WO2020132936A1 - 一种在气相中制备异氰酸酯的方法 - Google Patents

一种在气相中制备异氰酸酯的方法 Download PDF

Info

Publication number
WO2020132936A1
WO2020132936A1 PCT/CN2018/123876 CN2018123876W WO2020132936A1 WO 2020132936 A1 WO2020132936 A1 WO 2020132936A1 CN 2018123876 W CN2018123876 W CN 2018123876W WO 2020132936 A1 WO2020132936 A1 WO 2020132936A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosgene
substance
stream
reaction
amine
Prior art date
Application number
PCT/CN2018/123876
Other languages
English (en)
French (fr)
Inventor
李同和
尚永华
孙淑常
王京旭
韩金平
李强
李文滨
李晶
王鹏飞
黎源
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to KR1020217011182A priority Critical patent/KR20210061385A/ko
Priority to PCT/CN2018/123876 priority patent/WO2020132936A1/zh
Priority to JP2021520423A priority patent/JP7285924B2/ja
Priority to EP18944569.5A priority patent/EP3904336B1/en
Priority to US17/295,806 priority patent/US11814339B2/en
Publication of WO2020132936A1 publication Critical patent/WO2020132936A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/02Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
    • C07C265/06Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton

Definitions

  • the invention relates to a method for preparing isocyanate by gas phase, in particular to a method for preparing isocyanate which can effectively reduce the coking of phosgene heating system and reaction system.
  • the corresponding isocyanates can be prepared by gas-phase phosgenation of aliphatic or cycloaliphatic or aromatic amines. Gas phase phosgenation is usually carried out at 200-600°C. Due to the high temperature, the design of the method must meet special requirements to achieve long-term stable operation of the method without increasing the risk of phosgene leakage due to frequent maintenance.
  • Patents DE 102009032413.5 and GB737442 both describe methods for recovering phosgene and achieving phosgene circulation during the reaction of phosgenation to isocyanate synthesis.
  • GB737442 describes an indicator that the HCl content of the recovered phosgene is 0.5-0.7%.
  • Patent EP 11160575.4 limits the content of CO in phosgene during the gas-phase phosgenation process.
  • the first low carbon monoxide ( ⁇ 1%) stream is used as the reaction stream in the amine phosgenation to isocyanate in the gas phase.
  • Phosgene is decomposed into carbon monoxide and chlorine at high temperature.
  • Patent DE 102005037328.3 The mass fraction of chlorine gas in the stream containing phosgene was less than 1000 weight ppm and/or the mass fraction of bromine in the stream containing phosgene was less than 50 weight ppm before mixing the amine-containing stream.
  • Patent DE 102005037328.3 requires the separation of hydrogen chloride from the recycled phosgene stream during the gas-phase phosgenation reaction so that the mass fraction of hydrogen chloride in the phosgene-containing stream before mixing with the diamine-containing stream is less than 15% by weight .
  • the invention provides a method for preparing isocyanate in the gas phase. This method can effectively improve the situation of the formation of blockages in the heat exchanger and equipment during the heating of phosgene and the reaction process, and can reduce the generation of blockages, thereby obtaining more
  • the long operating period reduces the frequency of maintenance of the phosgene-containing system and improves the safety of the device.
  • a method for preparing isocyanate in gas phase in the presence or absence of inert gas, a gas stream containing amine and a stream containing phosgene enter the reaction zone, so that the amine and the phosgene are in the reaction zone Contact and perform phosgenation reaction in gaseous form to prepare gaseous target isocyanate in the reaction zone; wherein the stream containing phosgene is preheated and warmed up before entering the reaction zone, and the material containing phosgene
  • the mass fraction of the substance A contained in the stream before the preheating temperature rise is ⁇ 1%, and the substance A is a substance containing an NCO group and/or a substance containing an olefinic double bond.
  • the stream containing phosgene before the preheating and heating up contains a mass fraction of the substance A in a better control of ⁇ 0.5%, more preferably ⁇ 0.1%, of course, it can also be controlled At a lower level.
  • both amine and phosgene need to be maintained in gas phase.
  • both the stream containing amine and the stream containing phosgene are pre-heated to above 200°C, for example 200-600°C, preferably 200 -450°C, and after entering the reaction zone, the temperature of the reaction zone is also controlled at 200-600°C, preferably 200-450°C.
  • the stability of reaction materials and reaction products at high temperatures has become an important consideration for gas-phase phosgenation reactions.
  • the methods adopted in the prior art need to shorten the residence time of amine at high temperature as much as possible, and the isocyanate generated by the reaction is unstable at high temperature. Therefore, it is necessary to cool the isocyanate gas generated by the reaction to a low-temperature stable state by quenching and cooling as soon as possible.
  • the prior art uses different methods to minimize the residence time of amines and isocyanates at high temperatures, it is still difficult to prevent the problems of chain scission, decomposition, and polymerization of amines and isocyanates at high temperatures.
  • Organic amines (amines for short) used in the preparation of isocyanates will undergo chain scission or decomposition at high temperatures to form small molecule amines or components containing olefinic double bonds. These decomposition components will enter the photochemical reactor along with the amine material stream Generate the corresponding small molecule isocyanate or components containing olefinic double bonds.
  • the target isocyanate produced by the gas-phase phosgenation reaction that is, the isocyanate product expected to be produced during the production process
  • the NCO group-containing substance and/or olefinic double bond-containing substance referred to in the present invention refers to the above-mentioned undesired NCO group-containing substance (non-target isocyanate) and/or containing Components of olefinic double bonds.
  • Either amine or isocyanate decomposes at high temperature, after the reaction will eventually produce isocyanate with lower molecular weight or substances containing olefinic double bonds, and these isocyanates with smaller molecular weight or substances containing olefinic double bonds not only have Low boiling point, and in the process of recycling phosgene, it is very easy to distribute in the circulating phosgene stream.
  • the double bonds of olefinic double bonds have the characteristics of easy polymerization, and it is easier to generate polymers in the process of heating, forming tar and plugs.
  • the phosgene stream needs to be heated to 200-600°C, and the temperature of the phosgenation reaction is also in the range of 200-600°C. Therefore, during the heating of phosgene and the reaction process, the phosgene contains NCO-type substances and/or olefin-type substances are extremely susceptible to polymerization, causing coking of heat exchangers and reaction equipment, resulting in problems such as reduced heat transfer capacity, heat exchanger clogging, reaction system clogging, increased side reactions, etc., affecting the operation of the device cycle.
  • the phosgene-containing stream contains the substance A (which is an NCO group-containing substance and/or an olefinic double bond-containing substance) contained in the phosgene-containing stream before the preheating is performed.
  • the control of the mass fraction of ⁇ 1%, preferably ⁇ 0.5%, more preferably ⁇ 0.1%, can effectively improve these problems, effectively avoid heat exchanger clogging, clogging of the reaction system and other phenomena, thereby extending the operating cycle of the device.
  • the phosgene in the phosgene-containing stream according to the present invention includes fresh phosgene and/or recycled phosgene.
  • the introduction of the phosgene-containing stream into the reaction zone (reaction space) can be performed by a single phosgene-containing stream, or by feeding multiple phosgene-containing substreams.
  • the phosgene-containing substreams are added to the reaction zone together to produce a total phosgene-containing stream (or light Gas stream), and the mass fraction of substance A in the phosgene stream (that is, the NCO group-containing substance and/or olefinic double bond-containing substance) comes from the substance A of each phosgene-containing substream (that is, contains The mass fraction of the NCO group-containing substance and/or olefinic double bond-containing substance).
  • the mass fraction of substance A in the total phosgene-containing stream is calculated in this way.
  • the calculation of the content of the NCO group-containing substance does not include the target isocyanate to be prepared by the reaction that may be contained therein.
  • phosgene-containing substreams such as recycled phosgene and fresh phosgene
  • phosgene-containing substreams can be combined to form a total phosgene-containing gas stream before being introduced into the reaction zone, and then fed into the reaction space.
  • Multiple substreams (which in each case can be recycled phosgene, fresh phosgene, or a mixture thereof) can be introduced into the reaction space at the same or different locations, thereby introducing a stream containing phosgene during the reaction.
  • fresh phosgene refers to a phosgene-containing material that has not been recycled from the phosgenation reaction and has not passed through any reaction stage involving a phosgene reaction after phosgene is usually synthesized from chlorine gas and carbon monoxide. flow.
  • the phosgene used for the reaction mainly comes from fresh phosgene.
  • the mass fraction of NCO-based substances that is, substances containing NCO groups
  • substances containing olefinic double bonds in circulating phosgene will be affected by the high-temperature decomposition of isocyanate in the amine and phosgenation reactions.
  • a series of undesirable plugs are generated during the temperature increase of the phosgene stream and the reaction, causing an irreversible effect on the reaction.
  • the method for obtaining recycled phosgene from the reaction mixture is well known in the art (such as the corresponding content has been disclosed in the patent document GB737442A), which is not the focus of the present invention and will not be elaborated one by one.
  • the mass fraction of the substance A (NCO substance and/or olefinic double bond-containing substance) contained in the phosgene-containing stream can be less than 1% by removing the NCO substance and/or olefinic double bond-containing substance in the stream Substance to control.
  • the conventional separation method known in the art can be used for control; the present invention can directly use the existing separation method to achieve the removal of the substance A (NCO substance and/or Olefinic double bond-containing substances), which is not particularly limited, as long as the mass fraction of substance A (NCO substance and/or olefinic double bond-containing substances) can be controlled in the desired range; for example, fine Combination of one or more of distillation, adsorption, scrubbing and other similar methods.
  • the stream containing phosgene prior to the preheating and temperature increase contains the mass fraction of the substance A by one or more of rectification, adsorption, and scrubbing. Combination to control.
  • the control of the NCO-containing substances and/or olefinic double bond-containing substances in the phosgene stream is preferably carried out by rectification and/or by means of scrubbing, but also by a combination of rectification and scrubbing.
  • the preferred scrubbing medium preferably uses the same solvent as the reaction, and preferably uses one or a combination of two or more of toluene, xylene, chlorobenzene, dichlorobenzene, and the like.
  • the scrubbing medium is used to wash out the NCO substance and/or olefin double bond type substance from the phosgene stream containing the NCO substance and/or olefinic double bond type substance, thereby obtaining A phosgene stream with a content of NCO-containing substances and/or olefinic double-bond substances at a certain level, while obtaining a scrubbing stream containing phosgene, NCO-containing substances and/or olefinic double-bond substances.
  • the scrubbing stream containing phosgene is returned to the phosgene refining system.
  • the scrubbing material can be removed from this scrubbing material by rectification Separated from the stream to obtain NCO-containing and/or olefinic double bond-containing substances.
  • the operating pressure of scrubbing and rectification can be carried out at 1 to 10 bar (absolute pressure), preferably at 1 to 5 bar (absolute pressure).
  • the NCO and/or olefinic double bond-containing substances in the phosgene stream are separated by adsorption, for example, the recycled phosgene stream obtained by the phosgene circulation system can pass through the adsorption unit It is preferable to use activated carbon adsorption to control the content of NCO-containing substances and/or olefin-containing double bond-containing substances in the recycled phosgene to a certain range.
  • the phosgene stream having a content of substance A (NCO-containing substance and/or olefinic double bond-containing substance) less than 1% is obtained by mixing the separated recycled phosgene with fresh phosgene .
  • the stream containing phosgene may contain 0-10 wt% of HCl gas.
  • An additional inert medium (or "inert gas” in the present invention) may be used in the method of the present invention.
  • An inert medium is a medium that is in a gaseous form at the reaction temperature in the reaction space and does not react with the compounds present during the reaction.
  • the inert medium is usually mixed with the amine and/or phosgene before the reaction, but can also be introduced separately from the feed stream.
  • nitrogen, rare gases such as helium or argon, or aromatic compounds such as chlorobenzene, dichlorobenzene, xylene, carbon dioxide, or carbon monoxide can be used, and one or a combination of several of these inert media can be used .
  • Nitrogen and/or chlorobenzene are preferably used as inert media.
  • the inert medium is added to the stream containing amine or phosgene so that the volume ratio of inert medium to amine gas or phosgene is 0-20:1. If one or more additional inert streams are fed to the phosgene-containing stream, then in the practice of the present invention, these gas streams are included as substreams of the phosgene-containing total stream in the phosgene-containing stream In the calculation, that is, when calculating the mass fraction of the substance A (NCO-containing substance and/or olefinic double bond-containing substance) in the phosgene-containing stream, it is taken into account.
  • the gas stream containing amine further contains an inert gas, and the volume ratio of the inert gas and the amine gas is 0-20:1; the inert gas is introduced into the reaction by adding the gas stream containing amine In the district.
  • the stream containing phosgene also contains an inert gas, and the volume ratio of inert gas and phosgene is 0-20:1; the inert gas is introduced into the stream by adding the stream containing phosgene Narrated in the reaction zone.
  • the reaction of the phosgene and the amine is performed at an absolute pressure of 0.01-0.5 MPa, preferably 0.07-0.3 MPa, more preferably 0.09-0.2 MPa.
  • the temperature in the reaction zone is selected to be higher than the boiling point of the amine used.
  • the temperature in the reaction zone is generally controlled to 200-600°C, preferably 250-450°C.
  • the average reaction time (or average contact time) of the amine and the phosgene in the reaction zone is 0.01-15 s, preferably 0.05-10 s, and more preferably 0.1-5 s.
  • the average reaction time is the time from when the amine and phosgene start to mix until the reaction mixture leaves the reaction space (reaction zone) and enters the post-treatment stage.
  • phosgene is used in excess (ie stoichiometric excess) compared to amines.
  • the molar ratio of phosgene to amino groups of the amine is 2.2-20:1, for example 2.2:1 , 5:1, 10:1, 15:1, 20:1, etc., preferably 4-10:1, more preferably 6-8:1.
  • the flow rates of the amine-containing gas stream and the phosgene-containing stream into the reaction zone are respectively 5-100 m/s, preferably 10-80 m/s.
  • the general formula of the target isocyanate is R(NCO) n , and the target isocyanate is determined according to production requirements, for example, it may be one or a combination of two or more of aliphatic, cycloaliphatic or aromatic isocyanates, and no special is made for it
  • R is an aliphatic, alicyclic or aromatic hydrocarbon group having 4 to 15 carbon atoms
  • n is an integer from 1 to 10.
  • phenyl isocyanate Preferably selected from phenyl isocyanate, cyclohexyl isocyanate, 1,4-butane diisocyanate, 1,3-dimethyl isocyanate cyclohexane, 1,6-hexane diisocyanate, 1,4-cyclohexane diisocyanate , Isophorone diisocyanate, 4,4' dicyclohexylmethane diisocyanate, terephthalic diisocyanate, m-xylylene diisocyanate, toluene diisocyanate, 1,8-diisocyanate-4-isocyanate Any one or more of acid methyloctane or nonane triisocyanate.
  • the amine used may be various amines allowed in the preparation of isocyanate in the art, and specific amine raw materials are specifically determined according to production needs, which is not particularly limited; in some embodiments, the amine is selected from, for example, aniline , Cyclohexylamine, 1,4-butanediamine, 1,3-cyclohexanedimethylamine, 1,6-hexanediamine, 1,4-diaminocyclohexane, 1-amino-3,3,5 -Trimethyl-5-aminomethylcyclohexane, 4,4'-diaminodicyclohexylmethanediamine, p-phenylenediamine, m-xylylenediamine, 2,4 or 2,6- Toluene diamine, 1,8-diamino-4-(aminomethyl)octane or triaminononane.
  • aniline Cyclohexylamine
  • 1,4-butanediamine 1,3-cyclohex
  • the reaction is performed continuously, that is, continuous input of raw materials and continuous output of reaction products.
  • the method for forming amine and phosgene in the gas phase to form the corresponding isocyanate can avoid the formation of blockages in the heat exchanger and equipment during the heating of phosgene and the reaction process, thereby obtaining a longer operating cycle and reducing the content of The frequency of maintenance of the phosgene system improves the safety of the device.
  • the mass fraction of the substance A (NCO-containing substance and/or olefinic double bond-containing substance) in the phosgene stream is measured by gas chromatography and measured
  • the method is as follows: using an Agilent 7890A gas chromatograph, the column model is J&W 112-2112CAM 15m, 0.25mm, 0.25 ⁇ m; the detector is a FID detector, the inlet temperature: 250°C, the column temperature heating program: 50°C After 2min, the temperature was raised to 100°C at a rate of 10°C/min for 2min, and then increased to 250°C at a rate of 25°C/min for 2min.
  • Detector temperature 250°C.
  • the mass fraction of substance A (NCO-containing substance and/or olefinic double bond-containing substance) in the phosgene stream is controlled by rectification.
  • the theoretical number of plates in the packed tower is 25.
  • continuous rectification is used to purify the circulating phosgene stream.
  • the pressure at the top of the tower is controlled at 2 bar, and the temperature at the top of the tower is controlled at about 10°C.
  • the temperature of the tower kettle is controlled at 160°C, and the mass fraction of the substance A (NCO-containing substance and/or olefinic double bond-containing substance) of the phosgene stream is controlled within the desired range by controlling the reflux ratio.
  • the feed pressure is 0.25 MPa
  • the feed temperature of the two feed streams is 310°C (the feed temperature is reached by preheating the stream)
  • the absolute pressure in the reaction zone is 0.09 MPa, slightly lower than atmospheric pressure.
  • the molar ratio of phosgene to 1,6-hexanediamine feed is 6:1
  • the temperature of the reaction zone is 420°C
  • the flow rate of the feed stream into the reactor is 70 m/s
  • the average contact time is 2 s.
  • control the phosgene-containing stream during operation (the phosgene-containing stream in this example is composed of a fresh phosgene and a circulating phosgene) before entering the tubular reactor
  • the mass fraction of the substance A (NCO-containing substance and olefinic double bond-containing substance) contained before it was preheated and heated up was 0.5%.
  • the reaction product After leaving the reaction zone, the reaction product enters the process zone.
  • the pressure in the process zone is 0.08 MPa.
  • Spray wash with chlorobenzene The resulting 1,6-hexane diisocyanate solution is purified by rectification to obtain a phosgene and HCl-free solution.
  • the 1,6-hexane diisocyanate solution is separated and purified by subsequent rectification to obtain 1,6-hexane diisocyanate product.
  • the pressure difference between the outlet and inlet of the phosgene heater is about 15Kpa, and it is shut down for maintenance. There are traces of solids in the phosgene heater, pipeline and tubular reactor, which does not affect the continued operation of the reaction .
  • the molar ratio of phosgene to 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane feed is 5:1, the temperature of the reaction zone is 400°C, and the feed stream enters the reactor
  • the flow velocity is 65m/s and the average contact time is 1.8s.
  • control the phosgene-containing stream (the phosgene-containing stream is composed of a fresh phosgene and a circulating phosgene) during the operation before it enters the tubular reactor.
  • the mass fraction of the substance A (NCO-containing substance and olefinic double-bond-containing substance) contained before the thermal heating is 0.6%.
  • the reaction product After leaving the reaction zone, the reaction product enters the process zone.
  • the pressure in the process zone is 0.1 MPa. Spray washing with chlorobenzene.
  • the resulting isophorone diisocyanate solution is purified by rectification to obtain an isocyanate free of phosgene and HCl.
  • the phorone diisocyanate solution is separated and purified by subsequent rectification to obtain the isophorone diisocyanate product.
  • the pressure difference between the outlet and inlet of the phosgene heater is about 15Kpa, and it is shut down for maintenance. There are traces of solids in the phosgene heater, pipeline and tubular reactor, which does not affect the continued operation of the reaction .
  • Example 2 It is basically the same as Example 1, except that the mass fraction of the control substance A (NCO-containing substance and olefinic double bond-containing substance) is 2.5%, and a 1,6-hexane diisocyanate product is obtained.
  • the pressure difference between the outlet and inlet of the phosgene heater rose to about 50Kpa, and there was a significant change.
  • the shutdown and overhaul process there were obvious solids in the phosgene heater, pipeline and tubular reactor, which affected the reaction. Continue to run.
  • Example 2 It is basically the same as Example 1, except that the mass fraction of the control substance A (NCO-containing substance and olefinic double bond-containing substance) is 1.5%. 1,6-hexane diisocyanate product was obtained. After continuous operation for 2 months, the pressure difference between the outlet and inlet of the phosgene heater rose to about 50Kpa, and there was a significant change. After the shutdown and overhaul process, there were obvious solids in the phosgene heater, pipeline and tubular reactor, which affected the reaction. Continue to run.
  • the mass fraction of the control substance A NCO-containing substance and olefinic double bond-containing substance
  • Example 4 It is basically the same as Example 4, except that the mass fraction of the control substance A (NCO-containing substance and olefinic double bond-containing substance) is 2.0%, and an isophorone diisocyanate product is obtained.
  • the pressure difference between the outlet and inlet of the phosgene heater rose to about 45Kpa, and there was a significant change.
  • the shutdown and overhaul treatment there were obvious solids in the phosgene heater, pipeline and tubular reactor, which affected the reaction. Continue to run.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种在气相中制备异氰酸酯的方法,在有或无惰性气体存在的条件下,包含胺的气流和包含光气的气流进入反应区中,使所述胺和所述光气在反应区中以气态形式接触并进行光气化反应,在反应区中制得气态的目标异氰酸酯;其中,所述包含光气的料流在进入反应区之前进行预热升温,且所述包含光气的料流在进行所述预热升温前其中所含有的物质A的质量分数<1%,所述物质A为含NCO基团的物质和/或含烯属双键的物质。本发明提供的方法能有效改善在光气加热升温及反应过程中在换热器和设备中形成堵塞物的情形,能降低堵塞物的产生,从而获得更长的运行周期,减少含光气系统的检修频次,提升装置运行的安全性。

Description

一种在气相中制备异氰酸酯的方法 技术领域
本发明涉及一种气相制备异氰酸酯的方法,特别涉及一种可有效降低光气加热系统和反应系统的结焦的异氰酸酯制备方法。
背景技术
通过脂族或脂环族或芳香族胺的气相光气化反应可以制备相应的异氰酸酯。气相光气化通常在200-600℃下进行。由于在高温下进行,方法的设计必须满足特殊要求以实现方法的长期稳定操作而不会由于频繁的检修而增加光气泄露的风险。
在早期的专利申请中,如EP593334B1和EP699657B1公开了利用或破坏光气或氯化氢气体的可能性,未探究再循环光气相关的具体问题,在现代化工业生产的过程中,出于安全性、环保、经济性等考虑,光气化过程均采用光气循环再利用的方式。
专利DE 102009032413.5、GB737442均描述了在光气化合成异氰酸酯反应过程中,回收光气及实现光气循环的方法。GB737442描述了回收的光气的HCl含量为0.5-0.7%的指标。
专利EP 11160575.4限定了在气相光气化过程中光气中CO的含量,在胺在气相中光气化生成异氰酸酯中使用第一股低一氧化碳(<1%)料流作为反应料流,解决了光气在高温下分解为一氧化碳和氯气的问题。
专利DE 102005037328.3包含胺的料流混合以前包含光气的料流中氯气的质量分数为小于1000重量ppm和/或包含光气的料流中溴的质量分数为小于50重量ppm,解决了气相光气化法高温下氯气腐蚀的问题,通过控制光气中溴的含量,解决下游异氰酸酯不期望带来的色度升高的问题。
专利DE 102005037328.3在气相光气化反应的过程中要求将氯化氢从再循环光气料流中分离出来从而在与含二胺料流混合之前氯化氢在含 光气料流中的质量分数小于15重量%。
发明内容
本发明提供一种在气相中制备异氰酸酯的方法,该方法能有效改善在光气加热升温及反应过程中在换热器和设备中形成堵塞物的情形,能降低堵塞物的产生,从而获得更长的运行周期,减少含光气系统的检修频次,提升装置运行的安全性。
本发明提供如下技术方案来达到其目的:
一种在气相中制备异氰酸酯的方法,在有或无惰性气体存在的条件下,包含胺的气流和包含光气的料流进入反应区中,使所述胺和所述光气在反应区中以气态形式接触并进行光气化反应,在反应区中制得气态的目标异氰酸酯;其中,所述包含光气的料流在进入反应区之前进行预热升温,且所述包含光气的料流在进行所述预热升温前其中所含有的物质A的质量分数<1%,所述物质A为含NCO基团的物质和/或含烯属双键的物质。
一些优选实施方式中,所述包含光气的料流在进行所述预热升温前其中所含有物质A的质量分数更佳的控制为<0.5%,更优选<0.1%,当然,还可以控制在更低的水平。
在气相光气化过程中,胺和光气均需保持气相状态,在反应前,将包含胺的料流和包含光气的料流均预先加热至200℃以上,例如200-600℃,优选200-450℃,同时在进入反应区后,将反应区的温度也控制在200-600℃,优选200-450℃。反应物料及反应产物在高温下的稳定性成为气相光气化反应的重要考虑因素。为了缩短胺和异氰酸酯在高温下的停留时间,现有技术中采用的方式例如在加热气化的过程中均需要尽量缩短胺在高温下停留时间,同时由于反应生成的异氰酸酯在高温下不稳定,因此需要尽快的将反应生成的异氰酸酯气体通过急冷降温的方式冷却至低温稳定状态。尽管现有技术采用了不同的方式尽量缩短胺及异氰酸酯在高温下的停留时间,但依然难以杜绝胺及异氰酸酯在高温下的断链、分解、聚合等问题。
制备异氰酸酯所用的有机胺(简称胺)在高温下会发生断链或分解生成小分子的胺或含有烯属双键的组分,这些分解产生的组分会随胺物料流股进入光化反应器生成相应的小分子异氰酸酯或含有烯烃双键的组分。气相光气化反应生成的目标异氰酸酯(即生产过程中期望生成的异氰酸酯产物)在高温下也会发生断链、分解,生成小分子的异氰酸酯或含有烯属双键的组分。本发明中所述的物质A涉及的含NCO基团的物质和/或含烯属双键的物质即是指以上这些不期望出现的含NCO基团的物质(非目标异氰酸酯)和/或含有烯属双键的组分。
无论是胺或异氰酸酯在高温下分解,经过反应后最终均会生成分子量较小的异氰酸酯或含有烯属双键类的物质,而这些分子量较小的异氰酸酯或含有烯属双键类的物质不仅具有较低的沸点,而且在光气循环利用的过程中,极易分布在循环光气流股中。同时由于这些小分子的异氰酸酯具有很高的反应活性,含烯属双键类的物质其双键具有易聚合的特性,更加容易在受热的过程中生成聚合物,形成焦油和堵塞物。在气相光气化反应中,光气流股需要加热到200-600℃,光气化反应的温度也在200-600℃的范围,因此在光气加热升温和反应过程中,光气中含有的NCO类物质和\或烯烃类物质极易发生聚合反应,造成换热器和反应设备的结焦,造成换热能力下降、换热器堵塞、反应系统堵塞、副反应增多等问题,影响装置的运转周期。本申请发明人发现,通过将所述包含光气的料流在进行所述预热升温前将其中所含有的物质A(为含NCO基团的物质和/或含烯属双键的物质)的质量分数控制为<1%,优选控制为<0.5%,更优选<0.1%,可以有效改善这些问题,有效避免换热器堵塞、反应系统堵塞等现象,从而延长装置的运转周期。
本领域中,在制备异氰酸酯过程中,通过从反应区所得的基本气态反应混合物中分离出过量的未反应的光气和形成的氯化氢气体,将已经分离出来的至少部分过量光气再循环至反应区,这类光气称作循环光气。本发明所述的包含光气的料流中的光气包括新鲜光气和/或循环光气。含光气的料流向反应区(反应空间)的引入可以通过单个含光气的料流来进行,亦可通过供入多个含光气的子流进行。对于通过两个以上含光气 的子流向反应区内引入含光气的料流的情况,含光气的子流一起添加至反应区以产生总的含光气的料流(或称为光气料流),且光气料流中的物质A(即含NCO基团的物质和/或含烯属双键类物质)的质量分数来自各个含光气的子流的物质A(即含NCO基团的物质和/或含烯属双键类物质)的质量分数,在这种情况下,以此方式计算获得总的含光气的料流中物质A的质量分数。物质A中,对于含NCO基团的物质的含量计算不包含其中可能含有的反应要制备的目标异氰酸酯。
各种含光气的子流(例如循环光气和新鲜光气)可以在引入反应区之前合并形成含光气的总气流,然后供入反应空间。多个子流(在每种情况下可以为循环光气、新鲜光气或其混合物)可以在相同或不同位置引入反应空间,从而在反应过程中引入包含光气的料流。
在本发明中,术语“新鲜光气”是指尚未从光气化反应中再循环,且在通常由氯气和一氧化碳合成光气之后尚未经过任何涉及光气反应的反应阶段的含光气的料流。
在制备异氰酸酯的反应装置开车的初期阶段,用于反应的光气主要来源于新鲜光气。当装置稳定运转后,受到胺和光气化反应中异氰酸酯高温分解的影响,循环光气中的NCO类物质(即含NCO基团的物质)和/或含烯属双键类物质的质量分数会逐步上升,在光气料流升温和反应的过程中,生成一系列不期望的堵塞物,对反应造成不可逆的影响。因此在反应开车后,就需要控制包含光气的料流在预热升温前的平均含物质A(NCO类物质和/或含烯属双键类物质)的质量分数小于1%。
对于本发明,从反应混合物中获得循环光气的方法为本技术领域所公知的(如专利文献GB737442A已经披露了相应内容),并不是本发明的重点,不作一一赘述。
含光气的料流中所含有的物质A(NCO物质和/或含烯属双键类物质)的质量分数小于1%可以通过除去该料流中NCO物质和/或含烯属双键类物质来控制。可以采用本技术领域已知的常规分离方法来进行控制;本发明可以直接利用现有分离方法来达到去除预热升温前的含光气的料流中所含有的物质A(NCO物质和/或含烯属双键类物质),对此不作特别 限定,只要能将物质A(NCO物质和/或含烯属双键类物质)的质量分数控制在所需范围的方式均可以采用;例如精馏、吸附、涤气和其他类似方式中的一种或几种进行组合。一些实施方式中,所述包含光气的料流在进行所述预热升温前其中所含有的所述物质A的质量分数通过精馏、吸附、涤气中的一种或两种以上方式的组合进行控制。
光气料流中的含NCO物质和/或含烯属双键类物质的控制优选通过精馏和/或借助涤气进行,也可借助精馏和涤气的组合进行。优选的涤气介质优选使用与反应相同的溶剂,优选使用的溶剂如甲苯、二甲苯、氯苯、二氯苯等中的一种或两种以上的组合。在组合的涤气和精馏中,通过用涤气介质,从包含NCO物质和/或烯属双键类物质的光气料流中洗出NCO物质和/或烯烃双键类物质,从而获得含NCO物质和/或烯烃双键类物质的含量在一定水平的光气料流,同时获得含有光气、含NCO物质和/或烯属双键类物质的涤气料流。优选将含光气的涤气料流返回光气精制系统,涤气料流中的含NCO类物质和/或含烯烃双键类物质达到一定含量后,可以通过精馏从这种涤气料流中分离出,得到含NCO和/或含烯属双键类物质。涤气和精馏的操作压力可在1至10巴(绝对压力)下进行,优选1至5巴(绝对压力)下进行。
在一些实施方式中,采用吸附的方式来分离光气料流中的含NCO和/或含烯属双键类物质,例如,通过光气循环系统获得的循环光气料流,可以通过吸附单元,优选采用活性炭吸附,从而将循环光气中的含NCO物质和/或含烯烃双键类物质的含量控制在一定的范围。
在一些实施方式中,通过对经分离处理的循环光气与新鲜光气混合后,得到具有物质A(含NCO物质和/或含烯属双键物质)含量低于1%的光气料流。
在本发明中,包含光气的料流中可以含有0-10wt%的HCl气体。
在本发明的方法中可以使用额外惰性介质(在本发明中或称其为“惰性气体”)。惰性介质是在反应空间中在反应温度下为气态形式并且不会与反应过程中存在的化合物反应的介质。惰性介质通常在反应之前与胺和/或光气混合,但也可以与进料流分开引入。例如,可以使用氮气、诸 如氦气或氩气的稀有气体,或芳族化合物,例如氯苯、二氯苯、二甲苯、二氧化碳或一氧化碳,可以使用这些惰性介质中的一种或几种的组合。优选使用氮气和/或氯苯作为惰性介质。惰性介质加入包含胺或者光气的料流中使得惰性介质与胺气体或与光气的气体体积比为0-20:1。如果向含光气的料流中供入一个或多个额外惰性料流,则在实施本发明的方法中,这些气流作为含光气的总料流的子流包括在含光气料流的计算中,即在计算含光气的料流中关于物质A(含NCO物质和/或含烯属双键物质)的质量分数时,将其考虑进来。
一些实施方式中,所述包含胺的气流中还含有惰性气体,且使惰性气体和胺气体的体积比为0-20:1;惰性气体通过加入所述包含胺的气流中来引入所述反应区中。
和/或,所述包含光气的料流中还含有惰性气体,且使惰性气体和光气的体积比为0-20:1;惰性气体通过加入所述包含光气的料流中来引入所述反应区中。
一些实施方式中,在反应区内,所述光气和所述胺的反应在0.01-0.5Mpa的绝对压力下进行,优选0.07-0.3MPa,更优选0.09-0.2MPa。在本发明的方法中,基于反应区内普遍的压力,选择反应区中的温度以使其高于所用胺的沸点,反应区的温度一般控制为200-600℃,优选250-450℃。
一些实施方式中,所述胺和所述光气在所述反应区中的平均反应时间(或称为平均接触时间)为0.01-15s,优选0.05-10s,更优选0.1-5s。平均反应时间为从胺和光气开始混合到反应混合物离开反应空间(反应区)并进入后处理阶段的时长。
在气相中制备异氰酸酯,光气相比于胺,是过量使用的(即化学计量过量),一些实施方式中,所述光气和胺的氨基的摩尔比为2.2-20:1,例如2.2:1、5:1、10:1、15:1、20:1等,优选4-10:1,更优选6-8:1。
一些实施方式中,所述包含胺的气流和所述包含光气的料流进入反应区的流速分别为5-100m/s,优选10-80m/s。
所述目标异氰酸酯的通式为R(NCO) n,目标异氰酸酯根据生产需求而定,例如可为脂肪族、脂环族或芳香族异氰酸酯中的一种或两种以上的组合,对其不作特别限定,优选其中的R为具有4-15个碳原子的脂肪族、脂环族或芳香族烃基,n为1-10中的整数。优选选自苯基异氰酸酯、环己基异氰酸酯、1,4-丁二异氰酸酯、1,3-二甲基异氰酸酯环己烷、1,6-己二异氰酸酯、1,4-环己烷二异氰酸、异佛尔酮二异氰酸酯、4,4’二环己基甲烷二异氰酸酯、对苯二异氰酸酯、间苯二亚甲基二异氰酸酯、甲苯二异氰酸酯、1,8-二异氰酸根-4-异氰酸根甲基辛烷或壬烷三异氰酸酯中的任意一种或几种。
本发明中,所用的胺可以是本领域制备异氰酸酯所允许使用的各种胺,根据生产需要而具体确定具体的胺原料,对此不作特别限定;一些实施方式中,所述胺例如选自苯胺、环己胺、1,4-丁二胺、1,3-环己二甲胺、1,6-己二胺、1,4-二氨基环己烷、1-氨基-3,3,5-三甲基-5-氨基甲基环己烷、4,4’-二氨基二环己基甲烷二胺、对苯二胺、间苯二亚甲基二胺、2,4或2,6-甲苯二胺、1,8-二氨基-4-(氨甲基)辛烷或三氨基壬烷。
一些实施方式中,所述反应为连续操作进行,即连续输入原料和连续输出反应产物。
本发明提供的技术方案具有如下有益效果:
本发明提供的胺和光气在气相中反应形成相应的异氰酸酯的方法,可以避免在光气加热升温及反应过程中在换热器和设备中形成堵塞物,从而获得更长的运行周期,减少含光气系统的检修频次,提升装置的运行的安全性。
具体实施方式
为了更好的理解本发明的技术方案,下面结合实施例进一步阐述本发明的内容,但本发明的内容并不仅仅局限于以下实施例。
以下实施例或对比例中,光气料流(即包含光气的料流)中物质A(含NCO物质和/或含烯属双键类物质)的质量分数通过气相色谱来进行测定,测定方法如下:利用安捷伦7890A气相色谱仪测定,色谱柱型号为J&W 112-2112CAM 15m,0.25mm,0.25μm;检测器为FID检测器,进样口温度:250℃,柱温升温程序:50℃保持2min后,以10℃/min的速度升温至100℃保持2min,然后以25℃/min的速度升温至250℃保持2min,检测器温度:250℃。首先采用气质联用的方式确定光气料流中含NCO物质和/或含烯属双键类物质在气相色谱中的保留时间,采用丙基异氰酸酯为外标物,通过外标法,确定光气料流中物质A(含NCO物质和/或含烯属双键类物质)的质量分数。
以下实施例中,光气料流中物质A(含NCO物质和/或含烯属双键类物质)的质量分数采用精馏的方式进行控制。填料塔的理论塔板数为25,在循环光气精制的过程中,采用连续精馏的方式对循环光气料流进行纯化,塔顶压力控制在2bar,塔顶温度控制在10℃左右,塔釜温度控制在160℃,通过控制回流比控制光气料流的物质A(含NCO物质和/或含烯属双键类物质)质量分数在所需范围内。
实施例1
氮气与1,6-己二胺混合后(氮气与1,6己二胺气体的体积比为0.5:1)和光气在管式反应器中连续反应,1,6-己二胺和光气的进料压力为0.25MPa,两种进料流的进料温度为310℃(通过对料流预热从而达到该进料温度),反应区的绝对压力为0.09MPa,略低于大气压。光气和1,6-己二胺进料的摩尔比为6:1,反应区的温度为420℃,进料流进入反应器的流速为70m/s,平均接触时间为2s。通过精馏的方式,控制在运转的过程中含光气的料流(本实施例中含光气的料流由一股新鲜光气和一股循环光气组成)在进入管式反应器之前对其进行预热升温前所含有的物质A(含NCO物质和含烯属双键类物质)的质量分数为0.5%。
反应产物离开反应区后,进入工艺区,工艺区的压力为0.08MPa,用氯苯进行喷淋洗涤,得到的1,6-己二异氰酸酯溶液经过精馏提纯后获得 不含光气和HCl的1,6-己二异氰酸酯溶液,并经过随后的精馏分离纯化,得到1,6-己二异氰酸酯产品。反应装置连续运转3个月后,光气加热器出口与入口的压力差约15Kpa,停车检修处理,光气加热器、管道及管式反应器中有微量的固体物,不影响反应的继续运转。
实施例2
通过精馏的方式,控制在运转的过程中,含光气的料流在进入管式反应器之前,且在对其进行预热升温前所含有的物质A(含NCO物质和含烯属双键类物质)的质量分数为0.8%。其他实验条件与实施例1相同,得到1,6-己二异氰酸酯产品。连续运转2个月后,光气加热器出口与入口的压力差约15Kpa,停车检修处理,光气加热器、管道及管式反应器中有微量的固体物,不影响反应的继续运转。
实施例3
通过精馏的方式,控制在运转的过程中,含光气的料流在进入管式反应器之前,且在对其进行预热升温前所含有的物质A(含NCO物质和含烯属双键类物质)的质量分数为0.1%。其他实验条件与实施例1相同,得到1,6-己二异氰酸酯产品。连续运转3个月后,光气加热器出口与入口的压力差维持12Kpa左右,停车检修处理,光气加热器及管道中无固体附着物,管式反应器中有微量的固体物,不影响反应的继续运转。
实施例4
氮气与1-氨基-3,3,5-三甲基-5-氨基甲基环己烷混合后(氮气与1-氨基-3,3,5-三甲基-5-氨基甲基环己烷气体的体积比为0.6:1)和光气在管式反应器中连续反应,1-氨基-3,3,5-三甲基-5-氨基甲基环己烷和光气的进料压力为0.3MPa,两种进料流的进料温度为330℃(通过对料流预热从而达到该进料温度),反应区的绝对压力为0.12MPa,略高于大气压。光气和1-氨基-3,3,5-三甲基-5-氨基甲基环己烷进料的摩尔比为5:1,反应区的温度为400℃,进料流进入反应器的流速为65m/s,平均接触时 间为1.8s。通过精馏的方式,控制在运转的过程中含光气的料流(含光气的料流由一股新鲜光气和一股循环光气组成)在进入管式反应器之前对其进行预热升温前所含有的物质A(含NCO物质和含烯属双键类物质)的质量分数为0.6%。
反应产物离开反应区后,进入工艺区,工艺区的压力为0.1MPa,用氯苯进行喷淋洗涤,得到的异佛尔酮二异氰酸酯溶液经过精馏提纯后获得不含光气和HCl的异佛尔酮二异氰酸酯溶液,并经过随后的精馏分离纯化,得到异佛尔酮二异氰酸酯产品。反应装置连续运转2.5个月后,光气加热器出口与入口的压力差约15Kpa,停车检修处理,光气加热器、管道及管式反应器中有微量的固体物,不影响反应的继续运转。
对比例1
与实施例1基本相同,所不同仅在于控制物质A(含NCO物质和含烯属双键类物质)的质量分数为2.5%,得到1,6-己二异氰酸酯产品。连续运转1个月后,光气加热器出口与入口的压力差上涨至50Kpa左右,发生明显变化,停车检修处理,光气加热器、管道及管式反应器中有明显的固体物,影响反应的继续运行。
对比例2
与实施例1基本相同,所不同仅在于控制物质A(含NCO物质和含烯属双键类物质)的质量分数为1.5%。得到1,6-己二异氰酸酯产品。连续运转2个月后,光气加热器出口与入口的压力差上涨至50Kpa左右,发生明显变化,停车检修处理,光气加热器、管道及管式反应器中有明显的固体物,影响反应的继续运行。
对比例3
与实施例4基本相同,所不同仅在于控制物质A(含NCO物质和含烯属双键类物质)的质量分数为2.0%,得到异佛尔酮二异氰酸酯产品。连续运转1.2个月后,光气加热器出口与入口的压力差上涨至45Kpa左右,发生明显变化,停车检修处理,光气加热器、管道及管式反应器中有明 显的固体物,影响反应的继续运行。
本领域技术人员可以理解,在本说明书的教导之下,可对本发明做出一些修改或调整。这些修改或调整也应当在本发明权利要求所限定的范围之内。

Claims (12)

  1. 一种在气相中制备异氰酸酯的方法,在有或无惰性气体存在的条件下,包含胺的气流和包含光气的料流进入反应区中,使所述胺和所述光气在反应区中以气态形式接触并进行光气化反应,在反应区中制得气态的目标异氰酸酯;其中,所述包含光气的料流在进入反应区之前进行预热升温,且所述包含光气的料流在进行所述预热升温前其中所含有的物质A的质量分数<1%,所述物质A为含NCO基团的物质和/或含烯属双键的物质。
  2. 根据权利要求1所述的方法,其特征在于,其中包含光气的料流在进行所述预热升温前其中所含有的物质A的质量分数小于0.5%,优选小于0.1%。
  3. 根据权利要求1-2所述的方法,所述预热升温为将所述包含光气的料流在进入反应区之前预热升温至200℃以上,优选为预热升温至200-600℃,更优选预热升温至250-450℃。
  4. 根据权利要求1-3任一项所述的方法,通过精馏、吸附、涤气中的一种或两种以上方式的组合对所述预热升温前的所述包含光气的料流进行处理,从而控制预热升温前的所述包含光气的料流中含有的所述物质A的质量分数;优选通过精馏和/或涤气对所述预热升温前的所述包含光气的料流进行处理。
  5. 根据权利要求1-4任一项所述的方法,所述惰性气体通过加入所述包含胺的气流中来引入所述反应区中,且使惰性气体和胺气体的体积比为0-20:1;
    和/或,所述惰性气体通过加入所述包含光气的料流中来引入所述反应区中,且使惰性气体和光气的体积比为0-20:1。
  6. 根据权利要求1-5任一项所述的方法,在所述反应区内,所述光气和所述胺的反应在0.01-0.5Mpa的绝对压力下进行,优选0.07-0.3MPa,更优选0.09-0.2MPa;
    所述反应区的温度控制为200-600℃,优选250-450℃;
    和/或,所述胺和所述光气在所述反应区中的平均反应时间优选为0.01-15s,更优选0.05-10s,进一步优选0.1-5s。
  7. 根据权利要求1-6任一项所述的方法,所述光气和胺的氨基的摩尔比为2.2-20:1,优选4-10:1,更优选6-8:1。
  8. 根据权利要求1-7任一项所述的方法,所述包含胺的气流和所述包含光气的料流进入反应区的流速分别为5-100m/s,优选10-80m/s。
  9. 根据权利要求1-8任一项所述的方法,所述包含光气的料流中包括新鲜光气和/或循环光气;
    和/或,所述包含光气的料流中含有0-10wt%的HCl气体。
  10. 根据权利要求1-9任一项所述的方法,所述物质A中的所述含NCO基团的物质不包括目标异氰酸酯。
  11. 根据权利要求1-10任一项所述的方法,所述目标异氰酸酯的通式为R(NCO) n,其中R为具有4-15个碳原子的脂肪族、脂环族或芳香族烃基,n为1-10中的整数;优选选自苯基异氰酸酯、环己基异氰酸酯、1,4-丁二异氰酸酯、1,3-二甲基异氰酸酯环己烷、1,6-己二异氰酸酯、1,4-环己烷二异氰酸、异佛尔酮二异氰酸酯、4,4’二环己基甲烷二异氰酸酯、对苯二异氰酸酯、间苯二亚甲基二异氰酸酯、甲苯二异氰酸酯、1,8-二异氰酸根-4-异氰酸根甲基辛烷或壬烷三异氰酸酯中的一种或两种以上的组合;
    所述胺选自苯胺、环己胺、1,4-丁二胺、1,3-环己二甲胺、1,6-己二胺、1,4-二氨基环己烷、1-氨基-3,3,5-三甲基-5-氨基甲基环己烷、4,4’-二氨基二环己基甲烷二胺、对苯二胺、间苯二亚甲基二胺、2,4或2,6-甲苯二胺、1,8-二氨基-4-(氨甲基)辛烷或三氨基壬烷中的一种或两种以上的组合。
  12. 根据权利要求1-11任一项所述的方法,所述在气相中制备异氰酸酯的方法为连续操作进行。
PCT/CN2018/123876 2018-12-26 2018-12-26 一种在气相中制备异氰酸酯的方法 WO2020132936A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217011182A KR20210061385A (ko) 2018-12-26 2018-12-26 기상에서의 이소시아네이트 제조 방법
PCT/CN2018/123876 WO2020132936A1 (zh) 2018-12-26 2018-12-26 一种在气相中制备异氰酸酯的方法
JP2021520423A JP7285924B2 (ja) 2018-12-26 2018-12-26 気相でイソシアネートを調製する方法
EP18944569.5A EP3904336B1 (en) 2018-12-26 2018-12-26 Method for preparing isocyanate in gaseous phase
US17/295,806 US11814339B2 (en) 2018-12-26 2018-12-26 Method for preparing isocyanate in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123876 WO2020132936A1 (zh) 2018-12-26 2018-12-26 一种在气相中制备异氰酸酯的方法

Publications (1)

Publication Number Publication Date
WO2020132936A1 true WO2020132936A1 (zh) 2020-07-02

Family

ID=71128412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123876 WO2020132936A1 (zh) 2018-12-26 2018-12-26 一种在气相中制备异氰酸酯的方法

Country Status (5)

Country Link
US (1) US11814339B2 (zh)
EP (1) EP3904336B1 (zh)
JP (1) JP7285924B2 (zh)
KR (1) KR20210061385A (zh)
WO (1) WO2020132936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380715A (zh) * 2022-01-24 2022-04-22 纳琳威纳米科技(上海)有限公司 一种氢化苯基甲烷二异氰酸酯的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB737442A (en) 1952-12-19 1955-09-28 Bayer Ag Recovery of phosgene
EP0593334B1 (fr) 1992-10-16 1997-05-28 Rhone-Poulenc Chimie Procédé de préparation de composés du type isocyanates aromatiques en phase gazeuse
EP0699657B1 (fr) 1994-08-12 2002-03-27 Rhodia Chimie Procédé de préparation de composés du type polyisocyanates aromatiques en phase gazeuse
CN101583594A (zh) * 2006-11-07 2009-11-18 巴斯夫欧洲公司 生产异氰酸酯的方法
CN101698652A (zh) * 2009-11-05 2010-04-28 甘肃银达化工有限公司 一种tdi生产中循环溶剂的净化方法
CN101747232A (zh) * 2008-12-19 2010-06-23 拜尔材料科学股份公司 在气相中制备异氰酸酯的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232827A1 (en) * 2004-05-25 2007-10-04 Basf Aktiengesellschaft Isocyanate Production Method
DE102005037328A1 (de) 2005-08-04 2007-02-08 Basf Ag Verfahren zur Herstellung von Isocyanaten
DE102006058634A1 (de) 2006-12-13 2008-06-19 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
PT2511259T (pt) 2007-01-17 2016-07-01 Basf Se Processo para a produção de isocianatos
CN102119146A (zh) 2008-08-08 2011-07-06 昭和电工株式会社 包含异氰酸酯基的烯属不饱和羧酸酯化合物的聚合抑制方法和制造方法
DE102009032413A1 (de) 2009-07-09 2011-01-13 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
CN101774948B (zh) 2010-03-01 2012-10-17 甘肃银达化工有限公司 连续制备甲苯二异氰酸酯的方法
CN102060295B (zh) 2010-11-06 2012-08-08 青岛科技大学 一种低氯化氢含量的高纯光气的生产工艺
CN103796991B (zh) 2011-03-31 2016-05-18 巴斯夫欧洲公司 制备异氰酸酯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB737442A (en) 1952-12-19 1955-09-28 Bayer Ag Recovery of phosgene
EP0593334B1 (fr) 1992-10-16 1997-05-28 Rhone-Poulenc Chimie Procédé de préparation de composés du type isocyanates aromatiques en phase gazeuse
EP0699657B1 (fr) 1994-08-12 2002-03-27 Rhodia Chimie Procédé de préparation de composés du type polyisocyanates aromatiques en phase gazeuse
CN101583594A (zh) * 2006-11-07 2009-11-18 巴斯夫欧洲公司 生产异氰酸酯的方法
CN101747232A (zh) * 2008-12-19 2010-06-23 拜尔材料科学股份公司 在气相中制备异氰酸酯的方法
CN101698652A (zh) * 2009-11-05 2010-04-28 甘肃银达化工有限公司 一种tdi生产中循环溶剂的净化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA , DEQIANG ET AL: "Production and Technology Progress of Aliphatic Diisocyanates", PAINT & COATINGS INDUSTRY, vol. 35, no. 12, 31 December 2005 (2005-12-31), pages 35 - 41, XP055715228 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380715A (zh) * 2022-01-24 2022-04-22 纳琳威纳米科技(上海)有限公司 一种氢化苯基甲烷二异氰酸酯的制备方法

Also Published As

Publication number Publication date
US11814339B2 (en) 2023-11-14
KR20210061385A (ko) 2021-05-27
EP3904336A4 (en) 2022-08-10
US20220024863A1 (en) 2022-01-27
EP3904336A1 (en) 2021-11-03
EP3904336B1 (en) 2023-05-03
JP7285924B2 (ja) 2023-06-02
JP2022511618A (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
JP5388427B2 (ja) イソシアネートの連続的な製造方法
JP4339583B2 (ja) 改良された気相(ポリ)イソシアネート製造方法
JP3864209B2 (ja) イソシアネートの製造方法
JP3219903B2 (ja) 芳香族ジイソシアネートの製造方法
JP6621760B2 (ja) 気相ホスゲン化プラントの運転方法
MXPA05006058A (es) Metodo para proteccion continua de isocianatos.
JPH0859593A (ja) 気相中での芳香族ポリイソシアネート化合物の製造方法
CN111825572B (zh) 一种成盐-雾化光气化法制备异氰酸酯的方法
CN101440046B (zh) 浅色异氰酸酯的制备
JP2006022098A (ja) 第一級アミンの断熱的ホスゲン化によるポリイソシアネートの製造方法
JP2005126437A (ja) 気相におけるイソシアネートの調製方法
TW201125839A (en) Process for the preparation of isocyanates
WO2022147939A1 (zh) 一种制备二异氰酸酯的方法及其装置
KR20090104866A (ko) 이소시아네이트의 제조 방법
JPH01151548A (ja) 有機モノイソシアネート又はポリイソシアネートを連続的に製造する方法
CN107011214A (zh) 制备低氯异氰酸酯的方法
CA1088091A (en) Process for the continuous production of organic isocyanates
CN109704993A (zh) 一种在气相中制备异氰酸酯的方法
CN101671275A (zh) 甲苯二异氰酸酯的连续制造方法
JP6621759B2 (ja) 気相ホスゲン化プラントの運転方法
US8716517B2 (en) Method for producing diisocyanates by gas-phase phosgenation
WO2020132936A1 (zh) 一种在气相中制备异氰酸酯的方法
KR20180059520A (ko) 이소시아네이트의 제조 방법
JP7093183B2 (ja) 気相中におけるジイソシアネートの製造方法
WO2011130907A1 (zh) 一种通过界面光气化反应制备异氰酸酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520423

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217011182

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944569

Country of ref document: EP

Effective date: 20210726