WO2020133494A1 - 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板 - Google Patents

树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板 Download PDF

Info

Publication number
WO2020133494A1
WO2020133494A1 PCT/CN2018/125814 CN2018125814W WO2020133494A1 WO 2020133494 A1 WO2020133494 A1 WO 2020133494A1 CN 2018125814 W CN2018125814 W CN 2018125814W WO 2020133494 A1 WO2020133494 A1 WO 2020133494A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
prepreg
silicone rubber
curing agent
Prior art date
Application number
PCT/CN2018/125814
Other languages
English (en)
French (fr)
Inventor
唐军旗
李志光
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to PCT/CN2018/125814 priority Critical patent/WO2020133494A1/zh
Priority to CN201880047552.4A priority patent/CN111757911B/zh
Publication of WO2020133494A1 publication Critical patent/WO2020133494A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the invention relates to the technical field of packaging for electronic products, in particular to a resin composition for printed wiring boards and prepregs, laminates, metal foil-clad laminates and printed wiring boards prepared using the same.
  • PCBs printed circuit boards
  • Epoxy resin has excellent mechanical properties and processability, and is a commonly used matrix resin in the production of metal-clad laminates for printed circuit boards.
  • the epoxy resin-containing resin composition has excellent flexibility, chemical resistance, adhesiveness, etc.
  • its cured product usually has the problems of high water absorption and insufficient moisture and heat resistance, making it difficult to meet the performance requirements of high-end substrates.
  • the inventor of the present invention has unexpectedly found that by adding a specific content of silicone rubber to a resin composition containing an epoxy resin and a phenolic curing agent, not only can good heat resistance, low modulus, and low coefficient of thermal expansion be obtained
  • the prepregs, laminates and metal-clad laminates with specific characteristics can also suppress the phenomenon of pad cracking during PCB processing, thus completing the present invention.
  • An aspect of the present invention provides a resin composition
  • a resin composition comprising: an epoxy resin (A), a phenolic curing agent (B) and a silicone rubber (C), an epoxy resin (A) and a phenolic curing agent (A) and a phenolic curing agent (B)
  • the total weight of B) is 100 parts by weight
  • the amount of the silicone rubber (C) is 20 to 100 parts by weight, preferably 30 to 70 parts by weight.
  • the silicone rubber (C) is a polymer obtained by addition polymerization of a polysiloxane containing vinyl groups and a polysiloxane containing silicon hydrogen.
  • the surface of the silicone rubber (C) is coated with polymethylsilsesquioxane formed by crosslinking of siloxane bonds.
  • the silicone rubber (C) has a D50 particle size of 1-20 ⁇ m.
  • the phenolic curing agent (B) is a phenolic resin.
  • At least one of the epoxy resin (A) and the phenolic curing agent (B) contains an aralkyl or dicyclopentadiene structure.
  • the resin composition further includes an inorganic filler (D).
  • the amount of the inorganic filler (D) is 5 to 100 parts by weight, preferably 10 ⁇ 70 parts by weight, more preferably 15-60 parts by weight.
  • Another aspect of the present invention provides a prepreg including a base material and the above-mentioned resin composition attached to the base material by dipping or coating.
  • Another aspect of the present invention provides a laminate including at least one sheet of the above prepreg.
  • Another aspect of the present invention provides a metal foil-clad laminate including at least one sheet of the above prepreg and metal foil coated on one side or both sides of the prepreg.
  • Another aspect of the present invention provides a printed wiring board including at least one sheet of the above prepreg.
  • the resin composition of the present invention and the prepregs, laminates and metal foil-clad laminates made using the same have good heat resistance, low modulus and low coefficient of thermal expansion, which can suppress pad cracking during PCB processing The phenomenon.
  • the resin composition of the present invention contains epoxy resin (A), phenolic curing agent (B), and silicone rubber (C).
  • the epoxy resin (A) is not particularly limited as long as it is a compound containing at least two epoxy groups per molecule.
  • the epoxy resin may include: bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, bisphenol M type epoxy resin , Bisphenol P epoxy resin, bisphenol S epoxy resin, novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, brominated bisphenol A epoxy resin , Brominated novolac epoxy resin, trifunctional phenol epoxy resin, tetrafunctional phenol epoxy resin, naphthalene epoxy resin, naphthol novolac epoxy resin, phenoxy epoxy resin, biphenyl ring Oxygen resin, dicyclopentadiene epoxy resin, dicyclopentadiene novolac epoxy resin, aralkyl epoxy resin, aralkyl novolac epoxy resin, aralkyl naphthol novolac epoxy resin, Isocyanate-modified epoxy resin,
  • the phenolic curing agent (B) is not particularly limited, and it may be selected from organic compounds containing at least two phenol groups in the molecular structure, such as phenol resins, including phenol phenol resins, cresol phenol resins, naphthol phenol resins, and the like.
  • phenol resins including phenol phenol resins, cresol phenol resins, naphthol phenol resins, and the like.
  • Known phenolic curing agents for epoxy resin compositions can be selected, and can be one kind or a mixture of at least two kinds.
  • the resin composition of the present invention can have higher heat resistance and lower coefficient of thermal expansion.
  • the aralkyl group-containing epoxy resin may be selected from aralkyl type epoxy resins, aralkyl novolac type epoxy resins, and the like.
  • the epoxy resin containing a dicyclopentadienyl group may be selected from dicyclopentadiene type epoxy resins, dicyclopentadiene novolac type epoxy resins, and the like.
  • the aralkyl group-containing phenolic curing agent can be selected from aralkyl type phenol resins and the like.
  • the phenolic curing agent containing a dicyclopentadiene group can be selected from dicyclopentadiene-type phenol resins and the like.
  • the amount of epoxy resin and phenolic curing agent is not particularly limited, as long as the laminate and the metal foil-clad laminate can be fully cured under certain curing conditions.
  • the silicone rubber (C) that can be used in the present invention is not particularly limited, and it may be selected from polymer chains in which the main chain of the molecule is formed by alternating silicon atoms and oxygen atoms, and two organic groups are usually connected to the silicon atom.
  • the amount of silicone rubber (C) that can be used in the present invention is not particularly limited.
  • the amount of silicone rubber (C) in the resin composition is based on the total weight of epoxy resin (A) and phenolic curing agent (B) It may be 20 to 100 parts by weight based on 100 parts by weight, preferably 30 to 70 parts by weight. If the amount of silicone rubber is too large, there is a problem of dispersibility, which affects the heat resistance and mechanical properties of the resin composition, prepreg, laminate and metal-clad laminate. If the amount of silicone rubber is too small, the resin composition, prepreg, laminate and metal-clad laminate do not have the characteristics of low modulus and low coefficient of thermal expansion.
  • the silicone rubber (C) usable in the present invention is a polymer obtained by addition polymerization of a polysiloxane containing vinyl groups and a polysiloxane containing silicon hydrogen.
  • the surface of the silicone rubber (C) that can be used in the present invention is coated with polymethylsilsesquioxane formed by crosslinking of siloxane bonds. Coating with polymethylsilsesquioxane can reduce the cohesiveness of silicone rubber (C) and improve the dispersibility of silicone rubber (C) in the resin composition.
  • the average particle diameter (D50) of the silicone rubber (C) usable in the present invention may be 1 to 20 ⁇ m. If the D50 of the silicone rubber (C) is less than 1 ⁇ m, it is a sub-micron organic filler. Due to the large specific surface area, the cohesion between the silicone rubbers increases and it is very easy to agglomerate in the resin composition. If the D50 of the silicone rubber (C) is higher than 20 ⁇ m, it will cause the silicone rubber (C) to bond with epoxy resin and phenolic curing agent is not strong and easily fall off, thereby affecting the resin composition, prepreg, layer The heat resistance and mechanical properties of the pressure plate and metal-clad laminate.
  • the silicone rubber (C) that complies with the above-mentioned examples of commercially available products include Shin-Etsu Silicone, trade names KMP-597, KMP-598, KMP-600, KMP-601, KMP-605, and the like.
  • the resin composition according to the present invention further contains an inorganic filler (D).
  • an inorganic filler (D) is used in the resin composition of the present invention, the heat resistance of the resin composition and the laminate can be improved, and at the same time, the dimensional stability of the laminate and the metal-clad laminate can be improved and the coefficient of thermal expansion can be reduced. Can reduce costs.
  • the type of inorganic filler (D) is not limited, and can be selected from crystalline silica, fused silica, amorphous silica, spherical silica, hollow silica, aluminum hydroxide, magnesium hydroxide, One or more of boehmite, molybdenum oxide, zinc molybdate, titanium dioxide, zinc oxide, boron nitride, aluminum nitride, silicon carbide, aluminum oxide, composite silicon fine powder, glass powder, short glass fiber or hollow glass, etc. Species.
  • crystalline silica In order to make the resin composition have higher heat resistance, moisture heat resistance and dimensional stability, crystalline silica, fused silica, amorphous silica, spherical silica, hollow silica, hydrogen
  • aluminum oxide magnesium hydroxide, boehmite, boron nitride, aluminum nitride, silicon carbide, aluminum oxide, composite silicon fine powder, glass powder, short glass fiber or hollow glass, further preferably spherical two Silicon oxide.
  • the amount of the inorganic filler (D) may be 5 to 100 parts by weight, preferably 10 to 70 parts by weight, further It is preferably 15 to 60 parts by weight.
  • a coupling agent may be added for surface treatment.
  • the coupling agent is not limited, and it is generally selected from silane coupling agents.
  • the type of silane coupling agent is not limited. Examples include epoxy silane coupling agents, amino silane coupling agents, vinyl silane coupling agents, and styryl groups.
  • a wetting and dispersing agent may be added.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used in paint applications and the like.
  • Specific examples of the wetting and dispersing agent include, for example, BYK Corporation, trade names Disperbyk-110, Disperbyk-111, Disperbyk-180, Disperbyk-161, BYK-W996, BYK-W9010, BYK-W903, etc. Agent.
  • the resin composition of the present invention may further contain an accelerator (E) as needed.
  • the accelerator (E) is selected from curing accelerators that can promote epoxy resins and phenolic curing agents, which specifically include organic salts of metals such as copper, zinc, cobalt, nickel, manganese, imidazole and its derivatives, tertiary amines Etc., can be one or a combination of two or more.
  • various additives such as flame retardants, heat stabilizers, light stabilizers, antioxidants, lubricants, etc. may also be added to the resin composition as needed.
  • the resin composition of the present invention can be prepared by conventional methods in the art, such as dissolving, mixing, prepolymerizing, prereacting, stirring the epoxy resin (A), phenolic curing agent (B), and silicone rubber (C) Wait to prepare.
  • an organic solvent needs to be used, as long as the various resins can be completely dissolved without separation during mixing.
  • examples include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, and ethylenedioxide.
  • Alcohol-methyl ether diethylene glycol ether, diethylene glycol butyl ether and other ethers, acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketones, toluene, xylene , Aromatic toluene such as mesitylene, ethoxyethyl acetate, ethyl acetate and other esters, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl Nitrogen-containing solvents such as 2-pyrrolidone.
  • the above-mentioned solvents may be used alone, or two or more kinds may be mixed and used as necessary.
  • the prepreg of the present invention is formed of the resin composition of the present invention and the base material in a semi-cured state. Specifically, the prepreg is formed by a process in which the resin composition in the varnish state infiltrates the substrate, and after heating, the solvent is volatilized and converted into the semi-cured state.
  • the substrate according to the present invention is not particularly limited, and it can be selected from known substrates used for making various printed wiring board materials. Specifically, inorganic fibers (such as E glass, D glass, L glass, M glass, S glass, T glass, NE glass, Q glass, quartz and other glass fibers), organic fibers (such as polyimide, polyamide, polyester , Polyphenylene ether, liquid crystal polymer, etc.).
  • the form of the substrate is usually woven fabric, non-woven fabric, roving, staple fiber, fiber paper, etc.
  • the substrate according to the present invention is preferably glass fiber cloth.
  • the laminate of the present invention includes at least one sheet of the above prepreg.
  • the metal foil-clad laminate of the present invention includes at least one of the above prepregs and the metal foil covering one or both sides of the prepreg.
  • metal foil-clad laminates can be manufactured by laminating 1 to 20 sheets of prepreg and using a configuration in which metal foils such as copper and aluminum are disposed on one or both sides.
  • the present invention also provides a printed wiring board including at least one prepreg as described above.
  • the method for preparing the printed wiring board of the present invention is not particularly limited, and can be prepared by a known method.
  • Epoxy resin (A1) Biphenyl aralkyl type phenolic epoxy resin (NC-3000H, supplied by Nippon Kayaku Co., Ltd.)
  • Epoxy resin (A2) phenylaralkyl type phenolic epoxy resin (NC-2000, supplied by Nippon Kayaku Co., Ltd.)
  • Epoxy resin (A3) dicyclopentadiene novolac epoxy resin (HP-7200H, supplied by DIC Corporation)
  • Epoxy resin (A4) Bisphenol A epoxy resin ( 1055, provided by DIC Corporation)
  • Phenolic curing agent (B1) Biphenyl aralkyl phenolic resin (MEHC-7851H, supplied by Meiwa Chemical Co., Ltd.)
  • Phenolic curing agent (B2) phenyl aralkyl type phenolic resin (MEHC-7800H, supplied by Meiwa Chemical Industry Co., Ltd.)
  • Phenolic curing agent (B3) Novolac resin (HF-4M, supplied by Meiwa Chemical Co., Ltd.)
  • Silicone rubber (C1) KMP-600, D50 5 ⁇ m, surface covered with polymethylsilsesquioxane formed by crosslinking of siloxane bonds (manufactured by Shin-Etsu Silicone Company)
  • Silicone rubber (C4) KMP-597, D50 5 ⁇ m, the surface is not covered with polymethyl silsesquioxane (made by Shin-Etsu Silicone Co., Ltd.) formed by crosslinking of siloxane bonds.
  • Woven base material glass fiber cloth (1078 glass fiber cloth made by Nittobo Corporation, unit weight 47g/m 2 )
  • each component is calculated as a solid.
  • the epoxy resin, phenolic curing agent, silicone rubber, inorganic filler and accelerator are blended according to the mass parts shown in Tables 1 and 2, dissolved and diluted with propylene glycol methyl ether and methyl ethyl ketone to prepare a resin composition in the state of varnish. .
  • the resin composition in the varnish state is impregnated with 1078 glass fiber cloth made by Nitto Spinning, and it is heated and dried in a blast oven at 150 to 170°C for 5 to 7 minutes to change the resin composition in the varnish state to a semi-cured state.
  • the resin composition is controlled to a thickness of 90 ⁇ m, thereby manufacturing a prepreg.
  • the heat resistance (Tg, T300), modulus and coefficient of thermal expansion (CTE) in the plane direction were tested, and the test results are further described in the following examples Give detailed instructions and descriptions.
  • test methods for the physical property data in Table 1-2 are as follows:
  • Glass transition temperature (Tg) The copper foil clad laminate samples prepared in the examples and comparative examples were etched away from the copper foil, and a laminate with a length of 60 mm, a width of 8 to 12 mm, and a thickness of 0.81 mm was used as a sample Measured using a dynamic mechanical thermal analyzer (DMA) with a heating rate of 10°C/min. The result is the transition peak temperature of tan ⁇ in °C.
  • DMA dynamic mechanical thermal analyzer
  • T300 with copper take a metal-clad laminate with a length of 6.5mm, a width of 6.5mm, and a thickness of 0.846mm as a sample.
  • the sample is baked in a 105°C oven for 2 hours and then cooled to room temperature in a desiccator.
  • the thermal analysis mechanical method (TMA) is used for measurement.
  • the heating rate is 10°C/min.
  • the temperature is increased from room temperature to 300°C, and the constant temperature is maintained at 300°C.
  • the delamination time is the time from the constant temperature inflection point to the delamination.
  • the unit is min. For samples that begin to delaminate below 300 °C, record the temperature at the start of delamination in °C.
  • XY thermal expansion coefficient The copper clad laminate samples prepared in the examples and comparative examples were etched away from the copper foil, and a laminate with a length of 60 mm, a width of 4 mm, and a thickness of 0.18 mm was taken as the sample, and the glass fiber warp direction X direction and Y direction of glass fiber weft yarn. The sample was dried in an oven at 105°C for 1 hour and then cooled to room temperature in a desiccator. The thermal analysis mechanical method (TMA) was used for the measurement, with a temperature rise rate of 10°C/min, a temperature rise from room temperature to 300°C, and a thermal expansion coefficient in the plane direction from 50°C to 130°C in units of ppm/°C.
  • TMA thermal analysis mechanical method
  • Peel strength A metal foil-clad laminate with a length of 50 mm and a width of 50 mm is taken as a sample, and a sample strip with a metal foil width of 3.0 mm is prepared by etching on the sample with tape or other methods. Use a peeling tester or other equivalent equipment to apply pressure in the vertical direction at a speed of 50 mm/min to peel the metal foil off the laminate. The peel strength of the metal foil-clad laminate can be obtained in N/mm.
  • Flexural modulus The copper clad laminate samples prepared in the examples and comparative examples were etched away from the copper foil, and a laminate with a length of 76.2 mm, a width of 25.4 mm, and a thickness of 0.81 mm was used as a sample, and a material test was used Machine measurement, the span is 25.4mm, the test speed is 0.76mm/min, the unit is GPa.
  • Sample production the prepreg prepared from the upper and lower two resin compositions and the high Tg FR-4 sheet (Shengyi Technology S1000-2M) are processed into a via-in-pad (via under the pad) pad structure Four-layer PCB sample, and mount the LTCC ceramic device on the four-layer PCB.
  • Silicone rubber C1 15 120 A Inorganic filler D1 60 60 60 60 Accelerator E 0.5 0.5 0.5 Tg(°C) 175 140 175 T300 with copper (min) >60 10 >60 Coefficient of thermal expansion in X direction (ppm/°C) 15 18 20 Coefficient of thermal expansion in Y direction (ppm/°C) 15 18 20 Peel strength (N/mm) 1.0 0.5 1.0 Flexural modulus (GPa) 15 8 17 Pad cracking 3/3 3/3 3/3 3/3
  • the resin composition according to the present invention containing an epoxy resin (A), a phenolic curing agent (B), a silicone rubber (C), and an inorganic filler (D) is used to cure the epoxy resin (A) and the phenolic resin.
  • the total weight of the agent (B) is 100 parts by weight, and the amount of the silicone rubber (C) is 20 to 100 parts by weight.
  • the prepared prepreg has the characteristics of high heat resistance, low modulus, and coefficient of thermal expansion. Suppresses the phenomenon of pad cracking during PCB processing.
  • Example 17 uses silicone rubber C3 with a large particle size. The bond between the silicone rubber and the resin is not strong, resulting in a decrease in T300 and peel strength, and an increase in the coefficient of thermal expansion.
  • the silicone rubber has a D50 particle size of 1 to 20 ⁇ m;
  • Example 18 uses silicone rubber C4 whose surface is not coated with polymethylsilsesquioxane formed by crosslinking of siloxane, resulting in uneven dispersion of the silicone rubber in the resin composition due to uneven stress distribution All of them cause an increase in thermal expansion coefficient and a decrease in flexural modulus, which has an effect on the cracking of the pad; neither the epoxy resin nor the phenolic curing agent in Example 19 contains aralkyl or dicyclopentadiene structures, which increases Tg, T300 and reduces The coefficient of thermal expansion is not as effective as epoxy resin or phenolic curing agent. At least one embodiment containing an aralkyl or dicyclopentadiene structure has an effect on improving pad cracking, so at least one epoxy resin or phenolic curing agent is preferred This species contains aralkyl or dicyclopentadiene structures.
  • the present invention illustrates the detailed composition of the present invention through the above embodiments, but the present invention is not limited to the above detailed composition, that is, it does not mean that the present invention must be dependent on the detailed composition to be implemented.
  • Those skilled in the art should understand that any improvement to the present invention, equivalent replacement of various raw materials of the product of the present invention, addition of auxiliary components, choice of specific modes, etc., fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种树脂组合物及使用其制作的预浸料、层压板、覆金属箔层压板以及印刷线路板,该树脂组合物包括环氧树脂(A)、酚性固化剂(B)、有机硅橡胶(C)。该树脂组合物及使用其制得的预浸料、层压板以及覆金属箔层压板具有良好的耐热性及低模量、低热膨胀系数的特性,可以抑制印刷线路板加工过程中焊盘开裂的现象。

Description

树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板 技术领域
本发明涉及用于电子产品的封装技术领域,尤其涉及一种印刷线路板用树脂组合物及使用其制备的预浸料、层压板、覆金属箔层压板和印刷线路板。
背景技术
随着计算机、电子和信息通讯设备的日益小型化、高性能化和多功能化,需要印刷线路板(PCB)满足小型化、薄型化、高集成化和高可靠性的更高要求,与此相伴,对用于PCB的半导体封装用层压板也提出了具有更优异的耐湿性、耐热性和可靠性等的要求。另外,随着半导体封装密度的提高,如何减少封装过程中产生的翘曲以及PCB加工过程中焊接部位的开裂也逐渐成为迫切需要解决的问题。
发明内容
环氧树脂具有优异的力学性能和工艺加工性,在制作印刷线路板用覆金属箔层压材料中是一种常用的基体树脂。含有环氧树脂的树脂组合物具有优异的柔韧性、耐化学性、粘合性等,但是,其固化物通常存在吸水率高,耐湿热性不足的问题,难以满足高端基板的性能需求。
本发明的发明人出人意料地发现:通过向含有环氧树脂和酚性固化剂的树脂组合物中添加特定含量的有机硅橡胶,不仅可以获得具有良好的耐热性及低模量、低热膨胀系数特性的预浸料、层压板以及覆金属箔层压板,而且还可以抑制PCB加工过程中焊盘开裂的现象,从而完成了本发明。
本发明的一个方面提供一种树脂组合物,其包含:环氧树脂(A)、酚性固化剂(B)和有机硅橡胶(C),以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,所述有机硅橡胶(C)的量为20~100重量份,优选为30~70重量份。
在某些实施方案中,有机硅橡胶(C)为含乙烯基的聚硅氧烷与含硅氢的聚硅氧烷通过加成聚合得到的聚合物。
在某些实施方案中,有机硅橡胶(C)表面包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷。
在某些实施方案中,有机硅橡胶(C)的D50粒径为1~20μm。
在某些实施方案中,酚性固化剂(B)为酚醛树脂。
在某些实施方案中,环氧树脂(A)和酚性固化剂(B)中的至少一种含有芳烷基或双环戊二烯结构。
在某些实施方案中,所述树脂组合物还包含无机填料(D)。
在某些实施方案中,以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,所述无机填料(D)的量为5~100重量份,优选为10~70重量份,进一步优选为15~60重量份。
本发明的另一方面提供一种预浸料,其包括基材及通过浸渍或涂覆而附着于基材上的上述树脂组合物。
本发明的另一方面提供一种层压板,其包括至少一张上述预浸料。
本发明的另一个方面提供一种覆金属箔层压板,其包括至少一张上述预浸料及覆于预浸料一侧或两侧的金属箔。
本发明的另一个方面提供一种印刷线路板,其包括至少一张上述预浸料。
本发明的树脂组合物及使用其制得的预浸料、层压板和覆金属箔层压板具有良好的耐热性及低模量、低热膨胀系数的特性,可以抑制PCB加工过程中焊盘开裂的现象。
具体实施方式
为了更好地说明本发明,对本发明的某些具体实施方式进行详细的说明,但本发明的实施方式不限定于这些,在权利要求书的范围内可进行不同的变形。
本发明的树脂组合物含有:环氧树脂(A)、酚性固化剂(B)、有机硅橡胶(C)。
对环氧树脂(A)没有特别的限制,只要其是每个分子含有至少两个环氧基的化合物即可。环氧树脂的实例可以包括:双酚A型环氧树脂、双酚E型环氧树脂、双酚F型环氧树脂、四甲基双酚F型环氧树脂、双酚M型环氧树脂、双酚P型环氧树脂、双酚S型环氧树脂、线性酚醛型环氧树脂、甲酚酚醛型环氧树脂、双酚A酚醛型环氧树脂、溴化双酚A型环氧树脂、溴化酚醛型环氧树脂、三官能酚型环氧树脂、四官能酚型环氧树脂、萘型环氧树脂、萘酚酚醛环氧树脂、苯氧基型环氧树脂、联苯型环氧树脂、双环戊二烯型环氧树脂、双环戊二烯酚醛型环氧树脂、芳烷基型环氧树脂、芳烷基酚醛型环氧树脂、芳烷基萘酚酚醛型环氧树脂、异氰酸酯改性环氧、脂环族环氧树脂、多元醇型环氧树脂、含磷环氧树脂、含硅环氧树脂、含氮环氧树脂、含溴环氧树脂、缩水甘油胺、缩水甘油酯、或通过丁二烯之类的双键环氧化获得的化合物。上述环氧树脂可以根据需要单独或结合使用。
对酚性固化剂(B)没有特别的限制,其可以选自分子结构中含有至少两个苯酚基的有机化合物,例如酚醛树脂,包括苯酚酚醛树脂、甲酚酚醛树脂、萘酚酚醛树脂等。公知的用于环氧树脂组合物的酚性固化剂都可以选择,而且可以是一种或者至少两种的混合物。
尽管其详细机理(在本发明的特殊树脂组合物体系中)有待进一步研究,但是发明人发现:当环氧树脂和酚性固化剂中至少之一含有芳烷基或双环戊二烯基时,可使本发明的树脂组合物具有更高的耐热性及更低的热膨胀系数。含有芳烷基的环氧树脂可以选自芳烷基型环氧树脂、芳烷基酚醛型环氧树脂等。含有双环戊二烯基的环氧树脂可以选自双环戊二烯型环氧树脂、双环戊二烯酚醛型环氧树脂等。含有芳烷基的酚性固化剂可以选自芳烷基型酚醛树脂等。含有双环戊二烯基的酚性固化剂可以选自双环戊二烯型酚醛树脂等。
对环氧树脂和酚性固化剂的用量没有特别限制,只要能使层压板和覆金属箔层压板在一定的固化条件下充分固化即可。
可用于本发明的有机硅橡胶(C)没有特别的限制,其可以选自分子主链由硅原子和氧原子交替构成键,硅原子上通常连有两个有机基团的高分子聚合物。
可用于本发明的有机硅橡胶(C)的用量没有特别的限制,有机硅橡胶(C)在树脂组合物中的用量以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,可以为20~100重量份,优选为30~70重量份。若有机硅橡胶的用量过多,则存在分散性问题,影响树脂组合物、预浸料、层压板及覆金属箔层压板的耐热性、力学性能等。若有机硅橡胶的用量过少,则树脂组合物、预浸料、层压板及覆金属箔层压板不具备低模量和低热膨胀系数特性。
可用于本发明的有机硅橡胶(C)为含乙烯基的聚硅氧烷与含硅氢的聚硅氧烷通过加成聚合得到的聚合物。
可用于本发明的有机硅橡胶(C)表面包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷。包覆有聚甲基倍半硅氧烷可以降低有机硅橡胶(C)的凝聚性,提高有机硅橡胶(C)在树脂组合物中的分散性。
可用于本发明的有机硅橡胶(C)的平均粒径(D50)可以为1~20μm。若有机硅橡胶(C)的D50低于1μm,则为亚微米级有机填料,由于比表面积大,有机硅橡胶之间的凝聚力增加,在树脂组合物中极易团聚。若有机硅橡胶(C)的D50高于20μm,会导致有机硅橡胶(C)与环氧树脂和酚性固化剂的结合力不强而容易脱落,从而影响树脂组合物、预浸料、层压板及覆金属箔层压板的耐热性、力学性能等。
符合上述所述的有机硅橡胶(C),作为市售品,可以列举,信越有机硅制,商品名KMP-597、KMP-598、KMP-600、KMP-601、KMP-605等。
本发明所述的树脂组合物还包含无机填料(D)。当无机填料(D)用于本发明的树脂组合物时,可以提高树脂组合物和层压板的耐热性,同时可以提高层压板和覆金属箔层压板的尺寸稳定性和降低热膨胀系数,也能降低成本。
对无机填料(D)的种类并没有限定,可以选自结晶型二氧化硅、熔融二氧化硅、无定形二氧化硅、球形二氧化硅、空心二氧化硅、氢氧化铝、氢氧化镁、勃姆石、氧化钼、钼酸锌、二氧化钛、氧化锌、氮化硼、氮化铝、碳化硅、氧化铝、复合硅微粉、玻璃粉、短玻璃纤维或空心玻璃等中的一种或者多种。为了使树脂组合物具有更高的耐热性、耐湿热性和尺寸稳定性,优选结晶型二氧化硅、熔融二氧化硅、无定形二氧化硅、球形二氧化硅、空心二氧化硅、氢氧化铝、氢氧化镁、勃姆石、氮化硼、氮化铝、碳化硅、氧化铝、复合硅微粉、玻璃粉、短玻璃纤维或空心玻璃中的一种或者多种,进一步优选球形二氧化硅。
以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,所述无机填料(D)的量可以为5~100重量份,优选为10~70重量份,进一步优选为15~60重量份。
为了提高无机填料(D)与树脂组合物的相容性,可以加入偶联剂进行表面处理。对偶联剂没有限定,一般选自硅烷偶联剂,对硅烷偶联剂的种类没有限定,可以列举环氧基硅烷偶联剂、氨基硅烷偶联剂、乙烯基硅烷偶联剂、苯乙烯基硅烷偶联剂、异丁烯基硅烷偶联剂、丙烯基硅烷偶联剂、脲基硅烷偶联剂、巯基硅烷偶联剂、氯丙基硅烷偶联剂、硫化基硅烷偶联剂、异氰酸盐基硅烷偶联剂等。
为了提高无机填料(D)在树脂组合物中的分散性,可以加入湿润分散剂。作为湿润分散剂,只要是在涂料用途等中被使用的分散稳定剂,就没有特别限定。作为湿润分散剂的具体例,例如可列举出,BYK公司制,商品名Disperbyk-110、Disperbyk-111、Disperbyk-180、Disperbyk-161、BYK-W996、BYK-W9010、BYK-W903等混润分散剂。
为了使树脂组合物完全固化,本发明的树脂组合物还可以根据需要加入促进剂(E)。促进剂(E)选自可以促进环氧树脂与酚性固化剂的固化促进剂,其具体包括铜、锌、钴、镍、锰之类的金属的有机盐、咪唑及其衍生物、叔胺等,可以是一种或者两种以上复合使用。
另外,为了使树脂组合物具有较好的加工性和使用性能,还可以根据需要向树脂组合物加入各种添加剂,例如阻燃剂、热稳定剂、光稳定剂、抗氧化剂、润滑剂等。
本发明的树脂组合物可以通过本领域常规的方法制备,例如溶解、混合、预聚、预反应、搅拌所述环氧树脂(A)、酚性固化剂(B)、有机硅橡胶(C)等来制备。
溶解树脂需要使用有机溶剂,只要使各种树脂能完全溶解、且混合时不发生分离即可,可以列举:甲醇、乙醇、丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、二乙二醇乙 醚、二乙二醇丁醚等醚类,丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮、环己酮等酮类,甲苯、二甲苯、均三甲苯等芳香族烃类,乙氧基乙基乙酸酯、醋酸乙酯等酯类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等含氮类溶剂。上述溶剂可以单独使用,也可以根据需要将两种或者两种以上混合使用。
本发明的预浸料是由半固化状态的本发明的树脂组合物和基材形成。具体而言,预浸料是通过以下过程形成,即,清漆状态的树脂组合物浸润基材,经过加热使溶剂挥发并转变为半固化状态。
本发明所述的基材没有特别的限制,其可以选自已知的用于制作各种印刷线路板材料的基材。具体为无机纤维(例如E玻璃、D玻璃、L玻璃、M玻璃、S玻璃、T玻璃、NE玻璃、Q玻璃、石英等玻璃纤维)、有机纤维(例如聚酰亚胺、聚酰胺、聚酯、聚苯醚、液晶聚合物等)。基材的形式通常是纺织物、无纺布、粗纱、短纤维、纤维纸等。在上述基材中,本发明所述的基材优选玻璃纤维布。本发明的层压板包括至少一张上述的预浸料。
本发明的覆金属箔层压板包括至少一张上述的预浸料及覆于预浸料一侧或两侧的金属箔。例如可通过使1~20片预浸料重叠,并用在其单面或两面配置了铜及铝等金属箔的构成层压成形,从而制造覆金属箔层压板。
本发明还提供了一种印刷线路板,所述印刷线路板包括至少一张如上所述的预浸料。本发明的印刷线路板的制备方法没有特别的限制,可以通过公知的方法来制备。
以下,利用实施例和比较例,对本公开进行更详细的说明。
<树脂组合物原料>
环氧树脂(A1):联苯基芳烷基型酚醛环氧树脂(NC-3000H,由日本化药株式会社提供)
环氧树脂(A2):苯基芳烷基型酚醛环氧树脂(NC-2000,由日本化药株式会社提供)
环氧树脂(A3):双环戊二烯酚醛环氧树脂(HP-7200H,由DIC株式会社提供)
环氧树脂(A4):双酚A型环氧树脂(
Figure PCTCN2018125814-appb-000001
1055,由DIC株式会社提供)
酚性固化剂(B1):联苯基芳烷基型酚醛树脂(MEHC-7851H,由明和化成株式会社提供)
酚性固化剂(B2):苯基芳烷基型酚醛树脂(MEHC-7800H,由明和化成株式会社提供)
酚性固化剂(B3):线性酚醛树脂(HF-4M,由明和化成株式会社提供)
有机硅橡胶(C1):KMP-600,D50 5μm,表面包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷(信越有机硅公司制)
有机硅橡胶(C2):KMP-601,D50 12μm,表面包覆有由硅氧烷键交联形成的聚甲基倍 半硅氧烷(信越有机硅公司制)
有机硅橡胶(C3):KMP-602,D50 30μm,表面包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷(信越有机硅公司制)
有机硅橡胶(C4):KMP-597,D50 5μm,表面没有包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷(信越有机硅公司制)无机填料(D1):球形二氧化硅(Admatechs公司制“SC2050-MB”,D50:0.5μm)
无机填料(D2):球形氧化铝(Admatechs公司制“AO-502”,D50:0.7μm)
无机填料(D3):勃姆石(壹石通公司制“BG-601”,D50:0.5μm)
促进剂(E):2-乙基-4-甲基咪唑(四国化成公司制“2E4MI”)
织布基材:玻璃纤维布(日东纺公司制1078玻璃纤维布,单重47g/m 2)
本发明实施例、比较例中各组分均以固形物计算。
(预浸料)
将环氧树脂、酚性固化剂、有机硅橡胶、无机填料以及促进剂按照表1和2所示的质量份配合,用丙二醇甲醚和丁酮溶解和稀释,制备出清漆状态的树脂组合物。
然后清漆状态的树脂组合物浸润日东纺制1078玻璃纤维布,并将其在150~170℃的鼓风烘箱中加热干燥5~7分钟,使清漆状态的树脂组合物转变为半固化状态的树脂组合物,厚度控制在90μm,由此制造出预浸料。
(覆金属箔层压板)
分别将2张、9张的上述预浸料叠合,并在其各自两侧压覆18μm厚度的电解铜箔,在压机中进行2小时固化,固化压力为45kg/cm 2,固化温度为190℃。
(层压板)
覆金属箔层压板将金属箔蚀刻后,获得厚度约为0.18mm、0.81mm的层压板。
针对本发明使用所述树脂组合物制备的层压板以及覆金属箔层压板,检测其耐热性(Tg,T300)、模量以及平面方向热膨胀系数(CTE),其测试结果如下述实施例进一步给予详加说明与描述。
表1-2中物性数据的测试方法如下:
玻璃化转变温度(Tg):将在实施例和比较例中制备的覆铜箔层压板试样蚀刻掉铜箔,取长为60mm、宽为8~12mm、厚为0.81mm的层压板作为样品,使用动态机械热分析仪(DMA)进行测量,升温速率10℃/min,结果取tanδ的转变峰温度,单位为℃。
T300带铜:取长为6.5mm、宽为6.5mm、厚为0.846mm的覆金属箔层压板作为样品, 样品在105℃烘箱中烘2小时后在干燥器中冷却至室温。使用热分析机械法(TMA)进行测量,升温速率10℃/min,从室温升温至300℃,并在300℃保持恒温,分层时间即为从恒温拐点到分层的时间,单位为min,对于在300℃以下开始分层的样品,记录开始分层时的温度,单位为℃。
XY向热膨胀系数:将在实施例和比较例中制备的覆铜箔层压板试样蚀刻掉铜箔,取长为60mm、宽为4mm、厚为0.18mm的层压板作为样品,玻纤经纱方向为X向,玻纤纬纱方向为Y向,样品在105℃烘箱中烘1小时后在干燥器中冷却至室温。使用热分析机械法(TMA)进行测量,升温速率10℃/min,从室温升温至300℃,测定从50℃到130℃下的平面方向热膨胀系数,单位为ppm/℃。
剥离强度:取长为50mm、宽为50mm的覆金属箔层压板作为样品,在样品上用贴胶带或其他办法利用蚀刻制备金属箔宽度为3.0mm的试样条。使用抗剥仪或其他等效仪器以50mm/min的速度在垂直方向施加压力,使金属箔剥离层压板,可得到覆金属箔层压板的剥离强度,单位为N/mm。
弯曲模量:将在实施例和比较例中制备的覆铜箔层压板试样蚀刻掉铜箔,取长为76.2mm、宽为25.4mm、厚为0.81mm的层压板作为样品,采用材料试验机进行测量,跨距为25.4mm,试验速度0.76mm/min,单位为GPa。
扫描电子显微镜(SEM):观察焊盘是否存在开裂,采用扫描电子显微镜进行观察。样品制作:由上下各两张树脂组合物制备的预浸料与高Tg FR-4板材(生益科技S1000-2M)加工成具备via-in-pad(焊盘下过孔)焊盘结构的四层PCB样品,并将LTCC陶瓷器件贴装在四层PCB上,PCB样品经过-40℃(30min)—125℃(30min)的TCT 1000h测试后,用SEM观察焊盘位置的形貌(每个样品一式三份),若观察到有裂纹出现,则为焊盘开裂,“0/3”表示每个样品测量3次,0次出现裂纹。
表1(实施例)
Figure PCTCN2018125814-appb-000002
Figure PCTCN2018125814-appb-000003
表2(比较例)
序号 1 2 3
环氧树脂A1 25 25 25
环氧树脂A4 25 25 25
酚性固化剂B1 25 25 25
酚性固化剂B3 25 25 25
有机硅橡胶C1 15 120  
无机填料D1 60 60 60
促进剂E 0.5 0.5 0.5
Tg(℃) 175 140 175
T300带铜(min) >60 10 >60
X向热膨胀系数(ppm/℃) 15 18 20
Y向热膨胀系数(ppm/℃) 15 18 20
剥离强度(N/mm) 1.0 0.5 1.0
弯曲模量(GPa) 15 8 17
焊盘开裂 3/3 3/3 3/3
有机硅橡胶的用量过低时(比较例1),对模量和热膨胀系数的降低作用不大,焊盘均开裂;有机硅橡胶的用量过高时(比较例2),有机硅橡胶团聚,导致性能劣化,如Tg下降,T300升高等,不满足PCB加工要求;不含有机硅橡胶(比较例3),热膨胀系数和模量均没有下降,表明有机硅橡胶具备降低热膨胀系数和模量的功能。
而使用根据本发明的含有环氧树脂(A)、酚性固化剂(B)、有机硅橡胶(C)、无机填料(D)的树脂组合物,以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,有机硅橡胶(C)的量为20~100重量份,制备出的预浸料具备高耐热性及低模量和热膨胀系数的特性,可以抑制PCB加工过程中焊盘开裂的现象。实施例17使用粒径大的有机硅橡胶C3,有机硅橡胶与树脂结合力不强,导致T300和剥离强度有所降低,热膨胀系数有所上升,所以优选有机硅橡胶的D50粒径为1~20μm;实施例18使用表面没有包覆有由硅氧烷交联形成的聚甲基倍半硅氧烷的有机硅橡胶C4,导致有机硅橡胶在树脂组合物中分散不均,由于应力分布不均,引起热膨胀系数上升,弯曲模量下降,对焊盘开裂有影响;实施例19环氧树脂和酚性固化剂中均不含有芳烷基或双环戊二烯结构,提高Tg、T300和降低热膨胀系数的效果不如环氧树脂或酚性固化剂至少一种含有芳烷基或双环戊二烯结构的实施例,对改善焊盘开裂有影响,所以优选环氧树脂或酚性固化剂至少一种含有芳烷基或双环戊二烯结构。
以上实施例,并非对本发明的组合物的含量作任何限制,凡是依据本发明的技术实质或组合物的重量份或含量对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发 明技术方案的范围内。
申请人声明,本发明通过上述实施例来说明本发明的详细组成,但本发明并不局限于上述详细组成,即不意味着本发明必须依赖上述详细组成才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (12)

  1. 一种树脂组合物,其特征在于,所述树脂组合物包含:
    环氧树脂(A)、酚性固化剂(B)和有机硅橡胶(C),
    以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,所述有机硅橡胶(C)的量为20~100重量份。
  2. 根据权利要求1所述的树脂组合物,其特征在于,所述有机硅橡胶(C)为含乙烯基的聚硅氧烷与含硅氢的聚硅氧烷通过加成聚合得到的聚合物。
  3. 根据权利要求1所述的树脂组合物,其特征在于,所述有机硅橡胶(C)表面包覆有由硅氧烷键交联形成的聚甲基倍半硅氧烷。
  4. 根据权利要求1所述的树脂组合物,其特征在于,所述酚性固化剂(B)为酚醛树脂。
  5. 根据权利要求1所述的树脂组合物,其特征在于,所述环氧树脂(A)和酚性固化剂(B)中的至少一种含有芳烷基或双环戊二烯结构。
  6. 根据权利要求1所述的树脂组合物,其特征在于,所述有机硅橡胶(C)的D50粒径为1~20μm。
  7. 根据权利要求1所述的树脂组合物,其特征在于,所述树脂组合物还包含无机填料(D)。
  8. 根据权利要求7所述的树脂组合物,其特征在于,以环氧树脂(A)和酚性固化剂(B)的总重量为100重量份计,所述无机填料(D)的量为5~100重量份,优选为10~70重量份,进一步优选为15~60重量份。
  9. 一种预浸料,其特征在于,所述预浸料包括基材及通过浸渍或涂覆而附着于基材上的如权利要求1-8中任一项所述的树脂组合物。
  10. 一种层压板,其特征在于,所述层压板包括至少一张如权利要求9所述的预浸料。
  11. 一种覆金属箔层压板,其特征在于,所述覆金属箔层压板包括至少一张如权利要求9所述的预浸料及覆于预浸料一侧或两侧的金属箔。
  12. 一种印刷线路板,其特征在于,所述印刷线路板包括至少一张根据权利要求9所述的预浸料。
PCT/CN2018/125814 2018-12-29 2018-12-29 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板 WO2020133494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/125814 WO2020133494A1 (zh) 2018-12-29 2018-12-29 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板
CN201880047552.4A CN111757911B (zh) 2018-12-29 2018-12-29 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125814 WO2020133494A1 (zh) 2018-12-29 2018-12-29 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板

Publications (1)

Publication Number Publication Date
WO2020133494A1 true WO2020133494A1 (zh) 2020-07-02

Family

ID=71126034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125814 WO2020133494A1 (zh) 2018-12-29 2018-12-29 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板

Country Status (2)

Country Link
CN (1) CN111757911B (zh)
WO (1) WO2020133494A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698223B (zh) * 2020-12-29 2024-06-14 广东生益科技股份有限公司 一种覆不对称金属箔的层压板和包含其的印刷线路板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120315A (ja) * 1988-10-31 1990-05-08 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JP2003292735A (ja) * 2002-04-08 2003-10-15 Kyocera Chemical Corp 封止用樹脂組成物および電子部品封止装置
JP2005264037A (ja) * 2004-03-19 2005-09-29 Kyocera Chemical Corp 封止用エポキシ樹脂組成物と樹脂封止型半導体装置
CN101565549A (zh) * 2008-03-28 2009-10-28 信越化学工业株式会社 混合有环氧树脂和硅树脂的树脂组合物以及预成型材料
US8106523B2 (en) * 2006-12-20 2012-01-31 Panasonic Electric Works Co., Ltd. Liquid resin composition, semi-conductor device, and process of fabricating the same
CN102482481A (zh) * 2009-07-24 2012-05-30 住友电木株式会社 树脂组合物,树脂片材,半固化片,覆金属层叠板,印刷布线板及半导体装置
CN102844350A (zh) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 树脂组合物、预浸料及层压板
CN105377980A (zh) * 2013-07-11 2016-03-02 住友电木株式会社 半导体装置的制造方法以及半导体装置
CN106905658A (zh) * 2015-12-22 2017-06-30 信越化学工业株式会社 液态环氧树脂组合物
CN107210274A (zh) * 2015-02-26 2017-09-26 日立化成株式会社 密封用膜及使用该密封用膜的电子部件装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120315A (ja) * 1988-10-31 1990-05-08 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JP2003292735A (ja) * 2002-04-08 2003-10-15 Kyocera Chemical Corp 封止用樹脂組成物および電子部品封止装置
JP2005264037A (ja) * 2004-03-19 2005-09-29 Kyocera Chemical Corp 封止用エポキシ樹脂組成物と樹脂封止型半導体装置
US8106523B2 (en) * 2006-12-20 2012-01-31 Panasonic Electric Works Co., Ltd. Liquid resin composition, semi-conductor device, and process of fabricating the same
CN101565549A (zh) * 2008-03-28 2009-10-28 信越化学工业株式会社 混合有环氧树脂和硅树脂的树脂组合物以及预成型材料
CN102482481A (zh) * 2009-07-24 2012-05-30 住友电木株式会社 树脂组合物,树脂片材,半固化片,覆金属层叠板,印刷布线板及半导体装置
CN102844350A (zh) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 树脂组合物、预浸料及层压板
CN105377980A (zh) * 2013-07-11 2016-03-02 住友电木株式会社 半导体装置的制造方法以及半导体装置
CN107210274A (zh) * 2015-02-26 2017-09-26 日立化成株式会社 密封用膜及使用该密封用膜的电子部件装置
CN106905658A (zh) * 2015-12-22 2017-06-30 信越化学工业株式会社 液态环氧树脂组合物

Also Published As

Publication number Publication date
CN111757911A (zh) 2020-10-09
CN111757911B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
JP6587177B2 (ja) プリプレグ、金属張積層板、プリント配線板
JP2017179346A (ja) 樹脂組成物
TWI824654B (zh) 一種樹脂組成物及其應用
TW201940589A (zh) 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板以及印刷電路板
JP2020029494A (ja) 絶縁層用樹脂組成物、シート状積層材料、多層プリント配線板及び半導体装置
TW202031783A (zh) 樹脂組成物、預浸體、附樹脂之薄膜、附樹脂之金屬箔、覆金屬積層板及印刷配線板
JP2014185221A (ja) 樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6984579B2 (ja) エポキシ樹脂組成物、並びに該樹脂組成物を用いて製造された接着フィルム、プリプレグ、多層プリント配線板、及び半導体装置
TWI814835B (zh) 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板和印刷電路板
US11193015B2 (en) Thermosetting resin composition for semiconductor package and prepreg using the same
WO2020133494A1 (zh) 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板
JP2006124434A (ja) エポキシ樹脂無機複合シート及び成形品
TWI776065B (zh) 樹脂組合物、預浸料、層壓板以及覆金屬箔層壓板
JP2020084109A (ja) エポキシ樹脂組成物、並びに該樹脂組成物を用いて製造された接着フィルム、プリプレグ、多層プリント配線板、及び半導体装置
JP2020528471A6 (ja) 半導体パッケージ用熱硬化性樹脂組成物およびこれを用いたプリプレグ
TWI381017B (zh) Composition and Manufacturing Method of Halogen - free Printed Circuit Board with Low Dielectric Loss
TWI688603B (zh) 樹脂組成物及使用該樹脂組成物的絕緣膜和產品
KR102301445B1 (ko) 수지 조성물, 프리프레그, 적층판 및 금속박적층판
WO2020133472A1 (zh) 树脂组合物、预浸料、层压板以及覆金属箔层压板
CN112679912B (zh) 一种树脂组合物及使用其制备的预浸料、层压板以及印刷线路板
JP6436378B2 (ja) プリント配線板用樹脂組成物、プリプレグ、積層板及びプリント配線板
EP3744788B1 (en) Resin composition, prepreg, laminate, and metal foil-coated laminate
JP2017060927A (ja) 樹脂シートの製造方法
JP4500091B2 (ja) 回路基板
JP2010083072A (ja) 銅張積層板およびプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18945251

Country of ref document: EP

Kind code of ref document: A1