WO2020134673A1 - 一种包含工艺角检测电路的芯片及检测方法 - Google Patents

一种包含工艺角检测电路的芯片及检测方法 Download PDF

Info

Publication number
WO2020134673A1
WO2020134673A1 PCT/CN2019/118200 CN2019118200W WO2020134673A1 WO 2020134673 A1 WO2020134673 A1 WO 2020134673A1 CN 2019118200 W CN2019118200 W CN 2019118200W WO 2020134673 A1 WO2020134673 A1 WO 2020134673A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
digital
detection
signal
Prior art date
Application number
PCT/CN2019/118200
Other languages
English (en)
French (fr)
Inventor
王旭
杨帆
倪娜
马玉林
甄玉龙
陈涛
王悦
张亮
任居胜
Original Assignee
北京无线电计量测试研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京无线电计量测试研究所 filed Critical 北京无线电计量测试研究所
Publication of WO2020134673A1 publication Critical patent/WO2020134673A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]

Definitions

  • the invention relates to semiconductor chip detection technology, in particular to a chip and detection method including a process angle detection circuit.
  • the process angle detection circuit plays a vital role in optimizing the performance of integrated circuits and improving the chip yield, but the current process angle detection is usually designed for a specific chip, which is not universal, which requires a more efficient and universal process angle Detection circuit.
  • the present invention provides a chip and a detection method including a process angle detection circuit.
  • An embodiment of the present application provides a chip including a process angle detection circuit, including a working circuit and a detection circuit, the working circuit and the detection circuit are made simultaneously in the same process, and the detection circuit includes an oscillator and a constant Pressure source.
  • the detection circuit includes an analog circuit and a digital circuit; the analog circuit includes a constant voltage source; and the digital circuit includes an oscillator.
  • the analog circuit further includes an analog detection decoder and an analog detection output multiplexer, wherein;
  • the analog detection decoder is used for receiving and decoding the received detection circuit configuration signal, and outputting the drive signal corresponding to the decoded nominal voltage value to the constant voltage source, and decoding the decoded Select the control signal output to the analog detection output complex selector;
  • the constant voltage source is used to output a voltage signal to the analog detection output multiplexer according to the driving signal
  • the analog detection output multiplexer is used to gate the output voltage signal according to the selection control signal of the received analog circuit to obtain the output voltage value.
  • the oscillator is a digital ring oscillator
  • the digital circuit includes 10 digital ring oscillators.
  • the digital circuit further includes a digital detection decoder, a digital multiplexer selector and a digital output counter; wherein:
  • the digital detection decoder is configured to decode the received detection circuit configuration signal and configure the nominal frequency value of the output signal of the oscillator;
  • the oscillator generates a frequency signal according to the configuration information and outputs it to the digital multiplexer
  • the digital multiplexer is used to gate the output signal of the oscillator and output it to the digital output counter;
  • the digital output counter is used to detect the output signal of the gated oscillator and output the measured frequency value.
  • the detection circuit further includes a power regulator for providing a bias current to the oscillator.
  • the invention also provides a process angle detection method based on the above chip, which includes the following steps:
  • the detection circuit includes an analog circuit and a digital circuit, the analog circuit includes a constant voltage source, and the digital circuit includes an oscillator;
  • the step of measuring the difference between the output voltage value of the constant voltage source and the nominal voltage specifically includes:
  • analog detection output multiplexer After receiving and decoding the received detection circuit configuration signal, output the drive signal corresponding to the decoded nominal voltage value to the constant voltage source, and output the decoded selection control signal to the analog detection output complex Selector; analog detection output multiplexer strobes the input voltage signal according to the received analog circuit selection control signal to output the voltage signal;
  • the difference between the two is obtained according to the output voltage value of the output voltage signal and the nominal voltage value configured by the selection control signal.
  • the step of measuring the difference between the output frequency of the oscillator and the nominal frequency specifically includes:
  • the oscillator generates a frequency signal according to the nominal frequency value of the configuration information and outputs it to the digital multiplexer.
  • the digital multiplexer selects the output signal of the oscillator and outputs it to the digital output counter to detect the gated oscillator. Output signal and output measured frequency value;
  • the above-mentioned at least one technical solution adopted in the embodiments of the present application can achieve the following beneficial effects:
  • the circuit has strong versatility. In the design of large-scale integrated circuits, the designer can place them at different positions inside the chip due to the large chip area
  • the process angle detection circuit can detect the process angle changes at different positions of the chip, so that the performance of the chip is more optimized; because the process angle detection circuit and method measure the voltage value or frequency value of the actual working circuit, it can be passed
  • the voltage or frequency value of the actual working circuit is calculated as the percentage deviation from the nominal value, instead of only detecting the relative size; due to the short detection period of this detection circuit, high-speed automatic detection can be achieved, reducing the time cost of chip factory testing.
  • 1 is a schematic diagram of various parts of a chip including a process angle detection circuit
  • FIG. 2 is a schematic diagram of a detection circuit in a chip including a process angle detection circuit
  • FIG. 3 is a schematic diagram of an embodiment of an analog circuit of a process angle detection circuit
  • FIG. 4 is a schematic diagram of an embodiment of a digital circuit of a process angle detection circuit
  • FIG. 6 is a schematic diagram of an application example of the process angle detection circuit of the present invention.
  • the invention adopts the working circuit and the detection circuit to be made in the same process at the same time.
  • the present invention provides a chip and a detection method including a process angle detection circuit.
  • the circuit can contain analog circuits and/or digital circuits.
  • the analog circuit mainly uses a constant voltage source for detection. The difference between the nominal value and the actual measured value of the constant voltage source is measured during the test to characterize the process performance of the analog device.
  • Digital In the circuit the oscillator is mainly used for detection, and the difference between the nominal frequency value and the actual measured value of the oscillator is measured during the detection to characterize the process angle performance of the digital device.
  • the analog circuit can be implemented using multiple constant voltage sources or the constant voltage source can output multiple constant voltage voltage values, and provide a strobe enable signal, which is controlled by the selector to control which voltage signal is strobe
  • multiple oscillators can be used in digital circuits. Each oscillator can send out a frequency signal of a set frequency and provide a strobe enable signal.
  • the selector can be used to control the frequency signal of which oscillator to be strobe.
  • the gated frequency signal can be measured by the cycle count value of the counter to obtain the actual output frequency signal. Further, by calculating the difference between the nominal value and the actual measurement value, it is possible to accurately evaluate the performance of the process angle, and it is further possible to calculate the percentage of the difference for relative performance evaluation.
  • FIG. 1 shows a schematic diagram of various parts of a chip including a process angle detection circuit, including a working circuit 2 and a detection circuit 3.
  • the "working circuit” described in this application is a circuit made according to a known process to realize the chip design function.
  • the working circuit 2 and the detection circuit 3 are made simultaneously in the same process; the working circuit 2 and the detection circuit 3 are part of the chip 1 and are made in the same process as other parts of the chip 1.
  • the detection circuit 3 is a general circuit of the present invention, and a detection circuit can be placed in any working circuit that needs to be detected.
  • One working circuit can place multiple detection circuits; or a plurality of working circuits can place one detection circuit.
  • a constant voltage source can be used for the detection of the analog circuit in the working circuit, or an oscillator can be used for the detection of the digital circuit in the working circuit; when the analog circuit is detected, the output voltage value and nominal output of the constant voltage source are used.
  • the difference of the voltage value is used to calculate the percentage of the voltage deviation of the analog circuit in the working circuit; when the digital circuit is detected, the difference between the measured frequency value output by the oscillator and the nominal frequency value is used to calculate the frequency deviation percentage of the digital circuit in the working circuit.
  • the detection circuit 3 includes an analog circuit 4 and/or a digital circuit 5, the analog circuit 4 includes a constant voltage source 41, and the digital circuit 5 includes an oscillator 51.
  • the detection circuit may include only the analog circuit part or the digital circuit part, or may include both the analog circuit part and the digital circuit part; the constant voltage source belongs to the analog circuit part of the detection circuit, and the oscillator belongs to the digital circuit part of the detection circuit.
  • FIG. 3 shows a schematic diagram of an embodiment of an analog circuit of a process angle detection circuit.
  • the analog circuit 4 further includes an analog detection decoder 42 and an analog detection output multiplexer 43. .
  • the analog detection decoder 42 is used to receive and decode the received detection circuit configuration signal, output the decoded output voltage value to the constant voltage source 41, and output the decoded selection control signal To the analog detection output multiplexer 43; the working circuit sends out the detection circuit configuration signal.
  • the detection circuit configuration signal includes the analog circuit selection control signal and the analog circuit enable signal; since the configuration signal is a digital signal command, the analog detection decoder will be used.
  • the detection circuit configuration signal is converted into a driving signal of a constant voltage source, and the driving signal controls the constant voltage source according to the nominal voltage value, and the control signal is selected through the analog circuit to control the constant voltage source to output the corresponding measured voltage value.
  • the constant voltage source 41 is used to output a voltage signal to the analog detection output multiplexer 43 according to the nominal voltage value; the constant voltage source 41 receives the decoded selection control signal and drive signal of the analog detection decoder 42, Generate the output voltage value.
  • the analog detection output multiplexer selector 43 is used to gate and output the voltage signal generated by the constant voltage source according to the selection control signal; since the voltage value output by the constant voltage source 41 is configurable, the analog detection output is multiplexed
  • the selector 43 selects which signal to output.
  • the constant voltage source can generate voltage values such as 3V, 3.3V, and 5V, and one of them is selected through the analog detection output multiplexer 403.
  • FIG. 4 shows a schematic diagram of an embodiment of a digital circuit of a process angle detection circuit.
  • the digital circuit 5 further includes a digital detection decoder 52, a digital multiplex selector 53, and a digital output counter 54.
  • the oscillator 51 may be a digital ring oscillator, and may include 10 digital ring oscillators for outputting measured frequency values.
  • the digital detection decoder 52 is used to decode the received detection circuit configuration signal and configure the output signal of the oscillator according to the nominal frequency value; the working circuit sends out the detection circuit configuration signal and the digital detection decoder receives A detection circuit configuration signal, which includes a digital circuit strobe signal and a digital circuit enable signal; since the configuration signal is a digital signal command, a digital detection decoder is used to convert the detection circuit configuration signal into the drive of the oscillator At the same time, according to the digital circuit selection control signal, the oscillator is controlled to output the corresponding measured frequency value.
  • the oscillator 51 generates a frequency signal according to the configuration information and outputs it to the digital multiplexer; what the oscillator outputs is a clock signal, that is, a square wave of the measured frequency.
  • the digital multiplexer 53 is used to gate the output signal of the oscillator and output it to the digital output counter 54; since the frequency value output by the oscillator is configurable, the digital The detection output multiplexer selects which frequency value to output. For example, the frequency that the oscillator can generate is 10 MHz, 8 MHz, 20 MHz, etc., and one of them is selected through the digital detection output multiplexer to output the required frequency signal. 10 digital oscillators can provide different frequency signals and which frequency signal is finally gated.
  • the digital output counter is used to detect the output signal of the gated oscillator and output the measured frequency value; the measured frequency value output by the digital output counter is the actual speed value of the working circuit detected by the detection circuit, used for judgment and nominal The percentage deviation of the frequency value.
  • the counter value output by the digital part directly reflects the process angle corresponding to the chip.
  • the digital part output is a specific digital frequency, so you can get a specific percentage of the process angle deviation from the typical value, instead of only giving a stereotype judgment of whether it is large or small relative to the typical value.
  • the typical value is set to 20MHz, and the actual output is 19.89 MHz, which can both quantify the deviation and specifically evaluate the difference of each chip, rather than generally say that this chip is fast or slow.
  • FIG. 5 shows the method for detecting the process angle of the present invention, including the following steps:
  • Step 100 Simultaneously make a working circuit and a detection circuit in the same process.
  • the detection circuit includes an analog circuit and/or a digital circuit, the analog circuit includes a constant voltage source, and the digital circuit includes an oscillator;
  • Step 200 Determine the frequency deviation percentage of the working circuit according to the difference between the measured frequency value of the oscillator and the nominal frequency; and, or determine according to the difference between the output voltage value of the constant voltage source and the nominal voltage value. Describe the voltage deviation percentage of the working circuit.
  • the steps of measuring the difference between the output voltage value of the constant voltage source and the nominal voltage value specifically include:
  • analog detection output multiplexer selects the input voltage signal according to the selection control signal of the received analog circuit, and outputs the voltage signal
  • the difference between the two is obtained according to the output voltage value of the output voltage signal and the nominal voltage value configured by the selection control signal.
  • the steps of measuring the difference between the measured frequency value of the output frequency of the oscillator and the nominal frequency specifically include:
  • the oscillator generates a frequency signal according to the nominal frequency value of the configuration information and outputs it to the digital multiplexer.
  • the digital multiplexer selects the output signal of the oscillator and outputs it to the digital output counter to detect the strobe.
  • the oscillator output signal and output the measured frequency value;
  • the fully-automatic general-purpose process angle detection circuit of the present invention can comprehensively detect analog and digital circuits.
  • the following is a detailed description with the transistor characteristics focused on as an example.
  • the matching degree of the resistance, and the delay of the common digital gate circuit, the reciprocal of the delay can reflect the speed of the digital circuit.
  • FIG. 6 a schematic diagram of an application example of the process angle detection circuit is given.
  • the structure of the process angle detection circuit is mainly divided into analog and digital parts.
  • the analog circuit part specifically includes an analog detection decoder (PCM_DEC), an analog detection core device (PCM_CORE, such as a constant voltage source), and an analog detection output multiplexer (PCM_TEST_MUX).
  • PCM_DEC analog detection decoder
  • PCM_CORE analog detection core device
  • PCM_TEST_MUX analog detection output multiplexer
  • the digital circuit part specifically includes a digital detection decoder (DRO_DEG), ten digital ring oscillators (10 ⁇ RINGCLKs), a digital multiplexer (DRO_MUX), a digital output counter (DRO_CNT), and a high-precision power supply for the digital module alone Voltage regulator (REGULATOR_DRO).
  • DRO_DEG digital detection decoder
  • ten digital ring oscillators (10 ⁇ RINGCLKs) ten digital ring oscillators (10 ⁇ RINGCLKs)
  • DRO_MUX digital multiplexer
  • DRO_CNT digital output counter
  • REGULATOR_DRO high-precision power supply for the digital module alone Voltage regulator
  • ANALOG analog circuit design module
  • DIGITAL digital circuit integrated module
  • PCM_DEC The analog part contains analog detection decoder
  • PCM0/1_EN analog part detection circuit enable signal
  • PCM_CORE Analog detection core device, namely constant voltage source
  • PCM_TEST_MUX Analog detection output multiplexer
  • PCM0/1_ATEST_AVSS/AVDD analog detection circuit output
  • DRO_DEC The digital part contains the digital detection decoder
  • DRO0/1_EN digital detection circuit enable signal
  • DRO0/1_SEL[3:0] digital detection circuit selection control signal
  • 10xRINGCLKs ten digital ring oscillators
  • DRO_MUX digital multiplexer
  • DRO_CNT digital output counter
  • DRO_CNT_DONE the signal indicating that the digital counter has completed one job
  • DRO_FREQ_CNT_CLK The digital counter outputs the matched clock signal
  • REGULATOR_DRO voltage regulator of high precision power supply
  • PCM_VREF voltage regulator input reference voltage
  • the power supply is powered on, the digital power supply DVDD, the digital power supply completion signal ISO_ENB_AON, and the analog power supply AVDD815 must be powered on.
  • the enable signal DRO0/1_EN changes from 0 to 1, and the detection circuit starts to work
  • the above chip technology angle detection method can realize high-speed automatic detection, and reduces the time cost of the chip factory test.
  • the detection circuit contains digital circuits and analog circuits, and has a strong versatility.
  • the designer can place the detection circuit at different positions inside the chip, so that the process angle change at different positions of the chip can be detected, so that the performance of the chip is more optimized.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware, but in many cases the former is a better implementation the way.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or part that contributes to the existing technology.
  • the computer software product is stored in a storage medium and includes several instructions to make a A terminal device (which may be a mobile phone, a personal computer, a server, or a network device, etc.) executes the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measuring Fluid Pressure (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种包含工艺角检测电路(3)的芯片及检测方法,芯片包括工作电路(2)和检测电路(3),工作电路(2)和检测电路(3)在同一工艺过程中同时制成,检测电路(3)包括振荡器(51)和或恒压源(41);检测方法通过测量振荡器(51)输出频率与标称频率的差值和或恒压源(41)输出电压值与标称电压值的差值,根据实测差值确定工作电路的频率偏差百分比和或电压偏差百分比。检测方法具有很强的通用性,检测精确、检测周期短,可以实现高速自动检测,降低了芯片出厂测试的时间成本。

Description

一种包含工艺角检测电路的芯片及检测方法
本申请要求于2018年12月26日提交中国国家知识产权局、申请号为201811598175.1、发明名称为“一种包含工艺角检测电路的芯片及检测方法”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体芯片检测技术,特别是一种包含工艺角检测电路的芯片及检测方法。
背景技术
随着芯片集成电路技术的高速发展,对速度、精度等更高指标的设计需求不断提高,设计者需要更加全面了解芯片中各种器件的特性及其变化。同时,在实际芯片的流片生产过程中,存在各不相同的工艺角特性。全面了解生产芯片的工艺角(corner),对于芯片内部优化以及功能的实现,都有至关重要的意义。
例如,在速度确定的数字芯片设计中,对于FF(fast-fast)工艺角的芯片,由于芯片内部的晶体管速度偏快,很容易满足整体的速度需求,因此可以通过降低电源电压的方式,在满足速度要求的同时降低芯片的功耗。再例如,对于SS(slow-slow)工艺角的芯片,由于芯片内部的晶体管速度偏慢,在高速需求的设计中,设计者往往很难满足整体的高速要求。此时,可以通过增加电源电压的方式,加快晶体管的工作速度,从而更加从容的使得SS工艺角芯片满足高速需求,进而提高了芯片的良率。
工艺角检测电路对优化集成电路性能以及提高芯片良率,具有至关重要的作用,但目前工艺角检测通常是针对特定芯片设计,不具普遍性,这就需要一种更高效普适的工艺角检测电路。
发明内容
为了解决芯片内部工艺良率不易检测的问题,本发明提出一种包含工艺角检测电路的芯片及检测方法。
本申请实施例提出一种包含工艺角检测电路的芯片,包括工作电路和检测电路,所述工作电路和所述检测电路在同一工艺过程中同时制成,所述检测电路包括振荡器和或恒压源。
优选的,检测电路包括模拟电路和或数字电路;所述模拟电路包括恒压源;所述数字电路包括振荡器。
优选的,所述模拟电路进一步还包括模拟检测译码器和模拟检测输出复路选择器,其中;
所述模拟检测译码器,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;
所述恒压源,用于按照所述驱动信号,输出电压信号给所述模拟检测输出复路选择器;
所述模拟检测输出复路选择器,用于根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号,得到输出电压值。
优选的,所述振荡器是数字环形振荡器,所述数字电路包括10条数字环形振荡器。
优选的,所述数字电路进一步还包括数字检测译码器、数字复路选择器和数字输出计数器;其中:
所述数字检测译码器,用于对所接收的检测电路配置信号解码后并配置所述振荡器的输出信号的标称频率值;
所述振荡器,根据配置信息生成频率信号输出至数字复路选择器
所述数字复路选择器,用于对所述振荡器的输出信号进行选通后输出至所述数字输出计数器;
所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值。
优选的,所述检测电路还包括电源稳压器,用于对所述振荡器提供偏置电流。
本发明还提供了一种基于上述芯片的工艺角检测方法,包括以下步骤:
在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
根据所述振荡器实测频率值与标称频率的差值确定所述工作电路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
优选地,所述测量恒压源输出电压值与标称电压的差值的步骤具体包括:
对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号;
根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
优选地,所述测量振荡器输出频率与标称频率的差值的步骤具体包括:
振荡器根据配置信息的标称频率值生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
根据所述标称频率值和选通输出的实测频率值获得两者差值。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:本电路具有很强的通用性,在大规模集成电路设计中,由于芯片面积很大,设计者可以在芯片内部的不同位置放置本工艺角检测电路,从而可以检测芯片不同位 置的工艺角变化,使得芯片的性能得到更加的优化;由于本工艺角检测电路和方法测到的是实际工作电路的电压值或频率值,可以通过实际工作电路的电压值或频率值计算与标称值的偏差百分比,而不是仅能检测相对大小;由于本检测电路的检测周期短,可以实现高速自动检测,降低了芯片出厂测试的时间成本。
附图说明
图1为一种包含工艺角检测电路的芯片各部分示意图;
图2为一种包含工艺角检测电路的芯片中检测电路的示意图;
图3为工艺角检测电路的模拟电路一种实施例示意图;
图4为工艺角检测电路的数字电路的一种实施例示意图;
图5为本发明的实现工艺角检测方法流程图;
图6为本发明工艺角检测电路的一个应用实例示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明采用工作电路与检测电路于同一工艺过程中同时制成,针对现有技术中工艺角检测通用性不足的问题,本发明提供包含工艺角检测电路的芯片及检测方法,在该工艺角检测电路中可以包含模拟电路和或数字电路,模拟电路中主要采用恒压源进行检测,检测时测量恒压源的标称值与实际测量值之间的差值来表征模拟器件工艺角性能,数字电路中主要采用振荡器进行检测,检测时测量振荡器的标称频率值和实际测量值的差值来表征数字器件的工艺角性能。
进一步地,为了拓展通用性,模拟电路可以采用多个恒压源或者恒压源可以输出多个恒压电压值来实现,并提供选通使能信号,通过选择器来控制选通哪个电压信号来实现测量;数字电路中可以采用多路振荡器,每个振荡器可以发出设定频率的频率信号,并提供选通是能信号,通过选择器来控制选通哪路振荡器的频率信号来实现测量,同时对选通的频率信号可以通过计数器的周期计数值来测量得到实际输出的频率信号。进一步地,通过计算标称值与实际测量值之间的差值可以实现精确评估工艺角性能,进一步可以计算差值所占百分比来进行相对性能评估。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1给出了一种包含工艺角检测电路的芯片各部分示意图,包括工作电路2和检测电路3。本申请所述“工作电路”,是按可知工艺过程制作的实现芯片设计功能的电路。工作电路2和检测电路3在同一工艺过程中同时制成;工作电路2和检测电路3作为芯片1的一部分,与芯片1的其他部分在同一工艺过程中制成。检测电路3是本发明的通用电路,可在任何需要检测的工作电路中放置检测电路,一个工作电路可放置多个检测电路;或者多个工作电路放置一个检测电路。
图2给出了一种包含工艺角检测电路的芯片中检测电路的示意图,包括振荡器51和或恒压源41,检测电路3可包含振荡器51或者恒压源41中的一种,也可同时包括振荡器51和恒压源41。检测电路中可采用恒压源用于工作电路中模拟电路的检测,也可以采用振荡器用于工作电路中数字电路的检测;模拟电路检测时,采用恒压源输出的输出电压值与标称电压值的差值来计算工作电路中模拟电路的电压偏差百分比;数字电路检测时,采用振荡器输出的实测频率值与标称频率值的差值来计算工作电路中数字电路的频率偏差百分比。
例如,检测电路3包括模拟电路4和或数字电路5,所述模拟电路4包括恒压源41,所述数字电路5包括振荡器51。
检测电路可以只包含模拟电路部分或者数字电路部分,也可以既包括模拟电路部分又包括数字电路部分;恒压源属于检测电路的模拟电路部分,振荡器属于检测电路的数字电路部分。
图3给出了工艺角检测电路的模拟电路一种实施例示意图,模拟电路4进一步还包括模拟检测译码器42和模拟检测输出复路选择器43。。
模拟检测译码器42,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的输出电压值输出至所述恒压源41,并将译码得到的选择控制信号输出至模拟检测输出复路选择器43;工作电路发出检测电路配置信号,检测电路配置信号包括模拟电路选择控制信号和模拟电路使能信号;由于配置信号是数字信号命令,采用模拟检测译码器将检测电路配置信号进行转换成恒压源的驱动信号,该驱动信号按标称电压值控制恒压源,并通过模拟电路选择控制信号控制恒压源输出相应的实测电压值。
所述恒压源41,用于按照标称电压值输出电压信号给模拟检测输出复路选择器43;恒压源41接收模拟检测译码器42的译码后的选择控制信号和驱动信号,产生输出电压值。
所述模拟检测输出复路选择器43,用于根据选择控制信号对恒压源产生的电压信号进行选通输出;由于恒压源41输出的电压值是可配置的,通过模拟检测输出复路选择器43选择输出哪个信号,例如恒压源能够生成3V、3.3V、5V等电压值,通过模拟检测输出复路选择器403选择其中一个。
图4给出了工艺角检测电路的数字电路的一种实施例示意图,数字电路5进一步还包括数字检测译码器52、数字复路选择器53和数字输出计数器54。其中所述振荡器51可以是数字环形振荡器,可以包括10条数字环形振荡器,用于输出实测频率值。
所述数字检测译码器52,用于对所接收的检测电路配置信号解码后并按照标称频率值配置所述振荡器的输出信号;工作电路发出检测电路配置信号, 数字检测译码器接收检测电路配置信号,检测电路配置信号包含数字电路选通信号和数字电路使能信号;由于配置信号是数字信号命令,采用数字检测译码器将检测电路配置信号进行转换成所述振荡器的驱动信号,同时根据数字电路选择控制信号控制所述振荡器输出相应的实测频率值。
所述振荡器51,根据配置信息生成频率信号输出至所述数字复路选择器;所述振荡器输出的是时钟信号,也就是实测频率的方波。
所述数字复路选择器53,用于对所述振荡器的输出信号进行选通后输出至所述数字输出计数器54;由于所述振荡器输出的频率值是可配置的,通过所述数字检测输出复路选择器选择输出哪个频率值,例如,所述振荡器可以生成的频率为10MHZ、8MHZ、20MHZ等频率值,通过数字检测输出复路选择器选择其中一个,输出需要的频率信号。可以由10条数字振荡器提供不同的频率信号和最终哪一个频率信号被选通。
所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值;数字输出计数器输出的实测频率值即为检测电路检测到的工作电路的实际速度值,用于判断与标称频率值的偏差百分比。
数字部分输出的计数器数值,就直接反映出该芯片对应的工艺角。数字部分输出的是具体数字频率,所以可以得到工艺角偏离典型值的具体百分比,而不是只给出相对于典型值是大或者小的定型判断,例如典型值设定为20MHz,实际输出为19.89MHz,这样既可以量化偏差,具体评价每个芯片差异,而不是笼统的称这块芯片是快了或者慢了。
图5给出了本发明的实现工艺角检测方法,包括以下步骤:
步骤100、在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
步骤200、根据所述振荡器实测频率值与标称频率的差值确定所述工作电 路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
其中,测量恒压源输出电压值与标称电压值的差值的步骤具体包括:
200A、对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通,输出电压信号;
根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
其中,测量振荡器输出频率实测频率值与标称频率的差值的步骤具体包括:
200B、振荡器根据配置信息的标称频率值,生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
根据所述标称频率值和选通输出的实测频率值获得两者差值。
本发明的全自动通用型工艺角检测电路,可以全面的检测模拟和数字电路,下面以重点关注的晶体管特性为例进行详细的说明。例如可以在检测中设置32项模拟电路中的器件指标,以及20项数字电路中的器件指标,所述工艺中各种类型晶体管的阈值电压、各种类型电阻的阻值、电流镜的匹配度、电阻的匹配度,以及常见数字门电路的延时,该延时的倒数即可反应数字电路的速度。
如图6所示,给出了工艺角检测电路的一个应用实例示意图。工艺角检测电路的结构主要分为模拟和数字两部分。
模拟电路部分又具体包含模拟检测译码器(PCM_DEC),模拟检测核心器件(PCM_CORE,例如恒压源),模拟检测输出复路选择器(PCM_TEST_MUX)。
数字电路部分又具体包含数字检测译码器(DRO_DEG),十条数字环形振荡器(10×RINGCLKs),数字复路选择器(DRO_MUX),数字输出计数器(DRO_CNT)以及单独为数字模块提供高精度电源的稳压器(REGULATOR_DRO)。数字部分输出的计数器数值,就直接反映出该芯片对应的工艺角。值得指出的是,数字部分输出的是具体数字频率,所以可以得到工艺角偏离典型值的具体百分比,而不是相对大小。这对于精确优化芯片性能至关重要。
图6中的各个输入输出信号含义列举如下:
ANALOG:模拟电路设计模块;
DIGITAL:数字电路综合模块;
PCM_DEC:模拟部分包含模拟检测译码器;
PCM0/1_EN:模拟部分检测电路使能信号;
PCM0/1_CTRL[4:0]:模拟部分检测电路选择控制信号;
PCM_CORE:模拟检测核心器件,即恒压源;
PCM_IPP50U_P1[1:0]和PCM_IPP50U_P2[1:0]:50uA输入偏置电流;
PCM_TEST_MUX:模拟检测输出复路选择器;
PCM0/1_ATEST_AVSS/AVDD:模拟检测电路输出;
DRO_DEC:数字部分包含数字检测译码器;
DRO0/1_EN:数字检测电路使能信号;
DRO0/1_SEL[3:0]:数字检测电路选择控制信号;
10xRINGCLKs:十条数字环形振荡器;
DRO_MUX:数字复路选择器;
DRO_CNT:数字输出计数器;
DRO_FREQ_CNT[9:0]:数字计数器输出;
DRO_CNT_DONE:数字计数器完成一次工作的指示信号;
DRO_FREQ_CNT_CLK:数字计数器输出匹配的时钟信号;
REGULATOR_DRO:高精度电源的稳压器;
PCM_VREF:稳压器输入参考电压;
DRO_ICC10U_P[1:0]:稳压器输入偏置电流;
以数字电路检测为例,具体检测流程如下:
首先,电源上电,数字电源DVDD、数字电源上电完成信号ISO_ENB_AON、模拟电源AVDD815都要上电完成。
第二,所有电压电流偏置输入信号(PCM_VREF和DRO_ICC10U_P[1:0])都要上电完成;
第三,使能信号DRO0/1_EN从0变为1,检测电路开始工作;
第四,当数字电路检测到DRO0/1_CLK_RDY变为1时,DRO_CNT_START由0变为1,计数模块开始工作;
第五,经过时间T2,触发DRO_CNT_DONE脉冲信号,计数完成;
最后,通过读出10比特DRO_FREQ_CNT[9:0]的结果,从而得到对应检测的数字电路的频率值,即对应速度值。
上述芯片工艺角检测方法可以实现高速自动检测,降低了芯片出厂测试的时间成本。此外,检测电路包含数字电路和模拟电路,具备很强的通用性。在大规模集成电路设计中,由于芯片面积很大,设计者可以在芯片内部的不同位置放置本检测电路,从而可以检测芯片不同位置的工艺角变化,使得芯片的性能得到更加的优化。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设 备中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端设备(可以是手机,个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (9)

  1. 一种包含工艺角检测电路的芯片,其特征在于,包括工作电路和检测电路,所述工作电路和所述检测电路在同一工艺过程中同时制成,所述检测电路包括振荡器和或恒压源。
  2. 如权利要求1所述的包含工艺角检测电路的芯片,其特征在于,检测电路包括模拟电路和或数字电路;所述模拟电路包括恒压源;所述数字电路包括振荡器。
  3. 如权利要求2所述的包含工艺角检测电路的芯片,其特征在于,所述模拟电路进一步还包括模拟检测译码器和模拟检测输出复路选择器,其中;
    所述模拟检测译码器,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;
    所述恒压源,用于按照所述驱动信号,输出电压信号给所述模拟检测输出复路选择器;
    所述模拟检测输出复路选择器,用于根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号,得到输出电压值。
  4. 如权利要求2所述的包含工艺角检测电路的芯片,其特征在于,所述振荡器是数字环形振荡器,所述数字电路包括10条数字环形振荡器。
  5. 如权利要求2或4所述的包含工艺角检测电路的芯片,其特征在于,所述数字电路进一步还包括数字检测译码器、数字复路选择器和数字输出计数器;其中:
    所述数字检测译码器,用于对所接收的检测电路配置信号解码后并配置所述振荡器的输出信号的标称频率值;
    所述振荡器,根据配置信息生成频率信号输出至数字复路选择器
    所述数字复路选择器,用于对所述振荡器的输出信号进行选通后输出至所 述数字输出计数器;
    所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值。
  6. 如权利要求2或4所述的包含工艺角检测电路的芯片,其特征在于,所述检测电路还包括电源稳压器,用于对所述振荡器提供偏置电流。
  7. 基于权利要求1~6任意一项所述芯片的工艺角检测方法,其特征在于,包括:
    在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
    根据所述振荡器实测频率值与标称频率的差值确定所述工作电路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
  8. 如权利要求7所述方法,其特征在于,所述测量恒压源输出电压值与标称电压的差值的步骤具体包括:
    对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号;
    根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
  9. 如权利要求7所述方法,其特征在于,所述测量振荡器输出频率与标称频率的差值的步骤具体包括:
    振荡器根据配置信息的标称频率值生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
    根据所述标称频率值和选通输出的实测频率值获得两者差值。
PCT/CN2019/118200 2018-12-26 2019-11-13 一种包含工艺角检测电路的芯片及检测方法 WO2020134673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811598175.1 2018-12-26
CN201811598175.1A CN109581196B (zh) 2018-12-26 2018-12-26 一种包含工艺角检测电路的芯片及检测方法

Publications (1)

Publication Number Publication Date
WO2020134673A1 true WO2020134673A1 (zh) 2020-07-02

Family

ID=65931875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118200 WO2020134673A1 (zh) 2018-12-26 2019-11-13 一种包含工艺角检测电路的芯片及检测方法

Country Status (2)

Country Link
CN (1) CN109581196B (zh)
WO (1) WO2020134673A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581196B (zh) * 2018-12-26 2021-06-01 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法
CN110707014B (zh) * 2019-09-11 2021-09-24 芯创智(北京)微电子有限公司 一种测试芯片工艺角偏移的方法
CN113295987B (zh) * 2021-07-05 2022-07-08 中国科学院上海微系统与信息技术研究所 超导单磁通量子电路的测试系统
CN113552473B (zh) * 2021-09-22 2021-12-28 北京紫光青藤微系统有限公司 用于芯片测试的系统和待测芯片装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005407A (en) * 1995-10-23 1999-12-21 Opmax Inc. Oscillation-based test method for testing an at least partially analog circuit
CN101430849A (zh) * 2007-11-09 2009-05-13 奇景光电股份有限公司 显示器驱动电路的测试装置
CN101556757A (zh) * 2008-04-10 2009-10-14 奇景光电股份有限公司 显示器驱动电路的测试电路
CN102914711A (zh) * 2012-10-12 2013-02-06 中国电子科技集团公司第二十研究所 在石英晶振测试系统中同时测量不同类型被测件的方法
CN105790736A (zh) * 2015-12-29 2016-07-20 北京自动测试技术研究所 一种用于频率信号发生芯片的修调装置
CN105808843A (zh) * 2016-03-08 2016-07-27 浪潮集团有限公司 一种混合信号验证平台的构造方法
CN109581196A (zh) * 2018-12-26 2019-04-05 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039454A (ja) * 2002-07-03 2004-02-05 Yamaichi Electronics Co Ltd Icソケット
WO2006095791A1 (en) * 2005-03-07 2006-09-14 Semiconductor Energy Laboratory Co., Ltd. Element substrate, inspecting method, and manufacturing method of semiconductor device
CN101285848B (zh) * 2008-05-28 2010-06-02 炬力集成电路设计有限公司 一种校正和获取参考电压的方法和装置
CN102081686B (zh) * 2010-12-21 2016-04-27 上海集成电路研发中心有限公司 Mos晶体管工艺角spice模型的建模方法
CN102655410B (zh) * 2011-03-02 2014-10-29 复旦大学 压控振荡器、用于检测工艺波动的测试系统及其测试方法
CN102368680B (zh) * 2011-09-30 2014-10-08 烽火通信科技股份有限公司 电流反馈运算放大器电路
CN102759702B (zh) * 2012-06-29 2014-06-18 福州瑞芯微电子有限公司 用于检测芯片内工作电路的电压与频率关系的电路及方法
CN103076554B (zh) * 2012-12-29 2015-02-25 江苏东大集成电路系统工程技术有限公司 一种锁相环片上抖动测量电路
CN103368068B (zh) * 2013-07-22 2015-05-27 烽火通信科技股份有限公司 用于集成激光驱动器的调制电流工艺角数字补偿电路
CN104101827B (zh) * 2014-06-25 2016-08-31 东南大学 一种基于自定时振荡环的工艺角检测电路
CN106407486A (zh) * 2015-07-27 2017-02-15 深圳市中兴微电子技术有限公司 工艺偏差检测电路及方法
CN105956322B (zh) * 2016-05-20 2019-06-04 硅谷数模半导体(北京)有限公司 数字电路的工艺角检测装置和方法
CN106601643B (zh) * 2016-11-15 2019-04-05 珠海格力电器股份有限公司 芯片的mos工艺角的测量方法、装置和系统
CN107807323B (zh) * 2017-09-27 2020-07-10 中国电子产品可靠性与环境试验研究所 电路板健康状况监测方法,检测装置以及检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005407A (en) * 1995-10-23 1999-12-21 Opmax Inc. Oscillation-based test method for testing an at least partially analog circuit
CN101430849A (zh) * 2007-11-09 2009-05-13 奇景光电股份有限公司 显示器驱动电路的测试装置
CN101556757A (zh) * 2008-04-10 2009-10-14 奇景光电股份有限公司 显示器驱动电路的测试电路
CN102914711A (zh) * 2012-10-12 2013-02-06 中国电子科技集团公司第二十研究所 在石英晶振测试系统中同时测量不同类型被测件的方法
CN105790736A (zh) * 2015-12-29 2016-07-20 北京自动测试技术研究所 一种用于频率信号发生芯片的修调装置
CN105808843A (zh) * 2016-03-08 2016-07-27 浪潮集团有限公司 一种混合信号验证平台的构造方法
CN109581196A (zh) * 2018-12-26 2019-04-05 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法

Also Published As

Publication number Publication date
CN109581196A (zh) 2019-04-05
CN109581196B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020134673A1 (zh) 一种包含工艺角检测电路的芯片及检测方法
US10302502B2 (en) Determining rate of change in temperature measurements
JP5734518B2 (ja) マルチクロックリアルタイムカウンタ
US8629694B1 (en) Method and apparatus of voltage scaling techniques
US9294263B2 (en) Methods and systems of synchronizer selection
US11460814B2 (en) Time-to-digital converters with low area and low power consumption
US7563023B2 (en) Digital temperature detecting system and method
US9317639B1 (en) System for reducing power consumption of integrated circuit
US8008967B2 (en) Power supply voltage adjusting device
KR20170137091A (ko) 출력 인에이블 신호를 생성하는 제어 회로 및 관련 시스템 및 방법
CN107463470B (zh) 通道冲突检测方法及系统
US20200177171A1 (en) Delay line circuit with calibration function and calibration method thereof
US8952705B2 (en) System and method for examining asymetric operations
US11243251B2 (en) Addressable test system with address register
US20110158005A1 (en) Data Access Apparatus and Associated Method for Accessing Data Using Internally Generated Clocks
CN113098482A (zh) 一种游标型环形时间数字转换器的延时差测量方法
CN108233934A (zh) 一种用于逐次逼近式模数转换器的时钟调节电路
CN110687846B (zh) 蜂鸣器驱动和电池电压adc检测共用一个io口的电路
CN103675383B (zh) 一种量测波形的电路
CN104035018A (zh) 电压自适应调整电路和芯片
KR20100104245A (ko) 지연시간 측정 회로 및 이를 구비하는 터치센서
CN101261875A (zh) 存储器控制器
CN113985256A (zh) 一种fpga寿命试验方法
CN1937196A (zh) 判断集成电路处理速度的测试系统与测试方法
US11215953B1 (en) Time to digital converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19905904

Country of ref document: EP

Kind code of ref document: A1