산화되어 금속산화물로 형성되는 전기절연층을 포함할 수 있다.
본 발명의 일 예에 따른 시료농축튜브는 상기 튜브의 개방부에 형성되되, 다수의 공극이 형성된 내열성의 기체 투과성 밀폐부재를 더 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 발열층은 상기 튜브의 외주면을 감싸는 관형으로 형성될 수 있다.
본 발명의 일 예에 있어서, 상기 전극층은 상기 발열층의 외주면을 감싸는 관형으로 형성될 수 있다.
본 발명의 일 예에 있어서, 상기 전극층은 제1 전극층 및 제2 전극층을 포함할 수 있고, 상기 제1 전극층 및 상기 제2 전극층은 상기 발열층의 양단부에 형성될 수 있다.
본 발명의 일 예에 있어서, 상기 면상발열체는 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 포함할 수 있으며, 이때 상기 금속은 은, 백금, 금, 구리, 니켈, 철, 및 코발트 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 발열층은 면저항이 2 내지 15 Ω/sq일 수 있다.
본 발명의 일 예에 있어서, 상기 발열층의 평균두께는 20 내지 100 ㎛일 수 있다.
본 발명의 일 예에 따른 시료농축튜브는 상기 튜브의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 더 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 튜브의 내주면 상에 공기 중의 휘발성 물질이 흡착 및 농축되되도록 하는 흡착제가 구비될 수 있다.
본 발명의 일 예에 따른 상기 내열성 면상발열체가 접착된 시료농축튜브를 사용하는 휘발성 물질 분석 장치를 포함한다.
본 발명의 일 예에 따른 휘발성 물질 분석 장치는, 튜브의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 포함하는 상기 시료농축튜브; 상기 시료농축튜브로부터 시료가 유입되는 검출부; 및 상기 온도 측정부로부터 상기 튜브 내부의 온도에 대한 측정값을 수신하고 상기 측정값을 기 설정값과 비교하여 전극층에 인가되는 전압을 조절하는 제어부;를 포함할 수 있다.
본 발명의 일 예에 따른 휘발성 물질 분석 방법은, s1) 농축하고자 하는 시료에 적합한 흡착제가 상기 튜브의 내부에 수용되는 단계; s2) 다수의 공극이 형성된 내열성의 기체 투과성 밀폐부재로 상기 튜브의 개방부가 밀폐되는 단계; s3) 시료를 포함하는 기체가 상기 튜브 내부를 통과하여 상기 흡착제에 상기 시료가 흡착 및 농축되는 단계; s4) 상기 전극층에 전압이 인가되어 상기 흡착제로부터 농축 시료가 열탈착되는 단계; 및 s5) 상기 열탈착된 농축 시료가 검출부로 유입되어 분석되는 단계;를 포함할 수 있다.
본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브, 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 측정값과 시료의 실제 온도값의 편차를 최소화하여 목표 온도로의 정밀한 제어가 가능한 효과가 있다.
본 발명에 따른 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 튜브의 내면부에서 튜브의 중심부에 이르기까지 흡착제가 어느 부분에 위치하더라도 튜브의 외면부로부터 열에너지가 효과적으로 전달될 수 있음에 따라 튜브 내 시료수용공간 내 국부적인 온도차를 극소화함으로써, 시료수용공간의 어느 부위에 위치한 다수의 흡착제에 균일한 온도를 갖도록 하는 효과가 있다.
본 발명에 따른 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 목표 온도로의 균일하고 정확한 제어가 가능함에 따라, 시료 흡착을 위한 흡착제의 열적 변성을 방지하고 화학적 노이즈를 최소화할 수 있는 효과가 있다.
본 발명에 따른 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 또한 신속하게 탈착온도로 가열이 가능하며, 재현성이 우수한 효과가 있다.
본 발명에 따른 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법은 저렴하고 경제적이며, 에너지 효율이 우수한 효과가 있다.
본 발명에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 명세서에서 기재된 효과 및 그 내재적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.
도 1은 본 발명에 따른 시료농축튜브를 나타낸 도면이다.
도 2는 본 발명에 따른 시료농축튜브를 나타낸 단면 사시도이다.
도 3은 본 발명에 따른, 격벽에 의해 형성된 다수의 시료수용공간을 포함하는 튜브를 포함하는 시료농축튜브를 나타낸 단면 사시도이다.
도 4은 본 발명에 따른, 내열성 면상발열체가 유리 재질의 튜브에 접착된 시료농축튜브의 실제 이미지이다.
도 5는 본 발명의 도 4에 명시된 내열성 면상발열체가 접착된 시료농축튜브의 발열상태를 적외선 카메라를 사용하여 찍은 실제 이미지이다.
[부호의 설명]
100 : 튜브, 110 : 내주면부,
120 : 외주면부, 130 : 시료수용공간,
131 : 제1 시료수용공간, 132 : 제2 시료수용공간,
133 : 제3 시료수용공간, 140 : 격벽,
200 : 발열층, 300 : 전극층,
310 : 제1 전극층, 320 : 제2 전극층
이하 첨부한 도면들을 참조하여 본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법을 상세히 설명한다.
본 명세서에 기재되어 있는 도면은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서 본 발명은 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 상기 도면들은 본 발명의 사상을 명확하게 하기 위해 과장되어 도시될 수 있다.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서에서 사용되는 용어의 단수 형태는 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 해석될 수 있다.
본 명세서에서 언급되는 s1, s2, s3, ...; a1, a2, a3, ...; b1, b2, b3, ...; a, b, c, ...; 등의 각 단계를 지칭하는 용어 자체는 어떠한 단계, 수단 등을 지칭하기 위해 사용되는 것일 뿐, 그 용어들이 지칭하는 각 대상들의 순서 관계를 의미하는 것으로 해석되어서는 안 된다.
본 명세서에서 특별한 언급 없이 사용된 %의 단위는 별다른 정의가 없는 한 중량%를 의미한다.
본 명세서에서 언급되는 “층” 또는 “막”의 용어는 각 재료가 연속체(continuum)를 이루며 폭과 길이 대비 두께가 상대적으로 작은 디멘젼(dimension)을 가짐을 의미하는 것이다. 이에 따라, 본 명세서에서 “층” 또는 “막”의 용어에 의해, 2차원의 편평한 평면으로 해석되어서는 안 된다.
본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브는, 휘발성 물질이 흡착되는 흡착제(Sorbent)가 충진되도록 하는 내부 구조를 갖는 튜브(100); 상기 튜브(100)의 외주면에 접착되는 내열성 면상발열체를 포함하는 발열층(200); 및 상기 발열층(200)의 외주면에 형성되는 전극층(300);을 포함한다.
상기 휘발성 물질은 통상의 시료분석기에서 분석의 대상이 되는 기상으로 존재 가능한 무기화합물, 유기화합물 등을 포함하는 물질을 의미한다. 구체적으로, 휘발성 물질은 대기 중에 휘발될 수 있는 탄화수소화합물을 포함하는 유기화합물을 예로 들 수 있으며, 구체적인 예로, 벤젠, 포름알데히드, 톨루엔, 자일렌, 에틸렌, 스티렌, 아세트알데히드 등 무한이 많은 종류가 있다. 무기화합물의 예로는 염산, 불산, 암모니아, 황화수소 등의 다양한 물질들이 있다. 즉, 본 명세서에서 언급되는 휘발성 물질은 휘발성을 가져, 기상으로 존재할 수 있는 검출 가능한 모든 물질을 통칭할 수 있다.
상기 튜브(100)의 기하학적 구조는 내부에 시료수용공간(130)을 가지며, 시료가 상기 시료수용공간(130)으로 유입될 수 있는 개방부를 가지는 것이라면 무방하다. 즉, 튜브(100)는 말 그대로 관형의 구조물을 의미할 수 있으며, 이때 관은 양측단이 개방된 것일 수 있다. 튜브(100)의 일측단의 형태, 즉, 튜브(100)의 길이 방향과 수직한 방향의 튜브(100) 절단면의 형태는 제한되지 않으며, 통상 원형일 수 있다. 상기 형태는 원형 외에도, 타원형, n각형(n은 2 이상), 별형, 완곡도가 서로 다른 복수의 호가 서로 연결된 형태, 하나 이상의 선과 하나 이상의 호가 서로 연결된 형태 등의 다양한 것이어도 무방하다.
상기 튜브(100)의 내경은 크게 제한되는 것은 아니나, 1 내지 5 mm를 만족하는 것이 열에너지를 시료에 효율적이고 효과적으로 전달할 수 있어 좋지만, 본 발명이 이에 반드시 제한되어 해석되는 것은 아니다. 또한 튜브(100)의 길이, 두께는 분석 장치의 규모나 구체적 용도(휴대용, 실험용, 대규모 시설 측정용 등) 등에 따라 적절히 조절될 수 있는 부분이므로 제한되지 않으며, 구체적인 일 예로, 2 내지 7 mm의 외경을 가지는 튜브(100)를 들 수 있다.
상기 튜브(100)의 재질은, 광학적 측면에서 크게 투명 재질 또는 불투명 재질로 구분될 수 있다. 시료 또는 흡착제 등의 식별이 용이한 측면에서 투명 재질의 것이 선택될 수 있으며, 구체적 예로, 250℃ 좋게는 350℃ 이상의 온도에 견디는 내열성을 가지는 유리, 내열성 투명 고분자 재료 등을 들 수 있다. 불투명 재질의 구체적인 예로, 세라믹 재료, 금속 재료, 금속 산화물 재료, 열경화성 고분자 재료 등을 들 수 있다.
상기 튜브(100)는 전극에 인가되는 전류가 발열층(200)을 거쳐 튜브(100)로 통하지 않도록 절연성인 것이 바람직하다. 튜브(100)의 재질이 금속인 경우, 발열층(200)이 형성되는 금속 튜브(100)의 외주면이 전기절연층을 포함하는 것, 즉, 절연성의 층이 금속층을 덮도록 형성될 수 있다. 전극을 통해 전류가 발열층(200)을 거쳐 튜브(100)로 인가될 경우, 즉, 저항값이 0에 가까운 튜브에 전류가 인가되면 회로가 타버릴 수 있으므로 발열층의 가열이 불가능한 문제가 발생할 수 있다. 비제한적인 일 예로, 발열층(200)에 인가되는 전류가 튜브(100)로 흐르지 않도록 하는 구조를 가지거나 그러한 역할을 하는 부재가 추가될 수 있으며, 상기 문제가 발생되지 않는 구조일 경우, 튜브(100) 자체의 재질은 제한되지 않을 수 있다. 여기서 절연이라 함은 전기가 실질적으로 통하지 않는 특성, 즉, 통상적으로 전기 저항이 매우 높은 것을 의미한다.
상술한 바와 같이, 발열층(200)이 형성되는 튜브(100)의 외주면이 절연성인 것이 바람직할 수 있으며, 에너지 효율, 온도 제어의 정밀성 및 재현성 등을 더욱 향상시킬 수 있는 측면에서, 바람직하게는, 상기 튜브(100)는 열전도선이 좋은 금속 및 그 금속이 양극산화된 다공성 양극산화막(Porous anodic oxide film, PAOF)을 포함하는 전기절연층을 포함하는 구조를 가지는 것이 좋을 수 있다. 바람직한 일 예로, 상기 튜브(100)는 내주면부(110) 및 외주면부(120)를 포함하는 관형 구조를 가질 수 있으며, 상기 내주면부(110)는 알루미늄 금속일 수 있고, 상기 외주면부(120)는 상기 알루미늄 금속이 양극산화되어 형성되는 알루미늄계 다공성 양극산화막일 수 있다.
또한 상기 튜브가 알루미늄 금속일 경우 바람직한 일 예로, 내주면부(110) 및 외주면부(120)의 두께는 크게 제한되는 것은 아니나, 내주면부(110)의 두께가 200 내지 1000 ㎛, 외주면부(120)의 두께가 0.1 내지 20 ㎛, 구체적으로 0.3 내지 10 ㎛, 보다 구체적으로 0.5 내지 5 ㎛인 것이 좋을 수 있다. 이를 만족할 경우, 온도 제어의 정밀성의 향상과 함께 내주면부(110)로의 전류의 흐름을 최소화할 수 있어, 에너지 효율이 보다 우수하면서 온도 제어의 정밀성이 보다 향상되는 효과가 있다.
양극산화되어 형성되는 알루미늄계 다공성 양극산화막은 금속의 표면 처리 기술 중 하나인 양극산화 기술(Anodization)에 의해 형성된 것일 수 있으며, 이를 이용하여 다양하고 규칙적인 나노구조가 형성된 금속 표면을 포함하는 튜브(100)가 사용될 수 있다.
바람직한 일 예로, 상기 튜브(100)의 내부, 즉, 시료수용공간(130)은 하나 또는 둘 이상의 격벽(140)이 구비되어 형성되는 제1 내지 제n 시료수용공간을 포함할 수 있다.여기서 상기 n은 2 이상의 자연수이고, 구체적인 일 예로, 2 내지 20에서 선택될 수 있으나 이에 제한되지 않음은 물론이다. 이때 상기 격벽(140)은 전술한 튜브의 재질과 동일하거나 또는 상이한 물질이 사용될 수 있으며, 금속 등의 열전도율이 우수한 것이면 더 바람직할 수 있다. 공기 중에 미량으로 존재하는 다양한 물질들의 높은 감도로 검출하고, 검출한계치(Limit of Detection)를 낮추기 위해서는 많은 양의 공기를 튜브 내로 통과시켜 흡착하여 이를 탈착시켜 분석해야 한다. 이를 위해 많은 양의 흡착제가 사용될 수 있으며, 이에 따라 튜브 내경의 증가가 요구될 수 있다. 그러나 이 경우, 튜브의 내주면부에서 튜브의 중심부로 갈수록 각 부분에 위치하는 흡착제 간 전달되는 열에너지는 감소하므로, 국부적인 온도차가 유발될 수밖에 없다. 따라서 흡착제에 열이 전달이 되는 시간차에 의해 휘발성 물질의 동시 열탈착이 어렵고, 이는 분석을 위한 순간 농도를 극대화하는 것에 한계가 있을 뿐만 아니라, 정밀성이 현저히 저하된다. 하지만 상술한 바와 같이, 상기 튜브(100)의 내부에 하나 또는 둘 이상의 격벽(140)이 구비되어 형성되는 제1 내지 제n 시료수용공간(상기 n은 2 이상의 자연수)을 포함할 경우, 발열층(200)으로부터 열에너지가 열전도가 좋은 금속 구조물을 통해 각각의 시료수용공간에 충진된 흡착제까지 빠르게 효과적으로 전달될 수 있다. 따라서 흡착제에 흡착된 휘발성 물질을 동시에 탈착시킬 수 있어 극미량의 휘발성 물질을 분석할 수 있는 효과가 있다. 즉, 발열층(200)에서 전환된 열에너지는 튜브(100)와 접착되어 있음에 따라, 열저항 없이 바로 열전도율이 높은 튜브를 통해 각각의 시료수용공간 내의 흡착제로 효율적으로 전달되어, 높은 에너지 효율로 시료를 열탈착할 수 있고, 흡착제의 안정성을 높이며, 재현성을 향상시킬 수 있다.
상기 격벽(140)의 형태 및 구조는 크게 제한되지 않으며, 흡착제가 각 시료수용공간에 구비될 수 있도록 튜브의 내주면과 연결되어 각 시료수용공간을 구획할 수 있는 형태 및 구조라면 무방하다. 구체적인 일 예로, 튜브(100)의 길이 방향과 수직한 방향의 튜브(100) 절단면이 원형 타원형, n각형(n은 2 이상), 별형, 완곡도가 서로 다른 복수의 호가 서로 연결된 형태, 하나 이상의 선과 하나 이상의 호가 서로 연결된 형태 등의 다양한 형태를 가지도록 격벽(140)이 형성될 수 있다. 바람직한 일 예로, 도 3에 도시된 바와 같이, 다수의 6각형의 홀을 포함하여 형성되는 벌집 구조를 들 수 있으며, 이 경우, 전술한 효과와 함께, 다수의 홀을 포함함에도 높은 구조 안정성을 확보할 수 있는 측면에서 더 좋을 수 있다.
상술한 바와 같이, 본 발명에 따른 시료농축튜브는 상기 튜브(100)의 내주면 상에 구비되되, 휘발성 물질이 흡착 또는 농축되는 흡착제를 포함할 수 있다. 통상 상온 또는 그 이하의 온도에서 가스 시료가 흡착제에 검출에 필요한 양만큼 흡착된 후, 가열에 의한 열탈착을 통해 시료가 가스 형태로 기화되어 검출 및 분석된다. 따라서 시료의 정밀한 온도 제어가 요구되며, 이때 본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브가 사용됨으로써, 정밀한 온도 제어 및 흡착제의 열손상을 방지할 수 있다. 흡착제의 구체적 종류는 시료 농축을 통한 분석 기술 분야에서 널리 공지된 사항이므로 크게 제한되지 않는다. 구체적인 일 예로, 상기 흡착제는 비표면적이 10 내지 2,000 m 2/g일 수 있고, 밀도가 0.2 내지 0.8 g/cm 3인 흡착 물질이 사용될 수 있으며, 재질로, 방향족계 중합체 등의 열경화성 고분자 소재, 활성탄, 그라파이트 등의 탄소 소재 등을 예로 들 수 있다.
본 발명의 일 예에 있어서, 상기 튜브(100)의 내주면은 시료 또는 흡착제가 흡착되지 않도록 소수성 또는 친수성으로 표면처리된 것일 수 있다. 소수성 표면처리의 예로, 불소계 화합물 등의 코팅을 들 수 있으며, 친수성 표면처리의 예로, 수증기, 질소 등을 이용한 플라즈마 처리, 산처리 등을 들 수 있다. 하지만 이는 일 일 예로서 설명된 것일 뿐, 다양한 처리 방법의 구체적인 예는 공지된 문헌을 참고하면 되므로, 본 발명이 이에 제한되지 않음은 물론이다.
흡착제는 반복 사용이 가능하나, 상술한 바와 같이 열적 손상 또는 자주 사용될 경우 변성(Degradation)될 수 있으므로, 주기적으로 바꿔주어야 한다. 따라서 농축 튜브는 분석 장비로부터 탈착 및 부착이 용이하여야 하며, 이때 발생할 수 있는 문제를 최소화할 수 있도록 구조가 복잡하지 않아야 하는 것은 물론, 특히 큰 물리적 충격에도 버틸 수 있는 각 층들의 견고한 밀착도가 요구된다. 따라서 본 발명에 따른 내열성 면상발열체가 접착된 농축 튜브는 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 포함하는 면상의 발열층(200)을 포함함으로써, 다양한 변수에서도 높은 안정성을 기대할 수 있다.
흡착제는 튜브(100)의 내부에 채워져 수용될 수 있으며, 튜브(100) 내부를 밀폐하도록 충진될 수도 있고, 밀폐하지 않도록 충진될 수도 있다.
상술한 바와 같이, 튜브(100)의 내부에 시료가 유입되어 흡착제에 흡착되어야 하므로, 튜브(100)의 개방부는 필요에 따라 밀폐가 가능하도록 하는 것이 바람직할 수 있으며, 이의 수단으로 본 발명에 따른 내열성 면상발열체가 접착된 시료농축튜브는 개폐 가능한 밀폐부재를 더 포함할 수 있다. 구체적으로, 본 발명의 일 예에 따른 내열성 면상발열체가 접착된 시료농축튜브는 상기 튜브(100)의 개방부, 구체적으로 개방된 양단부에 형성되되, 다수의 공극이 형성된 내열성의 기체 투과성 밀폐부재를 더 포함할 수 있다. 상기 밀폐부재는 튜브(100)의 개방된 양단에 결합되어 튜브(100) 내부를 밀폐할 수도 있고, 튜브(100)의 양단부, 예를 들어 양단에서 더 내측에 수용되어 튜브(100) 내부를 밀폐할 수도 있다. 상기 공극의 크기는 공기가 통과할 수 있는 크기이면서 흡착제 등이 고정될 수 있는 정도라면 무방하다. 또한 밀폐부재의 재질도 탈착 온도 이상에서 사용될 수 있는 것이라면 제한되지 않으며, 예컨대 유리섬유 등을 들 수 있다.
상기 발열층(200)은 탄소나노튜브 및 탄소나노튜브-금속 복합체 중에서 선택되는 어느 하나 이상을 포함하는 면상발열체를 포함하면 무방하며, 일 예로, 탄소나노튜브계 내열성 면상발열체로 형성되는 것일 수 있다. 상기 면상발열체는 전류가 흐르면 350℃ 내외로 안정적으로 발열할 수 있는 것을 의미하며, 발열층에 형성되어 층상 구조를 가질 수 있다. 이의 형성 방법은 제한되지 않으며, 예컨대 면상발열체의 액상조성물을 도포하고 건조(열처리)하여 형성되는 필름(박막)일 수 있다. 이때 도포 조건(온도, 습도, 시간 등), 건조(열처리) 조건(온도, 습도, 시간 등)은 당업자가 적절히 조절할 수 있는 부분이므로 제한되지 않는다.
이러한 면상발열체의 구체적인 예는 KR10-1447478B1, KR10-1313149B1 등을 참고하면 되며, 예컨대 상기 발열층(200)은 AccuPaste™ CNT Heating Paste(TC-1010, 바이오니아) 등으로 형성되는 면상발열체를 포함할 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 이 외에도 다양한 면상발열체가 사용될 수 있다.
구체적인 일 예로, 상기 면상발열체는 후술하는 발열 조성물로 형성된 것일 수 있다. 상기 발열 조성물은 탄소나노튜브 또는 탄소나노튜브-금속 복합체; 및 실리콘 점착제;를 포함할 수 있다. 구체적으로, 발열 조성물은 탄소나노튜브 또는 탄소나노튜브-금속 복합체 20 내지 80 중량% 및 실리콘 점착제 20 내지 80 중량%를 포함할 수 있다. 상기 실리콘 점착제는 점착제 100 중량% 중 실라놀기를 0.1 내지 10 중량% 함유할 수 있으며, 메틸기에 대한 페닐기의 비율이 0.3 내지 2.5 몰비일 수 있다. 상기 탄소나노튜브-금속 복합체에 함유된 금속은 크게 제한되는 것은 아니며 일 예로, 은, 백금, 금, 구리, 니켈, 철, 코발트 및 알루미늄 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 탄소나노튜브-금속 복합체에 함유된 금속의 함량은 상기 탄소나노튜브-금속 복합체 100 중량부에 대하여 1 내지 80 중량부 포함할 수 있다. 또한 상기 발열 조성물은 유기바인더, 분산제 및 유기용매 등에서 선택퇴는 어느 하나 또는 둘 이상을 더 포함할 수 있다. 상기 유기바인더는 에틸셀룰로스, 니트로셀룰로스 및 이들의 혼합물로부터 선택되는 어느 하나 이상일 수 있으며, 상기 분산제는 아미노 함유 올리고머 또는 폴리머의 포스포러스 에스테르염, 인산의 모노에스테르 또는 디에스테르, 산성 디카르복실산 모노에스테르, 폴리우레탄-폴리아민 부가물, 폴리알콕실화 모노아민 또는 디아민으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으며, 상기 유기용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글리콜, 폴리에틸렌글리콜, 테트라하이드로퓨란, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 디에틸렌글리콜에틸에테르 및 터피네올에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 발열 조성물이 유기바인더, 분산제, 유기용매 등을 더 포함할 경우, 그 조성비는 크게 제한되는 것은 아니며, 일 예로, 탄소나노튜브 또는 탄소나노튜브-금속 복합체 1 내지 50 중량%, 유기바인더 1 내지 20 중량%, 실리콘 점착제 1 내지 30 중량%, 분산제 1 내지 20 중량% 및 유기용매 1 내지 90 중량%를 포함하는 것일 수 있다. 이러한 발열 조성물을 튜브(100)에 코팅하여 면상발열체를 포함하는 발열층(200)을 형성하거나, 발열 조성물로 제조된 발열시트를 접착 등의 수단을 통해 튜브에 면상발열체를 포함하는 발열층(200)이 형성된 것일 수도 있다. 하지만 이는 바람직한 일 예로 설명한 것일 뿐, 이에 본 발명이 제한되지 않음은 물론이다.
종래의 열선이 권취된 형태의 시료농축튜브는 열선의 선팽창에 의한 열선과 튜브(100)와의 밀착이 되지 않고 부분적인 이격 현상이 일어나므로, 이격부분의 열저항이 커져 튜브를 가열하는데 시간이 오래 걸리고 가열속도가 불균일해지는 문제가 있다. 본 발명에서는 튜브(100)에 발열층(200)이 균일하게 접착되어 있어, 도 5에 도시된 바와 같이 열에너지가 빠르고 균일하게 전달될 수 있다. 상기 발열층(200)은 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 포함하고, 실리콘계 점착제를 포함할 수 있다. 또한 상기 발열층(200)이 탄소나노튜브-금속 복합체를 포함할 경우, 이의 금속은 은, 백금, 금, 구리, 니켈, 철, 코발트 및 알루미늄 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.
상기 발열층(200)은 면저항이 낮을수록 좋으며, 예컨대 2 내지 15 Ω/sq일 수 있으나, 이는 바람직한 일 예일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명의 일 예에 있어서, 상기 발열층(200)은 상기 튜브(100)의 외주면을 감싸는 형태로 형성될 수 있으며, 상기 전극층(300)도 상기 발열층(200)의 외주면을 감싸는 형태로 형성될 수 있다. 이때 각 대상의 외주면을 완전히 감싸는 관형 구조일 수도 있고, 완전히 감싸지 않는 형태도 가능하다. 바람직한 일 예로, 상기 발열층(200)은 상기 튜브(100)의 외주면을 감싸는 관형으로 형성될 수 있으며, 상기 전극층(300)도 상기 발열층(200)의 외주면을 감싸는 관형으로 형성될 수 있다.
상기 발열층(200)의 두께는 전기저항과 반비례하는 데 전극층(300)으로부터 전기에너지를 받아서 열에너지로 전환하여 튜브(100)로 전달할 수 있을 정도라면 무방하며, 예컨대 20 내지 100 ㎛일 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 본 발명이 이에 반드시 제한되어 해석되는 것은 아니다.
상기 전극층(300)은 상기 발열층(200)에 전압을 인가할 수 있는 것이라면, 전극층(300)의 재질, 전극층(300)이 발열층(200)에 형성되는 구조, 형태에 크게 제한을 두는 것은 아니나, 상기 전극층(300)은 제1 전극층(310)(300) 및 제2 전극층(320)(300)을 포함할 수 있다. 이때 상기 제1 전극층(310)(300) 및 상기 제2 전극층(320)(300)은 서로 이격하여 상기 발열층(200)의 외주면에 형성될 수 있으며, 바람직하게는 발열층(200)의 양단부에 형성될 수 있다. 제1 전극층(310)(300) 및 제2 전극층(320)(300)의 형성 위치는 각 전극층(300)에 전압이 인가되어 발열층(200)이 히팅될 수 있을 정도라면 크게 제한되지 않으며, 예컨대 발열층(200)의 양단부에 각각 형성되는 것을 예시할 수 있다. 또한 제1 전극층(310)(300) 및 제2 전극층(320)(300)의 이격거리는 튜브(100)와 발열층(200)의 길이, 각 전극층(300)의 면적 등의 다양한 변수를 고려하여 조절될 수 있으므로 크게 제한되지 않는다.
상기 전극층(300)은 일반적으로 사용되는 전극으로 형성되는 것이라면 무방하며, 예컨대 구리, 철 등의 전도성 물질로 형성된 것일 수 있으나, 본 발명이 이에 제한되지 않음은 물론이다. 또한 경우에 따라, 에너지 효율을 향상시키기 위한 측면에서 금속층을 덮는 귀금속층이 더 형성될 수 있다. 귀금속층에 사용되는 금속의 예로, 금, 백금 등을 들 수 있으나, 이 외에 에너지 효율을 향상시킬 수 있는 귀금속류라면 제한 없이 사용 가능하다.
상기 전극층(300)의 두께는 안정적으로 튜브에 결합될 수 있으면서 전기를 발열층으로 인가할 수 있을 정도라면 무방하며, 예컨대 50 ㎛ 내지 5 mm, 구체적으로 100 ㎛ 내지 1,000 ㎛일 수 있으나 이에 제한되지 않음은 물론이다.
상기 전극층(300)은 다양한 방법으로 발열층(200)에 접하여 형성될 수 있으며, 예컨대 도금법, 붓도금법, 진공증착법 등을 이용하여 형성하거나 금속고리를 전도성 에폭시 등으로 고정하여 형성할 수 있으나, 이 외에 다양한 방법으로 형성되어도 무방하므로, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명의 일 예에 따른 내열성 면상발열체가 접착된 시료농축튜브는 상기 발열층(200)의 외주면 상에 발열층을 보호하기 위한 절연층을 더 포함할 수 있다.
본 발명의 일 예에 따른 내열성 면상발열체가 접착된 시료농축튜브는 상기 튜브(100)의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 더 포함할 수 있다. 상기 온도 측정부는 온도를 감지할 수 있는 센서라면 무방하며, 구체적인 일 예로, 열전쌍(Thermocouple) 온도센서, 저항 온도센서(Resistive temperature detector, RTD) 및 서미스터(Thermistor) 온도센서 등에서 선택되는 어느 하나 또는 둘 이상을 포함하는 접촉식 온도센서 및 적외선 온도센서 등을 포함하는 비접촉 온도센서 중에서 선택되는 어느 하나 이상을 사용할 수 있다.
본 발명에 따른 휘발성 물질 분석 장치는 상기 내열성 면상발열체가 접착된 시료농축튜브를 포함한다. 구체적으로, 본 발명의 일 예에 따른 휘발성 물질 분석 장치는, 튜브(100)의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 포함하는 상기 내열성 면상발열체가 접착된 시료농축튜브; 상기 시료농축튜브로부터 시료가 유입되는 검출부; 및 상기 온도 측정부로부터 상기 튜브(100) 내부의 온도에 대한 측정값을 수신하고 상기 측정값을 기 설정값과 비교하여 전극층(300)에 인가되는 전압을 조절하는 제어부;를 포함할 수 있다.
상기 검출부는 시료를 검출하고 분석할 수 있는 장치를 의미할 수 있으며, 이는 기체 시료분석기술 분야에 널리 공지되어 있으므로 제한되지 않는다. 일 예로, 검출부는 가스크로마토그래피(Gas chromatography, GC), 질량분석기(Mass spectrometer, MS), 이온 이동성 분광계(ion mobility spectrometry) 등의 검출/분석 장치를 포함할 수 있다.
상기 제어부는 온도 측정부를 통해 온도를 모니터링할 수 있으며, 전류, 또는 전압 제어장치 등을 통해 피드백하여 튜브(100)의 온도를 목표온도로 제어할 수 있다. 구체적으로, 제어부는 온도 측정부로부터의 측정값이 기 설정값보다 작을 경우 전극층(300)에 인가되는 전압을 증가시키며, 측정값이 기 설정값보다 클 경우 상기 전극층(300)에 인가되는 전압을 감소시키는 역할을 수행할 수 있다.
본 발명의 일 예에 따른 휘발성 물질 분석 방법은, s1) 농축하고자 하는 시료에 적합한 흡착제가 상기 튜브(100)의 내부에 수용되는 단계; s2) 다수의 공극이 형성된 내열성 기체 투과성 밀폐부재로 상기 튜브(100)의 개방부가 밀폐되는 단계; s3) 시료를 포함하는 기체가 상기 튜브(100) 내부를 통과하여 상기 흡착제에 상기 시료가 흡착 및 농축되는 단계; s4) 상기 전극층(300)에 전압이 인가되어 상기 흡착제로부터 농축 시료가 열탈착되는 단계; 및 s5) 상기 열탈착된 농축 시료가 검출부로 유입되어 분석되는 단계;를 포함할 수 있다.
상기 s3) 단계에서, 시료가 농축될 시 온도는 시료가 응축하여 흡착제에 액상 또는 고상으로 흡착될 수 있을 정도라면 무방하며, 통상 상온, 일 예로 0 내지 25℃를 들 수 있다. 하지만 이외에도, 시료가 흡착될 수 있는 온도라면 크게 제한되지 않는다.
상기 s4) 단계에서, 시료가 열탈착될 시 온도는 시료가 흡착제로부터 탈착되어 외부로 유입될 수 있을 정도라면 무방하며, 통상 100 내지 350℃를 예로 들 수 있으나, 이는 시료의 종류에 따라 달라질 수 있으므로 이에 제한을 두지 않는다.

Claims (14)

  1. 휘발성 물질이 흡착되는 흡착제가 충진되도록 하는 내부 구조를 갖는 튜브;
    상기 튜브의 외주면에 접착되는 내열성 면상발열체를 포함하는 발열층; 및
    상기 발열층의 외주면에 형성되는 전극층;을 포함하는 시료농축튜브.
  2. 제1항에 있어서,
    상기 튜브는 전기절연성 재질이거나, 또는 발열층이 형성되는 튜브의 외주면이 전기절연층을 포함하는 시료농축튜브.
  3. 제2항에 있어서,
    상기 튜브는 내주면부 및 외주면부를 포함하는 관형 구조를 가지며,
    상기 내주면부는 금속 재질이며, 상기 외주면부는 상기 내주면부가 양극산화되어 금속산화물로 형성되는 전기절연층인 시료농축튜브.
  4. 제1항에 있어서,
    상기 튜브의 내부는, 흡착제를 고정하기 위한, 다수의 공극이 형성된 내열성의 기체 투과성 밀폐부재를 더 포함하는 시료농축튜브.
  5. 제1항에 있어서,
    상기 발열층은 상기 튜브의 외주면을 감싸는 관형으로 형성되며, 상기 전극층은 상기 발열층의 외주면을 감싸는 관형으로 형성되는 시료농축튜브.
  6. 제5항에 있어서,
    상기 전극층은 제1 전극층 및 제2 전극층을 포함하며, 상기 제1 전극층 및 상기 제2 전극층은 서로 이격하여 상기 발열층의 양단부에 형성되는 시료농축튜브.
  7. 제1항에 있어서,
    상기 발열층은 탄소나노튜브 및 탄소나노튜브-금속 복합체 중에서 선택되는 어느 하나 이상을 포함하는 면상발열체를 포함하며,
    상기 탄소나노튜브-금속 복합체의 금속은 은, 백금, 금, 구리, 니켈, 철, 코발트 및 알루미늄 중에서 선택되는 어느 하나 또는 둘 이상을 포함하는 시료농축튜브.
  8. 제7항에 있어서,
    상기 발열층은 면저항이 2 내지 15 Ω/sq인 시료농축튜브.
  9. 제1항에 있어서,
    상기 발열층의 평균두께는 20 내지 100 ㎛인 시료농축튜브.
  10. 제1항에 있어서,
    상기 튜브의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 더 포함하는 시료농축튜브.
  11. 제1항에 있어서,
    상기 튜브의 내주면 상에 휘발성 물질이 흡착 또는 탈착되도록 하는 흡착제가 구비되는 시료농축튜브.
  12. 제1항 내지 제11항에서 선택되는 어느 한 항의 시료농축튜브를 포함하는 휘발성 물질 분석 장치.
  13. 제12항에 있어서,
    튜브의 외주면 상 또는 내주면 상에 구비되는 온도 측정부를 포함하는 상기 시료농축튜브;
    상기 시료농축튜브로부터 시료가 유입되는 검출부; 및
    상기 온도 측정부로부터 상기 튜브 내부의 온도에 대한 측정값을 수신하고 상기 측정값을 기설정값과 비교하여 전극층에 인가되는 전력을 조절하는 제어부;를 포함하는 휘발성 물질 분석 장치.
  14. 제1항 내지 제11항에서 선택되는 어느 한 항의 시료농축튜브를 이용하는 휘발성 물질 분석 방법으로,
    s1) 농축하고자 하는 시료에 적합한 흡착제가 상기 튜브의 내부에 수용되는 단계;
    s2) 다수의 공극이 형성된 내열성의 기체 투과성 밀폐부재로 상기 튜브의 개방부가 밀폐되는 단계;
    s3) 시료를 포함하는 기체가 상기 튜브 내부를 통과하여 상기 흡착제에 상기 시료가 흡착 및 농축되는 단계;
    s4) 상기 전극층에 전압이 인가되어 상기 흡착제로부터 농축 시료가 열탈착되는 단계; 및
    s5) 상기 열탈착된 농축 시료가 검출부로 유입되어 분석되는 단계;
    를 포함하는 휘발성 물질 분석 방법.
PCT/KR2019/018823 2019-01-09 2019-12-31 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법 WO2020145563A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19909471.5A EP3910313A4 (en) 2019-01-09 2019-12-31 SAMPLE CONCENTRATOR TUBE WITH HEAT RESISTANT PLANE HEATING ELEMENT ADHED TO IT, ANALYTICAL DEVICE THEREOF AND ANALYTICAL METHOD USING THEREOF
US17/309,965 US20220065759A1 (en) 2019-01-09 2019-12-31 Sample concentrator tube having heat-resistant planar heating element adhered thereto, analysis device comprising same, and analysis method using same
JP2021539348A JP2022516345A (ja) 2019-01-09 2019-12-31 耐熱性面状発熱体が接着された試料濃縮チューブと、これを含む分析装置、およびこれを用いた分析方法
CN201980088301.5A CN113286996A (zh) 2019-01-09 2019-12-31 粘合有耐热面状发热体的试样浓缩管、包括其的分析装置及利用其的分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0002906 2019-01-09
KR1020190002906A KR102156728B1 (ko) 2019-01-09 2019-01-09 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법

Publications (1)

Publication Number Publication Date
WO2020145563A1 true WO2020145563A1 (ko) 2020-07-16

Family

ID=71520990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018823 WO2020145563A1 (ko) 2019-01-09 2019-12-31 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법

Country Status (6)

Country Link
US (1) US20220065759A1 (ko)
EP (1) EP3910313A4 (ko)
JP (1) JP2022516345A (ko)
KR (1) KR102156728B1 (ko)
CN (1) CN113286996A (ko)
WO (1) WO2020145563A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939324A (zh) * 2022-05-26 2022-08-26 广西电网有限责任公司电力科学研究院 一种悬挂式电力开关柜气体吸附装置
KR102579429B1 (ko) * 2023-01-17 2023-09-15 주식회사 팀즈 전도성물질 기반의 히터를 이용한 열전달효율이 우수한 인라인 히팅시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050059364A (ko) * 2003-12-13 2005-06-20 한국전자통신연구원 가스 흡착 및 탈착 장치 및 그 제작 방법
KR20110070509A (ko) * 2009-12-18 2011-06-24 서울대학교산학협력단 흡착 및 탈착 장치
KR20120057056A (ko) * 2010-11-26 2012-06-05 (주)바이오니아 공기중의 유기화합물 제거 장치
US20120216597A1 (en) * 2009-10-28 2012-08-30 Bioneer Corporation Sample preconcentrator
KR101313149B1 (ko) 2010-04-16 2013-09-30 (주)바이오니아 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
KR101447478B1 (ko) 2013-07-12 2014-10-06 (주)바이오니아 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 이용한 세라믹 페이스트 조성물 및 이를 포함하는 도전성 필름
KR20170104753A (ko) * 2016-03-08 2017-09-18 주식회사 슈파인 탄소나노튜브(cnt) 스펀지를 사용한 휘발성 유기화합물 농축 장치
KR101814964B1 (ko) 2017-11-23 2018-01-31 고신대학교 산학협력단 탈착 가속 장치를 구비한 휘발성 유기화합물 처리 시스템의 VOCs 농축 모듈

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077167A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 面状発熱体
AU3262701A (en) * 1999-11-17 2001-05-30 Femtometrics, Inc. Preconcentrator for chemical detection
JP2002131201A (ja) * 2000-10-27 2002-05-09 Shimadzu Corp ニオイ測定装置
JP4228963B2 (ja) * 2004-03-30 2009-02-25 株式会社島津製作所 ガス分析装置
KR100631487B1 (ko) * 2004-11-11 2006-10-09 건국대학교 산학협력단 악취물질 및 휘발성 유기화합물질의 농축을 위한흡착트랩이 구비된 시료포집장치
KR100583586B1 (ko) * 2004-11-16 2006-05-26 건국대학교 산학협력단 악취물질 및 휘발성 유기화합물질의 농축을 위한 다단흡착장치
US7449050B2 (en) * 2005-12-29 2008-11-11 Microsensor Systems, Inc. System, apparatus and method for concentrating chemical vapors
US7430928B2 (en) * 2006-02-08 2008-10-07 Battelle Memorial Insititute Method and apparatus for concentrating vapors for analysis
JP2009024902A (ja) * 2007-07-17 2009-02-05 Mitsubishi Plastics Inc 流体加熱装置、及び流体加熱装置の製造方法
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101868072B (zh) * 2009-04-20 2015-06-03 清华大学 线热源的制备方法
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
KR101245461B1 (ko) * 2009-12-30 2013-03-19 (주)엘지하우시스 진공단열재를 적용한 면상 발열체 및 이를 제조하는 방법
US9315916B2 (en) * 2010-11-30 2016-04-19 Sharp Kabushiki Kaisha Electrode structure, substrate holder, and method for forming anodic oxidation layer
TW201311336A (zh) * 2011-09-09 2013-03-16 Ind Tech Res Inst 吸附元件、吸附裝置及其再生方法
KR101595484B1 (ko) * 2014-05-02 2016-02-19 주식회사 덴다인더스트리 면상발열체 및 그의 제조방법
JP6670490B2 (ja) * 2014-05-19 2020-03-25 株式会社アイ.エス.テイ 面状抵抗発熱体および抵抗発熱シームレス管状物ならびに導電性粒子含有樹脂溶液
JP2017142162A (ja) * 2016-02-10 2017-08-17 Msi.Tokyo株式会社 加熱式試料吸着管及びそれを含む質量分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050059364A (ko) * 2003-12-13 2005-06-20 한국전자통신연구원 가스 흡착 및 탈착 장치 및 그 제작 방법
US20120216597A1 (en) * 2009-10-28 2012-08-30 Bioneer Corporation Sample preconcentrator
KR20110070509A (ko) * 2009-12-18 2011-06-24 서울대학교산학협력단 흡착 및 탈착 장치
KR101313149B1 (ko) 2010-04-16 2013-09-30 (주)바이오니아 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
KR20120057056A (ko) * 2010-11-26 2012-06-05 (주)바이오니아 공기중의 유기화합물 제거 장치
KR101447478B1 (ko) 2013-07-12 2014-10-06 (주)바이오니아 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 이용한 세라믹 페이스트 조성물 및 이를 포함하는 도전성 필름
KR20170104753A (ko) * 2016-03-08 2017-09-18 주식회사 슈파인 탄소나노튜브(cnt) 스펀지를 사용한 휘발성 유기화합물 농축 장치
KR101814964B1 (ko) 2017-11-23 2018-01-31 고신대학교 산학협력단 탈착 가속 장치를 구비한 휘발성 유기화합물 처리 시스템의 VOCs 농축 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910313A4

Also Published As

Publication number Publication date
EP3910313A1 (en) 2021-11-17
KR20200086555A (ko) 2020-07-17
CN113286996A (zh) 2021-08-20
EP3910313A4 (en) 2022-10-26
US20220065759A1 (en) 2022-03-03
JP2022516345A (ja) 2022-02-25
KR102156728B1 (ko) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2020145563A1 (ko) 내열성 면상발열체가 접착된 시료농축튜브와 이를 포함하는 분석 장치 및 이를 이용한 분석 방법
JP6734957B2 (ja) 帯電物質搬送チャンバを有するイオン移動度分光分析(ims)装置
WO2011052862A1 (en) Sample preconcentrator
EP3351920B1 (en) Chemical substance concentrator and chemical substance detection device
US7306649B2 (en) 3D miniature preconcentrator and inlet sample heater
EP3239688B1 (en) Chemical substance concentrator and chemical substance detecting device
US5824919A (en) Sample conditioning flue gas probe
WO2014157799A1 (ko) 스크러버용 제습장치
ES2549160T3 (es) Línea de transferencia para sonda de muestreo
WO2017061804A1 (ko) 가스 크로마토그래피를 이용한 가스시료 고속 분석장치 및 이의 방법
WO2012088813A1 (zh) 用于离子迁移谱仪的进样装置及其使用方法和离子迁移谱仪
KR100971031B1 (ko) 이온 이동도 분광기
JP2017166947A (ja) ガス検出装置
CN206848219U (zh) 一种气相色谱仪
US20090230111A1 (en) Flash heating for tubing
WO2020138679A1 (en) Heater integrated gas chromatography column device
TW202206166A (zh) 用於降低濕氣以取樣並檢測氣體混合物的系統和方法
CN115561379A (zh) 大气有机物检测装置、检测方法
CN213364636U (zh) 一种吸附管老化加热装置
WO2022154587A1 (ko) 저농도 대기 오염 물질 선택적 검출 장치
CN116124567B (zh) 一种挥发性有机物富集前处理装置
JP5050592B2 (ja) 熱分解ガスクロマトグラフ装置
WO2022114660A1 (ko) 정전용량형 가스센서 및 그 제조 방법
KR20120035656A (ko) 휴대용 가스분석 시스템을 위한 마이크로 전농축기
CN107860602B (zh) 极片高真空、高温含水率取样器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909471

Country of ref document: EP

Effective date: 20210809