WO2020145156A1 - シリンダヘッド - Google Patents

シリンダヘッド Download PDF

Info

Publication number
WO2020145156A1
WO2020145156A1 PCT/JP2019/050943 JP2019050943W WO2020145156A1 WO 2020145156 A1 WO2020145156 A1 WO 2020145156A1 JP 2019050943 W JP2019050943 W JP 2019050943W WO 2020145156 A1 WO2020145156 A1 WO 2020145156A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
cylinder head
resin
port
intake port
Prior art date
Application number
PCT/JP2019/050943
Other languages
English (en)
French (fr)
Inventor
小島 光高
広司 石井
村田 真一
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2020565701A priority Critical patent/JP7136233B2/ja
Publication of WO2020145156A1 publication Critical patent/WO2020145156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine cylinder head.
  • Patent Document 1 discloses an engine intake passage structure in which a resin heat insulating member is arranged on the inner surface of an intake port to suppress a rise in intake air temperature.
  • the heat insulating member described in Patent Document 1 is formed by injection molding of resin.
  • the resin portion as the heat insulating material is formed by injection molding as described above, the molten resin serving as the resin portion is caused to flow along the inner surface of the intake port and solidified into a predetermined shape.
  • the resin portion does not have a predetermined shape, and the resin portion along the inner surface of the intake port cannot be properly arranged.
  • the cylinder head disclosed herein is a cylinder head having an intake port communicating with a combustion chamber of an engine and having a resin portion arranged along an inner surface of the intake port. Different from the injection port, an injection port that opens toward the outside of the head, a resin passage that extends from the injection port to the intake port, and that flows to the resin portion when molten resin is injected from the injection port. A discharge port that is open to the outside at a position, and extends from the intake port to the discharge port, and when the molten resin is injected from the injection port, the gas in the intake port is directed to the outside. And a gas passage that flows.
  • the opening in the inner surface of the intake port of the resin passage and the opening in the inner surface of the intake port of the gas passage are separated from each other in the flow direction of the intake air, and from the lower surface side of the cylinder head joined to the cylinder block. It is preferable that the intake ports are arranged so as to sandwich a center line along the flow direction.
  • the engine is a multi-cylinder engine, the cylinder head is provided with a plurality of the intake ports in parallel, and the exhaust port is formed between two intake ports adjacent to each other. It is preferable that a passage extends from each of the intake ports located on both sides of the discharge port to the discharge port.
  • the engine is a multi-cylinder engine, the cylinder head is provided with a plurality of the intake ports arranged in parallel, and the injection port is formed between two intake ports adjacent to each other.
  • a passage preferably extends from the inlet to each of the intake ports located on both sides of the inlet.
  • the opening of the resin passage on the inner surface of the intake port is located upstream of the opening of the gas passage on the inner surface of the intake port in the intake flow direction.
  • the discharge port is opened on the lower surface of the cylinder head joined to the cylinder block.
  • the molten resin since the fluidity of the molten resin is improved by providing the gas passage, the molten resin easily spreads along the inner surface of the intake port. Therefore, the molten resin does not spread and a space is not formed in a part of the resin portion, and the resin portion can be easily molded.
  • FIG. 3 is a schematic front view of the intake side portion of the cylinder head according to the first embodiment as viewed from the front side of the engine.
  • FIG. 2 is a schematic side view of the cylinder head of FIG. 1 viewed from the intake side (a view in the direction of arrow A in FIG. 1 ). It is a bottom view of the cylinder head of FIG.
  • FIG. 2 is a cross-sectional view (cross-sectional view taken along the line BB of FIG. 1) showing the inside of an intake port of the cylinder head of FIG.
  • A) is a cross-sectional view (cross-sectional view taken along the line CC of FIG. 3) showing the arrangement of the inlet and the outlet in the cylinder head of FIG. 1, and (b) shows the resin portion from FIG.
  • FIG. It is the figure which expanded one of the intake ports of FIG. 4, and abbreviate
  • FIG. 8 is a sectional view (corresponding to FIG. 4) showing the inside of the intake port of the cylinder head of FIG. 7.
  • 7A is a cross-sectional view (a cross-sectional view taken along the line DD in FIG. 7) showing the arrangement of the injection port and the discharge port in the cylinder head of FIG. 7, and FIG. It is the figure which abbreviate
  • FIG. 9 is a sectional view showing a configuration of a resin passage in the cylinder head of FIG. 7 [a sectional view taken along the line EE of FIG.
  • FIG. 9( b ) It is the figure which expanded one of the intake ports of FIG. 8, and abbreviate
  • FIG. 8 is a sectional view taken along line FF of FIG. 7.
  • FIG. 13A is a plan view showing an example of a core for molding the intake port of the cylinder head of FIG. 7, and
  • FIG. 13B is a sectional view taken along the line GG of FIG. 13A.
  • FIG. 10 is a sectional view showing a discharge port and a gas passage according to a modified example [a view corresponding to FIG. 9B].
  • FIG. 1 is a schematic front view of an intake side portion of a cylinder head 1 according to a first embodiment as viewed from the front side of an engine
  • FIG. 2 is a side view of the cylinder head 1 (a view in the direction of arrow A in FIG. 1). ).
  • the cylinder head 1 is a component that constitutes, for example, an engine mounted on a vehicle.
  • This embodiment exemplifies a cylinder head 1 of an engine in which four cylinders are arranged side by side in a row, and one cylinder is provided with two intake valves and two exhaust valves.
  • the engine of the present embodiment includes a cylinder injection valve (not shown) that injects fuel into the combustion chamber 2 (see FIG. 3) and a port injection valve (not shown) that injects fuel into the intake port 3. Equipped.
  • the side to which the cylinder block (not shown) is fixed with respect to the cylinder head 1 is referred to as "lower side", and the opposite side is referred to as “upper side” to determine the vertical direction of the cylinder head 1.
  • the vertical direction of the cylinder head 1 does not necessarily have to match the vertical direction (vertical direction) when the engine is mounted on a vehicle or the like.
  • the simple term “vertical direction” means the vertical direction of the cylinder head 1.
  • 3 is a bottom view of the cylinder head 1 (a view of the cylinder head 1 viewed from the bottom surface 1b side)
  • FIG. 4 is a cross-sectional view showing the inside of the intake port 3 (a cross section taken along the line BB in FIG. 1). Figure).
  • the cylinder head 1 has a cylinder head body 10 formed by casting using, for example, aluminum or an aluminum alloy, and a resin portion 20 arranged along the inner surface of the intake port 3.
  • the cylinder head main body 10 constitutes the main body of the cylinder head 1.
  • the components other than the resin portion 20 of the cylinder head 1 (such as the above-mentioned intake port 3, the mounting holes 5 and 6 and the boss portion 8 described later) are provided in the cylinder head body 10. 2 and 4 and FIG. 5A described later, the resin portion 20 is shown with dots for easy understanding.
  • the cylinder head 1 includes an intake port 3, a port injection valve mounting hole 5, a cylinder injection valve mounting hole 6, and a boss portion 8 to which a delivery pipe connected to the cylinder injection valve is fixed. It is formed for each cylinder.
  • the intake port 3 and the mounting holes 5 and 6 open in the wall portion 1a of the cylinder head 1 on the intake side. Further, the boss portion 8 is provided at a position of the wall portion 1a adjacent to the mounting hole 6 of the in-cylinder injection valve.
  • An intake manifold (not shown) is connected to the opening 3e (upstream end) of the intake port 3 in the wall portion 1a. 2 to 4 and FIGS. 5(a) and 5(b) which will be described later, the reference numerals of the mounting holes 5 and 6, the boss portion 8 and the like that are similarly provided in each of the four cylinders are given to only one cylinder.
  • the lower surface 1b of the cylinder head 1 (hereinafter, also referred to as “cylinder head lower surface 1b") is machined into a flat surface orthogonal to the vertical direction, and serves as a joint surface with the cylinder block. As shown in FIG. 3, a combustion chamber 2 forming the upper part of the cylinder is recessed in the lower surface 1b of the cylinder head.
  • the cylinder head 1 is coupled to the cylinder block with a gasket (not shown) interposed between the cylinder head lower surface 1b and the cylinder block upper surface. That is, the cylinder head lower surface 1b and the cylinder block are joined.
  • the four intake ports 3 are arranged in a line.
  • the direction D1 in which the four intake ports 3 are lined up is referred to as the “port side-by-side direction D1”.
  • the four intake ports 3 are referred to as the first intake port 3A, the second intake port 3B, the third intake port 3C, and the fourth intake port 3D in order from the front side of the engine. ..
  • the port juxtaposition direction D1 coincides with each of the front-rear direction of the engine and the cylinder row direction (direction in which the cylinders are arranged), and is orthogonal to the vertical direction.
  • each intake port 3 is formed in a bifurcated shape that communicates with the combustion chamber 2 via two intake valve holes 4.
  • intake air flows in a direction D2 from the opening 3e toward the intake valve hole 4.
  • the flow direction D2 of the intake air is referred to as "intake direction D2".
  • a center line O of the intake port 3 along the intake direction D2 is shown by a dashed line.
  • the center line O corresponds to a line connecting the center points of the cross sections orthogonal to the intake direction D2 in the upstream portion of the intake port 3 relative to the bifurcated portion.
  • a rib portion 7 is provided between the outer walls of two intake ports 3 adjacent to each other, and a circle protruding downward from the outer wall of each intake port 3. It has a column-shaped base 9.
  • the rib portion 7 has a function of reinforcing the cylinder head 1.
  • Each rib portion 7 is arranged on the upstream side (intake manifold side) of the intake port 3 with respect to the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve.
  • the pedestal portion 9 is provided at a position overlapping the intake port 3 in the vertical direction.
  • the pedestal portion 9 is located on the upstream side of the intake port 3 with respect to the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve (on the intake manifold side and in the vicinity of the opening 3e of each intake port 3). At the same time, it is provided so as not to overlap the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve in the port juxtaposed direction D1.
  • the resin portion 20 is a heat insulating member that suppresses the heat of the cylinder head body 10 from being transferred to the intake air.
  • the resin portion 20 is formed of a resin having a lower thermal conductivity than the material of the cylinder head body 10, and more preferably a resin having a high heat resistance.
  • the resin portion 20 is arranged along the inner surface of the portion of the entire length of the intake port 3 excluding the portion on the intake valve hole 4 side (downstream portion).
  • the resin portion 20 is formed by injection molding.
  • FIG. 5A is a sectional view taken along the line CC of FIG. 3, and FIG. 5B is a view in which the resin portion 20 is omitted from FIG. 5A (that is, before the resin portion 20 is arranged). It is a cross-sectional view of the cylinder head body 10.
  • the cylinder head 1 has a structure for supplying the molten resin to be the resin portion 20 to the inner surface of the intake port 3 when the resin portion 20 is injection-molded.
  • a resin passage 12, a discharge port 13 and a gas passage 14 are provided.
  • the two-dot chain line shown in each intake port 3 in FIG. 5B and FIG. 6 described later is a contour line of a mold used at the time of injection molding of the resin portion 20.
  • the injection port 11 is a supply port (opening) into which the tip of the injection machine 40 for injecting the molten resin is inserted and the molten resin is supplied (injected).
  • the outlet 13 is a gas outlet (opening) for expelling the gas (air) in the intake port 3 when the molten resin is injected into the inlet 11.
  • Both the inlet 11 and the outlet 13 are open to the outside of the cylinder head 1.
  • the case where the inlet 11 and the outlet 13 are provided for each intake port 3 is illustrated. That is, the inlet 11 and the outlet 13 are dedicated to each intake port 3.
  • the arrangement of the inlet 11 and the outlet 13 is the same in each intake port 3.
  • the inlet 11 of this embodiment is formed in the pedestal portion 9.
  • the inlet 11 is provided so as to overlap the intake port 3 in the vertical direction (that is, below the intake port 3). Further, the injection port 11 is located upstream of the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve in the intake direction D2, and the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve are located in the port juxtaposed direction D1. It does not overlap (shift) with each other.
  • the four inlets 11 have the same circular shape.
  • the resin passage 12 is a space through which the molten resin flows to the resin portion 20 when the molten resin is injected from the injection port 11.
  • the resin passage 12 of the present embodiment is similarly arranged for each intake port 3 as with the inlet 11.
  • the resin passage 12 extends from each inlet 11 to the inner surface of the intake port 3 in which the inlet 11 is provided. In other words, the resin passage 12 communicates with one inlet 11 and one intake port 3 provided with the inlet 11.
  • the resin passage 12 of the present embodiment extends in the vertical direction.
  • the resin passage 12 is opened to the outside of the cylinder head 1 through the inlet 11 and also to the inner surface of the intake port 3.
  • the opening 15 of the resin passage 12 on the inner surface of each intake port 3 is referred to as "resin inlet 15".
  • the resin inlet 15 is a portion that serves as an inlet for the molten resin in the intake port 3 when the resin portion 20 is injection molded.
  • the resin inlet 15 of the present embodiment has a circular shape that is substantially the same as the inlet 11.
  • Each outlet 13 is provided at a position different from that of the inlet 11. As shown in FIG. 3, in the present embodiment, each inlet 11 is located closer to the intake manifold than the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve, whereas each outlet 13 is connected to the inlet 11 and the boss 8. It is located closer to the combustion chamber 2 than the boss portion 8 and is open to the cylinder head lower surface 1b. Further, as shown in FIG. 5B, the discharge port 13 of the present embodiment is provided so as to overlap with the intake port 3 in the vertical direction (that is, below the intake port 3). The four outlets 13 have the same circular shape.
  • the gas passage 14 is a space where the gas expelled from the intake port 3 flows toward the outside of the cylinder head 1 when the molten resin is injected from the injection port 11.
  • the gas passage 14 of the present embodiment is similarly arranged for each intake port 3 as with the exhaust port 13.
  • the gas passage 14 extends from the inner surface of each intake port 3 to the exhaust port 13 provided for this intake port 3. In other words, the gas passage 14 communicates with one intake port 3 and one exhaust port 13 provided therein.
  • the gas passage 14 opens to the inner surface of the intake port 3 and also to the outside of the cylinder head 1 through the exhaust port 13.
  • the gas passage 14 of the present embodiment extends vertically.
  • the cross section of the gas passage 14 (cross section orthogonal to the vertical direction) has a circular shape.
  • the opening 16 of the gas passage 14 on the inner surface of each intake port 3 is referred to as a “resin outlet 16”.
  • the resin outlet 16 is a portion serving as an outlet for gas and molten resin in the intake port 3 when the resin portion 20 is injection molded.
  • FIG. 6 is an enlarged view of the fourth intake port 3D in FIG. 4 with the resin portion 20 omitted.
  • the resin inlet 15 and the resin outlet 16 on the inner surface of one intake port 3 are located apart from each other (shifted) in the intake direction D2.
  • the resin inlet 15 is located upstream of the resin outlet 16 in the intake direction D2.
  • the resin inlet 15 and the resin outlet 16 on the inner surface of one intake port 3 are arranged so as to sandwich the above-mentioned center line O (that is, on both sides of the center line O) when viewed from above and below (for example, in a bottom view). Has been done.
  • the resin inlet 15 and the resin outlet 16 of the present embodiment are located apart from each other in the port juxtaposition direction D1 and the intake direction D2 when the intake port 3 is viewed from above and below, and both A center line O is interposed between them.
  • the resin portion 20 is formed by injection molding. Specifically, first, a mold (see the chain double-dashed line in FIG. 5B and FIG. 6) is arranged in the intake port 3 of the cylinder head main body 10, and the space for supplying the molten resin is defined as the inner surface of the intake port 3. Partition with the outer surface of the mold. Next, the tip of the injection machine 40 is inserted into the injection port 11, and the molten resin is injected from the injection machine 40 into the resin passage 12.
  • the molten resin injected into the resin passage 12 is supplied to each inner surface of the intake port 3 through the resin passage 12.
  • the molten resin flows along the inner surface of the intake port 3 and spreads into the space between the inner surface of the intake port 3 and the outer surface of the mold.
  • the gas in the intake port 3 is expelled toward the outside of the cylinder head body 10 through the gas passage 14 and is exhausted from the exhaust port 13.
  • the injection of the molten resin into the injection port 11 is stopped. Then, when the molten resin is solidified, the resin portion 20 is formed in the intake port 3. After that, the cylinder head 1 is completed by removing the mold arranged in the intake port 3.
  • the discharge port 13 is formed at a position different from the injection port 11, and the gas passage 14 extends from the intake port 3 to the discharge port 13.
  • the gas in the intake port 3 can be exhausted to the outside through the gas passage 14 and the exhaust port 13.
  • the molten resin since the fluidity of the molten resin is improved by providing the gas passage 14, the molten resin easily spreads along the inner surface of the intake port 3. Thereby, the molten resin can be more smoothly supplied into the intake port 3. Therefore, the molten resin does not spread and a space is not formed in a part of the resin portion 20, and the resin portion 20 can be easily molded.
  • the resin portion 20 since the resin portion 20 is arranged in the intake port 3, the resin portion 20 functions as a heat insulating material between the inner surface of the intake port 3 and the intake air flowing in the intake port 3. As a result, the heat transferred from the inner surface of the intake port 3 to the intake air is reduced, so that the temperature rise of the intake air can be suppressed. Therefore, the reduction of the intake air amount and the occurrence of knocking can be suppressed, and the engine performance can be improved.
  • the resin inlet 15 and the resin outlet 16 are located apart from each other in the intake direction D2, so that the molten resin flows in the process from the resin inlet 15 toward the resin outlet 16.
  • the molten resin can be made to flow in the intake direction D2 along the inner surface of the intake port 3. Thereby, the molten resin can be easily spread in the intake direction D2.
  • the resin inlet 15 and the resin outlet 16 are arranged so as to sandwich the center line O along the intake direction D2 of the intake port 3 when viewed from the vertical direction (for example, the cylinder head lower surface 1b side), the molten resin is introduced into the resin inlet.
  • the molten resin In the process of flowing from 15 to the resin outlet 16, the molten resin can be made to flow in the port parallel direction D1 along the inner surface of the intake port 3. Thereby, the molten resin can be easily spread in the port parallel direction D1. Therefore, the resin portion 20 can be easily molded.
  • the discharge port 13 since the discharge port 13 is opened to the cylinder head lower surface 1b, the discharge port 13 can be processed at the same time when the cylinder head lower surface 1b is processed during the manufacture of the cylinder head 1. As a result, the processing of the discharge port 13 is facilitated, and the manufacturing cost can be reduced.
  • FIG. 7 is a bottom view of the cylinder head 1′ according to the second embodiment.
  • the cylinder head 1' according to the present embodiment differs from the cylinder head 1 of the first embodiment described above in that the two inlet ports 3 adjacent to each other share the injection port 11' and the resin passage 12'. .. That is, in the cylinder head 1 ′, one inlet 11 ′ and one resin passage 12 ′ are provided for the two intake ports 3.
  • FIG. 7 and FIGS. 8 and 9 (a) and (b) which will be described later the reference numerals of the mounting holes 5 and 6, the boss portion 8 and the like, which are similarly provided in each of the four cylinders, are assigned to only one cylinder. Attach. Further, in FIG. 8, FIG. 9A and FIG. 12 described later, the resin portion 20 is shown with dots for easy understanding.
  • the cylinder head 1 ′ (cylinder head main body 10 ′) has a seat surface 9 ′ formed on the rib portion 7 instead of the pedestal portion 9 described above.
  • the seat surface 9' is provided in parallel with the cylinder head lower surface 1b between the two intake ports 3 adjacent to each other.
  • the rib portion 7 between the first intake port 3A and the second intake port 3B and the rib portion 7 between the third intake port 3C and the fourth intake port 3D are integrally provided.
  • the raised seat surface 9' is illustrated.
  • Each seating surface 9' is formed in a flat shape facing the same side (lower side) as the cylinder head lower surface 1b.
  • Each seat surface 9 ′ is arranged together with the rib portion 7 on the upstream side (intake manifold side) of the intake port 3 with respect to the mounting hole 6 and the boss portion 8 of the in-cylinder injection valve.
  • the resin portion 21 provided between the two resin portions 20 adjacent to each other is referred to as a “connecting resin portion 21”.
  • the connecting resin portion 21 is formed when the resin portion 20 is molded on the cylinder head body 10' of this embodiment.
  • the connecting resin part 21 of the present embodiment is disposed between the two resin parts 20 arranged in the first intake port 3A and the second intake port 3B and in the third intake port 3C and the fourth intake port 3D. It is provided between each of the two resin portions 20.
  • the inlet 11' is shared by the two intake ports 3. In other words, only one inlet 11 ′ is provided for the two intake ports 3. It should be noted that the exhaust port 13 is provided for each intake port 3 even though the arrangement for the first intake port 3A and the third intake port 3C is different from that of the first embodiment. That is, also in the present embodiment, the exhaust port 13 is dedicated to each intake port 3.
  • the injection port 11' of this embodiment is formed in each rib portion 7 integrally provided with the above-mentioned seat surface 9', and is open to each seat surface 9'. .. Specifically, the inlet 11' is provided between the first intake port 3A and the second intake port 3B and between the third intake port 3C and the fourth intake port 3D, respectively.
  • the two inlets 11' have the same circular shape.
  • the resin passage 12 ′ of this embodiment extends from the injection port 11 ′ to each of the two intake ports 3 on both sides thereof.
  • the resin passage 12' connects the inlet 11' and the intake ports 3 on both sides of the inlet 11'.
  • the resin inlet 15' of the present embodiment has a larger opening area than the inlet 11'.
  • the molten resin solidified in the resin passage 12' becomes the above-mentioned connecting resin portion 21.
  • the resin passage 12 ′ of the present embodiment has an injection portion 12 a extending from the injection port 11 ′ perpendicular to the seat surface 9 ′, and a distribution portion 12 b extending to the two intake ports 3 intersecting the injection portion 12 a. It has a T-shaped branched shape.
  • the injection part 12a is a part to which the tip of the injection machine 40 is connected and the molten resin is supplied.
  • the injection part 12a of the present embodiment extends straight upward from the injection port 11'. That is, the injection part 12a is extended in the up-down direction between the two intake ports 3 adjacent to each other.
  • the shape of the cross section (cross section perpendicular to the vertical direction) of the injection portion 12a is circular.
  • the distribution part 12b is a part that distributes the molten resin flowing through the injection part 12a to the two intake ports 3. As shown in FIG. 10, the distribution part 12b extends along the intake direction D2 between two intake ports 3 adjacent to each other, and communicates with each of the two intake ports 3 on both sides.
  • the distribution portion 12b of the present embodiment extends straight along each of the port juxtaposed direction D1 and the intake direction D2.
  • the cross-sectional shape along the intake direction D2 and the vertical direction is an elliptical shape having a long axis extending in the intake direction D2. That is, in the distributor 12b, the length dimension L in the intake direction D2 is set to be larger than the height dimension H in the direction orthogonal to the port juxtaposed direction D1 and the intake direction D2 (H ⁇ L). Further, in the distributor 12b of the present embodiment, the length dimension L described above is set to be larger than the width dimension W in the port juxtaposed direction D1 (see FIG. 11) (W ⁇ L).
  • each inlet 11 ′ does not overlap with the intake port 3 in the vertical direction (shifts in the port juxtaposed direction D 1 ), whereas each outlet 13 has the intake port 3 ′. Is provided so as to overlap (below the intake port 3).
  • the resin inlet 15' and the resin outlet 16 on the inner surface of one intake port 3 are located apart from each other (shifted) in the intake direction D2, and Seen from above and below (for example, in bottom view), they are arranged so as to sandwich the center line O described above.
  • the cylinder head 1 ′ includes a cap (closing portion) 50 that closes the inlet 11 ′ and the outlet 13.
  • the cap 50 of this embodiment has a function of sealing the inlet 11 ′ and the outlet 13.
  • the cap 50 attached to the inlet 11' is shaped to fit inside the inlet 11', and after the resin portion 20 is formed on the cylinder head body 10', the cap 50 is fitted into each inlet 11'.
  • the cap 50 attached to the discharge port 13 is shaped to fit inside the discharge port 13, and the resin portion 20 is formed on the cylinder head body 10 ′ and then fitted into each discharge port 13.
  • the cylinder head body 10' is molded by casting.
  • the cylinder head body 10' has an outer shape molded by a mold (for example, an upper mold and a lower mold) (not shown), and internal spaces such as the intake port 3, the injection port 11' and the resin passage 12' are formed as shown in FIG. It is molded using a core 30 as shown in a) and (b).
  • the core 30 includes an intake port portion 33 arranged at a position that becomes the intake port 3, an injection port portion 31 arranged at a position that becomes the injection port 11', and a resin arranged at a position that becomes the resin passage 12'. And a passage portion 32. Further, in the core 30 of the present embodiment, the extension portion 34 extending from the position that becomes the opening 3e of the intake port 3 in each intake port portion 33, and the connection portion 35 that connects the extension portions 34 adjacent to each other. And further.
  • Extending part 34 and connecting part 35 are parts arranged upstream of intake port 3 of cylinder head body 10'.
  • the four intake port parts 33 are integrally provided (as one core 30) by being connected via the extending part 34 and the connecting part 35.
  • the four intake port parts 33 are sequentially arranged from the front side of the engine in the order of the first intake port part 33A, the second intake port part 33B, the third intake port part 33C, and the third intake port part 33C.
  • Four intake ports 3D are sequentially arranged from the front side of the engine in the order of the first intake port part 33A, the second intake port part 33B, the third intake port part 33C, and the third intake port part 33C.
  • Four intake ports 3D are sequentially arranged from the front side of the engine in the order of the first intake port part 33A, the second intake port part 33B, the third intake port part 33C, and the third intake port part 33C.
  • Four intake ports 3D are sequentially arranged from the front side of the engine in the order of the
  • the injection port 11' and the resin passage 12' of the present embodiment are provided between the first intake port 3A and the second intake port 3B and between the third intake port 3C and the fourth intake port 3D. Placed in each. Therefore, in the core 30, the injection port portion 31 and the resin passage portion 32 are provided between the first intake port portion 33A and the second intake port portion 33B and between the third intake port portion 33C and the fourth intake port portion 33D. It is located in two places, the room and the room.
  • the resin passage portion 32 includes an injection core portion 32 a arranged at a position serving as the injection portion 12 a and a distribution core portion 32 b arranged at a position serving as the distribution portion 12 b.
  • the distribution unit 12b that communicates the first intake port 3A and the second intake port 3B and the distribution unit 12b that communicates the third intake port 3C and the fourth intake port 3D are provided. It is provided. Therefore, in the core 30, the first intake port portion 33A and the second intake port portion 33B are connected by the distribution core portion 32b, and the third intake port portion 33C and the fourth intake port portion 34D are also distributed core portion 32b. Are connected by.
  • a molten metal in which a material (for example, aluminum or an aluminum alloy) to be the cylinder head body 10' is melted is poured from a sprue and solidified, whereby the cylinder head body 10' is solidified. Is molded.
  • the resin part 20 in the intake port 3 of the cylinder head body 10' the molten resin injected from the injection port 11' into the injection part 12a of the resin passage 12' is divided into two parts through the distribution part 12b. It is supplied to each inner surface of the intake port 3.
  • the resin portion 20 is formed in the intake port 3 and the connecting resin portion 21 is formed in the resin passage 12'.
  • the cap 50 is fitted into each of the inlet 11 ′ and the outlet 13 as shown in FIG. And the outlet 13 is closed.
  • an injection port 11' is provided between two intake ports 3 adjacent to each other, and a resin passage 12' extends from the injection port 11' to each of the intake ports 3 on both sides.
  • the resin portion 20 is molded, if the molten resin is injected into one injection port 11', the molten resin can be supplied to the inner surfaces of the two intake ports 3 through the resin passage 12'. That is, the injection port 11 ′ of the molten resin can be shared by the two intake ports 3. Therefore, the number of inlets 11' can be reduced as compared with the configuration of the first embodiment in which the inlet 11 is provided for each intake port 3. That is, since the inlet 11' can be efficiently arranged in the narrow space of the cylinder head 1', the cylinder head 1'can be prevented from becoming large. In addition, the flexibility of the shape and arrangement of the individual injection ports 11' can be increased.
  • the resin passage 12 ′ is extended to each of the two intake ports 3, the resin solidified in the resin passage 12 ′ between the two intake ports 3 (connection The resin portion 21) is arranged. Thereby, the heat insulating effect between the intake ports 3 can be enhanced. Therefore, the temperature rise of the intake air can be suppressed. Therefore, it is possible to suppress the reduction of the intake air amount and the occurrence of knocking, and it is possible to improve the engine performance.
  • two intake port portions 33 are connected to each other by the resin passage portion 32. That is, in the core 30, the two intake port portions 33 adjacent to each other can be connected not only by the extension portion 34 and the connecting portion 35 but also by the resin passage portion 32. As a result, the positional relationship between the intake port portions 33 is easily maintained, so that the shape of the core 30 can be stabilized. Therefore, the positional accuracy of the intake port 3 in the cylinder head 1'can be improved.
  • the degree of sealing between the cylinder head body 10' and the resin portion 20 can be enhanced. Since the resin portion 20 is formed by solidifying the molten resin, a gap is not originally generated between the wall surface of the cylinder head body 10 ′ and the resin portion 20, but even if the above-described cap 50 is provided, even if heat is generated, Even if a gap is created between the two by pulling or the like, it is possible to suppress intake air leakage from the inlet 11 ′ and the outlet 13. Further, since the cap 50 is formed as a separate body (separate part) from the cylinder head body 10 ′ and the resin portion 20, it is only necessary to attach the cap 50 to the inlet 11 ′ and the outlet 13, and The outlet 13 can be easily closed.
  • the resin passage 12' has an injection portion 12a extending from the injection port 11' perpendicularly to the seat surface 9'.
  • the resin passage 12 ′ has a distribution portion 12 b extending between two intake ports 3 adjacent to each other along the intake direction D 2 and communicating with each of these intake ports 3, so that the molding of the resin portion 20 is completed. Then, the resin (connecting resin portion 21) extending along the intake direction D2 can be arranged between the two intake ports 3. Thereby, the heat insulating effect between the intake ports 3 can be enhanced in the intake direction D2. Further, in the above-described core 30, since the two intake port portions 33 are connected by the distribution core portion 32b, the two intake port portions 33 can be connected over a wide range along the intake direction D2. As a result, the positional relationship between the intake port portions 33 is more easily maintained, so that the shape of the core 30 can be further stabilized, and the positional accuracy of the intake port 3 in the cylinder head 1'can be further improved. it can.
  • the inlet 11' is formed in the rib portion 7 which is provided between the outer walls of the two intake ports 3 adjacent to each other, the rib portion 7 can reinforce the space between the intake ports 3 and the rib portion 7 can be injected. It can be utilized as a pedestal portion of the entrance 11'. As a result, the space efficiency is improved as compared with the case where a dedicated pedestal portion is provided for the injection port 11', so that the strength and rigidity around the intake port 3 can be increased while suppressing the increase in size of the cylinder head 1'. ..
  • the opening area of the resin inlet 15' is larger than the opening area of the inlet 11', the molten resin injected into the inlet 11' can be more smoothly supplied from the resin inlet 15' into the intake port 3. .. Therefore, the resin portion 20 can be more easily molded. In addition, the same effect can be obtained from the same configuration as the above-described embodiment.
  • the configuration of the cylinder heads 1 and 1'described above is an example, and is not limited to the one described above. For example, it may not be the cylinder head of an in-line four-cylinder engine, or the cylinder head of an engine equipped with both an in-cylinder injection valve and a port injection valve.
  • the shape of the intake port 3 is not limited to the bifurcated shape described above. Further, the rib portion 7 and the boss portion 8 may be omitted.
  • the configuration of the core 30 described above is an example.
  • the core 30 may further have a portion arranged at a position to be the discharge port 13 and the gas passage 14. Further, the extending portion 34 and the connecting portion 35 may be omitted.
  • the inlets 11 and 11', the resin passages 12 and 12', the outlet 13 and the gas passages 14 are not limited to those formed by using cores, and may be formed by, for example, punching.
  • the injection port 11' may be provided between the second intake port 3B and the third intake port 3C.
  • the case where one inlet 11 ′ is provided for the two intake ports 3 is illustrated, but one inlet 11 ′ is provided for three or more intake ports 3. It may be provided.
  • an inlet 11 ′ is provided between the second intake port 3B and the third intake port 3C, and the first intake port 3A and the second intake port 3B are provided, and the third intake port 3C and the fourth intake port 3D are provided, respectively.
  • the molten resin can be supplied from one injection port 11' to each of the four intake ports 3. In this case, the number of inlets 11' in the cylinder head 1'can be reduced to one.
  • the position and the number of the discharge ports 13 are not limited to those described above.
  • the outlet 13 may be shared by the plurality of intake ports 3 in the same manner as the inlet 11 ′ is shared by the plurality of intake ports 3.
  • the exhaust ports 13 provided for the second intake port 3B and the third intake port 3C are replaced by a single exhaust port 13. ' May be integrated. More specifically, the exhaust port 13' is formed between the second intake port 3B and the third intake port 3C which are adjacent to each other, and the second intake port 3B and the third intake port 3C (that is, both sides of the exhaust port 13' are formed.
  • the gas passage 14' may extend from each of the intake ports 3) to the exhaust port 13'.
  • the gas in the two intake ports 3 can be collectively discharged from one exhaust port 13'. That is, in the two intake ports 3, the gas outlet 13' can be shared. Therefore, the number of the exhaust ports 13 and 13' can be reduced as compared with the configuration in which the exhaust port 13 is provided for each intake port 3. This makes it possible to use the narrow space of the cylinder head more efficiently, avoid increasing the size of the cylinder head, and increase the degree of freedom in the shape and arrangement of the individual discharge ports 13, 13'.
  • the gas passage 14 ′ is extended to each of the two intake ports 3, if molten resin is also flowed into the gas passage 14 ′ to be solidified, the same as the above-mentioned connecting resin portion 21.
  • the heat insulating effect between the intake ports 3 can be enhanced.
  • a portion corresponding to the gas passage 14' is provided in the core used for casting the intake port 3, the portion of the core corresponding to the gas passage 14' is the same as the resin passage portion 32 in the core 30 described above.
  • two of the portions corresponding to the intake port 3 are connected. Therefore, the shape of the core can be stabilized and the positional accuracy of the intake port 3 in the cylinder head can be improved.
  • FIG. 14 illustrates the case where one exhaust port 13 ′ is provided for the two intake ports 3, but one exhaust port 13 ′ may be provided for three or more intake ports 3. Good. Further, FIG. 14 illustrates the case where the exhaust port 13' is shared by the two intake ports 3 in the cylinder head 1'according to the second embodiment, but similarly to this, the cylinder according to the first embodiment In the head 1, the exhaust port may be shared by the two intake ports 3.
  • the arrangement of the resin inlets 15 and 15' and the resin outlet 16 described above is an example.
  • the resin inlets 15 and 15' and the resin outlet 16 do not have to be separated from each other in the intake direction D2, and are arranged so as to sandwich the above-mentioned center line O of the intake port 3 when viewed from the cylinder head lower surface 1b side. You don't have to. Further, for example, the resin inlets 15 and 15' may be located downstream of the resin outlet 16 in the intake direction D2.
  • the shapes of the resin passages 12 and 12' and the gas passage 14 are not limited to those described above.
  • the injection portion 12a of the resin passage 12 and the resin passage 12' may extend obliquely with respect to the vertical direction or may be curved.
  • the distribution portion 12b of the resin passage 12' may have a circular sectional shape, or may have a shape other than a circular shape or an oval shape, depending on the characteristics of the resin.
  • the size relationship among the length dimension L, the width dimension W, and the height dimension H of the distribution portion 12b is not limited to the above.
  • the molten resin injected from the inlets 11 and 11' should be at least the resin portion 20 arranged along the inner surface of the intake port 3, and the resin is not provided in the resin passages 12 and 12' and the discharge passages 14 and 14'. (The solidified molten resin) may not be arranged.
  • the cap 50 described above is not limited to the cylinder head 1'of the second embodiment, but can be similarly applied to, for example, the cylinder head 1 of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

エンジンの燃焼室に連通する複数の吸気ポート(3)が設けられたシリンダヘッドは、吸気ポート(3)の内面に沿って配置された樹脂部を有する。シリンダヘッドは、外部に向けて開口する注入口と、注入口から吸気ポート(3)まで延設されるとともに溶融樹脂が注入口から注入された際に樹脂部まで流れる樹脂通路(12)と、注入口と異なる位置で外部に向けて開口する排出口と、吸気ポート(3)から排出口まで延設されるとともに溶融樹脂が注入口から注入された際に吸気ポート(3)内のガスが外部に向けて流れるガス通路(14)とを備えている。

Description

シリンダヘッド
 本発明は、エンジンのシリンダヘッドに関する。
 一般的なエンジンのシリンダヘッドは、例えばアルミニウムやアルミニウム合金を用いた鋳造によって成型されており、熱伝導率が比較的高い。そのため、燃焼室へと繋がる吸気ポートは、燃焼室から伝わる熱によって加熱され、吸気ポートを流通する吸気の温度上昇を招く。吸気の温度が上昇すると吸入空気量が減少するとともにノッキングが発生しやすくなり、エンジン性能を低下させる可能性がある。このような課題に対し、例えば特許文献1には、吸気ポートの内面に樹脂製の断熱部材を配置して、吸気の温度上昇を抑制するようにしたエンジンの吸気通路構造が開示されている。
特開2018-3600号公報
 特許文献1に記載されている断熱部材は、樹脂の射出成型により形成されている。このように断熱材としての樹脂部を射出成型により形成する場合、樹脂部となる溶融樹脂を吸気ポートの内面に沿って流し、所定の形状になるように固化させる。しかしながら、溶融樹脂が吸気ポートの内面に沿って適切に広がらないと、樹脂部が所定の形状にならず、吸気ポートの内面に沿った樹脂部を適切に配置することができない。
 本件は、このような課題に鑑み案出されたもので、吸気ポートの内面に沿って配置される樹脂部を成型しやすくすることを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。
 (1)ここで開示するシリンダヘッドは、エンジンの燃焼室に連通する吸気ポートが設けられているとともに、前記吸気ポートの内面に沿って配置された樹脂部を有するシリンダヘッドであって、前記シリンダヘッドの外部に向けて開口する注入口と、前記注入口から前記吸気ポートまで延設され、溶融樹脂が前記注入口から注入された際に前記樹脂部まで流れる樹脂通路と、前記注入口と異なる位置で前記外部に向けて開口する排出口と、前記吸気ポートから前記排出口まで延設され、前記溶融樹脂が前記注入口から注入された際に前記吸気ポート内のガスが前記外部へ向けて流れるガス通路と、を備えている。
 (2)前記樹脂通路の前記吸気ポートの内面における開口と前記ガス通路の前記吸気ポートの内面における開口とは、吸気の流れ方向において互いに離隔するとともに、シリンダブロックと接合されるシリンダヘッド下面側から見て前記吸気ポートの前記流れ方向に沿う中心線を挟んで配置されていることが好ましい。
 (3)前記エンジンが多気筒エンジンであって、前記シリンダヘッドには複数の前記吸気ポートが並設されており、前記排出口が、互いに隣接する二つの前記吸気ポート間に形成され、前記ガス通路が、前記排出口の両側に位置する前記吸気ポートのそれぞれから前記排出口まで延設されていることが好ましい。
 (4)前記エンジンが多気筒エンジンであって、前記シリンダヘッドには複数の前記吸気ポートが並設されており、前記注入口が、互いに隣接する二つの前記吸気ポート間に形成され、前記樹脂通路が、前記注入口から前記注入口の両側に位置する前記吸気ポートのそれぞれまで延設されていることが好ましい。
 (5)前記樹脂通路の前記吸気ポートの内面における開口が、前記ガス通路の前記吸気ポートの内面における開口よりも吸気の流れ方向の上流側に位置することが好ましい。
 (6)前記排出口が、シリンダブロックと接合されるシリンダヘッド下面に開口することが好ましい。
 (7)前記注入口及び前記排出口を閉鎖する閉鎖部を備えることが好ましい。
 開示のシリンダヘッドによれば、ガス通路を設けることで溶融樹脂の流動性が向上するため、溶融樹脂が吸気ポートの内面に沿って広がりやすくなる。したがって、溶融樹脂が行き渡らずに樹脂部の一部に空間ができるようなことがなく、樹脂部を成型しやすくすることができる。
第一実施形態に係るシリンダヘッドの吸気側部分をエンジンの前側から見た模式的な正面図である。 図1のシリンダヘッドを吸気側から見た模式的な側面図(図1のA方向矢視図)である。 図1のシリンダヘッドの下面図である。 図1のシリンダヘッドの吸気ポート内を示す断面図(図1のB-B矢視断面図)である。 (a)は、図1のシリンダヘッドにおける注入口及び排出口の配置を示す断面図(図3のC-C矢視断面図)であり、(b)は図5(a)から樹脂部を省略した図である。 図4の吸気ポートの一つを拡大して樹脂部を省略した図である。 第二実施形態に係るシリンダヘッドの下面図である。 図7のシリンダヘッドの吸気ポート内を示す断面図(図4に対応する図)である。 (a)は、図7のシリンダヘッドにおける注入口及び排出口の配置を示す断面図(図7のD-D矢視断面図)であり、(b)は図9(a)から樹脂部及び閉鎖部を省略した図である。 図7のシリンダヘッドにおける樹脂通路の構成を示す断面図〔図9(b)のE-E矢視断面図〕である。 図8の吸気ポートの一つを拡大して樹脂部を省略した図である。 図7のF-F矢視断面図である。 (a)は、図7のシリンダヘッドの吸気ポートを成型するための中子の一例を示す平面図であり、(b)は図13(a)のG-G矢視断面図である。 変形例に係る排出口及びガス通路を示す断面図〔図9(b)に対応する図〕である。
 図面を参照して、実施形態としてのシリンダヘッドについて説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
[1.第一実施形態]
[1-1.シリンダヘッドの構造]
 図1は、第一実施形態に係るシリンダヘッド1の吸気側部分をエンジンの前側から見た模式的な正面図であり、図2はシリンダヘッド1の側面図(図1のA方向矢視図)である。シリンダヘッド1は、例えば車両に搭載されるエンジンを構成する部品である。本実施形態では、四つの気筒が一列に並設され、一つの気筒に二つの吸気弁と二つの排気弁とが設けられるエンジンのシリンダヘッド1を例示する。また、本実施形態のエンジンには、燃焼室2(図3参照)に燃料を噴射する筒内噴射弁(図示略)と、吸気ポート3に燃料を噴射するポート噴射弁(図示略)とが装備される。
 以下、シリンダヘッド1に対してシリンダブロック(図示略)が固定される側を「下側」とし、この逆側を「上側」としてシリンダヘッド1の上下方向を定める。シリンダヘッド1の上下方向は、エンジンが車両等に搭載されたときの上下方向(鉛直方向)と必ずしも一致していなくてよい。以下、単に「上下方向」という場合には、シリンダヘッド1の上下方向を意味する。なお、図3はシリンダヘッド1の下面図(シリンダヘッド1をその下面1b側から見た図)であり、図4は吸気ポート3の内部を示す断面図(図1のB-B矢視断面図)である。
 図2に示すように、シリンダヘッド1は、例えばアルミニウムやアルミニウム合金を用いた鋳造によって成型されたシリンダヘッド本体10と、吸気ポート3の内面に沿って配置された樹脂部20とを有する。シリンダヘッド本体10は、シリンダヘッド1の本体部を構成するものである。シリンダヘッド1のうち、樹脂部20以外の構成(上述した吸気ポート3や後述する取付孔5,6及びボス部8等)は、シリンダヘッド本体10に設けられる。なお、図2,図4及び後述する図5(a)ではわかりやすいように、樹脂部20にドットを付して示す。
 シリンダヘッド1には、吸気ポート3と、ポート噴射弁の取付孔5と、筒内噴射弁の取付孔6と、筒内噴射弁に接続されるデリバリーパイプが固定されるボス部8とが、気筒ごとに形成されている。吸気ポート3及び各取付孔5,6は、シリンダヘッド1の吸気側の壁部1aに開口している。また、ボス部8は、この壁部1aのうち、筒内噴射弁の取付孔6に隣接する位置に設けられている。なお、この壁部1aにおける吸気ポート3の開口3e(上流端)には、図示しない吸気マニホールドが接続される。図2~図4及び後述する図5(a),(b)では、四つの気筒のそれぞれに同様に設けられる取付孔5,6やボス部8等の符号を、一つの気筒にのみ付す。
 シリンダヘッド1の下面1b(以下、「シリンダヘッド下面1b」ともいう)は、上下方向と直交する平面状に加工されており、シリンダブロックとの接合面となる。図3に示すように、シリンダヘッド下面1bには、シリンダの上部を形成する燃焼室2が凹設されている。シリンダヘッド1は、シリンダヘッド下面1bとシリンダブロックの上面との間にガスケット(図示略)が介装された状態で、シリンダブロックと結合される。すなわち、シリンダヘッド下面1bとシリンダブロックとは接合される。
 本実施形態のシリンダヘッド1には、四つの吸気ポート3が一列に並設されている。以下、四つの吸気ポート3が並ぶ方向D1を「ポート並設方向D1」という。また、四つの吸気ポート3を互いに区別する場合は、四つの吸気ポート3をエンジンの前側から順に、第一吸気ポート3A,第二吸気ポート3B,第三吸気ポート3C,第四吸気ポート3Dという。ポート並設方向D1は、エンジンの前後方向及びシリンダ列方向(気筒が並ぶ方向)のそれぞれと一致するとともに、上下方向と直交する。
 図4に示すように、各吸気ポート3は、二つの吸気バルブ孔4を介して燃焼室2と連通する二股形状に形成されている。各吸気ポート3において、吸気は開口3eから吸気バルブ孔4へと向かう方向D2に流れる。以下、この吸気の流れ方向D2を「吸気方向D2」という。なお、図4には、吸気ポート3の吸気方向D2に沿う中心線Oを一点鎖線で示している。この中心線Oは、吸気ポート3のうち、二股に分岐する部位よりも上流側の部位において、吸気方向D2に直交する断面の中心点を結んだ線に相当する。
 図3に示すように、本実施形態のシリンダヘッド1は、互いに隣接する二つの吸気ポート3の外壁間に架設されたリブ部7と、各吸気ポート3の外壁から下方に突設された円柱状の台座部9とを備えている。リブ部7は、シリンダヘッド1を補強する機能をもつ。本実施形態では、第一吸気ポート3A及び第二吸気ポート3Bの外壁間と、第二吸気ポート3B及び第三吸気ポート3Cの外壁間と、第三吸気ポート3C及び第四吸気ポート3Dの外壁間とのそれぞれに、リブ部7が形成されている場合を例示する。各リブ部7は、筒内噴射弁の取付孔6及びボス部8よりも吸気ポート3の上流側(吸気マニホールド側)に配置される。
 台座部9は、吸気ポート3と上下方向において重なる位置に設けられる。本実施形態では、四つの台座部9が四つの吸気ポート3のそれぞれに対して同様に配置されている場合を例示する。具体的には、台座部9は、筒内噴射弁の取付孔6及びボス部8よりも吸気ポート3の上流側(吸気マニホールド側であって各吸気ポート3の開口3eの近傍)に位置するとともに、筒内噴射弁の取付孔6及びボス部8のそれぞれとポート並設方向D1において重ならないように設けられている。
 図4に示すように、樹脂部20は、シリンダヘッド本体10の熱が吸気へ伝わるのを抑制する断熱部材である。樹脂部20は、シリンダヘッド本体10の材質よりも熱伝導率の低い樹脂で形成されており、より好ましくは耐熱性の高い樹脂で形成される。樹脂部20は、吸気ポート3の全長のうち、吸気バルブ孔4側の部分(下流部)を除いた部分の内面に沿って配置されている。樹脂部20は、射出成型によって形成される。
 図5(a)は図3のC-C矢視断面図であり、図5(b)は図5(a)から樹脂部20を省略した図(すなわち、樹脂部20が配置される前のシリンダヘッド本体10の断面図)である。図5(b)に示すように、シリンダヘッド1は、樹脂部20を射出成型する際に、樹脂部20となる溶融樹脂を吸気ポート3の内面に供給するための構成として、注入口11,樹脂通路12,排出口13及びガス通路14を備えている。なお、図5(b)及び後述する図6中の各吸気ポート3内に示す二点鎖線は、樹脂部20の射出成型時に用いられる型の輪郭線である。
 注入口11は、溶融樹脂を射出する射出機40の先端が挿入されて溶融樹脂が供給(注入)される供給口(開口)である。一方、排出口13は、注入口11への溶融樹脂の注入時に吸気ポート3内のガス(空気)を追い出すためのガス抜き口(開口)である。注入口11及び排出口13はいずれも、シリンダヘッド1の外部に向けて開口している。本実施形態では、注入口11及び排出口13が各吸気ポート3に対して設けられている場合を例示する。すなわち、注入口11及び排出口13は、吸気ポート3ごとに専用化されている。また、注入口11及び排出口13の配置は、各吸気ポート3において同様である。
 本実施形態の注入口11は、台座部9に形成されている。注入口11は、上下方向において吸気ポート3と重なって(すなわち吸気ポート3の下方に)設けられている。また、注入口11は、吸気方向D2において筒内噴射弁の取付孔6及びボス部8よりも上流側に位置し、ポート並設方向D1において筒内噴射弁の取付孔6及びボス部8のそれぞれと重ならずに(ずれて)位置する。なお、四つの注入口11は、互いに等しい円形状である。
 樹脂通路12は、溶融樹脂が注入口11から注入された際に樹脂部20まで流れる空間である。本実施形態の樹脂通路12は、注入口11と同様に、各吸気ポート3に対して同様に配置されている。樹脂通路12は、各注入口11からこの注入口11が設けられた吸気ポート3の内面まで延設されている。言い換えると、樹脂通路12は、一つの注入口11と、この注入口11が設けられた一つの吸気ポート3とを連通している。本実施形態の樹脂通路12は、上下方向に延設されている。
 樹脂通路12は、注入口11を通じてシリンダヘッド1の外部に開口するとともに、吸気ポート3の内面にも開口している。以下、各吸気ポート3の内面における樹脂通路12の開口15を「樹脂入口15」という。樹脂入口15は、樹脂部20が射出成型される際に、吸気ポート3において溶融樹脂の入口となる部位である。本実施形態の樹脂入口15は、注入口11と略等しい円形状である。
 各排出口13は、注入口11と異なる位置に設けられる。図3に示すように、本実施形態では、各注入口11が筒内噴射弁の取付孔6及びボス部8よりも吸気マニホールド側に位置するのに対し、各排出口13が注入口11やボス部8よりも燃焼室2側に位置しており、シリンダヘッド下面1bに開口している。また、図5(b)に示すように、本実施形態の排出口13は上下方向において吸気ポート3と重なって(すなわち吸気ポート3の下方に)設けられている。なお、四つの排出口13は、互いに等しい円形状である。
 ガス通路14は、溶融樹脂が注入口11から注入された際に、吸気ポート3内から追い出されたガスがシリンダヘッド1の外部へ向けて流れる空間である。本実施形態のガス通路14は、排出口13と同様に、各吸気ポート3に対して同様に配置されている。ガス通路14は、各吸気ポート3の内面からこの吸気ポート3に対して設けられた排出口13まで延設されている。言い換えると、ガス通路14は、一つの吸気ポート3と、これに対して設けられた一つの排出口13とを連通している。ガス通路14は、吸気ポート3の内面に開口するとともに、排出口13を通じてシリンダヘッド1の外部にも開口している。
 本実施形態のガス通路14は、上下方向に延設されている。ガス通路14の横断面(上下方向と直交する断面)の形状は、円形状である。以下、各吸気ポート3の内面におけるガス通路14の開口16を「樹脂出口16」という。樹脂出口16は、樹脂部20が射出成型される際に、吸気ポート3においてガス及び溶融樹脂の出口となる部位である。
 図6は、図4中の第四吸気ポート3Dを拡大して樹脂部20を省略した図である。図6に例示するように、一つの吸気ポート3の内面における樹脂入口15と樹脂出口16とは、吸気方向D2において互いに離隔して(ずれて)位置する。本実施形態では、樹脂入口15が樹脂出口16よりも吸気方向D2の上流側に位置する。また、一つの吸気ポート3の内面における樹脂入口15と樹脂出口16とは、上下方向から見て(例えば下面視で)、上述した中心線Oを挟んで(すなわち中心線Oの両側に)配置されている。このように、本実施形態の樹脂入口15と樹脂出口16とは、吸気ポート3を上下方向から見た場合、ポート並設方向D1及び吸気方向D2のそれぞれにおいて互いに離隔して位置するとともに、両者の間には中心線Oが介在する。
[1-2.シリンダヘッドの製造方法]
 ここでは、シリンダヘッド本体10の吸気ポート3内に樹脂部20を配置することでシリンダヘッド1を製造する方法について説明する。上述したように、樹脂部20は、射出成型により形成される。具体的には、まずシリンダヘッド本体10の吸気ポート3内に型〔図5(b)及び図6中の二点鎖線参照〕を配置し、溶融樹脂を供給する空間を吸気ポート3の内面と型の外面とで区画する。次いで、射出機40の先端を注入口11に挿入し、射出機40から樹脂通路12に溶融樹脂を注入する。
 樹脂通路12に注入された溶融樹脂は、樹脂通路12を通じて吸気ポート3の各内面へと供給される。この溶融樹脂は、吸気ポート3の内面に沿って流れ、吸気ポート3の内面と型の外面との間の空間に広がっていく。これに伴い、吸気ポート3内のガスは、ガス通路14を通じてシリンダヘッド本体10の外部へ向けて追い出され、排出口13から排出される。
 吸気ポート3の内面と型の外面との間の空間が溶融樹脂で充填されたら、注入口11への溶融樹脂の注入を停止する。そして、溶融樹脂が固化すると、吸気ポート3内に樹脂部20が形成される。その後、吸気ポート3内に配置していた型を取り去れば、シリンダヘッド1が完成する。
[1-3.作用,効果]
 (1)上述したシリンダヘッド1では、注入口11と異なる位置に排出口13が形成され、吸気ポート3から排出口13までガス通路14が延設されるため、注入口11への溶融樹脂の注入時に、吸気ポート3内のガスをガス通路14及び排出口13を通じて外部へと排出することができる。このように、ガス通路14を設けることで溶融樹脂の流動性が向上するため、溶融樹脂が吸気ポート3の内面に沿って広がりやすくなる。これにより、吸気ポート3内に溶融樹脂をよりスムーズに供給することができる。したがって、溶融樹脂が行き渡らずに樹脂部20の一部に空間ができるようなことがなく、樹脂部20を成型しやすくすることができる。
 また、上述したシリンダヘッド1では、吸気ポート3内に樹脂部20が配置されるため、吸気ポート3の内面と吸気ポート3内を流れる吸気との間で樹脂部20が断熱材として機能する。これにより、吸気ポート3の内面から吸気に伝わる熱が低減されるため、吸気の温度上昇を抑制することができる。よって、吸入空気量の減少とノッキングの発生とを抑制でき、エンジン性能の向上を図ることができる。
 (2)また、上述したシリンダヘッド1では、樹脂入口15と樹脂出口16とが吸気方向D2において互いに離隔して位置するため、溶融樹脂が樹脂入口15から樹脂出口16に向かってか流れる過程で、溶融樹脂を吸気ポート3の内面に沿わせながら吸気方向D2に流すことができる。これにより、溶融樹脂を吸気方向D2に広がりやすくすることができる。さらに、樹脂入口15と樹脂出口16とが上下方向(例えばシリンダヘッド下面1b側)から見て吸気ポート3の吸気方向D2に沿う中心線Oを挟んで配置されているため、溶融樹脂が樹脂入口15から樹脂出口16に向かってか流れる過程で、溶融樹脂を吸気ポート3の内面に沿わせながらポート並設方向D1にも流すことができる。これにより、溶融樹脂をポート並設方向D1にも広がりやすくすることができる。したがって、樹脂部20を成型しやすくすることができる。
 (3)上述したシリンダヘッド1では、吸気ポート3の内面において、樹脂入口15が樹脂出口16よりも吸気方向D2の上流側に位置するため、注入口11を上流側(吸気マニホールド側)に寄せて配置しやすくできる。これにより、シリンダヘッド1に設けられる筒内噴射弁の取付孔6やボス部8といった構成に対し、注入口11を離隔させて配置しやすくなる。すなわち、注入口11を効率良く配置できることから、注入口11と他の構成との干渉を回避しやすくできる。
 (4)また、排出口13がシリンダヘッド下面1bに開口しているため、シリンダヘッド1の製造時に、シリンダヘッド下面1bを加工するのと同時に排出口13を加工することができる。これにより、排出口13の加工が容易になるため、製造コストの削減を図ることができる。
[2.第二実施形態]
[2-1.シリンダヘッドの構造]
 図7は、第二実施形態に係るシリンダヘッド1′の下面図である。本実施形態に係るシリンダヘッド1′は、上述した第一実施形態のシリンダヘッド1に対して、互いに隣接する二つの吸気ポート3で注入口11′及び樹脂通路12′を共用化した点が異なる。すなわち、シリンダヘッド1′では、二つの吸気ポート3に対し一つの注入口11′と一つの樹脂通路12′とが設けられる。
 以下、第一実施形態で説明した要素と同一又は対応する要素に同一の符号を付し、重複する説明を省略する。なお、図7及び後述する図8,図9(a),(b)では、四つの気筒のそれぞれに同様に設けられる取付孔5,6やボス部8等の符号を、一つの気筒にのみ付す。また、図8,図9(a)及び後述する図12ではわかりやすいように、樹脂部20にドットを付して示す。
 図7に示すように、シリンダヘッド1′(シリンダヘッド本体10′)は、上述した台座部9に代えて、リブ部7に形成された座面9′を備えている。座面9′は、互いに隣接する二つの吸気ポート3間において、シリンダヘッド下面1bと平行に設けられる。本実施形態では、第一吸気ポート3A及び第二吸気ポート3B間のリブ部7と、第三吸気ポート3C及び第四吸気ポート3D間のリブ部7とのそれぞれに対して一体的に設けられた座面9′を例示する。各座面9′は、シリンダヘッド下面1bと同じ側(下側)を向く平面状に形成される。各座面9′は、リブ部7と共に、筒内噴射弁の取付孔6及びボス部8よりも吸気ポート3の上流側(吸気マニホールド側)に配置される。
 図8に示すように、本実施形態では、四つの吸気ポート3内に配置される樹脂部20のうち、互いに隣接する二つの樹脂部20が、その相互間に設けられた樹脂部分21によって連結されている。以下、互いに隣接する二つの樹脂部20の間に設けられた樹脂部分21を「連結樹脂部21」という。連結樹脂部21は、本実施形態のシリンダヘッド本体10′に対して樹脂部20を成型する際に形成されるものである。本実施形態の連結樹脂部21は、第一吸気ポート3A及び第二吸気ポート3Bに配置される二つの樹脂部20の間と、第三吸気ポート3C及び第四吸気ポート3Dに配置される二つの樹脂部20の間とのそれぞれに設けられている。
 上述したように、本実施形態では注入口11′が二つの吸気ポート3で共用化されている。言い換えると、注入口11′は、二つの吸気ポート3に対して一つだけ設けられている。なお、排出口13は、第一実施形態のものと比べて、第一吸気ポート3A及び第三吸気ポート3Cに対する配置が異なるものの、各吸気ポート3に対して設けられている。すなわち、本実施形態においても、排出口13は吸気ポート3ごとに専用化されている。
 図7に示すように、本実施形態の注入口11′は、上述した座面9′が一体的に設けられた各リブ部7に形成されており、各座面9′に開口している。具体的には、注入口11′は、第一吸気ポート3A及び第二吸気ポート3Bの間と、第三吸気ポート3C及び第四吸気ポート3Dの間とのそれぞれに設けられている。なお、二つの注入口11′は、互いに等しい円形状である。
 図9(b)に示すように、本実施形態の樹脂通路12′は、注入口11′からその両側の二つの吸気ポート3のそれぞれまで延設されている。言い換えると、樹脂通路12′は、注入口11′とその両側の各吸気ポート3とを連通している。なお、本実施形態の樹脂入口15′は、注入口11′と比べて開口面積が大きく形成されている。図9(a)に示すように、樹脂通路12′内で固化した溶融樹脂は、上述した連結樹脂部21となる。
 本実施形態の樹脂通路12′は、注入口11′から座面9′に対して垂直に延びる注入部12aと、注入部12aに対し交差して二つの吸気ポート3まで延びる分配部12bとを有し、T字状に分岐した形状をなす。注入部12aは、射出機40の先端が接続されて溶融樹脂が供給される部位である。本実施形態の注入部12aは、注入口11′から上方へまっすぐに延びている。すなわち、注入部12aは、互いに隣接する二つの吸気ポート3間で上下方向に延設されている。なお、注入部12aの横断面(上下方向と直交する断面)の形状は、円形状である。
 分配部12bは、注入部12aを流れる溶融樹脂を二つの吸気ポート3へ分配する部位である。図10に示すように、分配部12bは、互いに隣接する二つの吸気ポート3間において吸気方向D2に沿って延び、両側の二つの吸気ポート3のそれぞれに連通する。本実施形態の分配部12bは、ポート並設方向D1と吸気方向D2とのそれぞれに沿ってまっすぐに延びている。
 また、本実施形態の分配部12bは、吸気方向D2及び上下方向に沿う断面の形状が、吸気方向D2に延びる長軸をもつ長円形状とされている。すなわち、分配部12bは、吸気方向D2の長さ寸法Lが、ポート並設方向D1及び吸気方向D2に対して直交する方向の高さ寸法Hよりも大きく設定されている(H<L)。また、本実施形態の分配部12bは、上述した長さ寸法Lが、ポート並設方向D1の幅寸法W(図11参照)よりも大きく設定されている(W<L)。
 図8に示すように、本実施形態では、各注入口11′が上下方向において吸気ポート3と重ならない(ポート並設方向D1にずれている)のに対し、各排出口13は吸気ポート3と重なって(吸気ポート3の下方に)設けられている。なお、図11に示すように、本実施形態においても、一つの吸気ポート3の内面における樹脂入口15′と樹脂出口16とは、吸気方向D2において互いに離隔して(ずれて)位置するとともに、上下方向から見て(例えば下面視で)上述した中心線Oを挟んで配置されている。
 図9(a)及び図12に示すように、本実施形態に係るシリンダヘッド1′は、注入口11′及び排出口13を閉鎖するキャップ(閉鎖部)50を備えている。本実施形態のキャップ50は、注入口11′及び排出口13を密閉する機能をもつ。注入口11′に装着されるキャップ50は、注入口11′に内嵌する形状とされ、樹脂部20がシリンダヘッド本体10′に形成された後、各注入口11′に嵌挿される。同様に、排出口13に装着されるキャップ50は、排出口13に内嵌する形状とされ、樹脂部20がシリンダヘッド本体10′に形成された後、各排出口13に嵌挿される。
[2-2.シリンダヘッドの製造方法]
 ここでは、まず、第二実施形態に係るシリンダヘッド本体10′における吸気ポート3,注入口11′及び樹脂通路12′の成型方法について説明する。上述したように、シリンダヘッド本体10′は鋳造により成型される。シリンダヘッド本体10′は、図示しない鋳型(例えば上型,下型)により外形状が成型されるとともに、吸気ポート3,注入口11′及び樹脂通路12′といった内部の空間が、例えば図13(a),(b)に示すような中子30を用いて成型される。
 中子30は、吸気ポート3となる位置に配置される吸気ポート部33と、注入口11′となる位置に配置される注入口部31と、樹脂通路12′となる位置に配置される樹脂通路部32とを有する。また、本実施形態の中子30は、各吸気ポート部33において吸気ポート3の開口3eとなる位置から延出した延出部34と、互いに隣接する延出部34同士を連結する連結部35とを更に有する。
 延出部34及び連結部35は、シリンダヘッド本体10′の吸気ポート3よりも上流側に配置される部位である。四つの吸気ポート部33は、延出部34及び連結部35を介して連結されることで、一体に(一つの中子30として)設けられている。以下、四つの吸気ポート部33を互いに区別する場合は、四つの吸気ポート部33をエンジンの前側から順に、第一吸気ポート部33A,第二吸気ポート部33B,第三吸気ポート部33C,第四吸気ポート部3Dという。これらの吸気ポート部33A~33Dは、それぞれ吸気ポート3A~3Dに対応するものである。
 上述したように、本実施形態の注入口11′及び樹脂通路12′は、第一吸気ポート3A及び第二吸気ポート3Bの間と、第三吸気ポート3C及び第四吸気ポート3Dの間とのそれぞれに配置される。このため、中子30では、注入口部31及び樹脂通路部32が、第一吸気ポート部33A及び第二吸気ポート部33Bの間と、第三吸気ポート部33C及び第四吸気ポート部33Dの間との二箇所に配置されている。
 図13(b)に示すように、樹脂通路部32は、注入部12aとなる位置に配置される注入中子部32aと、分配部12bとなる位置に配置される分配中子部32bとを有する。上述したように、本実施形態では、第一吸気ポート3A及び第二吸気ポート3Bを連通する分配部12bと、第三吸気ポート3C及び第四吸気ポート3Dを連通する分配部12bとの二つが設けられる。このため、中子30では、第一吸気ポート部33A及び第二吸気ポート部33Bが分配中子部32bで連結され、第三吸気ポート部33C及び第四吸気ポート部34Dも分配中子部32bで連結されている。
 このような中子30を鋳型の内部に配置した状態で、シリンダヘッド本体10′となる材料(例えばアルミニウムやアルミニウム合金)を溶かした溶湯を湯口から流し込み、固化させることで、シリンダヘッド本体10′が成型される。なお、このシリンダヘッド本体10′の吸気ポート3内に樹脂部20を配置する過程では、注入口11′から樹脂通路12′の注入部12aに注入された溶融樹脂が、分配部12bを通じて二つの吸気ポート3の各内面へと供給される。そして、この溶融樹脂が固化すると、吸気ポート3内に樹脂部20が形成されるとともに、樹脂通路12′内に連結樹脂部21が形成される。また、本実施形態では、このように樹脂部20が形成された後、図12に示すように、キャップ50が注入口11′及び排出口13の各々に嵌挿されることで、注入口11′及び排出口13が閉鎖される。
[2-3.作用,効果]
 本実施形態に係るシリンダヘッド1′では、互いに隣接する二つの吸気ポート3間に注入口11′が設けられ、この注入口11′から両側の吸気ポート3のそれぞれまで樹脂通路12′が延設される。このため、樹脂部20を成型する際、一つの注入口11′に溶融樹脂を注入すれば、樹脂通路12′を通じて二つの吸気ポート3の各内面に溶融樹脂を供給することができる。すなわち、二つの吸気ポート3において、溶融樹脂の注入口11′を共用化することができる。よって、吸気ポート3ごとに注入口11を設ける第一実施形態の構成と比較して、注入口11′の個数を削減することができる。つまり、シリンダヘッド1′の狭いスペースに効率良く注入口11′を配置できることから、シリンダヘッド1′の大型化を回避できる。また、個々の注入口11′の形状及び配置の自由度を高められる。
 また、樹脂通路12′が二つの吸気ポート3のそれぞれまで延設されるため、樹脂部20の成型が完了した状態では、二つの吸気ポート3間に樹脂通路12′内で固化した樹脂(連結樹脂部21)が配置される。これにより、吸気ポート3間における断熱効果を高めることができる。したがって、吸気の温度上昇を抑制することができる。このため、吸入空気量の減少とノッキングの発生とを抑制でき、エンジン性能の向上を図ることができる。
 なお、樹脂通路12′が設けられることで、吸気ポート3及び樹脂通路12′の鋳造で用いる中子30では、吸気ポート部33の二つが樹脂通路部32で互いに連結される。すなわち、中子30では、互いに隣接する二つの吸気ポート部33を、延出部34及び連結部35だけでなく、樹脂通路部32によっても連結することができる。これにより、吸気ポート部33同士の位置関係が保持されやすくなるため、中子30の形状を安定化することができる。したがって、シリンダヘッド1′における吸気ポート3の位置精度を向上させることができる。
 本実施形態のシリンダヘッド1′には、注入口11′及び排出口13を閉鎖するキャップ50が設けられるため、シリンダヘッド本体10′と樹脂部20との密閉度合いを高めることができる。樹脂部20は溶融樹脂の固化によって形成されることから、シリンダヘッド本体10′の壁面と樹脂部20との間には元々隙間が生じにくいものの、上述したキャップ50が設けられることで、たとえ熱引き等により両者間に隙間ができたとしても、注入口11′及び排出口13からの吸気漏れを抑えることができる。また、キャップ50がシリンダヘッド本体10′や樹脂部20とは別体(別部品)で形成されるため、キャップ50を注入口11′及び排出口13に装着するだけで、注入口11′及び排出口13を容易に閉鎖することができる。
 注入口11′がシリンダヘッド下面1bと平行な座面9′に開口しており、樹脂通路12′がこの注入口11′から座面9′に対して垂直に延びる注入部12aを有するため、溶融樹脂を注入する際に、シリンダヘッド下面1bを水平に配置すれば、座面9′も水平に配置できるとともに注入部12′を鉛直方向に延ばすことができる。これにより、樹脂部20を成型する際に、シリンダヘッド本体10の姿勢を保持しやすくできるとともに、溶融樹脂の注入方向を鉛直方向とすることができる。よって、溶融樹脂を注入しやすくすることができる。
 樹脂通路12′が、互いに隣接する二つの吸気ポート3間で吸気方向D2に沿って延びるとともにこれらの吸気ポート3のそれぞれに連通する分配部12bを有するため、樹脂部20の成型が完了した状態では、吸気方向D2に沿って延びる樹脂(連結樹脂部21)を二つの吸気ポート3間に配置できる。これにより、吸気ポート3間の断熱効果を吸気方向D2にわたって高めることができる。また、上述した中子30では、二つの吸気ポート部33が分配中子部32bで連結されるため、二つの吸気ポート部33を吸気方向D2に沿う広範囲にわたって連結することができる。これにより、吸気ポート部33同士の位置関係がより保持されやすくなるため、中子30の形状を更に安定化することができ、シリンダヘッド1′における吸気ポート3の位置精度を更に向上させることができる。
 注入口11′が、互いに隣接する二つの吸気ポート3の外壁間に架設されたリブ部7に形成されているため、リブ部7で吸気ポート3の間を補強できるとともに、リブ部7を注入口11′の台座部として活用することができる。これにより、注入口11′に専用の台座部を設ける場合と比べてスペース効率が高められるため、シリンダヘッド1′の大型化を抑えながら、吸気ポート3の周辺の強度及び剛性を高めることができる。
 樹脂入口15′の開口面積が注入口11′の開口面積と比べて大きいため、注入口11′に注入された溶融樹脂を樹脂入口15′から吸気ポート3内へよりスムーズに供給することができる。したがって、樹脂部20をより成型しやすくすることができる。なお、上述した実施形態と同様の構成からは同様の効果が得られる。
[3.変形例]
 上述したシリンダヘッド1,1′の構成は一例であって、上述したものに限られない。例えば、直列四気筒エンジンのシリンダヘッドでなくてもよいし、筒内噴射弁及びポート噴射弁の両方を備えたエンジンのシリンダヘッドでなくてもよい。なお、吸気ポート3の形状は、上述したような二股形状に限定されない。また、リブ部7やボス部8が省略されてもよい。
 上述した中子30の構成は一例である。中子30は、上述した構成に加えて、排出口13及びガス通路14となる位置に配置される部分を更に有していてもよい。また、延出部34及び連結部35が省略されてもよい。なお、注入口11,11′と樹脂通路12,12′と排出口13とガス通路14とは、中子を用いて形成されるものに限らず、例えば、穴あけ加工により形成されてもよい。
 注入口11,11′の位置及び個数は、上述したものに限定されない。例えば上述した第二実施形態に係るシリンダヘッド1′において、第二吸気ポート3B及び第三吸気ポート3Cの間に注入口11′が設けられてもよい。また、上述した第二実施形態では、二つの吸気ポート3に対して一つの注入口11′が設けられる場合を例示したが、三つ以上の吸気ポート3に対して一つの注入口11′が設けられてもよい。例えば、第二吸気ポート3B及び第三吸気ポート3C間に注入口11′を設け、第一吸気ポート3A及び第二吸気ポート3B間と、第三吸気ポート3C及び第四吸気ポート3Dとをそれぞれ上述した分配部12aと同様の構成で連結すれば、一つの注入口11′から四つの吸気ポート3のそれぞれに溶融樹脂を供給できる。この場合、シリンダヘッド1′において注入口11′の個数を一つに削減することができる。
 排出口13の位置及び個数も、上述したものに限定されない。注入口11′を複数の吸気ポート3で共用化するのと同様に、排出口13を複数の吸気ポート3で共用化してもよい。例えば図14に示すように、上述した第二実施形態に係るシリンダヘッド1′において、第二吸気ポート3B及び第三吸気ポート3Cのそれぞれに対して設けられた排出口13を一つの排出口13′に統合してもよい。より具体的には、互いに隣接する第二吸気ポート3B及び第三吸気ポート3C間に排出口13′を形成し、第二吸気ポート3B及び第三吸気ポート3C(すなわち、排出口13′の両側の吸気ポート3)のそれぞれから排出口13′までガス通路14′を延設してもよい。
 この場合、溶融樹脂の注入時に、二つの吸気ポート3内のガスを一つの排出口13′からまとめて排出することができる。すなわち、二つの吸気ポート3において、ガスの排出口13′を共用化することができる。よって、吸気ポート3ごとに排出口13を設ける構成と比較して、排出口13,13′の個数を削減することができる。これにより、シリンダヘッドの狭いスペースをより効率良く利用でき、シリンダヘッドの大型化を回避できるとともに、個々の排出口13,13′の形状及び配置の自由度を高められる。
 また、この場合、ガス通路14′が二つの吸気ポート3のそれぞれまで延設されるため、ガス通路14′内にも溶融樹脂を流して固化させれば、上述した連結樹脂部21と同様に、吸気ポート3間における断熱効果を高めることができる。さらに、吸気ポート3の鋳造で用いる中子にガス通路14′に対応する部分を設ければ、この中子においてガス通路14′に対応する部分が、上述した中子30における樹脂通路部32と同様に、吸気ポート3に対応する部分の二つを連結する。このため、中子の形状を安定化できるとともに、シリンダヘッドにおける吸気ポート3の位置精度を向上させることができる。
 なお、図14には二つの吸気ポート3に対して一つの排出口13′が設けられる場合を例示したが、三つ以上の吸気ポート3に対して一つの排出口13′が設けられてもよい。また、図14には第二実施形態に係るシリンダヘッド1′において排出口13′が二つの吸気ポート3で共用化される場合を例示したが、これと同様に、第一実施形態に係るシリンダヘッド1において排出口が二つの吸気ポート3で共用化されてもよい。
 上述した樹脂入口15,15′及び樹脂出口16の配置は一例である。樹脂入口15,15′と樹脂出口16とは、吸気方向D2において互いに離隔していなくてもよいし、シリンダヘッド下面1b側から見て吸気ポート3の上述した中心線Oを挟んで配置されていなくてもよい。また、例えば、樹脂入口15,15′が樹脂出口16よりも吸気方向D2の下流側に位置してもよい。
 また、樹脂通路12,12′及びガス通路14の形状も、上述したものに限定されない。例えば、樹脂通路12及び樹脂通路12′の注入部12aは、上下方向に対して傾斜して延びていてもよいし、湾曲していてもよい。また、樹脂通路12′の分配部12bは、樹脂の特性によるため、断面形状が円形であってもよく、また、円形や長円形状以外であってもよい。なお、分配部12bの長さ寸法L,幅寸法W及び高さ寸法Hの大小関係も、上述したものに限定されない。
 注入口11,11′から注入された溶融樹脂は、少なくとも吸気ポート3の内面に沿って配置される樹脂部20となればよく、樹脂通路12,12′及び排出通路14,14′には樹脂(溶融樹脂が固化したもの)が配置されなくてもよい。また、上述したキャップ50は、第二実施形態のシリンダヘッド1′に限らず、例えば第一実施形態のシリンダヘッド1にも同様に適用可能である。
 1,1′ シリンダヘッド
 1b 下面(シリンダヘッド下面)
 2 燃焼室
 3 吸気ポート
 7 リブ部
 10,10′ シリンダヘッド本体
 11,11′ 注入口
 12,12′ 樹脂通路
 13,13′ 排出口
 14,14′ ガス通路
 15,15′ 樹脂入口(樹脂通路の開口)
 16 樹脂出口(ガス通路の開口)
 20 樹脂部
 50 キャップ(閉鎖部)
 O 中心線
 

Claims (7)

  1.  エンジンの燃焼室に連通する吸気ポートが設けられているとともに、前記吸気ポートの内面に沿って配置された樹脂部を有するシリンダヘッドであって、
     前記シリンダヘッドの外部に向けて開口する注入口と、
     前記注入口から前記吸気ポートまで延設され、溶融樹脂が前記注入口から注入された際に前記樹脂部まで流れる樹脂通路と、
     前記注入口と異なる位置で前記外部に向けて開口する排出口と、
     前記吸気ポートから前記排出口まで延設され、前記溶融樹脂が前記注入口から注入された際に前記吸気ポート内のガスが前記外部へ向けて流れるガス通路と、を備えている
    ことを特徴とする、シリンダヘッド。
  2.  前記樹脂通路の前記吸気ポートの内面における開口と前記ガス通路の前記吸気ポートの内面における開口とは、吸気の流れ方向において互いに離隔するとともに、シリンダブロックと接合されるシリンダヘッド下面側から見て前記吸気ポートの前記流れ方向に沿う中心線を挟んで配置されている
    ことを特徴とする、請求項1記載のシリンダヘッド。
  3.  前記エンジンが多気筒エンジンであって、前記シリンダヘッドには複数の前記吸気ポートが並設されており、
     前記排出口が、互いに隣接する二つの前記吸気ポート間に形成され、
     前記ガス通路が、前記排出口の両側に位置する前記吸気ポートのそれぞれから前記排出口まで延設されている
    ことを特徴とする、請求項1又は2記載のシリンダヘッド。
  4.  前記エンジンが多気筒エンジンであって、前記シリンダヘッドには複数の前記吸気ポートが並設されており、
     前記注入口が、互いに隣接する二つの前記吸気ポート間に形成され、
     前記樹脂通路が、前記注入口から前記注入口の両側に位置する前記吸気ポートのそれぞれまで延設されている
    ことを特徴とする、請求項1~3のいずれか1項に記載のシリンダヘッド。
  5.  前記樹脂通路の前記吸気ポートの内面における開口が、前記ガス通路の前記吸気ポートの内面における開口よりも吸気の流れ方向の上流側に位置する
    ことを特徴とする、請求項1~4のいずれか1項に記載のシリンダヘッド。
  6.  前記排出口が、シリンダブロックと接合されるシリンダヘッド下面に開口する
    ことを特徴とする、請求項1~5のいずれか1項に記載のシリンダヘッド。
  7.  前記注入口及び前記排出口を閉鎖する閉鎖部を備える
    ことを特徴とする、請求項1~6のいずれか1項に記載のシリンダヘッド。
PCT/JP2019/050943 2019-01-07 2019-12-25 シリンダヘッド WO2020145156A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565701A JP7136233B2 (ja) 2019-01-07 2019-12-25 シリンダヘッド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019000832 2019-01-07
JP2019-000832 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145156A1 true WO2020145156A1 (ja) 2020-07-16

Family

ID=71520702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050943 WO2020145156A1 (ja) 2019-01-07 2019-12-25 シリンダヘッド

Country Status (2)

Country Link
JP (1) JP7136233B2 (ja)
WO (1) WO2020145156A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269043U (ja) * 1988-11-14 1990-05-25
US5842342A (en) * 1997-02-21 1998-12-01 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine intake/exhaust port liners
JPH11182367A (ja) * 1997-12-15 1999-07-06 Toyota Motor Corp 樹脂製インテークマニホールド
JP2011094515A (ja) * 2009-10-28 2011-05-12 Toyoda Gosei Co Ltd シリンダヘッドブロック
JP2014008638A (ja) * 2012-06-28 2014-01-20 Aisan Ind Co Ltd デリバリパイプの成形方法
WO2015093256A1 (ja) * 2013-12-19 2015-06-25 東洋製罐グループホールディングス株式会社 プラスチックの成形方法
JP2016205267A (ja) * 2015-04-24 2016-12-08 三菱自動車工業株式会社 シリンダヘッドのポート部の製造方法
JP2018003601A (ja) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 エンジンの吸気通路構造
JP2018003602A (ja) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 エンジンの吸気通路構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269043U (ja) * 1988-11-14 1990-05-25
US5842342A (en) * 1997-02-21 1998-12-01 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine intake/exhaust port liners
JPH11182367A (ja) * 1997-12-15 1999-07-06 Toyota Motor Corp 樹脂製インテークマニホールド
JP2011094515A (ja) * 2009-10-28 2011-05-12 Toyoda Gosei Co Ltd シリンダヘッドブロック
JP2014008638A (ja) * 2012-06-28 2014-01-20 Aisan Ind Co Ltd デリバリパイプの成形方法
WO2015093256A1 (ja) * 2013-12-19 2015-06-25 東洋製罐グループホールディングス株式会社 プラスチックの成形方法
JP2016205267A (ja) * 2015-04-24 2016-12-08 三菱自動車工業株式会社 シリンダヘッドのポート部の製造方法
JP2018003601A (ja) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 エンジンの吸気通路構造
JP2018003602A (ja) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 エンジンの吸気通路構造

Also Published As

Publication number Publication date
JP7136233B2 (ja) 2022-09-13
JPWO2020145156A1 (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
CN101400462B (zh) 用于制造气缸盖的方法以及气缸盖
CN103775230A (zh) 气缸盖的水套结构
JP5711716B2 (ja) シリンダヘッドのウォータージャケット構造
US7069885B2 (en) Cylinder head
JP6384492B2 (ja) 多気筒エンジンの冷却構造
KR20110063107A (ko) 중력 주조용 금형
JP6471731B2 (ja) 内燃機関
WO2020145156A1 (ja) シリンダヘッド
JP2000186615A (ja) 直噴火花点火式内燃機関
WO2020145155A1 (ja) シリンダヘッド
JP7173166B2 (ja) シリンダヘッド
JP3622445B2 (ja) 直噴式内燃機関のシリンダヘッド製造方法
JP7040645B2 (ja) シリンダヘッド
JP7028343B2 (ja) シリンダヘッドの製造方法
WO2020145158A1 (ja) シリンダヘッド
JP6461199B2 (ja) 内燃機関
JP7028344B2 (ja) シリンダヘッドの製造方法
JP6112053B2 (ja) エンジンのシリンダヘッド構造
JP7491656B2 (ja) 吸気マニホールド
JPH10169504A (ja) 内燃機関のシリンダヘッド
JP2019078254A (ja) シリンダヘッド
JPH10280954A (ja) シリンダヘッドの冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908473

Country of ref document: EP

Kind code of ref document: A1