CN109581196A - 一种包含工艺角检测电路的芯片及检测方法 - Google Patents

一种包含工艺角检测电路的芯片及检测方法 Download PDF

Info

Publication number
CN109581196A
CN109581196A CN201811598175.1A CN201811598175A CN109581196A CN 109581196 A CN109581196 A CN 109581196A CN 201811598175 A CN201811598175 A CN 201811598175A CN 109581196 A CN109581196 A CN 109581196A
Authority
CN
China
Prior art keywords
circuit
signal
detection
oscillator
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811598175.1A
Other languages
English (en)
Other versions
CN109581196B (zh
Inventor
王旭
杨帆
倪娜
马玉林
甄玉龙
陈涛
王悦
张亮
任居胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Radio Metrology and Measurement
Original Assignee
Beijing Institute of Radio Metrology and Measurement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Radio Metrology and Measurement filed Critical Beijing Institute of Radio Metrology and Measurement
Priority to CN201811598175.1A priority Critical patent/CN109581196B/zh
Publication of CN109581196A publication Critical patent/CN109581196A/zh
Priority to PCT/CN2019/118200 priority patent/WO2020134673A1/zh
Application granted granted Critical
Publication of CN109581196B publication Critical patent/CN109581196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]

Abstract

本申请公开了一种包含工艺角检测电路的芯片及检测方法,该芯片包括工作电路和检测电路,所述工作电路和所述检测电路在同一工艺过程中同时制成,所述检测电路包括振荡器和或恒压源;该检测方法通过测量振荡器输出频率与标称频率的差值和或恒压源输出电压值与标称电压值的差值,根据实测差值确定工作电路的频率偏差百分比和或电压偏差百分比。本发明具有很强的通用性,检测精确、检测周期短,可以实现高速自动检测,降低了芯片出厂测试的时间成本。

Description

一种包含工艺角检测电路的芯片及检测方法
技术领域
本发明涉及半导体芯片检测技术,特别是一种包含工艺角检测电路的芯片及检测方法。
背景技术
随着芯片集成电路技术的高速发展,对速度、精度等更高指标的设计需求不断提高,设计者需要更加全面了解芯片中各种器件的特性及其变化。同时,在实际芯片的流片生产过程中,存在各不相同的工艺角特性。全面了解生产芯片的工艺角(corner),对于芯片内部优化以及功能的实现,都有至关重要的意义。
例如,在速度确定的数字芯片设计中,对于FF(fast-fast)工艺角的芯片,由于芯片内部的晶体管速度偏快,很容易满足整体的速度需求,因此可以通过降低电源电压的方式,在满足速度要求的同时降低芯片的功耗。再例如,对于SS(slow-slow)工艺角的芯片,由于芯片内部的晶体管速度偏慢,在高速需求的设计中,设计者往往很难满足整体的高速要求。此时,可以通过增加电源电压的方式,加快晶体管的工作速度,从而更加从容的使得SS工艺角芯片满足高速需求,进而提高了芯片的良率。
工艺角检测电路对优化集成电路性能以及提高芯片良率,具有至关重要的作用,但目前工艺角检测通常是针对特定芯片设计,不具普遍性,这就需要一种更高效普适的工艺角检测电路。
发明内容
为了解决芯片内部工艺良率不易检测的问题,本发明提出一种包含工艺角检测电路的芯片及检测方法。
本申请实施例提出一种包含工艺角检测电路的芯片,包括工作电路和检测电路,所述工作电路和所述检测电路在同一工艺过程中同时制成,所述检测电路包括振荡器和或恒压源。
优选的,检测电路包括模拟电路和或数字电路;所述模拟电路包括恒压源;所述数字电路包括振荡器。
优选的,所述模拟电路进一步还包括模拟检测译码器和模拟检测输出复路选择器,其中;
所述模拟检测译码器,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;
所述恒压源,用于按照所述驱动信号,输出电压信号给所述模拟检测输出复路选择器;
所述模拟检测输出复路选择器,用于根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号,得到输出电压值。
优选的,所述振荡器是数字环形振荡器,所述数字电路包括10条数字环形振荡器。
优选的,所述数字电路进一步还包括数字检测译码器、数字复路选择器和数字输出计数器;其中:
所述数字检测译码器,用于对所接收的检测电路配置信号解码后并配置所述振荡器的输出信号的标称频率值;
所述振荡器,根据配置信息生成频率信号输出至数字复路选择器
所述数字复路选择器,用于对所述振荡器的输出信号进行选通后输出至所述数字输出计数器;
所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值。
优选的,所述检测电路还包括电源稳压器,用于对所述振荡器提供偏置电流。
本发明还提供了一种基于上述芯片的工艺角检测方法,包括以下步骤:
在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
根据所述振荡器实测频率值与标称频率的差值确定所述工作电路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
优选地,所述测量恒压源输出电压值与标称电压的差值的步骤具体包括:
对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号;
根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
优选地,所述测量振荡器输出频率与标称频率的差值的步骤具体包括:
振荡器根据配置信息的标称频率值生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
根据所述标称频率值和选通输出的实测频率值获得两者差值。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:本电路具有很强的通用性,在大规模集成电路设计中,由于芯片面积很大,设计者可以在芯片内部的不同位置放置本工艺角检测电路,从而可以检测芯片不同位置的工艺角变化,使得芯片的性能得到更加的优化;由于本工艺角检测电路和方法测到的是实际工作电路的电压值或频率值,可以通过实际工作电路的电压值或频率值计算与标称值的偏差百分比,而不是仅能检测相对大小;由于本检测电路的检测周期短,可以实现高速自动检测,降低了芯片出厂测试的时间成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为一种包含工艺角检测电路的芯片各部分示意图;
图2为一种包含工艺角检测电路的芯片中检测电路的示意图;
图3为工艺角检测电路的模拟电路一种实施例示意图;
图4为工艺角检测电路的数字电路的一种实施例示意图;
图5为本发明的实现工艺角检测方法流程图;
图6为本发明工艺角检测电路的一个应用实例示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明采用工作电路与检测电路于同一工艺过程中同时制成,针对现有技术中工艺角检测通用性不足的问题,本发明提供包含工艺角检测电路的芯片及检测方法,在该工艺角检测电路中可以包含模拟电路和或数字电路,模拟电路中主要采用恒压源进行检测,检测时测量恒压源的标称值与实际测量值之间的差值来表征模拟器件工艺角性能,数字电路中主要采用振荡器进行检测,检测时测量振荡器的标称频率值和实际测量值的差值来表征数字器件的工艺角性能。
进一步地,为了拓展通用性,模拟电路可以采用多个恒压源或者恒压源可以输出多个恒压电压值来实现,并提供选通使能信号,通过选择器来控制选通哪个电压信号来实现测量;数字电路中可以采用多路振荡器,每个振荡器可以发出设定频率的频率信号,并提供选通是能信号,通过选择器来控制选通哪路振荡器的频率信号来实现测量,同时对选通的频率信号可以通过计数器的周期计数值来测量得到实际输出的频率信号。进一步地,通过计算标称值与实际测量值之间的差值可以实现精确评估工艺角性能,进一步可以计算差值所占百分比来进行相对性能评估。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1给出了一种包含工艺角检测电路的芯片各部分示意图,包括工作电路2和检测电路3。本申请所述“工作电路”,是按可知工艺过程制作的实现芯片设计功能的电路。工作电路2和检测电路3在同一工艺过程中同时制成;工作电路2和检测电路3作为芯片1的一部分,与芯片1的其他部分在同一工艺过程中制成。检测电路3是本发明的通用电路,可在任何需要检测的工作电路中放置检测电路,一个工作电路可放置多个检测电路;或者多个工作电路放置一个检测电路。
图2给出了一种包含工艺角检测电路的芯片中检测电路的示意图,包括振荡器51和或恒压源41,检测电路3可包含振荡器51或者恒压源41中的一种,也可同时包括振荡器51和恒压源41。检测电路中可采用恒压源用于工作电路中模拟电路的检测,也可以采用振荡器用于工作电路中数字电路的检测;模拟电路检测时,采用恒压源输出的输出电压值与标称电压值的差值来计算工作电路中模拟电路的电压偏差百分比;数字电路检测时,采用振荡器输出的实测频率值与标称频率值的差值来计算工作电路中数字电路的频率偏差百分比。
例如,检测电路3包括模拟电路4和或数字电路5,所述模拟电路4包括恒压源41,所述数字电路5包括振荡器51。
检测电路可以只包含模拟电路部分或者数字电路部分,也可以既包括模拟电路部分又包括数字电路部分;恒压源属于检测电路的模拟电路部分,振荡器属于检测电路的数字电路部分。
图3给出了工艺角检测电路的模拟电路一种实施例示意图,模拟电路4进一步还包括模拟检测译码器42和模拟检测输出复路选择器43。。
模拟检测译码器42,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的输出电压值输出至所述恒压源41,并将译码得到的选择控制信号输出至模拟检测输出复路选择器43;工作电路发出检测电路配置信号,检测电路配置信号包括模拟电路选择控制信号和模拟电路使能信号;由于配置信号是数字信号命令,采用模拟检测译码器将检测电路配置信号进行转换成恒压源的驱动信号,该驱动信号按标称电压值控制恒压源,并通过模拟电路选择控制信号控制恒压源输出相应的实测电压值。
所述恒压源41,用于按照标称电压值输出电压信号给模拟检测输出复路选择器43;恒压源41接收模拟检测译码器42的译码后的选择控制信号和驱动信号,产生输出电压值。
所述模拟检测输出复路选择器43,用于根据选择控制信号对恒压源产生的电压信号进行选通输出;由于恒压源41输出的电压值是可配置的,通过模拟检测输出复路选择器43选择输出哪个信号,例如恒压源能够生成3V、3.3V、5V等电压值,通过模拟检测输出复路选择器403选择其中一个。
图4给出了工艺角检测电路的数字电路的一种实施例示意图,数字电路5进一步还包括数字检测译码器52、数字复路选择器53和数字输出计数器54。其中所述振荡器51可以是数字环形振荡器,可以包括10条数字环形振荡器,用于输出实测频率值。
所述数字检测译码器52,用于对所接收的检测电路配置信号解码后并按照标称频率值配置所述振荡器的输出信号;工作电路发出检测电路配置信号,数字检测译码器接收检测电路配置信号,检测电路配置信号包含数字电路选通信号和数字电路使能信号;由于配置信号是数字信号命令,采用数字检测译码器将检测电路配置信号进行转换成所述振荡器的驱动信号,同时根据数字电路选择控制信号控制所述振荡器输出相应的实测频率值。
所述振荡器51,根据配置信息生成频率信号输出至所述数字复路选择器;所述振荡器输出的是时钟信号,也就是实测频率的方波。
所述数字复路选择器53,用于对所述振荡器的输出信号进行选通后输出至所述数字输出计数器54;由于所述振荡器输出的频率值是可配置的,通过所述数字检测输出复路选择器选择输出哪个频率值,例如,所述振荡器可以生成的频率为10MHZ、8MHZ、20MHZ等频率值,通过数字检测输出复路选择器选择其中一个,输出需要的频率信号。可以由10条数字振荡器提供不同的频率信号和最终哪一个频率信号被选通。
所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值;数字输出计数器输出的实测频率值即为检测电路检测到的工作电路的实际速度值,用于判断与标称频率值的偏差百分比。
数字部分输出的计数器数值,就直接反映出该芯片对应的工艺角。数字部分输出的是具体数字频率,所以可以得到工艺角偏离典型值的具体百分比,而不是只给出相对于典型值是大或者小的定型判断,例如典型值设定为20MHz,实际输出为19.89MHz,这样既可以量化偏差,具体评价每个芯片差异,而不是笼统的称这块芯片是快了或者慢了。
图5给出了本发明的实现工艺角检测方法,包括以下步骤:
步骤100、在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
步骤200、根据所述振荡器实测频率值与标称频率的差值确定所述工作电路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
其中,测量恒压源输出电压值与标称电压值的差值的步骤具体包括:
200A、对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通,输出电压信号;
根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
其中,测量振荡器输出频率实测频率值与标称频率的差值的步骤具体包括:
200B、振荡器根据配置信息的标称频率值,生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
根据所述标称频率值和选通输出的实测频率值获得两者差值。
本发明的全自动通用型工艺角检测电路,可以全面的检测模拟和数字电路,下面以重点关注的晶体管特性为例进行详细的说明。例如可以在检测中设置32项模拟电路中的器件指标,以及20项数字电路中的器件指标,所述工艺中各种类型晶体管的阈值电压、各种类型电阻的阻值、电流镜的匹配度、电阻的匹配度,以及常见数字门电路的延时,该延时的倒数即可反应数字电路的速度。
如图6所示,给出了工艺角检测电路的一个应用实例示意图。工艺角检测电路的结构主要分为模拟和数字两部分。
模拟电路部分又具体包含模拟检测译码器(PCM_DEC),模拟检测核心器件(PCM_CORE,例如恒压源),模拟检测输出复路选择器(PCM_TEST_MUX)。
数字电路部分又具体包含数字检测译码器(DRO_DEG),十条数字环形振荡器(10×RINGCLKs),数字复路选择器(DRO_MUX),数字输出计数器(DRO_CNT)以及单独为数字模块提供高精度电源的稳压器(REGULATOR_DRO)。数字部分输出的计数器数值,就直接反映出该芯片对应的工艺角。值得指出的是,数字部分输出的是具体数字频率,所以可以得到工艺角偏离典型值的具体百分比,而不是相对大小。这对于精确优化芯片性能至关重要。
图6中的各个输入输出信号含义列举如下:
ANALOG:模拟电路设计模块;
DIGITAL:数字电路综合模块;
PCM_DEC:模拟部分包含模拟检测译码器;
PCM0/1_EN:模拟部分检测电路使能信号;
PCM0/1_CTRL[4:0]:模拟部分检测电路选择控制信号;
PCM_CORE:模拟检测核心器件,即恒压源;
PCM_IPP50U_P1[1:0]和PCM_IPP50U_P2[1:0]:50uA输入偏置电流;
PCM_TEST_MUX:模拟检测输出复路选择器;
PCM0/1_ATEST_AVSS/AVDD:模拟检测电路输出;
DRO_DEC:数字部分包含数字检测译码器;
DRO0/1_EN:数字检测电路使能信号;
DRO0/1_SEL[3:0]:数字检测电路选择控制信号;
10xRINGCLKs:十条数字环形振荡器;
DRO_MUX:数字复路选择器;
DRO_CNT:数字输出计数器;
DRO_FREQ_CNT[9:0]:数字计数器输出;
DRO_CNT_DONE:数字计数器完成一次工作的指示信号;
DRO_FREQ_CNT_CLK:数字计数器输出匹配的时钟信号;
REGULATOR_DRO:高精度电源的稳压器;
PCM_VREF:稳压器输入参考电压;
DRO_ICC10U_P[1:0]:稳压器输入偏置电流;
以数字电路检测为例,具体检测流程如下:
首先,电源上电,数字电源DVDD、数字电源上电完成信号ISO_ENB_AON、模拟电源AVDD815都要上电完成。
第二,所有电压电流偏置输入信号(PCM_VREF和DRO_ICC10U_P[1:0])都要上电完成;
第三,使能信号DRO0/1_EN从0变为1,检测电路开始工作;
第四,当数字电路检测到DRO0/1_CLK_RDY变为1时,DRO_CNT_START由0变为1,计数模块开始工作;
第五,经过时间T2,触发DRO_CNT_DONE脉冲信号,计数完成;
最后,通过读出10比特DRO_FREQ_CNT[9:0]的结果,从而得到对应检测的数字电路的频率值,即对应速度值。
上述芯片工艺角检测方法可以实现高速自动检测,降低了芯片出厂测试的时间成本。此外,检测电路包含数字电路和模拟电路,具备很强的通用性。在大规模集成电路设计中,由于芯片面积很大,设计者可以在芯片内部的不同位置放置本检测电路,从而可以检测芯片不同位置的工艺角变化,使得芯片的性能得到更加的优化。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (9)

1.一种包含工艺角检测电路的芯片,其特征在于,包括工作电路和检测电路,所述工作电路和所述检测电路在同一工艺过程中同时制成,所述检测电路包括振荡器和或恒压源。
2.如权利要求1所述的包含工艺角检测电路的芯片,其特征在于,检测电路包括模拟电路和或数字电路;所述模拟电路包括恒压源;所述数字电路包括振荡器。
3.如权利要求2所述的包含工艺角检测电路的芯片,其特征在于,所述模拟电路进一步还包括模拟检测译码器和模拟检测输出复路选择器,其中;
所述模拟检测译码器,用于对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;
所述恒压源,用于按照所述驱动信号,输出电压信号给所述模拟检测输出复路选择器;
所述模拟检测输出复路选择器,用于根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号,得到输出电压值。
4.如权利要求2所述的包含工艺角检测电路的芯片,其特征在于,所述振荡器是数字环形振荡器,所述数字电路包括10条数字环形振荡器。
5.如权利要求2或4所述的包含工艺角检测电路的芯片,其特征在于,所述数字电路进一步还包括数字检测译码器、数字复路选择器和数字输出计数器;其中:
所述数字检测译码器,用于对所接收的检测电路配置信号解码后并配置所述振荡器的输出信号的标称频率值;
所述振荡器,根据配置信息生成频率信号输出至数字复路选择器所述数字复路选择器,用于对所述振荡器的输出信号进行选通后输出至所述数字输出计数器;
所述数字输出计数器,用于检测选通的振荡器输出信号并输出实测频率值。
6.如权利要求2或4所述的包含工艺角检测电路的芯片,其特征在于,所述检测电路还包括电源稳压器,用于对所述振荡器提供偏置电流。
7.基于权利要求1~6任意一项所述芯片的工艺角检测方法,其特征在于,包括:
在同一工艺过程中同时制成工作电路和检测电路,所述检测电路包括模拟电路和或数字电路,所述模拟电路包括恒压源,所述数字电路包括振荡器;
根据所述振荡器实测频率值与标称频率的差值确定所述工作电路的频率偏差百分比;和或,根据所述恒压源输出电压值与标称电压值的差值确定所述工作电路的电压偏差百分比。
8.如权利要求7所述方法,其特征在于,所述测量恒压源输出电压值与标称电压的差值的步骤具体包括:
对所接收的检测电路配置信号进行接收译码后,将译码得到的标称电压值对应的驱动信号输出至所述恒压源,将译码得到的选择控制信号输出至模拟检测输出复路选择器;模拟检测输出复路选择器根据接收的模拟电路的选择控制信号对输入的电压信号进行选通输出电压信号;
根据所述输出电压信号的输出电压值和选择控制信号配置的标称电压值获得两者差值。
9.如权利要求7所述方法,其特征在于,所述测量振荡器输出频率与标称频率的差值的步骤具体包括:
振荡器根据配置信息的标称频率值生成频率信号输出至数字复路选择器,数字复路选择器对所述振荡器的输出信号进行选通后输出至数字输出计数器,检测选通的振荡器输出信号并输出实测频率值;
根据所述标称频率值和选通输出的实测频率值获得两者差值。
CN201811598175.1A 2018-12-26 2018-12-26 一种包含工艺角检测电路的芯片及检测方法 Active CN109581196B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811598175.1A CN109581196B (zh) 2018-12-26 2018-12-26 一种包含工艺角检测电路的芯片及检测方法
PCT/CN2019/118200 WO2020134673A1 (zh) 2018-12-26 2019-11-13 一种包含工艺角检测电路的芯片及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811598175.1A CN109581196B (zh) 2018-12-26 2018-12-26 一种包含工艺角检测电路的芯片及检测方法

Publications (2)

Publication Number Publication Date
CN109581196A true CN109581196A (zh) 2019-04-05
CN109581196B CN109581196B (zh) 2021-06-01

Family

ID=65931875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811598175.1A Active CN109581196B (zh) 2018-12-26 2018-12-26 一种包含工艺角检测电路的芯片及检测方法

Country Status (2)

Country Link
CN (1) CN109581196B (zh)
WO (1) WO2020134673A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707014A (zh) * 2019-09-11 2020-01-17 芯创智(北京)微电子有限公司 一种测试芯片工艺角偏移的方法
WO2020134673A1 (zh) * 2018-12-26 2020-07-02 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法
CN113295987A (zh) * 2021-07-05 2021-08-24 中国科学院上海微系统与信息技术研究所 超导单磁通量子电路的测试系统
CN113552473A (zh) * 2021-09-22 2021-10-26 北京紫光青藤微系统有限公司 用于芯片测试的系统和待测芯片装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039454A (ja) * 2002-07-03 2004-02-05 Yamaichi Electronics Co Ltd Icソケット
CN101285848A (zh) * 2008-05-28 2008-10-15 炬力集成电路设计有限公司 一种校正和获取参考电压的方法和装置
CN101430849A (zh) * 2007-11-09 2009-05-13 奇景光电股份有限公司 显示器驱动电路的测试装置
CN101556757A (zh) * 2008-04-10 2009-10-14 奇景光电股份有限公司 显示器驱动电路的测试电路
CN102081686A (zh) * 2010-12-21 2011-06-01 上海集成电路研发中心有限公司 Mos晶体管工艺角spice模型的建模方法
CN102368680A (zh) * 2011-09-30 2012-03-07 烽火通信科技股份有限公司 电流反馈运算放大器电路
CN102590729A (zh) * 2005-03-07 2012-07-18 株式会社半导体能源研究所 元件基板、检查方法及半导体装置制造方法
CN102655410A (zh) * 2011-03-02 2012-09-05 复旦大学 压控振荡器、用于检测工艺波动的测试系统及其测试方法
CN102759702A (zh) * 2012-06-29 2012-10-31 福州瑞芯微电子有限公司 用于检测芯片内工作电路的电压与频率关系的电路及方法
CN102914711A (zh) * 2012-10-12 2013-02-06 中国电子科技集团公司第二十研究所 在石英晶振测试系统中同时测量不同类型被测件的方法
CN103076554A (zh) * 2012-12-29 2013-05-01 江苏东大集成电路系统工程技术有限公司 一种锁相环片上抖动测量电路
CN103368068A (zh) * 2013-07-22 2013-10-23 烽火通信科技股份有限公司 用于集成激光驱动器的调制电流工艺角数字补偿电路
CN104101827A (zh) * 2014-06-25 2014-10-15 东南大学 一种基于自定时振荡环的工艺角检测电路
CN105790736A (zh) * 2015-12-29 2016-07-20 北京自动测试技术研究所 一种用于频率信号发生芯片的修调装置
CN105808843A (zh) * 2016-03-08 2016-07-27 浪潮集团有限公司 一种混合信号验证平台的构造方法
CN105956322A (zh) * 2016-05-20 2016-09-21 硅谷数模半导体(北京)有限公司 数字电路的工艺角检测装置和方法
CN106407486A (zh) * 2015-07-27 2017-02-15 深圳市中兴微电子技术有限公司 工艺偏差检测电路及方法
CN106601643A (zh) * 2016-11-15 2017-04-26 珠海格力电器股份有限公司 芯片的mos工艺角的测量方法、装置和系统
CN107807323A (zh) * 2017-09-27 2018-03-16 中国电子产品可靠性与环境试验研究所 电路板健康状况监测方法,检测装置以及检测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005407A (en) * 1995-10-23 1999-12-21 Opmax Inc. Oscillation-based test method for testing an at least partially analog circuit
CN109581196B (zh) * 2018-12-26 2021-06-01 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039454A (ja) * 2002-07-03 2004-02-05 Yamaichi Electronics Co Ltd Icソケット
CN102590729A (zh) * 2005-03-07 2012-07-18 株式会社半导体能源研究所 元件基板、检查方法及半导体装置制造方法
CN101430849A (zh) * 2007-11-09 2009-05-13 奇景光电股份有限公司 显示器驱动电路的测试装置
CN101556757A (zh) * 2008-04-10 2009-10-14 奇景光电股份有限公司 显示器驱动电路的测试电路
CN101285848A (zh) * 2008-05-28 2008-10-15 炬力集成电路设计有限公司 一种校正和获取参考电压的方法和装置
CN102081686A (zh) * 2010-12-21 2011-06-01 上海集成电路研发中心有限公司 Mos晶体管工艺角spice模型的建模方法
CN102655410A (zh) * 2011-03-02 2012-09-05 复旦大学 压控振荡器、用于检测工艺波动的测试系统及其测试方法
CN102368680A (zh) * 2011-09-30 2012-03-07 烽火通信科技股份有限公司 电流反馈运算放大器电路
CN102759702A (zh) * 2012-06-29 2012-10-31 福州瑞芯微电子有限公司 用于检测芯片内工作电路的电压与频率关系的电路及方法
CN102914711A (zh) * 2012-10-12 2013-02-06 中国电子科技集团公司第二十研究所 在石英晶振测试系统中同时测量不同类型被测件的方法
CN103076554A (zh) * 2012-12-29 2013-05-01 江苏东大集成电路系统工程技术有限公司 一种锁相环片上抖动测量电路
CN103368068A (zh) * 2013-07-22 2013-10-23 烽火通信科技股份有限公司 用于集成激光驱动器的调制电流工艺角数字补偿电路
CN104101827A (zh) * 2014-06-25 2014-10-15 东南大学 一种基于自定时振荡环的工艺角检测电路
CN106407486A (zh) * 2015-07-27 2017-02-15 深圳市中兴微电子技术有限公司 工艺偏差检测电路及方法
CN105790736A (zh) * 2015-12-29 2016-07-20 北京自动测试技术研究所 一种用于频率信号发生芯片的修调装置
CN105808843A (zh) * 2016-03-08 2016-07-27 浪潮集团有限公司 一种混合信号验证平台的构造方法
CN105956322A (zh) * 2016-05-20 2016-09-21 硅谷数模半导体(北京)有限公司 数字电路的工艺角检测装置和方法
CN106601643A (zh) * 2016-11-15 2017-04-26 珠海格力电器股份有限公司 芯片的mos工艺角的测量方法、装置和系统
CN107807323A (zh) * 2017-09-27 2018-03-16 中国电子产品可靠性与环境试验研究所 电路板健康状况监测方法,检测装置以及检测系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGCHIN LIN: "A Low- Voltage Process Corner Insensitive Subthreshold CMOS Voltage Reference Circuit", 《2006 IEEE》 *
姜岩峰: "满足工艺角覆盖率的模拟运算放大器设计", 《电子测量技术》 *
王小曼: "一种低功耗高可靠上电复位电路的设计", 《微电子学》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134673A1 (zh) * 2018-12-26 2020-07-02 北京无线电计量测试研究所 一种包含工艺角检测电路的芯片及检测方法
CN110707014A (zh) * 2019-09-11 2020-01-17 芯创智(北京)微电子有限公司 一种测试芯片工艺角偏移的方法
CN110707014B (zh) * 2019-09-11 2021-09-24 芯创智(北京)微电子有限公司 一种测试芯片工艺角偏移的方法
CN113295987A (zh) * 2021-07-05 2021-08-24 中国科学院上海微系统与信息技术研究所 超导单磁通量子电路的测试系统
CN113295987B (zh) * 2021-07-05 2022-07-08 中国科学院上海微系统与信息技术研究所 超导单磁通量子电路的测试系统
CN113552473A (zh) * 2021-09-22 2021-10-26 北京紫光青藤微系统有限公司 用于芯片测试的系统和待测芯片装置
CN113552473B (zh) * 2021-09-22 2021-12-28 北京紫光青藤微系统有限公司 用于芯片测试的系统和待测芯片装置

Also Published As

Publication number Publication date
WO2020134673A1 (zh) 2020-07-02
CN109581196B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN109581196A (zh) 一种包含工艺角检测电路的芯片及检测方法
US10302502B2 (en) Determining rate of change in temperature measurements
US20190257696A1 (en) Accurate on-chip temperature sensing using thermal oscillator
US20080120065A1 (en) Accurate Integrated Circuit Performance Prediction Using On-Board Sensors
US8008967B2 (en) Power supply voltage adjusting device
CN105917668A (zh) 用于频率检测的设备和方法
CN103384816A (zh) 半导体温度传感器
CN104101827A (zh) 一种基于自定时振荡环的工艺角检测电路
US8482330B2 (en) Temperature sensing circuit and method
CN106932640A (zh) 基于fpga的脉冲信号参数测量方法及系统
JP5807508B2 (ja) 発振回路を有するマイクロコントローラ
CN102959638B (zh) 用于与一个或多个存储器模块关联的方法、设备与系统
US8407372B2 (en) Device and method for detecting motherboard voltage
CN102466779B (zh) 触发器延时的内建测试方法及电路
US8018240B2 (en) Apparatus, circuit and method of monitoring leakage current characteristics
US20120197570A1 (en) Measurement of Parameters Within an Integrated Circuit Chip Using a Nano-Probe
EP2711800B1 (en) I/O cell calibration
CN205643512U (zh) 频率检测系统
US8416003B2 (en) Processor frequency adjustment circuit
US10720223B2 (en) Memory device with internal measurement of functional parameters
CN105988038B (zh) 芯片压降的测量装置及方法
US10145896B2 (en) Electronic device, performance binning system and method, voltage automatic calibration system
CN112015229A (zh) 一种可使用调试器实现芯片内部时钟校准的电路
KR101202741B1 (ko) 온도 감지 회로 및 온도 감지 방법
US20130222074A1 (en) Oscillation frequency regulating circuit, semiconductor device, electronic device and oscillation frequency regulation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant