WO2020134497A1 - 易染多孔改性聚酯纤维及其制备方法 - Google Patents

易染多孔改性聚酯纤维及其制备方法 Download PDF

Info

Publication number
WO2020134497A1
WO2020134497A1 PCT/CN2019/113852 CN2019113852W WO2020134497A1 WO 2020134497 A1 WO2020134497 A1 WO 2020134497A1 CN 2019113852 W CN2019113852 W CN 2019113852W WO 2020134497 A1 WO2020134497 A1 WO 2020134497A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified polyester
polyester fiber
hexanediol
temperature
hexamethyl
Prior art date
Application number
PCT/CN2019/113852
Other languages
English (en)
French (fr)
Inventor
孙晓华
康爱旗
王丽丽
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to US17/257,322 priority Critical patent/US11142850B2/en
Priority to JP2021537034A priority patent/JP7066924B2/ja
Publication of WO2020134497A1 publication Critical patent/WO2020134497A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6954Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from polxycarboxylic acids and polyhydroxy compounds
    • C08G63/6956Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/004Oxides; Hydroxides; Oxyacids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/004Oxides; Hydroxides; Oxyacids
    • C01G30/005Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • the invention belongs to the technical field of modified polyester fiber, and relates to an easily dyeable porous modified polyester fiber and a preparation method thereof.
  • PET fiber or polyester fiber has high breaking strength and modulus of elasticity, moderate resilience, excellent heat setting performance, good heat and light resistance, good acid and alkali resistance, corrosion resistance, etc.
  • a series of excellent properties, and its fabrics also have the advantages of anti-wrinkle, no iron and good stiffness, so they are widely used in clothing, home textiles and other fields.
  • Porous polyester fiber and its processed products have the characteristics of good hand feel, strong three-dimensional sense and peculiar style. It has been widely used in various fields, especially suitable for making high-performance textiles such as tennis clothes, stockings or medical bandages. , Is a very promising fiber.
  • PET is a symmetrical linear macromolecule.
  • the molecular chain does not contain side chain groups, and the regularity is very good. Its main chain contains rigid benzene rings and flexible hydrocarbon groups, which directly interacts with benzene.
  • the ester group connected with the ring and the benzene ring form a rigid conjugated system, which restricts the free rotation of its flexible segment.
  • This structure increases the wall ridge of the molecular segment movement, resulting in a higher glass transition temperature of PET. It is necessary to promote the diffusion of dye molecules into the fiber under high temperature conditions to complete the dyeing step. Therefore, the general dyeing of PET fibers is generally to choose disperse dyes for dyeing under high temperature and high pressure. When the temperature reaches above the glass transition temperature of PET fiber, the voids between the molecules of PET fiber polymer increase, but the free volume increases The degree is small, the dyeing rate is not high, the high energy consumption caused by the high temperature and high pressure method and the low dyeing rate are the main problems facing now. In addition, the high viscosity of PET fiber melt is not conducive to processing.
  • the catalyst commonly used in the polyester synthesis process is an antimony-based catalyst.
  • the common antimony-based catalysts on the market such as Sb 2 O 3 are added in a large amount during the polyester synthesis process, and the antimony-based catalyst is added in a large amount. It also has a greater impact on the environment, which is not conducive to the environmentally friendly production of polyester. At the same time, antimony catalysts will be converted to antimony in the polycondensation reaction, which will reduce the color and brightness of polyester.
  • the purpose of the present invention is to overcome the above-mentioned problems in the prior art, and to provide a dyeable porous modified polyester fiber with good dyeing performance and good quality and a preparation method thereof.
  • the preparation method of easily dyeable porous modified polyester fiber adopts a porous spinneret to obtain easily dyeable porous modified polyester fiber from the modified polyester melt system according to the FDY process;
  • the number of holes of the porous spinnerette is more than 100;
  • the preparation method of the modified polyester is: terephthalic acid, ethylene glycol, a main chain silicon-containing glycol, 2, 2, 3, 4 ,5,5-Hexamethyl-3,4-hexanediol and doped modified Sb 2 O 3 powder are mixed evenly, and then the esterification reaction and the polycondensation reaction are carried out successively;
  • the diol containing silicon in the main chain is dimethyl silicon diol, dimethyl diphenyl disiloxane diol or tetramethyl disiloxane diol;
  • the present invention significantly improves the void free volume of polyester by introducing a diol segment containing silicon in the main chain into the modified polyester; disperse dyes are a class of dyes with relatively small molecules and no water-soluble groups in structure Most of them exist in the form of particles, and the particle size is between several hundred nanometers and one micrometer; when the modified polyester of the present invention begins to be dyed, as the temperature continues to increase, because the polyester macromolecular chain contains -Si-O- The Si-bond, the silicon-oxygen bond is longer than the carbon-oxygen bond, and the internal rotation activation energy is lower. The molecular chain before the carbon-oxygen bond begins to move.
  • the silicon-oxygen bond contains a large The molecular chain movement is more severe than the molecular chain containing only carbon-oxygen bonds.
  • the free volume of the cavity formed by the macromolecular chain containing silicon-oxygen bonds is more efficient than that of the molecular chain containing only carbon-oxygen bonds.
  • the diffusion rate of the particulate dye into the fiber is significantly improved, and the small molecule of the dye is more likely to penetrate into the modified polyester macromolecule, which has a positive effect on the dyeing of the fiber, which can reduce the dyeing temperature and shorten the dyeing time. , Reduce energy consumption, make porous modified polyester fiber easy to dye;
  • the invention uses 2,2,3,4,5,5-hexamethyl-3,4-hexanediol to modify the polyester, 2,2,3,4,5,5-hexamethyl-3 ,4-Hexanediol can significantly increase the space free volume of polyester, especially the presence of tert-butyl group in 2,2,3,4,5,5-hexamethyl-3,4-hexanediol will cause
  • the change in the activity of the main chain changes the interaction force between the chain units, and the distance between the molecular chain units will also change accordingly, increasing the void free volume of the polyester; at the same time, the void free volume is more than the slit free volume It has a larger effective space size and is more conducive to the penetration of cationic dyes into the fibers.
  • the increase in the free volume of the void can significantly reduce the difficulty of the dye molecules penetrating into the interior of the polyester, improve the dyeing performance (uptake rate) of the polyester, and reduce the dyeing. Temperature, shorten the dyeing time, reduce energy consumption;
  • the process of Sb 2 O 3 doping and modification is as follows: first, the solution containing the metal ion M x+ and the solution containing Sb 3+ are mixed uniformly, then the precipitant is added dropwise until the pH of the mixed solution is 9-10, and finally the calcined precipitate The product is crushed; the metal ion M x+ is at least one of Mg 2+ , Ca 2+ , Ba 2+ and Zn 2+ .
  • the invention realizes the doping and blending of a metal oxide with a certain catalytic activity and antimony trioxide by mixing the metal ion M x+ solution and the Sb 3+ solution first and then precipitating and finally calcining. It is one or more of MgO, CaO, BaO and ZnO. After the metal oxide of the present invention is doped with antimony trioxide, the metal oxide inhibits the crystallization of antimony trioxide and the cubic antimony trioxide grains.
  • the invention can realize the catalytic synthesis of polyester at a low Sb 2 O 3 addition amount, which is beneficial to environmental protection production and guarantees the quality of synthetic polyester.
  • the preparation method of the easily dyed porous modified polyester fiber as described above, the synthesis method of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is: palladium acetate and After dimethyl di-tert-butyl ethylene is mixed uniformly, add a hydrogen peroxide solution with a mass concentration of 10-15%, and react at a temperature of 70-75°C for 3 to 4 hours. After cooling, crystallization and purification, 2,2 is obtained. 3,4,5,5-hexamethyl-3,4-hexanediol, the mass ratio of the dimethyl di-tert-butyl ethylene, the hydrogen peroxide solution and the palladium acetate is 1:1.5-2.0:0.015.
  • the concentration of the metal ion-containing M x+ solution is 0.5 to 1.0 mol%, the solvent is water, and the anion in the solution is NO 3 - ;
  • the solution of Sb 3+ is a solution of Sb 2 O 3 with a concentration of 5 to 10 mol%, and the solvent is oxalic acid;
  • the precipitant is ammonia with a concentration of 2 mol/L; when precipitation starts, the metal ions M x+ and Sb 3+ in the mixed solution
  • the molar ratio is 1 ⁇ 3:100; Sb 2 O 3 is currently the most cost-effective polyester catalyst.
  • the present invention suppresses the crystallization of antimony trioxide (Sb 2 O 3 ) and cubic antimony trioxide by infiltrating metal oxides
  • the growth of the crystal grains, and at the same time, the metal ion M x+ will replace antimony and enter the lattice position of antimony, causing the antimony trioxide crystal to generate defects to improve the catalytic activity of antimony trioxide; if the amount of doped metal oxide is too small ( (The molar ratio is too low), the effect on the antimony trioxide grains is too low, too much (the molar ratio is too high), will make the main body of the catalyst Sb 3+ decrease by a large margin, which is not conducive to improving the catalytic activity of antimony trioxide;
  • the drying temperature is 105 ⁇ 110°C, and the time is 2 ⁇ 3h; the process of the calcination is: first warm up to 400°C, then keep warm for 2 ⁇ 3h, and then raise the temperature to 900°C After heat preservation for 1 ⁇ 2h, and finally cooling in air; Sb 2 O 3 is crushed after doping modification to obtain powder with an average particle size of less than 0.5 microns.
  • the preparation method of the easily dyeable porous modified polyester fiber as described above, the preparation steps of the modified polyester are as follows:
  • the esterification reaction is carried out under pressure in a nitrogen atmosphere.
  • the pressure is from normal pressure to 0.3 MPa, and the temperature of the esterification reaction is from 250 to 260°C.
  • the distillation amount of water in the esterification reaction reaches more than 90% of the theoretical value, it is the end point of the esterification reaction;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to an absolute pressure of 500 Pa or less within 30 to 50 minutes.
  • the reaction temperature is 250 to 260°C and the reaction time is 30 ⁇ 50min, and then continue to evacuate to carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to below 100Pa absolute pressure, the reaction temperature is 270 ⁇ 282°C, and the reaction time is 50 ⁇ 90min.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2 ⁇ 2.0, and the main chain silicon-containing glycol and 2,2,
  • the sum of the added amounts of 3,4,5,5-hexamethyl-3,4-hexanediol is 4 to 6 mol% of the added amount of terephthalic acid, the main chain silicon-containing glycol and 2,
  • the molar ratio of 2,3,4,5,5-hexamethyl-3,4-hexanediol is 1 ⁇ 2:1 ⁇ 2;
  • the addition amount of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol can be adjusted according to the actual situation, but the adjustment range should not be too large, the addition amount is too much, the molecular structure of polyester
  • the regularity damage is too large, which has too much influence on the crystallinity and mechanical properties of the polyester fiber, which is not conducive to the production and application of the fiber; if the amount is too small, the increase in the free volume of the cavity is not obvious, that is, the dyeing performance has little effect ;
  • the addition amount of the main chain silicon-containing diol is preferably in this range, which can not only ensure that the modified fiber has good mechanical properties and crystallinity, but also significantly improve the dyeing performance of the fiber, which is conducive to fiber production and Application, the addition amount of diol containing silicon in the main chain can be adjusted according to actual needs, but it should not be too high. If the addition amount is too high, the regularity of the polyester macromolecular structure will be destroyed too much, and the crystallinity and mechanical properties of the fiber If the impact is too large, it is not conducive to the production and application of the fiber. If it is too low, the dyeing effect will not improve significantly;
  • the added amounts of the doped and modified Sb 2 O 3 powder, matting agent and stabilizer are 0.012 to 0.015 wt%, 0.20 to 0.25 wt% and 0.01 to 0.05 wt% of the added amount of terephthalic acid, respectively.
  • the addition amount of Sb 2 O 3 in the polyester synthesis process is usually 0.02 to 0.04 wt% of the addition amount of terephthalic acid, and the addition amount of the antimony-based catalyst is high, which is mainly due to the undoped Sb 2 O r s 3 on the active surface area per unit surface area is low and less than S g, and therefore the whole lower 2 O 3 Sb catalytic activity, the present invention is by doping Sb 2 O 3 modification, increases the activity of Sb 2 O 3 Therefore, the amount of Sb 2 O 3 added during polyester synthesis is significantly reduced.
  • the matting agent is titanium dioxide
  • the stabilizer is triphenyl phosphate, trimethyl phosphate, or trimethyl phosphite.
  • the number average molecular weight of the modified polyester is 25,000 to 30,000, and the molecular weight distribution index is 1.8 to 2.2.
  • the parameters of the FDY process are: spinning temperature 285-295°C, cooling temperature 17-22°C, network pressure 0.20-0.30MPa, one-roll speed 2300-2700m/min, one-roll temperature 80-90°C, two-roll speed 4000 ⁇ 4200m/min, the temperature of the second roller is 125 ⁇ 140°C, the winding speed is 3940 ⁇ 4120m/min.
  • the invention also provides the easily dyeable porous modified polyester fiber prepared by the preparation method of the easily dyeable porous modified polyester fiber as described above, and a bundle of silk contains more than 100 modified polyester FDY monofilaments;
  • the molecular chain of the modified polyester includes a terephthalic acid segment, an ethylene glycol segment, a main chain silicon-containing glycol segment and 2,2,3,4,5,5-hexamethyl- 3,4-hexanediol segment; the modified polyester is dispersed with the doped and modified Sb 2 O 3 powder.
  • the easily dyeable porous modified polyester fiber has a monofilament fineness of 0.3 to 0.5 dtex, a breaking strength ⁇ 3.5 cN/dtex, an elongation at break of 30.0 ⁇ 4.0%, and a network
  • the degree is 15 ⁇ 3 pieces/m
  • the boiling water shrinkage rate is 6.5 ⁇ 0.5%
  • a bundle of silk contains 144 ⁇ 288 modified polyester FDY monofilaments; the quality and quality of the modified fiber of the present invention are not reduced compared with the prior art, and the modified fiber still has good mechanical properties and spinnability;
  • the dyeing rate of the easily dyeable porous modified polyester fiber at a temperature of 120°C is 87.3-92.8%, and the K/S value is 22.35-25.43. Under the same test conditions, the uptake rate of the comparative sample at 120°C is 83.7%, and the K/S value is 20.36.
  • the difference between the comparative sample and the easily dyeable porous modified polyester fiber of the present invention is only Its material is ordinary polyester.
  • the main chain silicon-containing diol, 2,2,3,4,5,5-hexamethyl-3,4-hexanediol and doped modified Sb 2 O are added in the polyester synthesis process 3 powder, which significantly improves the dyeing performance of polyester on the basis of ensuring the quality of polyester fiber, the specific mechanism is:
  • the doped and modified Sb 2 O 3 powder of the present invention mainly functions as a catalyst in the polyester synthesis process.
  • the polyester catalyst in the prior art is mainly based on antimony compounds, such as antimony trioxide and ethylenedioxide Antimony alcohol and antimony acetate, the amount of antimony added in industrial polyester synthesis is greater than 200ppm, because antimony is a heavy metal, the progress of the times, the restrictions on antimony catalysts are becoming stricter, although titanium-based catalysis has applications, but due to color and For various reasons such as activity control, it is still impossible to replace the antimony system in a short time.
  • the catalytic activity of the catalyst is proportional to the specific surface area S g of the catalyst, the internal surface utilization rate f, and the activity r s per unit surface area.
  • its catalytic activity depends on the specific surface area S g of the catalyst and the internal surface
  • the utilization rate f and the activity r s per unit surface area of the catalyst are constant, the larger the specific surface area, the higher the catalytic activity.
  • the invention realizes the doping and blending of a metal oxide with a certain catalytic polycondensation reaction activity and antimony trioxide by solution blending, co-precipitation and calcination.
  • the metal oxide is one of MgO, CaO, BaO and ZnO
  • MgO, CaO, BaO, ZnO are all white crystals, as a polyester catalyst does not bring about changes in color.
  • metal oxides on antimony trioxide are mainly reflected in: on the one hand, metal oxides will inhibit the crystallization of antimony trioxide and the growth of cubic antimony trioxide grains, making the specific surface area of the antimony trioxide catalyst
  • the increase of S g improves the catalytic activity of antimony trioxide; on the other hand, the metal will replace antimony with the same crystal and enter the lattice position of antimony, which causes defects in the antimony trioxide crystal, changes in crystal morphology, and smaller grain size
  • the specific surface area S g increases, and at the same time, the metal is enriched on some crystal surfaces, so that the active r s per unit surface area is increased, and the catalytic activity of antimony trioxide is improved.
  • the invention improves the catalytic activity of antimony trioxide by doping antimony trioxide to a certain extent.
  • the increase in the catalytic activity of antimony trioxide is beneficial to reduce the amount of antimony trioxide.
  • the use of antimony trioxide with metal oxides can reduce the use of antimony trioxide by more than 30%, effectively solving the current addition of antimony trioxide
  • the big problem ensures the quality of polyester production, and can meet the needs of polyester production.
  • the macromolecular chains in the polymer are not completely tightly packed, there are always gaps between the macromolecular chains, and the volume of this part of the void is the free volume.
  • the permeability and diffusivity of the small molecule are related to the size of the void (ie, the size of the free volume) in the polymer structure.
  • the free volume is divided into void free volume and slit free volume.
  • the void free body has a larger space size than the slit free volume. For the improvement of the permeability of small molecules, the void free volume is more obvious than the slit free volume.
  • the size and type of free volume mainly depend on the structure of the polymer.
  • the main factors affecting the structure of the polymer are steric hindrance, side group size, side group structure, etc.
  • When a position on the polymer main chain is substituted with a pendant group it will inevitably cause changes in the main chain activity, thereby changing the interaction force between chains, and the distance between chains will also change accordingly. This leads to changes in cohesive energy and free volume.
  • the polarity, size, and length of the substituents on the side chains of the polymer have certain effects on the rigidity of the molecular chain, the interaction between molecules, and the free volume fraction of the polymer structure. Therefore, different substituents have different effects, which often lead to different permeation and separation properties of polymers.
  • the C atoms on the main chain are arranged in a zigzag pattern, when the H atom on a methylene group on the main chain is methyl (-CH 3 )
  • the C atom on the side group and the main chain C atom are not in the same plane, so the four sp3 hybrid orbitals on the center C overlap with the empty orbitals on the surrounding four C atoms, forming four identical
  • the ⁇ bond is arranged in a regular tetrahedron.
  • the four carbon atoms are located at the four vertices of the regular tetrahedron.
  • the molecular chains arranged in a regular tetrahedron shape have a much larger free volume of voids, which can significantly improve the permeability and diffusivity of small molecules.
  • the H atom on a methylene group is replaced by a long-branched substituent, the main increase is the free volume of the slit, the increase is small, and the effect of improving the permeability and diffusivity of small molecules is limited.
  • the rigidity of the long-chain branched substituent is small, and the molecular chains are prone to entanglement, which is not conducive to the increase of free volume.
  • tert-butyl occupies a larger space position, and will obtain a larger free volume in the manner of molecular chain arrangement;
  • tertiary butyl increases the void free volume, while long-chain branched substituents increase the slit free volume, on the other hand, tertiary butyl is more rigid than long-chain branched substituents, reducing The entanglement between the molecular chains, so the longer-branched tertiary butyl substituent has more free volume in the way the molecular chains are arranged.
  • the main chain silicon-containing diol of the present invention is dimethyl silicon diol, dimethyl diphenyl disiloxane diol or tetramethyl disiloxane diol, and the structural formulas are as follows:
  • the rigidity of the polymer chain depends on the size of the rotating barrier in the molecular chain.
  • the structure of the main chain is different. Among them, the bond angle and bond length are different or the bonding method is different. The rigidity is also different. After the alcohol, the polymer main chain contains -Si-O-Si- bonds, the silicon-oxygen bond gap is large, and the internal rotation activation energy is low, which is conducive to the free rotation of the atoms.
  • the Si atoms on the polymer main chain and- CH 3 is connected, -CH 3 is perpendicular to the plane where Si-O-Si atoms are located, and because the Si-C bond is longer than the CC bond, the three H in -CH 3 are in an open state, the three in -CH 3 A stretched H atom can rotate freely, making the distance between adjacent Si-O molecular segments larger, and the inert methyl group of the outer chain hinders the access of the polymer, so the polymer material is very compliant and the void free volume Compared with the polymer material without introducing a silicon-containing diol in the main chain, when the Si atom on the main chain of the polymer is connected to the long-chain branched substituent, the main increase is the free volume of the slit.
  • the increase of the free volume of the cavity will make it easier for water or other molecules such as dyes to penetrate into the interior of the modified polyester macromolecule, which will have a positive effect on the dyeing of the modified polyester, which can reduce the dyeing temperature, shorten the dyeing time, and reduce Energy consumption, but also improve the fiber dyeing rate.
  • the preparation method of the easily dyeable porous modified polyester fiber of the present invention improves the specific surface area S g and unit of antimony trioxide by doping and modifying metal oxide with certain catalytic activity to antimony trioxide
  • the active r s on the surface area improves the catalytic activity of antimony trioxide and improves the polymerization efficiency; furthermore, it can reduce the amount of antimony catalyst added when synthesizing polyester while meeting the needs of polyester production, effectively reducing the subsequent
  • the antimony emission from the fiber is beneficial to environmental protection
  • the preparation method of the easily dyeable porous modified polyester fiber of the present invention has a simple process, by introducing a modified component in the polyester polyester-2,2,3,4,5,5-hexamethyl -3,4-Hexanediol significantly improves the dyeing performance of polyester fibers;
  • the preparation method of the easily dyeable porous modified polyester fiber of the invention is modified by introducing a diol polyester containing silicon in the main chain into the polyester to reduce the dyeing temperature and shorten the dyeing time, Improve the dyeing rate of the fiber, reduce energy consumption, and increase the spinnability;
  • the easily dyeable porous modified polyester fiber of the present invention has excellent dyeing performance, good mechanical properties, good quality and good application prospects.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the dried product is first heated to 400°C and then kept for 2.5h, then heated to 900°C and kept for 1.5h, and finally cooled in air and pulverized to obtain a doped modified particle with an average particle size of 0.4 microns Sb 2 O 3 powder;
  • 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is obtained, in which The mass ratio of dimethyl di-tert-butyl ethylene, hydrogen peroxide solution and palladium acetate is 1:2.0:0.015, and the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is as follows Formula (I) shown;
  • the polycondensation reaction in the low-vacuum stage starts under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure 490 Pa within 40 minutes, the reaction temperature is 260 °C, the reaction time is 50 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 85Pa absolute pressure, the reaction temperature is 280 °C, the reaction time is 90min, and a modified polyester with a number average molecular weight of 30,000 and a molecular weight distribution index of 2.2 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 285°C, cooling temperature 17°C, network pressure 0.20MPa, speed of one roller 2300m/min, temperature of one roller 80°C, speed of two rollers 4000m/min, temperature of two rollers 125°C, coil The winding speed is 3940m/min.
  • the monofilament fineness of the easily-produced porous modified polyester fiber finally obtained was 0.5dtex, the breaking strength was 3.8cN/dtex, the elongation at break was 34.0%, the network degree was 18/m, and the linear density deviation rate was 0.8 %, the breaking strength CV value is 4.0%, the breaking elongation CV value is 7.2%, the boiling water shrinkage is 7.0%, and a bundle of silk contains 288 modified polyester FDY monofilaments; The uptake rate was 87.3%, and the K/S value was 22.35.
  • a method for preparing polyester FDY yarn the steps are basically the same as in Example 1, except that step 2, does not add 2,2,3,4,5,5-hexamethyl-3,4 -Hexanediol and dimethyl silicon glycol, the prepared polyester FDY filament monofilament fineness is 0.5dtex, breaking strength is 3.7cN/dtex, breaking elongation is 35.0%, network degree is 18/m, The linear density deviation rate is 0.8%, the breaking strength CV value is 4.1%, the breaking elongation CV value is 7.2%, the boiling water shrinkage rate is 7.2%, a bundle of silk contains 288 modified polyester FDY monofilaments; In the case of the same test conditions in Example 1, the dyeing rate at a temperature of 120°C was 83.7%, and the K/S value was 20.36.
  • a method for preparing polyester FDY yarn the steps are basically the same as in Example 1, except that step 2, does not add 2,2,3,4,5,5-hexamethyl-3,4 -Hexanediol, the obtained polyester FDY filament monofilament fineness is 0.5dtex, breaking strength is 3.7cN/dtex, breaking elongation is 36.0%, network degree is 18/m, linear density deviation rate is 0.9 %, the breaking strength CV value is 4.0%, the breaking elongation CV value is 7.5%, the boiling water shrinkage is 7.0%, and a bundle of silk contains 288 modified polyester FDY monofilaments; the same test conditions as in Example 1 In this case, the dyeing rate at a temperature of 120°C was 85.8%, and the K/S value was 21.37.
  • a method for preparing polyester FDY yarn the steps of which are basically the same as in Example 1, except that step (1) does not add dimethyl silicon glycol, and the monofilament fineness of the polyester FDY yarn obtained is 0.5dtex, breaking strength is 3.6cN/dtex, breaking elongation is 37.0%, network degree is 18/m, linear density deviation rate is 0.9%, breaking strength CV value is 4.0%, breaking elongation CV value is 7.5 %, the shrinkage of boiling water is 7.0%, and a bundle of silk contains 288 modified polyester FDY monofilaments; under the same test conditions as in Example 1, its dyeing rate at a temperature of 120°C is 85.9 %, K/S value is 21.28.
  • Example 1 Through comprehensive analysis of Example 1 and Comparative Examples 1 to 3, it can be found that the present invention is significantly improved by adding 2,2,3,4,5,5-hexamethyl-3,4-hexanediol and dimethylsilyl glycol
  • the dyeing properties of the fiber in which 2,2,3,4,5,5-hexamethyl-3,4-hexanediol and dimethyl silicon glycol are synergistic with each other, both can increase the void free volume of polyester , When both are in effect, the effect of improving dyeing performance is better.
  • the addition of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol and dimethyl silicon glycol has little effect on other properties of the fiber, and does not affect its processing performance and mechanical properties .
  • a method for preparing polyester FDY yarn the steps of which are basically the same as in Example 1, except that in step (1), 1,2-dodecyldiol is used instead of 2,2,3,4,5, 5-Hexamethyl-3,4-hexanediol, prepared polyester FDY filament monofilament fineness 0.5dtex, breaking strength 3.6cN/dtex, breaking elongation 36.0%, network degree 18 /m, the linear density deviation rate is 0.9%, the breaking strength CV value is 4.0%, the breaking elongation CV value is 7.5%, the boiling water shrinkage rate is 7.0%, and the bundle of filaments contains 288 modified polyester FDY monofilaments; Under the same test conditions as in Example 1, the dyeing rate at a temperature of 120°C was 85.6%, and the K/S value was 21.52.
  • Example 1 Compared with Example 1, it can be found that the tert-butyl group in 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is longer than that in 1,2-dodecyldiol. Branched-chain substituents are more conducive to improving the dyeing performance of fibers, mainly because on the one hand, the tert-butyl group in 2,2,3,4,5,5-hexamethyl-3,4-hexanediol increases The free volume is more of a void free volume, and the free volume of the long-chain branched substituents in 1,2-dodecyldiol is increased by the slit free volume, on the other hand, 2,2,3, The rigidity of the tert-butyl group in 4,5,5-hexamethyl-3,4-hexanediol is greater than the long-chain branched substituents in 1,2-dodecyldiol, which reduces the en
  • a method for preparing polyester FDY yarn the steps are basically the same as in Example 1, except that in step (1), 1,6-hexanediol is used instead of dimethyl silicon glycol,
  • the monofilament fineness of ester FDY yarn is 0.5dtex
  • the breaking strength is 3.6cN/dtex
  • the elongation at break is 35.0%
  • the network degree is 18 pieces/m
  • the linear density deviation rate is 0.9%
  • the breaking strength CV value is 4.0%.
  • the elongation at break CV value is 7.5%
  • the shrinkage in boiling water is 7.0%
  • the upper dyeing rate was 85.7%
  • the K/S value was 21.44. .
  • Example 1 Compared with Example 1, it can be found that the introduction of silicon-containing diol in the main chain makes the polymer main chain contain -Si-O-Si- bonds, which makes the gap between silicon and oxygen bonds larger, and the internal rotation activation energy is lower, which is beneficial to The atoms rotate freely, thereby increasing the free volume of the cavity. Compared with long-chain branched substituents, it is more conducive to improving the dyeing performance of the fiber.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the Ca(NO 3 ) 2 aqueous solution with a concentration of 0.5 mol% and the Sb 2 O 3 solution with a concentration of 5 mol% are mixed uniformly.
  • the solvent of the Sb 2 O 3 solution is oxalic acid, and the Ca 2 in the mixed solution
  • the molar ratio of + to Sb 3+ is 1:100;
  • Aqueous ammonia with a concentration of 2 mol/L is added dropwise until the pH of the mixed solution is 10 to obtain a precipitated product, and then the precipitated product is washed and dried at a drying temperature of 110° C. for 2 hours;
  • 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is obtained, in which The mass ratio of dimethyl di-tert-butyl ethylene, hydrogen peroxide solution and palladium acetate is 1:1.8:0.015, and the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is as follows Formula (I) shown;
  • esterification reaction After adding doped and modified Sb 2 O 3 powder, titanium dioxide and trimethyl phosphate to mix well, the esterification reaction is carried out under normal pressure in a nitrogen atmosphere. The temperature of the esterification reaction is 250°C.
  • the polycondensation reaction in the low-vacuum stage starts under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure 490 Pa within 30 minutes, the reaction temperature is 250 °C, the reaction time is 30 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 270°C, the reaction time is 50min, and a modified polyester with a number average molecular weight of 25,000 and a molecular weight distribution index of 1.8 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 295°C, cooling temperature 22°C, network pressure 0.30MPa, speed of one roller 2700m/min, temperature of one roller 90°C, speed of two rollers 4200m/min, temperature of two rollers 140°C, coil The winding speed is 4120m/min.
  • the monofilament fineness of the easily-produced porous modified polyester fiber finally obtained was 0.32dtex, the breaking strength was 3.55cN/dtex, the elongation at break was 27.0%, the network degree was 13 pieces/m, and the linear density deviation rate was 0.95 %, the breaking strength CV value is 4.8%, the breaking elongation CV value is 8.8%, the boiling water shrinkage is 6.9%, a bundle of silk contains 150 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 92.8%, and the K/S value was 25.43.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the Ba(NO 3 ) 2 aqueous solution with a concentration of 1.0 mol% and the Sb 2 O 3 solution with a concentration of 10 mol% are mixed uniformly.
  • the solvent of the Sb 2 O 3 solution is oxalic acid, and the mixed solution is Ba 2
  • the molar ratio of + to Sb 3+ is 3:100;
  • 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is obtained, in which The mass ratio of dimethyl di-tert-butyl ethylene, hydrogen peroxide solution and palladium acetate is 1:1.6:0.015, and the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is as follows Formula (I) shown;
  • the pressure is 0.25 MPa
  • the temperature of the esterification reaction is 255°C, when the ester
  • the molar ratio of terephthalic acid to ethylene glycol is 1:2.0, tetramethyldisiloxanediol and 2,2 ,3,4,5,5-Hexamethyl-3,4-hexanediol
  • the sum of the added amount is 5mol% of the added amount of terephthalic acid, tetramethyldisiloxanediol and 2,2,
  • the molar ratio of 3,4,5,5-hexamethyl-3,4-hexanediol is 1:1
  • the amount of trimethyl phosphite added is 0.05wt% of the amount of terephthalic acid added
  • the doping change The amount of Sb 2 O 3 added is 0.0125% by weight of terephthalic acid, and the amount of
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure within 50 minutes, the reaction temperature is 260 °C, the reaction time is 30 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 270 °C, the reaction time is 50min, and a modified polyester with a number average molecular weight of 26000 and a molecular weight distribution index of 1.9 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 290°C, cooling temperature 20°C, network pressure 0.25MPa, speed of one roller 2500m/min, temperature of one roller 85°C, speed of two rollers 4100m/min, temperature of two rollers 132°C, roll The winding speed is 4000m/min.
  • the monofilament fineness of the easily-produced porous modified polyester fiber finally obtained was 0.4 dtex, the breaking strength was 3.7 cN/dtex, the elongation at break was 30.0%, the network degree was 15 pcs/m, and the linear density deviation rate was 0.9 %, breaking strength CV value is 4.5%, breaking elongation CV value is 8.0%, boiling water shrinkage is 6.6%, a bundle of silk contains 220 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 90.1%, and the K/S value was 23.90.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure within 35 minutes, the reaction temperature is 255 °C, the reaction time is 35 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 270°C, the reaction time is 40min, and a modified polyester with a number average molecular weight of 27,000 and a molecular weight distribution index of 2.0 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 295°C, cooling temperature 20°C, network pressure 0.22MPa, one-roll speed 2500m/min, one-roll temperature 85°C, two-roll speed 4200m/min, two-roller temperature 130°C, roll The winding speed is 3940m/min.
  • the monofilament fineness of the easily-produced porous modified polyester fiber finally obtained was 0.3 dtex, the breaking strength was 3.5 cN/dtex, the elongation at break was 26.0%, the network degree was 12 pcs/m, and the linear density deviation rate was 1.0 %, the breaking strength CV value is 5.0%, the breaking elongation CV value is 9.0%, the boiling water shrinkage is 6.0%, and a bundle of silk contains 145 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 92.5%, and the K/S value was 25.32.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the mass ratio of dimethyl di-tert-butyl ethylene, hydrogen peroxide solution and palladium acetate is 1:1.7:0.015, the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol As shown in formula (I);
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure of 490 Pa within 40 minutes, the reaction temperature is 256 °C, the reaction time is 40 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to an absolute pressure of 90Pa, the reaction temperature is 275°C, the reaction time is 90min, and a modified polyester with a number average molecular weight of 27,000 and a molecular weight distribution index of 2.0 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 295°C, cooling temperature 22°C, network pressure 0.20MPa, one-roller speed 2700m/min, one-roller temperature 80°C, two-roller speed 4200m/min, second-roller temperature 125°C, coil
  • the winding speed is 3940m/min.
  • the monofilament fineness of the easy-to-dye porous modified polyester fiber finally obtained was 0.37 dtex, the breaking strength was 3.6 cN/dtex, the elongation at break was 29.0%, the network degree was 14 pcs/m, and the linear density deviation rate was 0.93 %, the breaking strength CV value is 4.6%, the breaking elongation CV value is 8.3%, the boiling water shrinkage is 6.4%, a bundle of silk contains 200 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 91.0%, and the K/S value was 24.63.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • the aqueous solution and the Sb 2 O 3 solution with a concentration of 8 mol% are mixed evenly.
  • the solvent of the Sb 2 O 3 solution is oxalic acid, and the molar ratio of M x+ to Sb 3+ in the mixed solution is 2.5:100;
  • 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is obtained, in which The mass ratio of dimethyl di-tert-butyl ethylene, aqueous hydrogen peroxide and palladium acetate is 1:1.9:0.015, and the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol is as follows Formula (I) shown;
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure within 490 Pa, the reaction temperature is 254 °C, the reaction time is 45 minutes, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 282°C, the reaction time is 70min, and a modified polyester with a number average molecular weight of 28500 and a molecular weight distribution index of 2.0 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 285°C, cooling temperature 17°C, network pressure 0.30MPa, speed of one roller 2300m/min, temperature of one roller 80°C, speed of two rollers 4000m/min, temperature of two rollers 125°C, coil The winding speed is 3940m/min.
  • the monofilament fineness of the easily-produced porous modified polyester fiber finally obtained was 0.33dtex, the breaking strength was 3.55cN/dtex, the elongation at break was 28.0%, the network degree was 13 pieces/m, and the linear density deviation rate was 0.95 %, the breaking strength CV value is 4.7%, the breaking elongation CV value is 8.6%, the boiling water shrinkage is 6.6%, a bundle of silk contains 180 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 91.5%, and the K/S value was 25.00.
  • a preparation method of easily dyed porous modified polyester fiber the specific steps are as follows:
  • Aqueous ammonia with a concentration of 2 mol/L is added dropwise to a pH of 9 to obtain a precipitated product, and then the precipitated product is washed and dried at a drying temperature of 108°C and a time of 2.5h;
  • the mass ratio of dimethyl di-tert-butyl ethylene, hydrogen peroxide solution and palladium acetate is 1:1.8:0.015, the structural formula of 2,2,3,4,5,5-hexamethyl-3,4-hexanediol As shown in formula (I);
  • the polycondensation reaction in the low-vacuum stage is started under negative pressure.
  • the pressure in this stage is steadily pumped from normal pressure to absolute pressure in 495 Pa, the reaction temperature is 260 °C, the reaction time is 50 min, and then continue to vacuum Carry out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to 90Pa absolute pressure, the reaction temperature is 278°C, the reaction time is 65min, and a modified polyester with a number average molecular weight of 28200 and a molecular weight distribution index of 2.2 is prepared;
  • the easily dyeable porous modified polyester fiber is prepared from the modified polyester melt by metering, spinneret extrusion, cooling, oiling, stretching, heat setting and winding.
  • the parameters of the FDY process are: spinning temperature 295°C, cooling temperature 20°C, network pressure 0.25MPa, speed of one roller 2700m/min, temperature of one roller 80°C, speed of two rollers 4050m/min, temperature of two rollers 135°C, coil The winding speed is 4120m/min.
  • the monofilament fineness of the finally-produced easily dyeable porous modified polyester fiber is 0.32dtex, the breaking strength is 3.52cN/dtex, the elongation at break is 26.5%, the network degree is 13 pieces/m, and the linear density deviation rate is 0.82 %, the breaking strength CV value is 4.9%, the breaking elongation CV value is 8.8%, the boiling water shrinkage is 6.2%, a bundle of silk contains 160 modified polyester FDY monofilaments; its temperature at 120 °C The uptake rate was 92.0%, and the K/S value was 25.23.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明涉及一种易染多孔改性聚酯纤维及其制备方法,采用多孔喷丝板按FDY工艺由改性聚酯熔体制得易染多孔改性聚酯纤维;改性聚酯的制备方法为:将对苯二甲酸、乙二醇、主链含硅的二元醇、2,2,3,4,5,5-六甲基-3,4-己二醇和金属氧化物掺杂改性的Sb 2O 3粉体混合均匀后先后进行酯化反应和缩聚反应;主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如(I)制得的易染多孔改性聚酯纤维的上染率和K/S值高。本发明的方法工艺简单,最终制得的改性聚酯纤维染色性能好,质量好。

Description

易染多孔改性聚酯纤维及其制备方法 技术领域
本发明属于改性聚酯纤维技术领域,涉及一种易染多孔改性聚酯纤维及其制备方法。
背景技术
聚对苯二甲酸乙二醇酯(PET纤维或聚酯纤维)纤维具有断裂强度和弹性模量高、回弹性适中、热定型性能优异、耐热耐光性好以及耐酸耐碱耐腐蚀性好等一系列优良性能,且其织物还具有抗皱免烫和挺括性好等优点,因而被广泛应用于服装、家纺等领域。
多孔聚酯纤维及其加工成的产品具有手感好、立体感强和风格奇特等特点,在各个领域中的到了广泛的应用,特别适用于制作网球服、长筒袜或医疗绷带等高性能纺织品,是一种很有发展前途的纤维。
然而由于PET的结晶度高,结构致密,且分子链上没有与染料相结合的官能团,致使染料分子很难进入纤维内部,染色困难,现有的多孔PET纤维无法满足人们对鲜艳靓丽、风格独特的织物的需求。造成PET染色困难的原因为:PET属于对称性的直链大分子,分子链不含有侧链基团,规整性非常好,它的主链含有刚性的苯环和柔性的烃基,而直接与苯环相连接的酯基与苯环又构成了刚性的共轭体系,从而制约了其柔性链段的自由旋转。这种结构增加了分子链段运动的壁垄,导致PET的玻璃化转变温度较高,需要在很高的温度条件下促进染料分子向纤维内部的扩散,完成染色步骤。因此,通常的PET纤维的染色一般是在高温高压的情况下选择分散染料进行染色,当温度达到PET纤维的玻璃化温度以上时,PET纤维聚合物分子间空隙增大,但其自由体积增加的程度小,染色速率不高,高温高压法所带来的能耗高以及上染率低是现在面临的主要问题。另外,PET纤维熔体粘度较高,不利于加工。
另外,现阶段,聚酯合成过程中常采用的催化剂为锑系催化剂,市面上常见的锑系催化剂如Sb 2O 3在聚酯合成过程中的添加量较大,锑系催化剂的添加量较大对环境产生的影响也较大,不利于聚酯的环保生产,同时锑系催化剂在缩聚反应中会转化为锑单质,使聚酯色泽发灰亮度降低,锑系催化剂添加量越大,对聚酯的色泽和质量等影响越大,但添加量小的锑系催化剂无法对参与聚酯合成的所有原料的反应进行催化,无法满足聚酯生产的需要。
因此,研究一种染色性能好且质量好的易染多孔改性聚酯纤维极具现实意义。
发明内容
本发明的目的是为了克服上述现有技术中存在的问题,提供一种染色性能好且质量好的易染多孔改性聚酯纤维及其制备方法。
为了达到上述目的,本发明采用的技术方案为:
易染多孔改性聚酯纤维的制备方法,采用多孔喷丝板按FDY工艺由改性聚酯熔体制得易染多孔改性聚酯纤维;
所述多孔喷丝板的孔数为100以上;所述改性聚酯的制备方法为:将对苯二甲酸、乙二醇、主链含硅的二元醇、2,2,3,4,5,5-六甲基-3,4-己二醇和掺杂改性的Sb 2O 3粉体混合均匀后先后进行酯化反应和缩聚反应;
主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇;
本发明通过在改性聚酯中引入主链含硅的二元醇链段,显著提升了聚酯的空洞自由体积;分散染料是一类分子比较小且结构上不带水溶性基团的染料,其大多以颗粒形式存在,粒径在几百纳米到一微米之间;本发明改性聚酯开始染色时,随着温度的不断提高,由于聚酯大分子链中含有-Si-O-Si-键,硅氧键较碳氧键长,内旋转活化能较低,先于含碳氧键的分子链开始运动,当染浴温度需提高到120~130℃,含有硅氧键的大分子链运动的剧烈程度大于只含碳氧键分子链,同时由于空洞自由体积更大,含有硅氧键的大分子链形成的空洞自由体积比只含碳氧键分子链形成的自由体积效率更高,因此颗粒状染料向纤维内部的扩散速率提升显著,染料小分子也更容易渗透到改性聚酯大分子内部,对纤维的染色等产生积极的影响,可降低染色温度,缩短染色的时间,减少能耗,使多孔改性聚酯纤维容易染色;
2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如下:
Figure PCTCN2019113852-appb-000001
本发明使用2,2,3,4,5,5-六甲基-3,4-己二醇对聚酯进行改性,2,2,3,4,5,5-六甲基-3,4-己二醇能够显著增大聚酯的空间自由体积,特别是2,2,3,4,5,5-六甲基-3,4-己二醇中叔丁基的存在会引起主链活动性的变化,从而改变了链单元间的相互作用力,分子链单元间的距离亦会发生相应的改变,增大聚酯的空洞自由体积;同时由于空洞自由体积较狭缝自由体积具有更大的有效空间尺寸,更利于阳离子染料渗入纤维内部,因此空洞自由体积的增大能够显著降低染料分子渗透进入聚酯内部的难度,提高聚酯的染色性能(上染率),降低染色温度,缩短染色的时间,减少能耗;
Sb 2O 3掺杂改性的过程为:首先将含金属离子M x+的溶液与含Sb 3+的溶液混合均匀,然后滴加沉淀剂至混合液 的pH值为9~10,最后煅烧沉淀产物并粉碎;金属离子M x+为Mg 2+、Ca 2+、Ba 2+和Zn 2+中的一种以上。
本发明通过将含金属离子M x+的溶液与含Sb 3+的溶液先混合均匀再沉淀最后煅烧从而实现了具有一定催化活性的金属氧化物与三氧化二锑的掺杂共混,金属氧化物为MgO、CaO、BaO和ZnO中的一种以上,本发明的金属氧化物与三氧化二锑掺杂后,金属氧化物通过抑制三氧化二锑的晶化和立方晶三氧化二锑晶粒的长大以及同晶取代锑而进入锑的晶格位,使三氧化二锑晶体产生缺陷,晶体形态产生变化,晶粒尺寸变小,提高了三氧化二锑催化剂的比表面积S g,同时金属还会富集在部分三氧化二锑晶体表面,使三氧化二锑单位表面积上的活性r s增大,比表面积S g和单位表面积上的活性r s愈大,催化剂的催化活性愈高,因此本发明能够在低Sb 2O 3添加量下实现聚酯的催化合成,有利于环保生产和保证合成聚酯的质量。
作为优选的技术方案:
如上所述的易染多孔改性聚酯纤维的制备方法,所述2,2,3,4,5,5-六甲基-3,4-己二醇的合成方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为10~15%的双氧水溶液,在温度为70~75℃的条件下反应3~4h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,所述二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.5~2.0:0.015。
如上所述的易染多孔改性聚酯纤维的制备方法,所述含金属离子M x+的溶液的浓度为0.5~1.0mol%,溶剂为水,溶液中的阴离子为NO 3 -;所述含Sb 3+的溶液为浓度5~10mol%的Sb 2O 3的溶液,溶剂为草酸;所述沉淀剂为浓度2mol/L的氨水;沉淀开始时,混合溶液中金属离子M x+与Sb 3+的摩尔比为1~3:100;Sb 2O 3是目前性价比最高的聚酯催化剂,本发明通过渗入金属氧化物抑制三氧化二锑(Sb 2O 3)的晶化和立方晶三氧化二锑晶粒的长大,同时金属离子M x+会取代锑而进入锑的晶格位,使得三氧化二锑晶体产生缺陷,以提高三氧化二锑的催化活性;如掺杂金属氧化物量过少(摩尔比过低),对三氧化二锑晶粒影响偏低,过多(摩尔比过高),会使得催化剂的主体Sb 3+下降幅度偏大,均对提高三氧化二锑催化活性不利;
所述煅烧前对沉淀产物进行洗涤和干燥,干燥的温度为105~110℃,时间为2~3h;所述煅烧的过程为:首先升温至400℃后保温2~3h,然后升温至900℃后保温1~2h,最后在空气中冷却;Sb 2O 3在掺杂改性后进行粉碎得到平均粒径小于0.5微米的粉体。
如上所述的易染多孔改性聚酯纤维的制备方法,所述改性聚酯的制备步骤如下:
(1)酯化反应;
将对苯二甲酸、乙二醇、主链含硅的二元醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、消光剂和稳定剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;
(2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~282℃,反应时间为50~90min。
如上所述的易染多孔改性聚酯纤维的制备方法,所述对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0,所述主链含硅的二元醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的4~6mol%,所述主链含硅的二元醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1~2:1~2;
2,2,3,4,5,5-六甲基-3,4-己二醇的添加量可根据实际情况进行调整,但调整幅度不宜过大,添加量过多,对聚酯分子结构的规整性破坏太大,对聚酯纤维的结晶度以及力学性能影响过大,不利于纤维的生产和应用;添加量过少,对空洞自由体积的增大不明显即对染色性能影响不大;
本发明的主链含硅的二元醇的添加量优选该范围既能保证改性后的纤维具有良好的力学性能和结晶度,同时还能显著提高纤维的染色性能,有利于纤维的生产和应用,主链含硅的二元醇的添加量可根据实际需要适当调整,但不宜太过,添加量过高对聚酯大分子结构的规整性破坏太大,对纤维的结晶度以及力学性能影响过大,不利于纤维的生产和应用,过低则染色效果提升不明显;
所述掺杂改性的Sb 2O 3粉体、消光剂和稳定剂的加入量分别为对苯二甲酸加入量的0.012~0.015wt%、0.20~0.25wt%和0.01~0.05wt%。现有技术中聚酯合成过程中Sb 2O 3的加入量通常为对苯二甲酸加入量的0.02~0.04wt%,锑系催化剂的加入量高,这主要是由于未掺杂的Sb 2O 3单位表面积上的活性r s低且比表面积S g小,因此Sb 2O 3整体的催化活性较低,本发明通过对Sb 2O 3进行掺杂改性,提高了Sb 2O 3的活性,因此显著降低了聚酯合成过程中Sb 2O 3的添加量。
如上所述的易染多孔改性聚酯纤维的制备方法,所述消光剂为二氧化钛,所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯。
如上所述的易染多孔改性聚酯纤维的制备方法,改性聚酯的数均分子量为25000~30000,分子量分布指数为1.8~2.2。
如上所述的易染多孔改性聚酯纤维的制备方法,所述多孔喷丝板的孔数为144~288;所述FDY工艺的流程为:计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕;
所述FDY工艺的参数为:纺丝温度285~295℃,冷却温度17~22℃,网络压力0.20~0.30MPa,一辊速度2300~2700m/min,一辊温度80~90℃,二辊速度4000~4200m/min,二辊温度125~140℃,卷绕速度3940~4120m/min。
本发明还提供采用如上所述的易染多孔改性聚酯纤维的制备方法制得的易染多孔改性聚酯纤维,一束丝中含100根以上改性聚酯FDY单丝;
所述改性聚酯的分子链包括对苯二甲酸链段、乙二醇链段、主链含硅的二元醇链段和2,2,3,4,5,5-六甲基-3,4-己二醇链段;所述改性聚酯中分散有所述掺杂改性的Sb 2O 3粉体。
作为优选的技术方案
如上所述的易染多孔改性聚酯纤维,易染多孔改性聚酯纤维的单丝纤度为0.3~0.5dtex,断裂强度≥3.5cN/dtex,断裂伸长率为30.0±4.0%,网络度为15±3个/m,线密度偏差率≤1.0%,断裂强度CV值≤5.0%,断裂伸长CV值≤9.0%,沸水收缩率为6.5±0.5%,一束丝中含144~288根改性聚酯FDY单丝;本发明改性后的纤维的品质和质量相比于现有技术未降低,改性后的纤维仍具有良好的力学性能和可纺性等;
易染多孔改性聚酯纤维在120℃的温度条件下的上染率为87.3~92.8%,K/S值为22.35~25.43。在测试条件相同的情况下,对比样在120℃的温度条件下的上染率为83.7%,K/S值为20.36,对比样与本发明的易染多孔改性聚酯纤维的区别仅在于其材质为普通聚酯。
发明机理:
本发明通过在聚酯合成过程中添加主链含硅的二元醇、2,2,3,4,5,5-六甲基-3,4-己二醇和掺杂改性的Sb 2O 3粉体,从而在保证聚酯纤维质量的基础上显著提高了聚酯的染色性能,具体机理为:
(一)对于掺杂改性的Sb 2O 3粉体:
本发明的掺杂改性的Sb 2O 3粉体在聚酯合成过程中主要起到催化剂的作用,现有技术中的聚酯催化剂主要以锑化合物为主,如三氧化二锑、乙二醇锑以及醋酸锑,工业上聚酯合成中锑的加入量大于200ppm,由于锑是重金属,时代的进步,对于锑催化剂的制约越来越严,虽然钛系催化有所应用,但由于色泽以及活性控制等多方面的原因,仍无法在短时间内取代锑系。
催化剂的催化活性与催化剂的比表面积S g、内表面利用率f以及单位表面积上的活性r s成正比,对于组分一定的催化剂,其催化活性取决于该催化剂的比表面积S g和内表面利用率f,催化剂单位表面积上的活性r s一定时,比表面积愈大,催化活性愈高。
本发明通过先溶液共混再共沉淀再煅烧实现了具有一定催化缩聚反应活性的金属氧化物与三氧化二锑的掺杂共混,金属氧化物为MgO、CaO、BaO和ZnO中的一种以上,其价位与锑的价位存在一定的差异,离子半径与锑也存在一定的差异,这些差异使其能够改变三氧化二锑的晶面结构,从而影响相关性能。此外,MgO、CaO、BaO、ZnO均为白色晶体,作为聚酯催化剂不会带来色泽上的变化。
金属氧化物对三氧化二锑的影响主要体现在:一方面,金属氧化物会抑制三氧化二锑的晶化和立方晶三氧化二锑晶粒的长大,使三氧化二锑催化剂的比表面积S g提高,提高了三氧化二锑的催化活性;另一方面,金属会同晶取代锑而进入锑的晶格位,使三氧化二锑晶体产生缺陷,晶体形态产生变化,晶粒尺寸变小,比表面积S g增大,同时在部分晶体表面使金属富集,使其单位表面积上的活性r s提高,提高了三氧化二锑的催化活性。如仅将具有一定催化缩聚反应活性的金属氧化物与三氧化二锑简单物理共混,三氧化二锑的催化活性不会发生明显提高,因为简单物理共混,不会产生晶体缺陷,晶体形态不产生变化,晶粒尺寸保持不变,晶体的总表面积不变,对催化活性不会产生影响。
本发明通过对三氧化锑进行掺杂,在一程度上提高了三氧化锑的催化活性,三氧化锑的催化活性提高有利于降低三氧化锑的使用量,聚酯合成过程中,在缩聚工艺条件保持不变并且聚酯达到相同指标的情况下,采用金属氧化物对三氧化锑进行掺杂后,三氧化锑的使用量可减少30%以上,有效解决了目前三氧化锑存在的添加量大的问题,保证了生产聚酯的质量,同时能够满足聚酯生产的需要。
(二)对于聚酯分子链中引入的2,2,3,4,5,5-六甲基-3,4-己二醇链段和主链含硅的二元醇链段:
聚合物中的大分子链不是完全紧密的堆砌,在大分子链之间总是有空隙存在,这部分空隙体积即为自由体积。要使小分子渗透到高分子内部,高分子内或高分子间要有足够大的空隙,所以小分子的渗透率和扩散性与高分子结构中的空隙大小(即自由体积的尺寸)有关,在一定范围内,自由体积的尺寸越大,小分子的渗透率越高,扩散性越好。自由体积又分为空洞自由体积和狭缝自由体积,空洞自由体较狭缝自由体积具更大的空间尺寸,对于小分子 的渗透率的提升,空洞自由体积较狭缝自由体积效果更加明显。
自由体积的尺寸和类型主要取决于聚合物的结构,影响聚合物结构的主要因素为立体阻碍、侧基大小、侧基结构等。当聚合物主链上某一位置被侧基取代时,必然引起主链活动性的变化,从而改变了链与链间的相互作用力,链与链间的距离亦会发生相应的改变,结果导致内聚能和自由体积的变化,高分子侧链上的取代基的极性、大小和长短等对分子链的刚性、分子间的相互作用乃至聚合物结构的自由体积分数都有一定的影响,因此,取代基不同产生的效应不同,往往导致聚合物的渗透分离性能也各不相同。
对于乙二醇、丁二醇等二元醇直链分子,主链上的C原子处于一上一下呈锯齿形排列,当主链上某个亚甲基上的H原子被甲基(-CH 3)取代时,侧基上的C原子与主链C原子不在同一平面内,于是,中心C上的四个sp3杂化轨道分别与周围四个C原子上的空轨道重叠,形成四个完全相同的σ键,呈正四面体排列,四个碳原子分别位于正四面体的四个顶点,当甲基的三个氢进一步被甲基取代时,这时就相当于叔丁基取代,形成一个更大的四面体结构,这种呈正四面体形排列的分子链相对于呈锯齿形排列的分子链,空洞自由体积明显增大了很多,能够显著提高小分子的渗透率和扩散性;而当主链上某个亚甲基上的H原子被长支链取代基取代时,主要增大的是狭缝自由体积,增大幅度较小,对小分子的渗透率和扩散性的提升效果有限,同时由于长支链取代基的刚性较小,分子链之间容易发生缠结,不利于自由体积的增大。
本发明的2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如下:
Figure PCTCN2019113852-appb-000002
2,2,3,4,5,5-六甲基-3,4-己二醇中叔丁基的存在会引起主链活动性的变化,从而改变了链单元间的相互作用力,分子链单元间的距离亦会发生相应的改变,导致改性聚酯空洞自由体积的增大。与短支链取代基(如甲基、乙基等基团)相比,叔丁基占据了较大的空间位置,在分子链排列的方式上将获得更大的自由体积;与长支链取代基相比,一方面叔丁基增大的是空洞自由体积,而长支链取代基增大的是狭缝自由体积,另一方面叔丁基的刚性大于长支链取代基,减少了分子链之间的缠结,因而叔丁基较长支链取代基在分子链排列的方式上具有更多的自由体积。
本发明的主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,结构式分别如下:
Figure PCTCN2019113852-appb-000003
高分子链的刚性决定于分子链内旋转势垒的大小,主链结构不同,其中键角和键长不等或键接方式不同,刚性也各不相同,本发明引入主链含硅的二元醇后,高分子主链上含有-Si-O-Si-键,硅氧键间隙较大,内旋转活化能较低,有利于原子自由旋转,同时高分子主链上的Si原子与-CH 3连接,-CH 3垂直于Si-O-Si原子所在的平面,由于Si-C键比C-C键键长,导致-CH 3中的三个H呈撑开状态,-CH 3中的三个撑开的H原子可以自由旋转而使相邻的Si-O分子链段间距离变大,此外侧链的惰性甲基又阻碍了高分子的接近,因而高分子材料非常柔顺,空洞自由体积相对于未引入主链含硅的二元醇的高分子材料增大明显;而当高分子主链上的Si原子与长支链取代基连接时,主要增大的是狭缝自由体积,增大幅度较小,对小分子的渗透率和扩散性的提升效果有限,同时由于长支链取代基的刚性较小,分子链之间容易发生缠结,不利于自由体积的增大,主链含硅的二元醇的引入也同样使得改性聚酯的空洞自由体积增大。
空洞自由体积的增大将使水或其它分子如染料等更容易渗透到改性聚酯大分子内部,对改性聚酯的染色等产生积极的影响,可降低染色温度,缩短染色的时间,减少能耗,同时也提高了纤维的上染率。
有益效果:
(1)本发明的易染多孔改性聚酯纤维的制备方法,通过具有一定催化活性的金属氧化物对三氧化二锑的掺杂改性,提高了三氧化二锑比表面积S g和单位表面积上的活性r s,从而提高了三氧化二锑的催化活性,提高了聚合效率;进而能够在满足聚酯生产需要的同时降低合成聚酯时锑系催化剂的添加量,有效减少了其后制成纤维的锑排放,有利于实现环保生产;
(2)本发明的易染多孔改性聚酯纤维的制备方法,工艺简单,通过在聚酯聚酯中引入改性组分——2,2,3,4,5,5- 六甲基-3,4-己二醇,显著提高了聚酯纤维的染色性能;
(3)本发明的易染多孔改性聚酯纤维的制备方法,通过在聚酯中引入主链含硅的二元醇聚酯进行改性,降低了染色的温度,缩短了染色的时间,提高了纤维的上染率,降低能耗,同时增加了可纺性能;
(4)本发明的易染多孔改性聚酯纤维,染色性能优良,机械性能好,质量好,应用前景好。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
Figure PCTCN2019113852-appb-000004
实施例1
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度为0.8mol%的Mg(NO 3) 2水溶液与浓度为8mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中Mg 2+与Sb 3+的摩尔比为2:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为9得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为105℃,时间为2.5h;
(1.1.3)将干燥后的产物首先升温至400℃后保温2.5h,然后升温至900℃后保温1.5h,最后在空气中冷却后粉碎得到平均粒径为0.4微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为10%的双氧水溶液,在温度为72℃的条件下反应3h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:2.0:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为260℃,当酯化反应中的水馏出量达到理论值的95%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:1.2,二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的4mol%,二甲基硅二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1:2,磷酸三苯酯的加入量为对苯二甲酸加入量的0.03wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.015wt%,二氧化钛的加入量为对苯二甲酸加入量的0.20wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在40min内由常压平稳抽至绝对压力490Pa,反应温度为260℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力85Pa,反应温度为280℃,反应时间为90min,制得数均分子量为30000,分子量分布指数为2.2的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度285℃,冷却温度17℃,网络压力0.20MPa,一辊速度2300m/min,一辊温度80℃,二辊速度4000m/min,二辊温度125℃,卷绕速度3940m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.5dtex,断裂强度为3.8cN/dtex,断裂伸长率为34.0%,网络度为18个/m,线密度偏差率为0.8%,断裂强度CV值为4.0%,断裂伸长CV值为7.2%,沸水收缩率为7.0%,一束丝中含288根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为87.3%,K/S值为22.35。
对比例1
一种聚酯FDY丝的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)并未添加2,2,3,4,5,5-六甲基-3,4-己二醇和二甲基硅二醇,其制得的聚酯FDY丝单丝纤度为0.5dtex,断裂强度为3.7cN/dtex,断裂伸长率为35.0%,网络度为18个/m,线密度偏差率为0.8%,断裂强度CV值为4.1%,断裂伸长CV值为7.2%,沸水收缩率 为7.2%,一束丝中含288根改性聚酯FDY单丝;在与实施例1测试条件相同的情况下,其在120℃的温度条件下的上染率为83.7%,K/S值为20.36。
对比例2
一种聚酯FDY丝的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)并未添加2,2,3,4,5,5-六甲基-3,4-己二醇,其制得的聚酯FDY丝单丝纤度为0.5dtex,断裂强度为3.7cN/dtex,断裂伸长率为36.0%,网络度为18个/m,线密度偏差率为0.9%,断裂强度CV值为4.0%,断裂伸长CV值为7.5%,沸水收缩率为7.0%,一束丝中含288根改性聚酯FDY单丝;在与实施例1测试条件相同的情况下,其在120℃的温度条件下的上染率为85.8%,K/S值为21.37。
对比例3
一种聚酯FDY丝的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)并未添加二甲基硅二醇,其制得的聚酯FDY丝单丝纤度为0.5dtex,断裂强度为3.6cN/dtex,断裂伸长率为37.0%,网络度为18个/m,线密度偏差率为0.9%,断裂强度CV值为4.0%,断裂伸长CV值为7.5%,沸水收缩率为7.0%,一束丝中含288根改性聚酯FDY单丝;在与实施例1测试条件相同的情况下,其在120℃的温度条件下的上染率为85.9%,K/S值为21.28。
综合分析实施例1及对比例1~3可以发现,本发明通过添加2,2,3,4,5,5-六甲基-3,4-己二醇和二甲基硅二醇显著提升了纤维的染色性能,其中2,2,3,4,5,5-六甲基-3,4-己二醇和二甲基硅二醇相互协同,两者均能增大聚酯的空洞自由体积,当两者均起作用时其对染色性能的提高效果较好。此外,2,2,3,4,5,5-六甲基-3,4-己二醇和二甲基硅二醇的添加对纤维其他性能影响较小,并不影响其加工性能及机械性能。
对比例4
一种聚酯FDY丝的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)中采用1,2十二烷基二醇替代2,2,3,4,5,5-六甲基-3,4-己二醇,其制得的聚酯FDY丝单丝纤度为0.5dtex,断裂强度为3.6cN/dtex,断裂伸长率为36.0%,网络度为18个/m,线密度偏差率为0.9%,断裂强度CV值为4.0%,断裂伸长CV值为7.5%,沸水收缩率为7.0%,一束丝中含288根改性聚酯FDY单丝;在与实施例1测试条件相同的情况下,其在120℃的温度条件下的上染率为85.6%,K/S值为21.52。
与实施例1对比可以发现,2,2,3,4,5,5-六甲基-3,4-己二醇中的叔丁基相对于1,2十二烷基二醇中的长支链取代基更有利于提升纤维的染色性能,这主要是因为一方面2,2,3,4,5,5-六甲基-3,4-己二醇中的叔丁基增大的自由体积更多的是空洞自由体积,而1,2十二烷基二醇中的长支链取代基增大的自由体积更多的是狭缝自由体积,另一方面2,2,3,4,5,5-六甲基-3,4-己二醇中的叔丁基的刚性大于1,2十二烷基二醇中的长支链取代基,减少了分子链之间的缠结,因而2,2,3,4,5,5-六甲基-3,4-己二醇较1,2十二烷基二醇在聚酯分子链排列的方式上具有更多的自由体积,进而更有利于提升纤维的染色性能。
对比例5
一种聚酯FDY丝的制备方法,其步骤基本与实施例1相同,不同之处在于,步骤(1)中采用1,6-己二醇替代二甲基硅二醇,其制得的聚酯FDY丝单丝纤度为0.5dtex,断裂强度为3.6cN/dtex,断裂伸长率为35.0%,网络度为18个/m,线密度偏差率为0.9%,断裂强度CV值为4.0%,断裂伸长CV值为7.5%,沸水收缩率为7.0%,一束丝中含288根改性聚酯FDY单丝;在与实施例1测试条件相同的情况下,其在120℃的温度条件下的上染率为85.7%,K/S值为21.44。。
与实施例1对比可以发现,主链含硅的二元醇引入使得高分子主链上含有-Si-O-Si-键,使得硅氧键间隙较大,内旋转活化能较低,有利于原子自由旋转,从而增大了空洞自由体积,相对于长支链取代基更有利于提升纤维的染色性能。
实施例2
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度为0.5mol%的Ca(NO 3) 2水溶液与浓度为5mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中Ca 2+与Sb 3+的摩尔比为1:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为10得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为110℃,时间为2h;
(1.1.3)将干燥后的产物首先升温至400℃后保温2h,然后升温至900℃后保温1h,最后在空气中冷却后粉碎得到平均粒径为0.4微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量 浓度为11%的双氧水溶液,在温度为70℃的条件下反应4h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.8:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、二甲基二苯基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三甲酯混合均匀后,在氮气氛围中常压下进行酯化反应,酯化反应的温度为250℃,当酯化反应中的水馏出量达到理论值的94%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:1.2,二甲基二苯基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的6mol%,二甲基二苯基二硅氧烷二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为2:1,磷酸三甲酯的加入量为对苯二甲酸加入量的0.01wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.012wt%,二氧化钛的加入量为对苯二甲酸加入量的0.25wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30min内由常压平稳抽至绝对压力490Pa,反应温度为250℃,反应时间为30min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为270℃,反应时间为50min,制得数均分子量为25000,分子量分布指数为1.8的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度295℃,冷却温度22℃,网络压力0.30MPa,一辊速度2700m/min,一辊温度90℃,二辊速度4200m/min,二辊温度140℃,卷绕速度4120m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.32dtex,断裂强度为3.55cN/dtex,断裂伸长率为27.0%,网络度为13个/m,线密度偏差率为0.95%,断裂强度CV值为4.8%,断裂伸长CV值为8.8%,沸水收缩率为6.9%,一束丝中含150根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为92.8%,K/S值为25.43。
实施例3
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度为1.0mol%的Ba(NO 3) 2水溶液与浓度为10mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中Ba 2+与Sb 3+的摩尔比为3:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为9.5得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为105℃,时间为3h;
(1.1.3)将干燥后的产物首先升温至400℃后保温3h,然后升温至900℃后保温2h,最后在空气中冷却后粉碎得到平均粒径为0.5微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为12%的双氧水溶液,在温度为74℃的条件下反应4h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.6:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、四甲基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和亚磷酸三甲酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.25MPa,酯化反应的温度为255℃,当酯化反应中的水馏出量达到理论值的97%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:2.0,四甲基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的5mol%,四甲基二硅氧烷二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1:1,亚磷酸三甲酯的加入量为对苯二甲酸加入量的0.05wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.0125wt%,二氧化钛的加入量为对苯二甲酸加入量的0.22wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力495Pa,反应温度为260℃,反应时间为30min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为270℃,反应时间为50min,制得数均分子量为26000,分子量分布指数为1.9的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制 得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度290℃,冷却温度20℃,网络压力0.25MPa,一辊速度2500m/min,一辊温度85℃,二辊速度4100m/min,二辊温度132℃,卷绕速度4000m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.4dtex,断裂强度为3.7cN/dtex,断裂伸长率为30.0%,网络度为15个/m,线密度偏差率为0.9%,断裂强度CV值为4.5%,断裂伸长CV值为8.0%,沸水收缩率为6.6%,一束丝中含220根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为90.1%,K/S值为23.90。
实施例4
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度为0.6mol%的Zn(NO 3) 2水溶液与浓度为6mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中Zn 2+与Sb 3+的摩尔比为1.2:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为10得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为110℃,时间为2.5h;
(1.1.3)将干燥后的产物首先升温至400℃后保温2.5h,然后升温至900℃后保温1h,最后在空气中冷却后粉碎得到平均粒径为0.4微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为13%的双氧水溶液,在温度为74℃的条件下反应3.5h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.5:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、四甲基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中常压下进行酯化反应,酯化反应的温度为257℃,当酯化反应中的水馏出量达到理论值的95%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:1.5,四甲基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的6mol%,四甲基二硅氧烷二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1:1.5,磷酸三苯酯的加入量为对苯二甲酸加入量的0.03wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.013wt%,二氧化钛的加入量为对苯二甲酸加入量的0.25wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在35min内由常压平稳抽至绝对压力495Pa,反应温度为255℃,反应时间为35min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为270℃,反应时间为40min,制得数均分子量为27000,分子量分布指数为2.0的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度295℃,冷却温度20℃,网络压力0.22MPa,一辊速度2500m/min,一辊温度85℃,二辊速度4200m/min,二辊温度130℃,卷绕速度3940m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.3dtex,断裂强度为3.5cN/dtex,断裂伸长率为26.0%,网络度为12个/m,线密度偏差率为1.0%,断裂强度CV值为5.0%,断裂伸长CV值为9.0%,沸水收缩率为6.0%,一束丝中含145根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为92.5%,K/S值为25.32。
实施例5
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度为0.7mol%的Mg(NO 3) 2水溶液与浓度为8mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中Mg 2+与Sb 3+的摩尔比为2:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为10得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为110℃,时间为2.5h;
(1.1.3)将干燥后的产物首先升温至400℃后保温2.5h,然后升温至900℃后保温2h,最后在空气中冷却后粉碎得到平均粒径为0.5微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为14%的双氧水溶液,在温度为71℃的条件下反应3.5h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二 醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.7:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三苯酯混合均匀后,在氮气氛围中常压下进行酯化反应,酯化反应的温度为257℃,当酯化反应中的水馏出量达到理论值的94%时为酯化反应终点,其中;对苯二甲酸与乙二醇的摩尔比为1:1.6,二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的5mol%,二甲基硅二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为2:1.5,磷酸三苯酯的加入量为对苯二甲酸加入量的0.035wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.0135wt%,二氧化钛的加入量为对苯二甲酸加入量的0.20wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在40min内由常压平稳抽至绝对压力490Pa,反应温度为256℃,反应时间为40min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为275℃,反应时间为90min,制得数均分子量为27000,分子量分布指数为2.0的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度295℃,冷却温度22℃,网络压力0.20MPa,一辊速度2700m/min,一辊温度80℃,二辊速度4200m/min,二辊温度125℃,卷绕速度3940m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.37dtex,断裂强度为3.6cN/dtex,断裂伸长率为29.0%,网络度为14个/m,线密度偏差率为0.93%,断裂强度CV值为4.6%,断裂伸长CV值为8.3%,沸水收缩率为6.4%,一束丝中含200根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为91.0%,K/S值为24.63。
实施例6
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度均为0.8mol%的Mg(NO 3) 2水溶液与Ca(NO 3) 2水溶液按体积比1:1混合得到含金属离子M x+的水溶液,含金属离子M x+的水溶液与浓度为8mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中M x+与Sb 3+的摩尔比为2.5:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为10得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为105℃,时间为3h;
(1.1.3)将干燥后的产物首先升温至400℃后保温3h,然后升温至900℃后保温1.5h,最后在空气中冷却后粉碎得到平均粒径为0.4微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为15%的双氧水溶液,在温度为75℃的条件下反应3h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.9:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、二甲基二苯基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三甲酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为255℃,当酯化反应中的水馏出量达到理论值的95%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:1.7,二甲基二苯基二硅氧烷二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的5.5mol%,二甲基二苯基二硅氧烷二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1.5:1,磷酸三甲酯的加入量为对苯二甲酸加入量的0.04wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.014wt%,二氧化钛的加入量为对苯二甲酸加入量的0.25wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在45min内由常压平稳抽至绝对压力490Pa,反应温度为254℃,反应时间为45min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为282℃,反应时间为70min,制得数均分子量为28500,分子量分布指数为2.0的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制 得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度285℃,冷却温度17℃,网络压力0.30MPa,一辊速度2300m/min,一辊温度80℃,二辊速度4000m/min,二辊温度125℃,卷绕速度3940m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.33dtex,断裂强度为3.55cN/dtex,断裂伸长率为28.0%,网络度为13个/m,线密度偏差率为0.95%,断裂强度CV值为4.7%,断裂伸长CV值为8.6%,沸水收缩率为6.6%,一束丝中含180根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为91.5%,K/S值为25.00。
实施例7
一种易染多孔改性聚酯纤维的制备方法,具体步骤如下:
(1)制备改性聚酯;
(1.1)制备掺杂改性的Sb 2O 3
(1.1.1)将浓度均为0.5mol%的Mg(NO 3) 2水溶液、Ba(NO 3) 2水溶液与Ca(NO 3) 2水溶液按体积比1:1:1混合得到含金属离子M x+的水溶液,含金属离子M x+的水溶液与浓度为10mol%的Sb 2O 3的溶液混合均匀,Sb 2O 3的溶液的溶剂为草酸,混合液中金属离子M x+与Sb 3+的摩尔比为2:100;
(1.1.2)滴加浓度为2mol/L的氨水至混合液的pH值为9得到沉淀产物,然后对沉淀产物进行洗涤和干燥,干燥的温度为108℃,时间为2.5h;
(1.1.3)将干燥后的产物首先升温至400℃后保温2.5h,然后升温至900℃后保温2h,最后在空气中冷却后粉碎得到平均粒径为0.4微米的掺杂改性的Sb 2O 3粉体;
(1.2)合成2,2,3,4,5,5-六甲基-3,4-己二醇,方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为13.5%的双氧水溶液,在温度为73℃的条件下反应3.4h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,其中二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.8:0.015,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如式(Ⅰ)所示;
(1.3)酯化反应;
将对苯二甲酸、乙二醇、二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、二氧化钛和磷酸三甲酯混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为260℃,当酯化反应中的水馏出量达到理论值的94%时为酯化反应终点,其中对苯二甲酸与乙二醇的摩尔比为1:2.0,二甲基硅二醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的6mol%,二甲基硅二醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1:1,磷酸三甲酯的加入量为对苯二甲酸加入量的0.04wt%,掺杂改性的Sb 2O 3的加入量为对苯二甲酸加入量的0.014wt%,二氧化钛的加入量为对苯二甲酸加入量的0.25wt%;
(1.4)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在40min内由常压平稳抽至绝对压力495Pa,反应温度为260℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力90Pa,反应温度为278℃,反应时间为65min,制得数均分子量为28200,分子量分布指数为2.2的改性聚酯;
(2)采用多孔喷丝板按FDY工艺由改性聚酯熔体经计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕制得易染多孔改性聚酯纤维;FDY工艺的参数为:纺丝温度295℃,冷却温度20℃,网络压力0.25MPa,一辊速度2700m/min,一辊温度80℃,二辊速度4050m/min,二辊温度135℃,卷绕速度4120m/min。
最终制得的易染多孔改性聚酯纤维的单丝纤度为0.32dtex,断裂强度为3.52cN/dtex,断裂伸长率为26.5%,网络度为13个/m,线密度偏差率为0.82%,断裂强度CV值为4.9%,断裂伸长CV值为8.8%,沸水收缩率为6.2%,一束丝中含160根改性聚酯FDY单丝;其在120℃的温度条件下的上染率为92.0%,K/S值为25.23。

Claims (10)

  1. 易染多孔改性聚酯纤维的制备方法,其特征是:采用多孔喷丝板按FDY工艺由改性聚酯熔体制得易染多孔改性聚酯纤维;
    所述多孔喷丝板的孔数为100以上;所述改性聚酯的制备方法为:将对苯二甲酸、乙二醇、主链含硅的二元醇、2,2,3,4,5,5-六甲基-3,4-己二醇和掺杂改性的Sb 2O 3粉体混合均匀后先后进行酯化反应和缩聚反应;
    主链含硅的二元醇为二甲基硅二醇、二甲基二苯基二硅氧烷二醇或四甲基二硅氧烷二醇,2,2,3,4,5,5-六甲基-3,4-己二醇的结构式如下:
    Figure PCTCN2019113852-appb-100001
    Sb 2O 3掺杂改性的过程为:首先将含金属离子M x+的溶液与含Sb 3+的溶液混合均匀,然后滴加沉淀剂至混合液的pH值为9~10,最后煅烧沉淀产物并粉碎;金属离子M x+为Mg 2+、Ca 2+、Ba 2+和Zn 2+中的一种以上。
  2. 根据权利要求1所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述2,2,3,4,5,5-六甲基-3,4-己二醇的合成方法为:将醋酸钯和二甲基二叔丁基乙烯混合均匀后,加入质量浓度为10~15%的双氧水溶液,在温度为70~75℃的条件下反应3~4h,经冷却、结晶和精制得到2,2,3,4,5,5-六甲基-3,4-己二醇,所述二甲基二叔丁基乙烯、双氧水溶液和醋酸钯的质量比为1:1.5~2.0:0.015。
  3. 根据权利要求2所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述含金属离子M x+的溶液的浓度为0.5~1.0mol%,溶剂为水,溶液中的阴离子为NO 3 -;所述含Sb 3+的溶液为浓度5~10mol%的Sb 2O 3的溶液,溶剂为草酸;所述沉淀剂为浓度2mol/L的氨水;沉淀开始时,混合溶液中金属离子M x+与Sb 3+的摩尔比为1~3:100;
    所述煅烧前对沉淀产物进行洗涤和干燥,干燥的温度为105~110℃,时间为2~3h;所述煅烧的过程为:首先升温至400℃后保温2~3h,然后升温至900℃后保温1~2h,最后在空气中冷却;Sb 2O 3在掺杂改性后进行粉碎得到平均粒径小于0.5微米的粉体。
  4. 根据权利要求3所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述改性聚酯的制备步骤如下:
    (1)酯化反应;
    将对苯二甲酸、乙二醇、主链含硅的二元醇和2,2,3,4,5,5-六甲基-3,4-己二醇配成浆料,加入掺杂改性的Sb 2O 3粉体、消光剂和稳定剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;
    (2)缩聚反应;
    酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~282℃,反应时间为50~90min。
  5. 根据权利要求4所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0,所述主链含硅的二元醇和2,2,3,4,5,5-六甲基-3,4-己二醇的加入量之和为对苯二甲酸加入量的4~6mol%,所述主链含硅的二元醇与2,2,3,4,5,5-六甲基-3,4-己二醇的摩尔比为1~2:1~2,所述掺杂改性的Sb 2O 3粉体、消光剂和稳定剂的加入量分别为对苯二甲酸加入量的0.012~0.015wt%、0.20~0.25wt%和0.01~0.05wt%。
  6. 根据权利要求5所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述消光剂为二氧化钛,所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯。
  7. 根据权利要求6所述的易染多孔改性聚酯纤维的制备方法,其特征在于,改性聚酯的数均分子量为25000~30000,分子量分布指数为1.8~2.2。
  8. 根据权利要求1所述的易染多孔改性聚酯纤维的制备方法,其特征在于,所述多孔喷丝板的孔数为144~288;所述FDY工艺的流程为:计量、喷丝板挤出、冷却、上油、拉伸、热定型和卷绕;
    所述FDY工艺的参数为:纺丝温度285~295℃,冷却温度17~22℃,网络压力0.20~0.30MPa,一辊速度2300~2700m/min,一辊温度80~90℃,二辊速度4000~4200m/min,二辊温度125~140℃,卷绕速度3940~4120m/min。
  9. 采用如权利要求1~8任一项所述的易染多孔改性聚酯纤维的制备方法制得的易染多孔改性聚酯纤维,其特征是:一束丝中含100根以上改性聚酯FDY单丝;
    所述改性聚酯的分子链包括对苯二甲酸链段、乙二醇链段、主链含硅的二元醇链段和2,2,3,4,5,5-六甲基-3,4-己二醇链段;所述改性聚酯中分散有所述掺杂改性的Sb 2O 3粉体。
  10. 根据权利要求9所述的易染多孔改性聚酯纤维,其特征在于,易染多孔改性聚酯纤维的单丝纤度为0.3~0.5dtex,断裂强度≥3.5cN/dtex,断裂伸长率为30.0±4.0%,网络度为15±3个/m,线密度偏差率≤1.0%,断裂强度CV值≤5.0%,断裂伸长CV值≤9.0%,沸水收缩率为6.5±0.5%,一束丝中含144~288根改性聚酯FDY单丝;易染多孔改性聚酯纤维在120℃的温度条件下的上染率为87.3~92.8%,K/S值为22.35~25.43。
PCT/CN2019/113852 2018-12-27 2019-10-29 易染多孔改性聚酯纤维及其制备方法 WO2020134497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,322 US11142850B2 (en) 2018-12-27 2019-10-29 Easy-to-dye porous modified polyester fiber and preparing method thereof
JP2021537034A JP7066924B2 (ja) 2018-12-27 2019-10-29 染色しやすい改質ポリエステル繊維の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811614008.1 2018-12-27
CN201811614008.1A CN109735926B (zh) 2018-12-27 2018-12-27 易染多孔改性聚酯纤维及其制备方法

Publications (1)

Publication Number Publication Date
WO2020134497A1 true WO2020134497A1 (zh) 2020-07-02

Family

ID=66360262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113852 WO2020134497A1 (zh) 2018-12-27 2019-10-29 易染多孔改性聚酯纤维及其制备方法

Country Status (4)

Country Link
US (1) US11142850B2 (zh)
JP (1) JP7066924B2 (zh)
CN (1) CN109735926B (zh)
WO (1) WO2020134497A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735926B (zh) * 2018-12-27 2020-10-16 江苏恒力化纤股份有限公司 易染多孔改性聚酯纤维及其制备方法
CN111041651B (zh) * 2019-12-29 2021-08-13 江苏恒力化纤股份有限公司 一种绷带布的制备方法
CN113861401B (zh) * 2021-09-28 2023-06-02 江苏恒力化纤股份有限公司 一种提升聚对苯二甲酸乙二醇酯纤维染色性能的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119836A (zh) * 1993-12-22 1996-04-03 花王株式会社 烷氧基化催化剂和其制法及用其制备烷氧基化物的方法
KR20060076625A (ko) * 2004-12-29 2006-07-04 에스케이케미칼주식회사 티탄 화합물을 촉매로 사용하는 결정성 폴리에스테르의 제조방법
CN101139435A (zh) * 2006-09-08 2008-03-12 东丽纤维研究所(中国)有限公司 具有优异阻燃性能的聚酯及其制备方法
CN106283253A (zh) * 2016-08-31 2017-01-04 江苏恒力化纤股份有限公司 一种多孔聚酯纤维dty丝及其制备方法
CN106367835A (zh) * 2016-08-31 2017-02-01 江苏恒力化纤股份有限公司 一种聚酯纤维及其制备方法
CN108385186A (zh) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 一种聚酯poy纤维及其制备方法
CN109735926A (zh) * 2018-12-27 2019-05-10 江苏恒力化纤股份有限公司 易染多孔改性聚酯纤维及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2532843A1 (de) * 1975-07-23 1977-02-10 Bayer Ag Verfahren zum herstellen von filamentgarnen mit statistisch verteilten gerissenen einzelfilamenten
DE3166259D1 (en) * 1980-04-02 1984-10-31 Teijin Ltd A process for manufacturing a bulky flat yarn
US4699627A (en) * 1983-03-09 1987-10-13 Akzona Incorporated Indigo-dyeable polyester fibers and pretreatment of polyester to produce same
DE3887079T2 (de) * 1987-09-30 1994-08-11 Mitsubishi Rayon Co Blockcopolymer aus aromatischem Polyester und Polyorganosiloxan.
US4929698A (en) * 1988-06-14 1990-05-29 E. I. Du Pont De Nemours And Company New polyester yarns having pleasing aesthetics
DE4327371C2 (de) * 1993-08-14 1997-10-16 Hoechst Ag Webverfahren unter Einsatz von Fadenketten aus schlichtefreien Multifilamentglattgarnen, sowie danach hergestellte Gewebe
DE69509982T2 (de) * 1994-03-01 2000-01-27 Kuraray Co Mit dispergierfarbstoff faerbbare regenierte zellulosefaser und diese enthaltendes textilprodukt
US5559205A (en) * 1995-05-18 1996-09-24 E. I. Du Pont De Nemours And Company Sulfonate-containing polyesters dyeable with basic dyes
US20020037411A1 (en) * 2000-07-10 2002-03-28 Frankfort Hans R. Method of producing polymeric filaments
CH697009A5 (de) 2004-07-08 2008-03-14 Zeev Ofer Kristallisiertes Polyethylenterephthalat, welches Silizium enthält, und Verfahren zu dessen Herstellung.
CN106283262B (zh) * 2016-08-31 2018-09-14 江苏恒力化纤股份有限公司 一种多孔聚酯纤维fdy丝及其制备方法
CN106367935B (zh) 2016-10-25 2018-10-23 嘉兴新桥丝绸染整有限公司 一种用于丝绸面料的防霉装置
CN108130624B (zh) * 2017-12-14 2020-05-05 江苏恒力化纤股份有限公司 一种聚酯仿麻型异收缩复合丝及其制备方法
CN108071009B (zh) * 2017-12-14 2020-07-07 江苏恒力化纤股份有限公司 一种减少涤纶纱线毛羽的方法
CN108385194B (zh) * 2017-12-14 2019-12-24 江苏恒力化纤股份有限公司 一种染性聚酯fdy纤维及其制备方法
CN109735935B (zh) 2018-12-27 2020-08-14 江苏恒力化纤股份有限公司 船用涤纶缆绳的制备方法
CN109722729B (zh) * 2018-12-27 2020-08-14 江苏恒力化纤股份有限公司 带叔丁基侧基的己二醇改性聚酯纤维及其制备方法
CN109629017B (zh) 2018-12-27 2021-06-25 江苏恒力化纤股份有限公司 超亮光涤纶牵伸丝及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119836A (zh) * 1993-12-22 1996-04-03 花王株式会社 烷氧基化催化剂和其制法及用其制备烷氧基化物的方法
KR20060076625A (ko) * 2004-12-29 2006-07-04 에스케이케미칼주식회사 티탄 화합물을 촉매로 사용하는 결정성 폴리에스테르의 제조방법
CN101139435A (zh) * 2006-09-08 2008-03-12 东丽纤维研究所(中国)有限公司 具有优异阻燃性能的聚酯及其制备方法
CN106283253A (zh) * 2016-08-31 2017-01-04 江苏恒力化纤股份有限公司 一种多孔聚酯纤维dty丝及其制备方法
CN106367835A (zh) * 2016-08-31 2017-02-01 江苏恒力化纤股份有限公司 一种聚酯纤维及其制备方法
CN108385186A (zh) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 一种聚酯poy纤维及其制备方法
CN109735926A (zh) * 2018-12-27 2019-05-10 江苏恒力化纤股份有限公司 易染多孔改性聚酯纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, ZHIQIAN: "Study on the Pet Fiber Modified by Silicon Compound", CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I, no. 1, 31 January 2014 (2014-01-31), ISSN: 1674-0246, DOI: 20200121203750A *

Also Published As

Publication number Publication date
US20210246577A1 (en) 2021-08-12
CN109735926B (zh) 2020-10-16
JP2022513530A (ja) 2022-02-08
JP7066924B2 (ja) 2022-05-13
US11142850B2 (en) 2021-10-12
CN109735926A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2020134497A1 (zh) 易染多孔改性聚酯纤维及其制备方法
CN109735941B (zh) 超亮光涤纶预取向丝及其制备方法
US11248087B2 (en) Cationic dyeable polyester fiber and preparing method thereof
JP7053956B2 (ja) ウール調ポリエステル長繊維およびその製造方法
CN109706542B (zh) 一种阻燃聚酯纤维及其制备方法
JP7053960B2 (ja) 生分解可能なポリエステル繊維の製造方法
US11788212B2 (en) Semi-dull polyester drawn yarns and preparing method thereof
JP7059450B2 (ja) 染色、生分解しやすいポリエステルfdy糸及びその製造方法
US10961641B2 (en) Feather-like polyester fiber and preparing method thereof
CN109735927B (zh) 全消光涤纶低弹丝及其制备方法
US11352719B2 (en) Polyester yarn for industrial sewing thread and preparing method thereof
WO2021135079A1 (zh) 一种可降解聚酯纤维及其制备方法
CN109735928A (zh) 特斯林布及其制备方法
CN109735919B (zh) 带叔丁基侧基的庚二醇改性聚酯纤维及其制备方法
CN109722729B (zh) 带叔丁基侧基的己二醇改性聚酯纤维及其制备方法
CN109722733B (zh) 用于军用箱包的涤纶工业丝及其制备方法
CN109853074B (zh) 主链含硅的二元醇改性聚酯纤维及其制备方法
CN109930231B (zh) 涤纶遮阳布的制备方法
CN109735929B (zh) 带叔丁基侧基的二元酸改性聚酯纤维及其制备方法
CN117488430A (zh) 一种抗收缩聚酯纤维的制备方法
CN109666981B (zh) 涤纶多孔丝及其制备方法
CN109735932A (zh) 一种易染聚酯dty纤维及其制备方法
JPH05272012A (ja) カチオン染料可染性ポリエステル極細繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906030

Country of ref document: EP

Kind code of ref document: A1