WO2020129717A1 - アンモニアセンサ - Google Patents

アンモニアセンサ Download PDF

Info

Publication number
WO2020129717A1
WO2020129717A1 PCT/JP2019/047984 JP2019047984W WO2020129717A1 WO 2020129717 A1 WO2020129717 A1 WO 2020129717A1 JP 2019047984 W JP2019047984 W JP 2019047984W WO 2020129717 A1 WO2020129717 A1 WO 2020129717A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
electrode
detection electrode
detection
concentration
Prior art date
Application number
PCT/JP2019/047984
Other languages
English (en)
French (fr)
Inventor
中村 聡
原田 敏彦
健介 瀧澤
大樹 市川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019006347.2T priority Critical patent/DE112019006347T5/de
Publication of WO2020129717A1 publication Critical patent/WO2020129717A1/ja
Priority to US17/350,143 priority patent/US20210310984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an ammonia sensor including an ammonia element unit.
  • a catalyst for purifying NOx nitrogen oxide
  • NOx nitrogen oxide
  • NO 2 nitrogen oxide
  • a selective reduction catalyst as one of the catalysts, in order to reduce NOx, ammonia (NH 3 ) contained in urea water or the like is attached to the catalyst carrier, and ammonia and NOx are chemically mixed in the catalyst carrier.
  • NOx is reduced to nitrogen (N 2 ) and water (H 2 O).
  • a reducing agent supply device for supplying ammonia as a reducing agent to the selective reduction catalyst is arranged at a position upstream of the flow of the exhaust gas with respect to the selective reduction catalyst.
  • a NOx sensor for detecting the NOx concentration in the exhaust gas and an ammonia sensor for detecting the ammonia concentration in the exhaust gas are arranged in the exhaust pipe at a position downstream of the flow of the exhaust gas of the selective reduction catalyst. The NOx sensor and the ammonia sensor are used to monitor the amounts of NOx and ammonia, thereby suppressing the outflow of ammonia from the selective reduction catalyst and improving the purification rate of NOx by ammonia.
  • the detection electrode exposed to the exhaust gas, and the reference electrode that serves as a reference when determining the potential of the detection electrode are arranged in the solid electrolyte body. There is. Then, the ammonia concentration in the exhaust gas is obtained by using the potential difference generated between the detection electrode and the reference electrode.
  • Patent Document 1 when forming a mixed potential type ammonia gas sensor, the noble metal of the detection electrode exposed to the gas to be measured is formed of a Pt-Au alloy.
  • Pt contains Au to improve the detection sensitivity and durability of ammonia gas.
  • Au or Pt-Au is often used for the detection electrode of the ammonia sensor because of its high sensitivity to ammonia.
  • the content ratio of Au in the noble metal of the detection electrode is high, the ammonia concentration between the detection electrode and the reference electrode is maintained after the ammonia concentration changes to the predetermined concentration and is maintained at this predetermined concentration.
  • the sensor output of the detection electrode expressed as a potential difference, changes over time with time. The inventor's earnest research has revealed that the change in the sensor output with time does not occur as a mere deterioration phenomenon of the detection electrode, but is caused by the balance between the adsorption property and the oxidation property of the detection electrode with respect to ammonia. did.
  • the adsorption and oxidation characteristics of the detection electrode with respect to ammonia are indicators of the sensitivity when detecting ammonia.
  • the sensor output of the detection electrode increases and the sensor output increases due to a change over time.
  • the oxidation characteristic is higher than necessary, the sensor output of the detection electrode becomes small and the sensor output also deteriorates due to changes over time.
  • the change over time in the sensor output refers to the change in the sensor output after the ammonia concentration has changed.
  • the present disclosure was obtained in an attempt to provide an ammonia sensor capable of increasing the detection accuracy of ammonia concentration.
  • One embodiment of the present disclosure is a solid electrolyte body having oxygen ion conductivity, a detection electrode provided on the surface of the solid electrolyte body, exposed to a gas to be detected, and a reference electrode provided on the surface of the solid electrolyte body.
  • an ammonia element part having A heater section that has a heating section that generates heat by energization, and that heats the solid electrolyte body, the detection electrode, and the reference electrode by the heat generation of the heating section;
  • the detection electrode which occurs when the electrochemical reduction reaction of oxygen contained in the gas to be detected and the electrochemical oxidation reaction of ammonia contained in the gas to be detected are balanced, between the detection electrode and the reference electrode
  • a potential difference detection unit that detects a potential difference between the The detection electrode contains at least Au and Pd, The content ratio of Au and Pd on the surface of the detection electrode is in the ammonia sensor in which Pd is 80 mol% or less with respect to 100 mol% of Au.
  • the detection electrode in the configuration for detecting the potential difference between the detection electrode and the reference electrode, contains at least Au (gold) and Pd (palladium), and the surface of the detection electrode is Au. Is 100 mol% and Pd is contained within the range of 80 mol% or less.
  • the content ratio of Pd to Au on the surface of the detection electrode is too high, not only the oxidation characteristics of the detection electrode increase, the sensitivity of the detection electrode decreases, but also the sensor output of the detection electrode changes with time.
  • the content ratio of Pd with respect to Au:100 mol% is more than 0 mol% and 80 mol% or less, so that the balance between the adsorption property and the oxidation property of the detection electrode is appropriately maintained and the sensor output with time changes. Change can be suppressed appropriately.
  • the adsorption and oxidation characteristics of the detection electrode influence the sensitivity of the detection electrode to ammonia.
  • the sensitivity of the detection electrode is high, and the sensor output of the detection electrode is unlikely to change with time, so that a detection error is less likely to occur in the sensor output of the detection electrode, and the detection accuracy of the ammonia concentration by the detection electrode can be improved. ..
  • the ammonia sensor of the one aspect it is possible to improve the detection accuracy of the ammonia concentration.
  • Au on the surface of the detection electrode has high adsorption characteristics and high sensitivity to ammonia. However, since Au has a high adsorption property, it causes a change over time on the positive side of the sensor output.
  • Pd on the surface of the detection electrode has high oxidation characteristics and low sensitivity to ammonia. However, since Pd has a high oxidation characteristic, it causes a change with time on the negative side of the sensor output.
  • the adsorption property of the detection electrode with respect to ammonia decreases as the content ratio of Pd to Au on the surface of the detection electrode increases.
  • the content ratio of Pd to Au on the surface of the detection electrode can be 0.5 mol% or more.
  • the change over time in the sensor output of the detection electrode tends to occur on the positive side when the adsorption property of the detection electrode with respect to ammonia increases, and tends to occur on the negative side when the oxidation property of the detection electrode with respect to ammonia increases. If the change over time in the sensor output greatly changes to the positive or negative side, the sensor output immediately after the ammonia concentration changes to a predetermined concentration and the sensor output after a predetermined time has elapsed after the ammonia concentration changed to a predetermined concentration. A difference easily occurs with the output.
  • the change with time of the sensor output of the detection electrode becomes the smallest when the content ratio of Pd to Au on the surface of the detection electrode is about 20 to 40 mol %.
  • the content ratio of Pd to Au on the surface of the detection electrode may be 40 mol% or less.
  • the surface of the detection electrode can be a surface having a thickness capable of measuring the content ratio of Au and Pd.
  • the surface of the detection electrode can range from the outermost surface of the detection electrode to a depth of 1 ⁇ m in the direction perpendicular to the surface of the solid electrolyte body.
  • the detection electrode may contain a noble metal other than Au and Pd, a solid electrolyte material of the same quality as the solid electrolyte material forming the solid electrolyte body, and the like.
  • Au and Pd may be alloys, or may be alloys which are not alloys but are mixed with each other.
  • the detection electrode may contain Pt (platinum) in addition to Au and Pd, for example.
  • Au, Pd, and Pt may be alloys, or may be alloys which are not alloys but are mixed with each other.
  • FIG. 1 is a cross-sectional explanatory view showing a configuration of an ammonia sensor according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1 showing the sensor element according to the first embodiment.
  • FIG. 3 is a sectional view taken along line III-III of FIG. 1, showing the sensor element according to the first embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 1 showing the sensor element according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing an electrical configuration of the sensor control unit according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a state in which the gas sensor is arranged in the internal combustion engine according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing a mixed potential generated in the detection electrode according to the first embodiment.
  • FIG. 8 is an explanatory diagram showing a mixed potential generated in the detection electrode when the ammonia concentration changes according to the first embodiment.
  • FIG. 9 is an explanatory diagram showing a mixed potential generated in the detection electrode when the oxygen concentration changes according to the first embodiment.
  • FIG. 10 is an explanatory diagram showing a mixed potential generated in the detection electrode when the temperature of the detection electrode changes according to the first embodiment.
  • FIG. 11 is a graph showing the relationship between the temperature of the detection electrode and the correction amount of the potential difference according to the first embodiment.
  • FIG. 12 is an explanatory diagram showing a mixed potential generated in the detection electrode when the measurement gas according to the first embodiment contains CO and another gas of C 3 H 8 .
  • FIG. 13 is a graph showing the relationship between the ammonia concentration and the potential difference when the oxygen concentration changes according to the first embodiment.
  • FIG. 14 is a graph showing the relationship between the potential difference and the ammonia concentration after oxygen correction when the oxygen concentration changes according to the first embodiment.
  • FIG. 15 is a cross-sectional view showing a plurality of measurement sites on the cut surface of the detection electrode according to the first embodiment.
  • FIG. 16 is a graph showing a change in sensor output when the ammonia concentration is changed according to the first embodiment.
  • FIG. 17 is a graph showing the amount of change over time in the sensor output when the Pd content ratio relative to Au:100 mol% is changed on the surface of the detection electrode according to the first embodiment.
  • FIG. 18 is a graph showing the sensitivity of the sensor output when the Pd content ratio relative to Au:100 mol% is changed on the surface of the detection electrode according to the first embodiment.
  • FIG. 19 is a graph showing an index of change over time when the Pd content ratio with respect to Au:100 mol% changes on the surface of the detection electrode according to the first embodiment.
  • FIG. 20 is a cross-sectional explanatory diagram showing the configuration of the ammonia sensor according to the second embodiment.
  • FIG. 21 is a cross-sectional explanatory view showing a sensor element according to the third embodiment. 22 is a sectional view taken along the line XXII-XXII of FIG. 21, showing the configuration of the ammonia sensor according to the third embodiment.
  • the ammonia sensor 1 of this embodiment includes an ammonia element unit 2, a heater unit 4, and a potential difference detection unit 51.
  • the ammonia element unit 2 and the heater unit 4 form a part of the sensor element 10.
  • the ammonia element unit 2 is provided with a first solid electrolyte body 21 having oxygen ion conductivity, a detection electrode 22 provided on the first surface 211 of the first solid electrolyte body 21, and exposed to the gas G to be detected, and a first solid body.
  • the reference electrode 23 is provided on the second surface 212 of the electrolyte body 21.
  • the heater unit 4 has a heat generating unit 411 that generates heat when energized, and heats the first solid electrolyte body 21, the detection electrode 22, and the reference electrode 23 by the heat generation of the heat generating unit 411.
  • the potential difference detection unit 51 performs an electrochemical reduction reaction of oxygen (oxygen gas, O 2 ) contained in the detection target gas G on the detection electrode 22 and an ammonia (ammonia gas, NH 3 ) contained in the detection target gas G.
  • the detection electrode 22 contains at least Au (gold) and Pd (palladium).
  • the content ratio of Au and Pd on the surface of the detection electrode 22 is such that Au is 100 mol% and Pd is more than 0 mol% and 80 mol% or less.
  • the ammonia sensor 1 of the present embodiment is of a mixed potential type as a potential difference type.
  • the ammonia sensor 1 detects the concentration of ammonia in the detection target gas G containing oxygen and ammonia.
  • a reduction current due to an electrochemical reduction reaction of oxygen hereinafter, simply referred to as a reduction reaction
  • an electrochemical oxidation reaction of ammonia hereinafter, simply referred to as an oxidation reaction
  • the ammonia sensor 1 detects the concentration of ammonia flowing out from a catalyst 72 that reduces NOx in an exhaust pipe 71 of an internal combustion engine (engine) 7 of a vehicle.
  • the detection target gas G is the exhaust gas exhausted from the internal combustion engine 7 to the exhaust pipe 71.
  • the composition of the exhaust gas changes depending on the combustion state in the internal combustion engine 7.
  • the exhaust pipe 71 is provided with a catalyst 72 for reducing NOx and a reducing agent supply device 73 for supplying the reducing agent K containing ammonia to the catalyst 72.
  • the catalyst 72 has a catalyst carrier to which ammonia as a NOx reducing agent K is attached. The amount of ammonia adhering to the catalyst carrier of the catalyst 72 decreases with the NOx reduction reaction. Then, when the amount of ammonia adhering to the catalyst carrier decreases, ammonia is newly replenished from the reducing agent supply device 73 to the catalyst carrier.
  • the reducing agent supply device 73 is arranged in the exhaust pipe 71 at a position upstream of the exhaust gas flow with respect to the catalyst 72, and supplies ammonia gas generated by injecting urea water to the exhaust pipe 71. Ammonia gas is produced by hydrolysis of urea water.
  • a urea water tank 731 is connected to the reducing agent supply device 73.
  • the internal combustion engine 7 of the present embodiment is a diesel engine that performs combustion operation by using self-ignition of light oil.
  • the catalyst 72 is a selective reduction catalyst (SCR) that chemically reacts NOx (nitrogen oxide) with ammonia (NH 3 ) to reduce nitrogen (N 2 ) and water (H 2 O).
  • SCR selective reduction catalyst
  • an oxidation catalyst (DOC) for converting NO to NO 2 (oxidation) and reducing CO, HC (hydrocarbons) and the like is provided at a position upstream of the catalyst 72 in the exhaust pipe 71.
  • DOC oxidation catalyst
  • HC hydrocarbons
  • DOC oxidation catalyst
  • DPF filter
  • the ammonia sensor 1 of the present embodiment is arranged at a position downstream of the catalyst 72 in the exhaust pipe 71.
  • the sensor main body 100 including the sensor element 10 is disposed in the exhaust pipe 71, excluding the sensor control unit (SCU) 5 including the potential difference detection unit 51 and the like.
  • the sensor body 100 may be referred to as the ammonia sensor 1.
  • the ammonia sensor 1 of the present embodiment is formed as a multi-gas sensor (composite sensor) capable of detecting not only the ammonia concentration but also the oxygen concentration and the NOx concentration. Then, in the ammonia sensor 1, the oxygen concentration is used to correct the ammonia concentration. Further, the ammonia concentration and the NOx concentration by the ammonia sensor 1 are determined by the engine control unit (ECU) 50 as a control device of the internal combustion engine 7 when the ammonia as the reducing agent K is supplied from the reducing agent supply device 73 to the exhaust pipe 71. Used to determine.
  • ECU engine control unit
  • the control device includes an engine control unit 50 that controls the engine, a sensor control unit 5 that controls the ammonia sensor 1, and various electronic control units.
  • the control device refers to various computers (processing devices).
  • the engine control unit 50 detects that the catalyst 72 is short of ammonia, and removes the urea water from the reducing agent supply device 73. It is configured to inject and supply ammonia to the catalyst 72.
  • the engine control unit 50 detects that the catalyst 72 is excessively present in the catalyst 72, and the reducing agent supply device 73 is provided. It is configured to stop the injection of urea water from and to stop the supply of ammonia to the catalyst 72.
  • Ammonia for reducing NOx is preferably supplied to the catalyst 72 without excess or deficiency.
  • the NOx and ammonia concentrations in the gas to be detected G at the downstream position of the catalyst 72 (catalyst outlet 721) and the position where the ammonia sensor 1 is arranged are in respective states.
  • a state in which NOx is appropriately reduced by ammonia, a state in which the outflow amount of NOx is large, and a state in which the outflow amount of ammonia are large occur at different times.
  • the sensor body 100 of the ammonia sensor 1 is provided with the heater portion 4 for detecting the ammonia concentration and the NOx concentration, and the sensor element 10 is held and attached to the exhaust pipe 71.
  • a distal end cover attached to the distal end side of the housing to protect the sensor element 10
  • a proximal end cover attached to the proximal end side of the housing to protect the electric wiring portion of the sensor element 10.
  • the sensor element 10 is embedded with a heating element 41 that constitutes the heater portion 4.
  • the sensor element 10 includes an ammonia element portion 2 for detecting an ammonia concentration and an oxygen element portion 3 for detecting an oxygen concentration and a NOx concentration in order to configure a multi-gas sensor.
  • the sensor element 10 includes a first solid electrolyte body (solid electrolyte body) 21 for forming the ammonia element portion 2 and a second solid electrolyte body (other solid electrolyte body) 31 for forming the oxygen element portion 3.
  • a first solid electrolyte body solid electrolyte body 21 for forming the ammonia element portion 2
  • a second solid electrolyte body other solid electrolyte body
  • the sensor element 10 of this embodiment is formed in a long shape that is long in one direction.
  • a diffusion resistance portion 351 to be described later is provided at the tip of the sensor element 10 in the lengthwise direction.
  • the lengthwise direction is indicated by an arrow D
  • the tip end side in the lengthwise direction D is indicated by an arrow D1
  • the base end side in the lengthwise direction D is indicated by an arrow D2.
  • the first solid electrolyte body 21 and the second solid electrolyte body 31 have a rectangular parallelepiped shape and are formed in a plate shape. Plate-shaped insulators 25, 36, 42 are laminated on the first solid electrolyte body 21 and the second solid electrolyte body 31.
  • a reference gas duct 24 accommodating the reference electrode 23 is formed in the duct insulator 25 located between the first solid electrolyte body 21 and the second solid electrolyte body 31.
  • the detection electrode 22 is provided on the first surface 211 as an outer surface of the first solid electrolyte body 21, which forms the outer surface of the sensor element 10 and is exposed to the detection target gas G.
  • the first surface 211 of the first solid electrolyte body 21 becomes the outermost surface of the sensor element 10, and becomes the surface on which the detection target gas G collides at a predetermined flow velocity.
  • the ammonia sensor 1 of this embodiment includes an ammonia concentration calculator 52 and an energization controller 58 in addition to the ammonia element unit 2, the heater unit 4, and the potential difference detector 51.
  • the ammonia concentration calculation unit 52 is configured to calculate the ammonia concentration in the detection target gas G, which has been corrected according to the oxygen concentration, based on the oxygen concentration in the detection target gas G and the potential difference ⁇ V by the potential difference detection unit 51. Has been done.
  • the energization controller 58 is configured to control the amount of energization to the heating element 41 so that the temperature of the detection electrode 22 reaches the target control temperature within the range of 400 to 600°C.
  • ammonia concentration calculation unit 52 is configured to decrease the correction amount of the ammonia concentration when the oxygen concentration changes by a predetermined amount as the target control temperature by the energization control unit 58 increases.
  • the heater unit 4 has a heating element 41 that generates heat when energized.
  • the first solid electrolyte body 21 is formed in a plate shape and is made of a zirconia material having a property of conducting oxygen ions at a predetermined temperature.
  • the zirconia material can be composed of various materials containing zirconia as a main component.
  • a stabilized zirconia obtained by substituting a part of zirconia with a rare earth metal element such as yttria (yttrium oxide) or an alkaline earth metal element, or partially stabilized zirconia can be used.
  • the detection electrode 22 is configured using a noble metal material containing Au (gold) having a catalytic activity for ammonia and oxygen and Pd (palladium) for optimizing the adsorption characteristic and the oxidation characteristic of Au for ammonia. ..
  • the noble metal material of the detection electrode 22 can be an Au—Pd alloy, and can also contain Au and Pd.
  • the reference electrode 23 is made of a noble metal material such as Pt (platinum) having a catalytic activity for oxygen.
  • the detection electrode 22 and the reference electrode 23 may contain a zirconia material that serves as a co-material when sintering with the first solid electrolyte body 21.
  • the first surface 211 of the first solid electrolyte body 21 exposed to the detection target gas G forms the outermost surface of the sensor element 10 of the ammonia sensor 1.
  • the detection electrode 22 provided on the first surface 211 is formed in a state in which the detection target gas G easily comes into contact with the detection electrode 22.
  • the surface of the detection electrode 22 of this embodiment is not provided with a protective layer made of a ceramic porous material or the like. Then, the gas G to be detected comes into contact with the detection electrode 22 without being diffusion-controlled.
  • a protective layer that does not reduce the flow velocity of the detection target gas G as much as possible can be provided on the surface of the detection electrode 22.
  • the reference electrode 23 provided on the second surface 212 of the first solid electrolyte body 21 is exposed to the atmosphere as the reference gas A.
  • a reference gas duct (atmosphere duct) 24 into which the atmosphere is introduced is formed adjacent to the second surface 212 of the first solid electrolyte body 21.
  • the potential difference detection unit 51 of the present embodiment detects a potential difference ⁇ V between the detection electrode 22 and the reference electrode 23 when a mixed potential is generated in the detection electrode 22.
  • the detection electrode 22 when ammonia and oxygen are present in the detection target gas G that contacts the detection electrode 22, the oxidation reaction of ammonia and the reduction reaction of oxygen simultaneously proceed.
  • the oxidation reaction of ammonia is typically represented by 2NH 3 +3O 2- ⁇ N 2 +3H 2 O+6e ⁇ .
  • the oxygen reduction reaction is typically represented by O 2 +4e ⁇ ⁇ 2O 2 ⁇ .
  • the mixed potential of ammonia and oxygen at the detection electrode 22 is generated as a potential when the oxidation reaction (speed) of ammonia and the reduction reaction (speed) of oxygen at the detection electrode 22 become equal.
  • FIG. 7 is a diagram for explaining a mixed potential generated in the detection electrode 22.
  • the horizontal axis represents the potential of the detection electrode 22 with respect to the reference electrode 23 (potential difference ⁇ V), and the vertical axis represents the current flowing between the detection electrode 22 and the reference electrode 23. Show how.
  • the first line L1 showing the relationship between the potential and the current when the oxidation reaction of ammonia is carried out at the detection electrode 22, and the potential and the current when the reduction reaction of oxygen is carried out at the detection electrode 22.
  • a second line L2 showing the relationship. Each of the first line L1 and the second line L2 is shown by a line rising upward.
  • the mixed potential is a potential when the positive current on the first line L1 showing the oxidation reaction of ammonia and the negative current on the second line L2 showing the reduction reaction of oxygen are balanced. Then, the mixed potential at the detection electrode 22 is detected as a potential on the negative side with respect to the reference electrode 23.
  • the slope ⁇ s of the second line L2 showing the oxygen reduction reaction becomes steep.
  • the potential at which the positive side current on the first line L1 and the negative side current on the second line L2 are balanced shifts to a position close to zero on the negative side.
  • the higher the oxygen concentration the smaller the negative potential of the detection electrode 22 with respect to the reference electrode 23.
  • the higher the oxygen concentration the smaller the potential difference (mixed potential) ⁇ V between the detection electrode 22 and the reference electrode 23. Therefore, the higher the oxygen concentration is, the higher the potential difference ⁇ V or the ammonia concentration is corrected, so that the detection accuracy of the ammonia concentration can be increased.
  • FIG. 10 shows a case where the temperature of the detection electrode 22 changes from 450° C. to 500° C.
  • the oxidation current due to the oxidation reaction of ammonia and the reduction current due to the reduction reaction of oxygen increase, and the potential difference (mixed potential) ⁇ V decreases. It should be noted that when the temperature of the detection electrode 22 becomes low, the opposite change occurs.
  • the change in the potential difference (mixed potential) ⁇ V when the oxygen concentration changes from 5% (volume %) to 10% when the temperature of the detection electrode 22 is 450° C. and 500° C., respectively. Show.
  • the potential difference (mixed potential) ⁇ V decreases as described above.
  • the temperature of the detection electrode 22 is 450° C.
  • the amount of change in which the potential difference (mixed potential) ⁇ V decreases when the oxygen concentration changes from 5% to 10% is when the temperature of the detection electrode 22 is 500° C.
  • the potential difference (mixed potential) ⁇ V becomes large when the oxygen concentration changes from 5% to 10%, compared to the change amount.
  • FIG. 11 shows that when the temperature of the detection electrode 22 is at a predetermined temperature between 400 and 600° C., when the oxygen concentration of the detection target gas G changes from 5% to 10%, the oxygen concentration changes. Accordingly, it shows how much the ammonia concentration calculated by the ammonia concentration calculator 52 is corrected.
  • the correction amount of the ammonia concentration is shown as a correction amount [mV] of the potential difference ⁇ V.
  • the correction amount of the potential difference ⁇ V in this case is a correction amount when the oxygen concentration is high, and is a correction amount of increasing the potential difference ⁇ V.
  • the gas to be detected G to be supplied to the detection electrode 22 is 10% oxygen and 100 ppm ammonia in nitrogen from 5% (volume%) oxygen and 100 ppm ammonia in nitrogen. It was changed to the included state.
  • the detection target gas G was supplied to the detection electrode 22 at a flow rate of 500 ml/min.
  • the reference electrode 23 was brought into contact with the atmosphere.
  • the correction amount of the potential difference ⁇ V (or the ammonia concentration) when the oxygen concentration changes by a predetermined amount (corresponding to the change amount of the oxygen concentration) becomes relatively large. ..
  • the correction amount of the potential difference ⁇ V (or ammonia concentration) when the oxygen concentration changes by a predetermined amount becomes relatively small. Since the potential difference ⁇ V indicates the ammonia concentration, correcting the potential difference ⁇ V is the same as correcting the ammonia concentration.
  • the energization control unit 58 controls the temperature of the detection electrode 22 to be any temperature within the temperature range of 400 to 600° C. Since the detection electrode 22 is in the temperature range of 400 to 600° C., it is possible to improve the accuracy of calculating the ammonia concentration by performing the correction according to the oxygen concentration. In other words, the condition that the temperature of the detection electrode 22 is in the temperature range of 400 to 600° C. is indispensable for the mixed potential type ammonia sensor 1 that obtains the ammonia concentration by performing the correction according to the oxygen concentration. Found by others.
  • FIG. 12 when a gas other than ammonia and oxygen, for example, CO, NO, hydrocarbons (C 3 H 8 etc.) is present in the detection target gas G, the other gas has a potential difference (mixed potential) ⁇ V. Show the effect on.
  • FIG. 12 shows the case where the other gas is CO and C 3 H 8 .
  • the negative current on the second line L2 indicating the oxygen reduction reaction is the first line indicating the ammonia oxidation reaction.
  • the mixed potential ⁇ V2 in which the reduction reaction of oxygen and the oxidation reaction of CO and C 3 H 8 are balanced is the reduction reaction of oxygen. And becomes lower than the mixed potential ⁇ V1 in which the ammonia oxidation reaction is balanced (position near zero on the minus side).
  • the mixed potential ⁇ V1 indicating the ammonia concentration is affected by the mixed potential ⁇ V2 indicating the concentration of another gas, and the detection accuracy of the mixed potential ⁇ V1 may deteriorate.
  • the mixed potential ⁇ V1 may be a potential combined with the mixed potential ⁇ V2. Further, the temperature dependence of the mixed potential ⁇ V1 and the mixed potential ⁇ V2 is different.
  • the oxidation catalytic performance of the detection electrode 22 for ammonia is significantly higher than the oxidation catalytic performance of the detection electrode 22 for other gases. Therefore, the mixed potential ⁇ V1 due to the oxidation reaction of ammonia and the reduction reaction of oxygen is hardly affected by the mixed potential ⁇ V2 due to the oxidation reaction of another gas and the reduction reaction of oxygen.
  • the temperature of the detection electrode 22 is less than 400° C.
  • the difference between the oxidation catalytic performance of the detection electrode 22 for ammonia and the oxidation catalytic performance of the detection electrode 22 for other gases becomes small. Therefore, the mixed potential ⁇ V1 due to the oxidation reaction of ammonia and the reduction reaction of oxygen is easily affected by the mixed potential ⁇ V2 due to the oxidation reaction of another gas and the reduction reaction of oxygen.
  • the temperature of the detection electrode 22 exceeds 600° C.
  • the inclination ⁇ a of the first line L1 showing the oxidation reaction of ammonia and the inclination ⁇ s of the second line L2 showing the reduction reaction of oxygen become considerably steep. ..
  • the positive-side current indicating the ammonia oxidation reaction and the negative-side current indicating the oxygen reduction reaction easily balance in the vicinity of the origin where the potential difference ⁇ V is zero. Therefore, the absolute value of the mixed potential ⁇ V1 or the ammonia concentration becomes small, and the detection accuracy of the ammonia concentration decreases.
  • the temperature of the detection electrode 22 is controlled to be any temperature within the temperature range of 400 to 600° C. by the energization control unit 58, the detection accuracy of the ammonia concentration after oxygen correction can be maintained high. it can.
  • Other gases such as NOx, CO, and HC (hydrocarbons) that may be included in the exhaust gas as the detection target gas G have a temperature of the detection electrode 22 within the range of 400 to 600° C. It was confirmed that when the gas G contains, for example, 10 ppm or more of ammonia, the detection accuracy of the ammonia concentration is not significantly affected.
  • the ammonia sensor 1 of the present embodiment forms an ammonia gas sensor unit 2, a potential difference detection unit 51, an ammonia concentration calculation unit 52, a heater unit 4, and an energization control unit 58 to form a multi-gas sensor.
  • the oxygen element unit 3 the pumping unit 53, the pump current detection unit 54, the oxygen concentration calculation unit 55, the NOx detection unit 56, and the NOx concentration calculation unit 57 are provided.
  • the oxygen element portion 3 is laminated with a heater portion 4 for heating the oxygen element portion 3 and the ammonia element portion 2.
  • the oxygen element portion 3 has a second solid electrolyte body 31, a gas chamber 35, a diffusion resistance portion 351, a pump electrode 32, a NOx electrode 33, and another reference electrode 34.
  • the second solid electrolyte body 31 is arranged so as to face the first solid electrolyte body 21.
  • the second solid electrolyte body 31 is formed in a plate shape and is made of a zirconia material having a property of conducting oxygen ions at a predetermined temperature. This zirconia material is the same as that of the first solid electrolyte body 21.
  • the ammonia sensor 1 does not have the function of detecting NOx, the oxygen element unit 3 does not have the NOx electrode 33, and the ammonia sensor 1 does not have the NOx detection unit 56 and the NOx concentration calculation unit 57. May be.
  • the gas chamber 35 is formed in contact with the third surface 311 of the second solid electrolyte body 31.
  • the gas chamber 35 is formed by a gas chamber insulator 36.
  • the gas chamber insulator 36 is made of a ceramic material such as alumina.
  • the diffusion resistance portion 351 is formed as a porous ceramic layer and is a portion for introducing the detection target gas G into the gas chamber 35 with a limited diffusion rate.
  • the pump electrode 32 is housed in the gas chamber 35 on the third surface 311, and is exposed to the detection target gas G in the gas chamber 35.
  • the NOx electrode 33 is housed in the gas chamber 35 on the third surface 311, and is exposed to the detection target gas G whose oxygen concentration has been adjusted by the pump electrode 32.
  • the other reference electrode 34 is provided on the fourth surface 312 of the second solid electrolyte body 31, which is opposite to the third surface 311.
  • the pump electrode 32 is made of a noble metal material that has a catalytic activity for oxygen but does not have a catalytic activity for NOx.
  • the noble metal material of the pump electrode 32 can be composed of a Pt—Au alloy or a material containing Pt and Au.
  • the NOx electrode 33 is composed of a noble metal material having a catalytic activity for NOx and oxygen.
  • the noble metal material of the NOx electrode 33 can be composed of a Pt—Rh (rhodium) alloy or a material containing Pt and Rh.
  • the other reference electrode 34 is made of a noble metal material such as Pt having a catalytic activity for oxygen.
  • the pump electrode 32, the NOx electrode 33, and the other reference electrode 34 may contain a zirconia material that serves as a co-material when sintering with the second solid electrolyte body 31.
  • the other reference electrode 34 of this embodiment is provided at each of the position facing the pump electrode 32 and the position facing the NOx electrode 33 with the second solid electrolyte body 31 interposed therebetween. It should be noted that another reference electrode 34 may be provided in the entire position facing the pump electrode 32 and the NOx electrode 33.
  • the other reference electrode 34 provided on the fourth surface 312 of the second solid electrolyte body 31 is exposed to the atmosphere as the reference gas A.
  • the first solid electrolyte body 21 and the second solid electrolyte body 31 are laminated via a duct insulator 25 forming a reference gas duct 24.
  • the duct insulator 25 is made of a ceramic material such as alumina.
  • the reference gas duct 24 is formed in a state in which the reference electrode 23 on the second surface 212 of the first solid electrolyte body 21 and the other reference electrode 34 on the fourth surface 312 of the second solid electrolyte body 31 are in contact with the atmosphere. There is.
  • the reference electrode 23 and the other reference electrode 34 are housed in the reference gas duct 24.
  • the reference gas duct 24 is formed from the base end of the sensor element 10 to a position facing the gas chamber 35.
  • the reference gas A introduced into the base end side cover of the ammonia sensor 1 is introduced into the reference gas duct 24 from the base end side opening of the reference gas duct 24.
  • the sensor element 10 of the present embodiment has the reference gas duct 24 between the first solid electrolyte body 21 and the second solid electrolyte body 31, so that the whole of the reference electrode 23 and the other reference electrode 34 come into contact with the atmosphere. Can be made.
  • the pumping unit 53 applies a DC voltage between the pump electrode 32 and the other reference electrode 34 with the other reference electrode 34 on the positive side to detect the target gas in the gas chamber 35. It is configured to pump oxygen in G.
  • a DC voltage is applied between the pump electrode 32 and the other reference electrode 34, oxygen in the gas to be detected G in the gas chamber 35, which is in contact with the pump electrode 32, becomes oxygen ions and becomes the second solid electrolyte. It passes through the body 31 toward the other reference electrode 34 and is discharged from the reference electrode 23 to the reference gas duct 24. As a result, the oxygen concentration in the gas chamber 35 is adjusted to a concentration suitable for detecting NOx.
  • the pump current detector 54 is configured to detect a direct current flowing between the pump electrode 32 and another reference electrode 34.
  • the oxygen concentration calculator 55 is configured to calculate the oxygen concentration in the detection target gas G based on the direct current detected by the pump current detector 54.
  • the pumping unit 53 detects a DC current proportional to the amount of oxygen discharged from the gas chamber 35 to the reference gas duct 24.
  • the pumping unit 53 discharges oxygen from the gas chamber 35 to the reference gas duct 24 until the oxygen concentration in the detection target gas G in the gas chamber 35 reaches a predetermined concentration. Therefore, the oxygen concentration calculation unit 55 can calculate the oxygen concentration in the detection target gas G reaching the ammonia element unit 2 and the oxygen element unit 3 by monitoring the direct current detected by the pump current detection unit 54. it can.
  • the oxygen concentration calculated by the oxygen concentration calculation unit 55 is used as the oxygen concentration for correcting the ammonia concentration by the ammonia concentration calculation unit 52.
  • the NOx detection unit 56 applies a DC voltage between the NOx electrode 33 and the other reference electrode 34 with the other reference electrode 34 on the positive side to apply the DC voltage to the NOx electrode 33 and the other reference electrode. It is configured to detect a direct current flowing between the device and the device.
  • the NOx concentration calculation unit 57 calculates the uncorrected NOx concentration in the detection target gas G based on the direct current detected by the NOx detection unit 56, and subtracts the ammonia concentration by the ammonia concentration calculation unit 52 from the uncorrected NOx concentration. It is configured to calculate the corrected NOx concentration.
  • the NOx detector 56 detects not only NOx but also ammonia. Therefore, in the NOx concentration calculator 57, the actual detected amount of NOx is obtained by subtracting the detected amount of ammonia.
  • the NOx concentration calculator 57 There are two types of NOx concentration calculated by the NOx concentration calculator 57.
  • the NOx concentration based on the current generated in the NOx detector 56 is defined as the pre-correction NOx concentration.
  • the uncorrected NOx concentration includes the ammonia concentration due to the ammonia that reacts at the NOx electrode 33.
  • the concentration obtained by subtracting the ammonia concentration by the ammonia concentration calculation unit 52 from the NOx concentration before correction by the NOx concentration calculation unit 57 is set as the corrected NOx concentration.
  • the corrected NOx concentration indicates the NOx concentration excluding the influence of ammonia. When the ammonia concentration and the NOx concentration are compared, the corrected NOx concentration is used.
  • the NOx electrode 33 comes into contact with the detection target gas G whose oxygen concentration has been adjusted by the pump electrode 32. Then, in the NOx detection unit 56, when a DC voltage is applied between the NOx electrode 33 and the other reference electrode 34, NOx contacting the NOx electrode 33 is decomposed into nitrogen and oxygen, and oxygen becomes oxygen ions. And passes through the second solid electrolyte body 31 toward the other reference electrode 34, and is discharged from the reference electrode 23 to the reference gas duct 24. Further, when ammonia reaches the NOx detection unit 56, NOx produced by oxidizing ammonia is also decomposed into nitrogen and oxygen.
  • the NOx concentration calculation unit 57 calculates the uncorrected NOx concentration in the gas to be detected G that reaches the oxygen element unit 3 by monitoring the direct current detected by the NOx detection unit 56, and calculates the uncorrected NOx concentration from the uncorrected NOx concentration.
  • the NOx concentration is calculated as the corrected NOx concentration by subtracting the ammonia concentration.
  • the ammonia sensor 1 is a multi-gas sensor that detects not only the ammonia concentration but also the oxygen concentration and the NOx concentration, the number of gas sensors arranged in the exhaust pipe 71 can be reduced when detecting the ammonia concentration and the NOx concentration. it can. Further, the oxygen concentration can be detected by the pump current detection unit 54 and the oxygen concentration calculation unit 55 by using the pump electrode 32 and the pumping unit 53 used for detecting the NOx concentration.
  • the pumping unit 53, the pump current detection unit 54, and the NOx detection unit 56 are formed in the sensor control unit 5 using an amplifier or the like.
  • the oxygen concentration calculator 55 and the NOx concentration calculator 57 are formed in the sensor control unit 5 using a computer or the like.
  • each electrode 22, 23, 32, 33, 34 has a lead portion for electrical connection, which is located on the base end side of the sensor element 10 like the lead portion 412 of the heating element 41. Has been formed.
  • ammonia concentration calculation unit 52 calculates the ammonia concentration in the detection target gas G based on the oxygen concentration by the oxygen concentration calculation unit 55 and the potential difference ⁇ V by the potential difference detection unit 51. Further, the sensor control unit 5 of the ammonia sensor 1 corrects the ammonia concentration based on the potential difference ⁇ V by the potential difference detection unit 51 by the oxygen concentration based on the direct current by the pump current detection unit 54 to obtain the ammonia output concentration and NOx. It is configured to obtain the NOx concentration based on the direct current by the detector 56.
  • FIG. 13 shows a potential difference (mixed potential) between the detection electrode 22 and the reference electrode 23 detected by the potential difference detection unit 51, which is detected in the mixed potential type ammonia element unit 2 according to a change in the ammonia concentration in the detection target gas G. ) ⁇ V changes under the influence of oxygen concentration.
  • the potential difference (mixed potential) ⁇ V detected by the potential difference detection unit 51 is detected smaller as the oxygen concentration becomes higher (detected at a position closer to zero on the minus side). The reason for this is as explained by the inclination ⁇ s in FIG. 9.
  • a relationship map M1 showing a relationship with the subsequent ammonia concentration C1 is set. This relationship map M1 is created as a relationship between the potential difference ⁇ V (ammonia concentration C0 before oxygen correction) when the oxygen concentration is a predetermined value and the ammonia concentration C1 after oxygen correction.
  • the ammonia concentration calculation unit 52 is configured to collate the oxygen concentration in the detection target gas G and the potential difference ⁇ V by the potential difference detection unit 51 with the relation map M1 to calculate the oxygen concentration C1 after oxygen correction in the detection target gas G. There is.
  • the ammonia concentration calculation unit 52 collates the oxygen concentration by the oxygen concentration calculation unit 55 and the potential difference ⁇ V by the potential difference detection unit 51 with the oxygen concentration and the potential difference ⁇ V of the relation map M1. Then, the ammonia concentration C1 after oxygen correction when the potential difference ⁇ V is read from the relation map M1. Then, the ammonia concentration calculation unit 52 corrects the higher the oxygen concentration, the higher the ammonia concentration C1 after oxygen correction.
  • the ammonia concentration C1 after oxygen correction becomes the ammonia output concentration output from the ammonia sensor 1 corrected according to the oxygen concentration.
  • the potential difference ⁇ V may be the ammonia concentration C0 before oxygen correction.
  • FIG. 14 shows a relationship map M1 when the oxygen concentration in the detection target gas G is, for example, 5 [volume %], 10 [volume %], and 20 [volume %].
  • the relationship map M1 it is possible to easily correct the potential difference ⁇ V (or the ammonia concentration C0) according to the oxygen concentration.
  • the relationship map M1 between the potential difference ⁇ V and the oxygen concentration-corrected ammonia concentration C1 can be obtained at the time of trial manufacture and experiment of the ammonia sensor 1.
  • the relationship map M1 in FIG. 14 can be set for each temperature of the detection electrode 22. Then, the ammonia concentration C1 after oxygen correction according to the oxygen concentration can be calculated by reflecting the difference in the temperature of the detection electrode 22. Further, the ammonia concentration C1 after oxygen correction calculated from the relation map M1 can be corrected using a temperature correction coefficient determined according to the temperature of the detection electrode 22.
  • the potential difference detector 51 and the ammonia concentration calculator 52 are formed in the sensor control unit (SCU) 5 electrically connected to the ammonia sensor 1.
  • the potential difference detection unit 51 is formed using an amplifier or the like that measures the potential difference ⁇ V between the detection electrode 22 and the reference electrode 23.
  • the ammonia concentration calculation unit 52 is formed using a computer or the like.
  • the sensor control unit 5 is connected to an engine control unit (ECU) 50 of the internal combustion engine 7, and is used by the engine control unit 50 to control the operations of the internal combustion engine 7, the reducing agent supply device 73 and the like.
  • ECU engine control unit
  • the ammonia concentration calculation unit 52 can also correct the ammonia concentration by considering the NOx concentration before correction or the NOx concentration after correction by the NOx detection unit 56. ..
  • the NOx electrode 33 in the oxygen element part 3 has not only catalytic activity for NOx but also catalytic activity for ammonia. Therefore, the ammonia concentration can be detected by the NOx electrode 33 as the NOx concentration before correction.
  • the ammonia concentration calculation unit 52 can correct the ammonia concentration based on the potential difference ⁇ V based on the oxygen concentration, the temperature of the detection electrode 22, and the NOx concentration.
  • Heater part 4 and energization control part 58 As shown in FIGS. 1 and 2, on the side of the second solid electrolyte body 31 opposite to the side on which the first solid electrolyte body 21 is laminated, a heater section for heating the oxygen element section 3 and the ammonia element section 2 is provided. 4 are stacked. In other words, the heater part 4 is laminated on the oxygen element part 3 on the side opposite to the side on which the ammonia element part 2 is laminated.
  • the heater section 4 is formed by a heating element 41 that generates heat when energized, and a heater insulator 42 in which the heating element 41 is embedded.
  • the heater insulator 42 is made of a ceramic material such as alumina.
  • the reference gas duct 24 into which the reference gas A is introduced is formed between the ammonia element part 2 and the oxygen element part 3.
  • the reference electrode 23 and the other reference electrode 34 are housed in the reference gas duct 24.
  • the heating element 41 is formed of a heating section 411 and a lead section 412 connected to the heating section 411.
  • the heating section 411 separates the solid electrolyte bodies 21 and 31 from each other. It is formed at a position facing each electrode 22, 23, 32, 33, 34 in the direction in which the bodies 25, 36, 42 are stacked (hereinafter referred to as the stacking direction H).
  • An energization control unit 58 for energizing the heating element 41 is connected to the heating element 41. The amount of electricity supplied to the heating element 41 by the energization control unit 58 can be adjusted by changing the voltage applied to the heating element 41.
  • the energization control unit 58 is formed by using a drive circuit or the like that applies a voltage subjected to PWM (pulse width modulation) control or the like to the heating element 41.
  • the energization controller 58 is formed in the sensor control unit 5.
  • the distance between the ammonia element part 2 and the heater part 4 is larger than the distance between the oxygen element part 3 and the heater part 4.
  • the temperature at which the heater element 4 heats the ammonia element portion 2 is lower than the temperature at which the heater element 4 heats the oxygen element portion 3.
  • the pump electrode 32 and the NOx electrode 33 of the oxygen element part 3 are used within the operating temperature range of 600 to 900° C.
  • the detection electrode 22 of the ammonia element part 2 is used within the operating temperature range of 400 to 600° C. ..
  • the lower limit operating temperature of the detection electrode 22 is 400° C. and the upper limit operating temperature is 600° C.
  • the lower limit operating temperature of the detection electrode 22 may be 400°C.
  • the temperature of the detection electrode 22 is controlled by heating the heater unit 4 with a target temperature in the operating temperature range of 400 to 600° C.
  • the energization control unit 58 is configured to heat the NOx electrode 33 within the operating temperature range of 600 to 900° C. when controlling the temperature of the detection electrode 22 to the target control temperature. With this configuration, the heating control of the heater unit 4 by the energization control unit 58 causes the detection electrode 22 of the ammonia element unit 2 and the NOx electrode 33 of the oxygen element unit 3 to be at appropriate temperatures for ammonia detection and NOx detection. It can be heated.
  • the reference gas duct 24 is formed between the oxygen element portion 3 and the ammonia element portion 2, the reference gas duct 24 is thermally insulated when the oxygen element portion 3 and the ammonia element portion 2 are heated by the heater portion 4. It can act as a layer. As a result, the temperature of the detection electrode 22 of the ammonia element part 2 can be easily lowered as compared with the temperatures of the pump electrode 32 and the NOx electrode 33 of the oxygen element part 3.
  • the energization control unit 58 controls energization to control the temperatures of the oxygen element section 3 and the ammonia element section 2 to target temperatures.
  • composition of the detection electrode 22 In the noble metal material of the detection electrode 22 of the present embodiment, by setting the content ratio of Au and Pd in an appropriate range, the sensitivity to ammonia by Au is appropriately weakened, and a detection error occurs in the sensor output of the detection electrode 22. Making it difficult.
  • the content ratio of Au and Pd is defined on the surface of the detection electrode 22 where the decomposition reaction and the oxidation reaction of ammonia are performed.
  • the content ratio of Au and Pd can be the ratio of the amount of Au exposed on the surface of the detection electrode 22 and the amount of Pd exposed on the surface of the detection electrode 22. As shown in FIG.
  • the content ratio of Au and Pd on the surface of the detection electrode 22 is Au and Pd in the range from the outermost surface F of the detection electrode 22 to the depth of 1 ⁇ m in the stacking direction H. It can be a ratio.
  • the stacking direction H is a direction perpendicular to the first surface 211 of the first solid electrolyte body 21.
  • the detection electrode 22 is fired in a state where Au-Pd alloy particles and zirconia particles are mixed.
  • the content ratio of Au and Pd can be the ratio of Au and Pd in the Au—Pd alloy particles existing on the outermost surface of the detection electrode 22. Further, the detection electrode 22 may be fired in a state where Au particles, Pd particles and zirconia particles are mixed.
  • the surface of the detection electrode 22 is formed in a concavo-convex shape due to the presence of particles of Au, Pd, and solid electrolyte, and is not formed in a flat shape.
  • the surface of the detection electrode 22, which determines the content ratio of Au and Pd, is an uneven surface.
  • the range from the outermost surface F of the detection electrode 22 to the depth of 1 ⁇ m can be the range of the depth in the stacking direction H from the tips of the respective portions of the uneven shape.
  • the content ratio of Au and Pd on the surface of the detection electrode 22 can be measured as follows. Specifically, the content ratio of Au and Pd on the surface of the detection electrode 22 can be measured using, for example, X-ray photoelectron spectroscopy (XPS). In XPS, when the surface of a sample is irradiated with X-rays, the distribution of kinetic energy of photoelectrons emitted from this surface is measured. Then, the type, abundance, chemical bond state, and the like of the element existing in the depth range of several nm from the surface of the sample are measured. For XPS, for example, ESCALAB200 manufactured by Thermo Fisher Scientific Co., Ltd. can be used.
  • XPS X-ray photoelectron spectroscopy
  • the detection electrode 22 is cut in the stacking direction H at an appropriate location, and the surface of the plurality of measurement sites P on this cut surface, or 1 ⁇ m from the outermost surface F in the stacking direction H.
  • the amount of Au and Pd present within the depth range is measured.
  • the surface of the detection electrode 22 is determined for each measurement site P in the plane direction of the detection electrode 22. Therefore, the position of the surface of each measurement site P in the plane direction of the detection electrode 22 in the stacking direction H is appropriately different.
  • the sensitivity S of the sensor output of the detection electrode 22 and the change amount E with time are the change amount of the potential difference ⁇ V [mV] between the detection electrode 22 and the reference electrode 23, and the ammonia concentration [ppm] in the test gas is used.
  • the ammonia concentration [ppm] in the test gas was used.
  • the sensitivity S of the sensor output of the detection electrode 22 indicates the change amount of the sensor output when the ammonia concentration of the test gas (or the detection target gas G) changes.
  • the sensor output sensitivity S indicates the amount of change in the potential difference ⁇ V between the detection electrode 22 and the reference electrode 23 that occurs when the detection electrode 22 detects a change in the ammonia concentration.
  • the sensitivity S of the sensor output is represented by the difference (absolute value) between the sensor output immediately before the ammonia concentration changes and the sensor output immediately after the ammonia concentration changes.
  • the amount of change E of the sensor output of the detection electrode 22 with time is the amount of variation (deviation amount) of the sensor output in a state where the ammonia concentration is kept constant immediately after the ammonia concentration of the test gas (or the detection target gas G) changes. ) Is shown. Further, the time-dependent change amount E of the sensor output indicates a shift amount of the potential difference ⁇ V between the detection electrode 22 and the reference electrode 23, which occurs after the detection electrode 22 detects the change in the ammonia concentration.
  • the change amount E of the sensor output with time is represented by the difference (absolute value) between the sensor output immediately after the change of the ammonia concentration and the sensor output at the time of the further change of the ammonia concentration.
  • the absolute values of the sensor output magnitudes of the detection electrodes 22 for the comparative products 1 and 2 and the test product are detected in a state of being offset from the zero point where the sensor output is 0 mV. This offset amount is corrected and adjusted in the control device of the ammonia sensor 1.
  • Comparative Product 1 in which the precious metal material of the detection electrode 22 is only Au, the sensitivity S of the sensor output is large and the sensitivity of the detection electrode 22 to ammonia is high.
  • the amount of change E of the sensor output over time is large, and it can be seen that a detection error is likely to occur in the sensor output.
  • the sensitivity S of the sensor output is small, and the sensitivity of the detection electrode 22 to ammonia is low. Further, in the comparative product 2, it can be seen that the amount of change E of the sensor output with time is large and a detection error is likely to occur in the sensor output.
  • the sensitivity S of the sensor output is relatively high, and the sensitivity of the detection electrode 22 for ammonia is appropriately high. I understand. Further, it can be seen that in the test product, the amount of change E of the sensor output with time is small and a detection error is unlikely to occur in the sensor output.
  • FIG. 17 shows a change E [mV of the sensor output of the detection electrode 22 with time when the Pd content ratio with respect to Au: 100 mol% on the surface of the detection electrode 22 is changed within the range of 0 to 100 mol %. /Min] is shown.
  • the composition of the test gas used in this measurement is the same as in the case of FIG.
  • FIG. 17 shows the amount of change E of the sensor output of the detection electrode 22 with time, which occurred when the ammonia concentration of the test gas was changed from 50 ppm to 100 ppm and then the ammonia concentration of the test gas was kept at 100 ppm.
  • the case where Pd is 0 mol% indicates the case where the noble metal material of the detection electrode 22 is only Au.
  • the Pd content ratio with respect to Au is around 30 mol %
  • the change amount E with time increases to the plus side
  • the Pd content ratio becomes large it changes with time.
  • the amount of change E increases to the negative side.
  • the content ratio of Pd is less than 20 mol %
  • the content ratio of Au is increased, so that the adsorption property of Au is improved and the temporal change amount E is increased to the positive side.
  • the Pd content ratio exceeds 40 mol %, the Pd content ratio increases, and the oxidation characteristics of Pd increase, and the amount of change E over time increases to the negative side.
  • FIG. 18 shows the sensitivity S [mV/50 ppm] of the sensor output of the detection electrode 22 when the content ratio of Pd with respect to Au:100 mol% on the surface of the detection electrode 22 is changed within the range of 0 to 100 mol %. The results of measurement are shown below.
  • the composition of the test gas used in this measurement is the same as in the case of FIG. FIG. 18 shows the sensitivity S, which is the amount of change in the sensor output of the detection electrode 22 that occurs when the ammonia concentration of the test gas changes from 50 ppm to 100 ppm.
  • the sensitivity S of the sensor output of the detection electrode 22 increases as the Pd content ratio with respect to Au:100 mol% decreases from 100 mol% to 0 mol %.
  • the sensitivity S of the sensor output of the detection electrode 22 to ammonia is high when the content ratio of Pd to Au:100 mol% is 20 mol% or less.
  • the content ratio of Pd with respect to Au:100 mol% on the surface of the detection electrode 22 is selected in such a range that the detection electrode 22 has a high sensitivity to ammonia and a change with time of the detection electrode 22 is as small as possible. Then, based on the time-dependent change index I [ppm/min] obtained by dividing the time-dependent change amount E [mV/min] of the sensor output by the sensitivity S [mV/ppm] of the sensor output, The content ratio of Pd with respect to Au:100 mol% is determined.
  • the change index I over time indicates how much the sensor output varies (shifts) after the change of the ammonia concentration with respect to the magnitude of the sensitivity (change amount) of the sensor output that changes in response to the change of the ammonia concentration. Is shown. As the time-dependent change index approaches 0 ppm/min, the sensor output fluctuation (deviation) is less likely to occur.
  • FIG. 19 summarizes the measurement results of FIGS. 17 and 18 and shows the change index I over time obtained for each Pd content ratio relative to Au:100 mol %.
  • FIG. 19 it can be seen that when the Pd content ratio with respect to Au:100 mol% exceeds 80 mol%, the time-dependent change index I rapidly deteriorates. Therefore, by setting the content ratio of Pd to Au:100 mol% to 80 mol% or less, it is possible to appropriately maintain the sensitivity of the sensor output to ammonia and appropriately suppress the change over time of the sensor output.
  • the content ratio of Pd to Au:100 mol% is 0.5 mol% or more and 40 mol% or less, the sensitivity of the sensor output to ammonia is maintained and the change with time of the sensor output is suppressed more effectively. be able to.
  • the content ratio of Pd to Au:100 mol% is 20 to 40 mol %, the value of the change index I over time becomes close to 0 ppm/min, the sensitivity of the sensor output to ammonia is maintained, and the sensor output It is most appropriate from the viewpoint of suppressing change over time.
  • Au on the surface of the detection electrode 22 has a high adsorption property and a high sensitivity to ammonia. However, since Au has a high adsorption property, the change index I over time in FIG. 19 is increased to the plus side.
  • Pd on the surface of the detection electrode 22 has high oxidation characteristics and low sensitivity to ammonia. However, since Pd has a high oxidation property, the change index I over time in FIG. 19 is increased to the negative side. Therefore, in order to make the value of the change index I with time close to 0 ppm/min, it is important to make a proper balance between the adsorption characteristic of Au and the oxidation characteristic of Pd on the surface of the detection electrode 22. I understand.
  • the ammonia sensor 1 of the present embodiment is of a mixed potential type that detects a potential difference ⁇ V when oxygen reduction reaction and ammonia oxidation reaction are balanced.
  • the content ratio of Au and Pd in the noble metal of the detection electrode 22 is an appropriate ratio, the adsorption property and the oxidation property of the detection electrode 22 with respect to ammonia can be appropriately maintained. It has been found that the change with time of the sensor output of the detection electrode 22 can be appropriately suppressed.
  • the content ratio of Pd to Au on the surface of the detection electrode 22 is too high, not only the oxidation characteristic of the detection electrode 22 becomes high and the sensitivity of the detection electrode 22 is lowered, but also the sensor output of the detection electrode 22 changes with time. Becomes larger on the negative side. Since the content ratio of Pd to Au in the detection electrode 22 is more than 0 mol% and 80 mol% or less, the sensor output of the detection electrode 22 can be maintained while appropriately maintaining the balance between the adsorption property and the oxidation property of the detection electrode 22. Can be appropriately suppressed over time.
  • the adsorption and oxidation characteristics of the detection electrode 22 influence the sensitivity of the detection electrode 22 to ammonia. Since the detection electrode 22 has high sensitivity and the sensor output of the detection electrode 22 is unlikely to change with time, a detection error is less likely to occur in the sensor output of the detection electrode 22, and the detection accuracy of the ammonia concentration by the detection electrode 22 is improved. Can be increased.
  • the ammonia sensor 1 of the present embodiment it is possible to improve the detection accuracy of the ammonia concentration.
  • the adsorption property of the detection electrode 22 with respect to ammonia decreases as the content ratio of Pd with respect to Au on the surface of the detection electrode 22 increases.
  • the content ratio of Pd to Au on the surface of the detection electrode 22 can be 0.5 mol% or more.
  • the change over time in the sensor output of the detection electrode 22 tends to occur on the plus side when the adsorption property of the detection electrode 22 for ammonia increases, and tends to occur on the minus side when the oxidation property of the detection electrode 22 for ammonia increases. If the change over time in the sensor output greatly changes to the positive or negative side, the sensor output immediately after the ammonia concentration changes to a predetermined concentration and the sensor output after a predetermined time has elapsed after the ammonia concentration changes to a predetermined concentration. A difference easily occurs with the output.
  • the change in the sensor output of the detection electrode 22 with time becomes the smallest when the content ratio of Pd to Au on the surface of the detection electrode 22 is about 20 to 40 mol %.
  • the content ratio of Pd to Au on the surface of the detection electrode 22 may be 40 mol% or less.
  • the present embodiment shows a sensor element 10 that does not include the oxygen element portion 3.
  • the sensor element 10 includes the first solid electrolyte body 21 provided with the detection electrode 22 and the reference electrode 23 and the reference gas duct 24.
  • the formed insulator 25 and the insulator 42 in which the heating element 41 is embedded may be laminated.
  • there is one solid electrolyte body in the present embodiment it is shown as the first solid electrolyte body 21 provided with the detection electrode 22 and the reference electrode 23.
  • the detection electrode 22 is arranged on the first surface 211 as the outer surface of the first solid electrolyte body 21 exposed to the gas G to be detected, and the reference electrode 23 is arranged in the reference gas duct 24. Also in this case, the configurations of the detection electrode 22 and the reference electrode 23 can be the same as those in the first embodiment. Further, in this case, in order to obtain the ammonia concentration in the ammonia sensor 1, the oxygen concentration measured by another gas sensor can be used.
  • ammonia sensor 1 of the present embodiment is the same as those of the first embodiment. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
  • the present embodiment shows the sensor element 10 that does not include the oxygen element portion 3 and the reference gas duct 24.
  • the detection electrode 22 and the reference electrode 23 constitute the outer surface of the sensor element 10, and the first solid electrolyte body 21. Can be disposed on the first surface 211 of the.
  • the concentration of ammonia in the detection target gas G can be detected based on the difference in the catalytic activity of ammonia between the detection electrode 22 and the reference electrode 23.
  • the configurations of the detection electrode 22 and the reference electrode 23 can be the same as those in the first embodiment.
  • ammonia sensor 1 of the present embodiment is the same as those of the first and second embodiments. Also in the present embodiment, the components indicated by the same reference numerals as those in the first and second embodiments are the same as those in the first and second embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

アンモニアセンサ(1)は、検出電極(22)及び基準電極(23)が設けられた第1固体電解質体(21)を有するアンモニア素子部(2)と、第1固体電解質体(21)を加熱するヒータ部(4)と、検出電極(22)と基準電極(23)との間の電位差(ΔV)を検出する電位差検出部(51)とを備える。検出電極(22)は、少なくともAu及びPdを含有する。検出電極(22)の表面におけるAu及びPdの含有比率は、Auが100mol%に対してPdが0mol%超過80mol%以下である。

Description

アンモニアセンサ 関連出願の相互参照
 本出願は、2018年12月21日に出願された日本の特許出願番号2018-239783号に基づくものであり、その記載内容を援用する。
 本開示は、アンモニア素子部を備えるアンモニアセンサに関する。
 例えば、車両においては、内燃機関としてのディーゼルエンジン等から排気される排ガス中のNO、NO2等のNOx(窒素酸化物)を浄化するための触媒が、排気管内に配置される。触媒の一つとしての選択式還元触媒(SCR)においては、NOxを還元するために、尿素水等に含まれるアンモニア(NH3)が触媒担体に付着され、触媒担体においてアンモニアとNOxとが化学反応して、NOxが窒素(N2)及び水(H2O)に還元される。
 また、排気管内における、選択式還元触媒よりも排ガスの流れの上流側位置には、還元剤としてのアンモニアを、選択式還元触媒へ供給する還元剤供給装置が配置される。また、例えば、排気管内における、選択式還元触媒の排ガスの流れの下流側位置には、排ガスにおけるNOx濃度を検出するNOxセンサと、排ガスにおけるアンモニア濃度を検出するアンモニアセンサとが配置される。そして、NOxセンサ及びアンモニアセンサを用いてNOx及びアンモニアの量を監視することにより、選択式還元触媒からのアンモニアの流出を抑えつつ、アンモニアによるNOxの浄化率を向上させている。
 また、検出対象ガスとしての排ガスにおけるアンモニア濃度を検出するアンモニアセンサにおいては、排ガスに晒される検出電極と、検出電極の電位を求める際の基準となる基準電極とが、固体電解質体に配置されている。そして、検出電極と基準電極との間に生じる電位差を用いて、排ガスにおけるアンモニア濃度を求めている。
 例えば、特許文献1においては、混成電位型のアンモニアガスセンサを形成する際に、被測定ガスに晒される検知電極の貴金属をPt-Au合金によって形成している。そして、特許文献1においては、PtにAuが含まれることにより、アンモニアガスの検出感度及び耐久性を向上させている。
特開2017-194439号公報
 アンモニアセンサの検出電極には、アンモニアに対する感度が高いことを理由に、Au又はPt-Auが用いられることが多い。ところが、検出電極の貴金属におけるAuの含有比率が高い場合には、アンモニア濃度が所定の濃度に変化した後、この所定の濃度に維持されるにも拘らず、検出電極と基準電極との間の電位差として表される検出電極のセンサ出力が、時間の経過とともに経時的に変化することが見出された。このセンサ出力の経時的変化は、発明者の鋭意研究により、検出電極の単なる劣化現象として生じているのではなく、アンモニアに対する検出電極の吸着特性と酸化特性とのバランスによって生じていることが判明した。
 アンモニアに対する検出電極の吸着特性及び酸化特性は、アンモニアを検出する際の感度の指標となるものである。吸着特性が必要以上に高い場合には、検出電極のセンサ出力が大きくなるとともに経時的変化によるセンサ出力の増加が発生する。一方、酸化特性が必要以上に高い場合には、検出電極のセンサ出力が小さくなるとともに経時的変化によるセンサ出力の低下が発生する。ここで、センサ出力の経時的変化とは、アンモニア濃度が変化した後のセンサ出力の変化のことをいう。センサ出力の経時的変化が発生しているときには、アンモニア濃度が所定の濃度に変化した直後のセンサ出力と、アンモニア濃度が所定の濃度に変化してから所定時間経過した後のセンサ出力とが異なり、センサ出力の検出誤差を増加させる要因、つまりアンモニア濃度の検出精度を悪化させる要因となる。そのため、アンモニア濃度の検出精度を高めるためには、吸着特性と酸化特性とのバランスを適切に維持することによって、センサ出力の経時的変化を適切に抑えることが必要であることが見出された。
 本開示は、アンモニア濃度の検出精度を高めることができるアンモニアセンサを提供しようとして得られたものである。
 本開示の一態様は、酸素イオン伝導性の固体電解質体、前記固体電解質体の表面に設けられて、検出対象ガスに晒される検出電極、及び前記固体電解質体の表面に設けられた基準電極を有するアンモニア素子部と、
 通電によって発熱する発熱部を有し、前記発熱部の発熱によって前記固体電解質体、前記検出電極及び前記基準電極を加熱するヒータ部と、
 前記検出電極における、前記検出対象ガスに含まれる酸素の電気化学的還元反応と前記検出対象ガスに含まれるアンモニアの電気化学的酸化反応とが釣り合うときに生じる、前記検出電極と前記基準電極との間の電位差を検出する電位差検出部と、を備え、
 前記検出電極は、少なくともAu及びPdを含有しており、
 前記検出電極の表面におけるAu及びPdの含有比率は、Auが100mol%に対してPdが80mol%以下である、アンモニアセンサにある。
 前記一態様のアンモニアセンサにおいては、検出電極と基準電極との間の電位差を検出する構成において、検出電極が少なくともAu(金)及びPd(パラジウム)を含有し、検出電極の表面には、Auが100mol%に対してPdが80mol%以下の範囲内で含まれるようにしている。発明者の鋭意研究の結果、検出電極の表面の貴金属におけるAuとPdとの含有比率が、適切な比率であることにより、アンモニアに対する検出電極の吸着特性及び酸化特性を適切に維持しつつ、検出電極のセンサ出力の経時的変化を適切に抑えることができることが見出された。
 検出電極の表面における、Auに対するPdの含有比率が高すぎると、検出電極の酸化特性が高くなり、検出電極の感度が低下するだけでなく、検出電極のセンサ出力の経時的変化も大きくなる。検出電極において、Au:100mol%に対するPdの含有比率が0mol%を超えて80mol%以下であることにより、検出電極の吸着特性と酸化特性とのバランスを適切に維持しつつ、センサ出力の経時的変化を適切に抑えることができる。
 検出電極の吸着特性及び酸化特性は、アンモニアに対する検出電極の感度を左右する。そして、検出電極の感度が高く、検出電極のセンサ出力に経時的変化が生じにくいことにより、検出電極のセンサ出力に検出誤差が生じにくくし、検出電極によるアンモニア濃度の検出精度を高めることができる。
 それ故、前記一態様のアンモニアセンサによれば、アンモニア濃度の検出精度を高めることができる。
 検出電極の表面におけるAuは、吸着特性が高く、アンモニアに対する感度が高い。ただし、Auは、吸着特性が高いために、センサ出力のプラス側の経時的変化を生じさせる。一方、検出電極の表面におけるPdは、酸化特性が高く、アンモニアに対する感度が低い。ただし、Pdは、酸化特性が高いために、センサ出力のマイナス側の経時的変化を生じさせる。そして、検出電極の表面におけるAuとPdとの含有比率を適切に調整することによって、吸着特性と酸化特性とのバランスを適切にし、検出電極のセンサ出力の経時的変化を適切に抑えることができる。
 アンモニアに対する検出電極の吸着特性は、検出電極の表面における、Auに対するPdの含有比率が高くなるほど低下する。検出電極の表面における、Auに対するPdの含有比率をできるだけ低くした方が、検出電極の吸着特性の低下を抑え、検出電極の感度を高く維持することができる。検出電極の表面における、Auに対するPdの含有比率は、0.5mol%以上とすることができる。
 一方、検出電極のセンサ出力の経時的変化は、アンモニアに対する検出電極の吸着特性が高くなるとプラス側に生じやすくなり、アンモニアに対する検出電極の酸化特性が高くなるとマイナス側に生じやすくなる。センサ出力の経時的変化がプラス側又はマイナス側に大きく生じると、アンモニア濃度が所定の濃度に変化した直後のセンサ出力と、アンモニア濃度が所定の濃度に変化してから所定時間経過した後のセンサ出力とに差が生じやすくなる。
 検出電極のセンサ出力の経時的変化は、検出電極の表面における、Auに対するPdの含有比率が20~40mol%程度である場合に最も小さくなる。検出電極のセンサ出力の経時的変化をより小さく抑えるためには、検出電極の表面における、Auに対するPdの含有比率は40mol%以下とすることができる。
 検出電極の表面は、AuとPdとの含有比率の測定が可能な厚みを有する表面とすることができる。例えば、検出電極の表面は、検出電極の最表面から、固体電解質体の表面に対して垂直な方向への1μmの深さまでの範囲とすることができる。
 検出電極は、Au及びPd以外の貴金属、固体電解質体を構成する固体電解質材料と同質の固体電解質材料等を含有していてもよい。AuとPdとは、合金であってもよく、合金ではないが互いに混ざり合ったものであってもよい。検出電極は、Au及びPdの他に、例えば、Pt(白金)を含有していてもよい。Au、Pd及びPtは合金であってもよく、合金ではないが互いに混ざり合ったものであってもよい。
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。
 本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
図1は、実施形態1にかかる、アンモニアセンサの構成を示す断面説明図である。 図2は、実施形態1にかかる、センサ素子を示す、図1のII-II断面図である。 図3は、実施形態1にかかる、センサ素子を示す、図1のIII-III断面図である。 図4は、実施形態1にかかる、センサ素子を示す、図1のIV-IV断面図である。 図5は、実施形態1にかかる、センサ制御ユニットにおける電気的構成を示す説明図である。 図6は、実施形態1にかかる、ガスセンサが内燃機関に配置された状態を示す説明図である。 図7は、実施形態1にかかる、検出電極において生じる混成電位を示す説明図である。 図8は、実施形態1にかかる、アンモニア濃度が変化したときに検出電極において生じる混成電位を示す説明図である。 図9は、実施形態1にかかる、酸素濃度が変化したときに検出電極において生じる混成電位を示す説明図である。 図10は、実施形態1にかかる、検出電極の温度が変化したときに検出電極において生じる混成電位を示す説明図である。 図11は、実施形態1にかかる、検出電極の温度と電位差の補正量との関係を示すグラフである。 図12は、実施形態1にかかる、測定ガスにCO及びC38の他ガスが含まれる場合に、検出電極において生じる混成電位を示す説明図である。 図13は、実施形態1にかかる、酸素濃度が変化したときの、アンモニア濃度と電位差との関係を示すグラフである。 図14は、実施形態1にかかる、酸素濃度が変化したときの、電位差と酸素補正後のアンモニア濃度との関係を示すグラフである。 図15は、実施形態1にかかる、検出電極の切断面における複数の測定部位を示す断面図である。 図16は、実施形態1にかかる、アンモニア濃度を変化させたときのセンサ出力の変化を示すグラフである。 図17は、実施形態1にかかる、検出電極の表面において、Au:100mol%に対するPdの含有比率を変化させたときのセンサ出力の経時的変化量を示すグラフである。 図18は、実施形態1にかかる、検出電極の表面において、Au:100mol%に対するPdの含有比率を変化させたときのセンサ出力の感度を示すグラフである。 図19は、実施形態1にかかる、検出電極の表面において、Au:100mol%に対するPdの含有比率が変化したときの経時的変化指標を示すグラフである。 図20は、実施形態2にかかる、アンモニアセンサの構成を示す断面説明図である。 図21は、実施形態3にかかる、センサ素子を示す断面説明図である。 図22は、実施形態3にかかる、アンモニアセンサの構成を示す、図21のXXII-XXII断面図である。
 前述したアンモニアにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のアンモニアセンサ1は、図1及び図2に示すように、アンモニア素子部2、ヒータ部4及び電位差検出部51を備える。アンモニア素子部2及びヒータ部4は、センサ素子10の一部を構成する。アンモニア素子部2は、酸素イオン伝導性の第1固体電解質体21と、第1固体電解質体21の第1表面211に設けられて、検出対象ガスGに晒される検出電極22と、第1固体電解質体21の第2表面212に設けられた基準電極23とを有する。ヒータ部4は、通電によって発熱する発熱部411を有し、発熱部411の発熱によって第1固体電解質体21、検出電極22及び基準電極23を加熱するものである。
 電位差検出部51は、検出電極22における、検出対象ガスGに含まれる酸素(酸素ガス,O2)の電気化学的還元反応と、検出対象ガスGに含まれるアンモニア(アンモニアガス,NH3)の電気化学的酸化反応とが釣り合うときに生じる、検出電極22と基準電極23との間の電位差ΔVを検出するものである。検出電極22は、少なくともAu(金)及びPd(パラジウム)を含有する。そして、検出電極22の表面におけるAu及びPdの含有比率は、Auが100mol%に対してPdが0mol%超過80mol%以下である。
 以下に、本形態のアンモニアセンサ1について詳説する。
(アンモニアセンサ1)
 図1に示すように、本形態のアンモニアセンサ1は、電位差式としての混成電位式のものである。このアンモニアセンサ1においては、酸素及びアンモニアが含まれる状態の検出対象ガスGにおけるアンモニアの濃度を検出する。本形態の電位差検出部51は、検出電極22における、酸素の電気化学的還元反応(以下、単に還元反応という。)による還元電流とアンモニアの電気化学的酸化反応(以下、単に酸化反応という。)による酸化電流とが等しくなるときに生じる、検出電極22と基準電極23との間の電位差ΔVを検出するよう構成されている。
 図6に示すように、アンモニアセンサ1は、車両の内燃機関(エンジン)7の排気管71において、NOxを還元する触媒72から流出するアンモニアの濃度を検出するものである。検出対象ガスGは、内燃機関7から排気管71へ排気された排ガスである。排ガスの組成は、内燃機関7における燃焼状態によって変化する。内燃機関7における、空気と燃料との質量比である空燃比が、理論空燃比に比べて燃料リッチな状態にあるときには、排ガスの組成においては、未燃ガスに含まれるHC(炭化水素)、CO(一酸化炭素)、H2(水素)等の割合が多くなる一方、NO、NO2、N2O等のNOx(窒素酸化物)の割合が少なくなる。内燃機関7における空燃比が、理論空燃比に比べて燃料リーンな状態にあるときには、排ガスの組成においては、HC、CO等の割合が少なくなる一方、NOxの割合が多くなる。また、燃料リッチな状態においては、検出対象ガスGに酸素(空気)がほとんど含まれず、燃料リーンな状態においては、検出対象ガスGに酸素(空気)がより多く含まれる。
(触媒72)
 図6に示すように、排気管71には、NOxを還元するための触媒72と、触媒72へアンモニアを含む還元剤Kを供給する還元剤供給装置73とが配置されている。触媒72は、触媒担体に、NOxの還元剤Kとしてのアンモニアが付着されるものである。触媒72の触媒担体におけるアンモニアの付着量は、NOxの還元反応に伴って減少する。そして、触媒担体におけるアンモニアの付着量が少なくなったときには、還元剤供給装置73から触媒担体へ新たにアンモニアが補充される。還元剤供給装置73は、排気管71における、触媒72よりも排ガスの流れの上流側位置に配置されており、尿素水を噴射して発生するアンモニアガスを排気管71へ供給するものである。アンモニアガスは、尿素水が加水分解されて生成される。還元剤供給装置73には、尿素水のタンク731が接続されている。
 本形態の内燃機関7は、軽油の自己着火を利用して燃焼運転を行うディーゼルエンジンである。また、触媒72は、NOx(窒素酸化物)をアンモニア(NH3)と化学反応させて窒素(N2)及び水(H2O)に還元する選択式還元触媒(SCR)である。
 なお、図示は省略するが、排気管71における、触媒72の上流側位置には、NOのNO2への変換(酸化)、CO、HC(炭化水素)等の低減を行う酸化触媒(DOC)、微粒子を捕集するフィルタ(DPF)等が配置されていてもよい。
(マルチガスセンサ)
 図6に示すように、本形態のアンモニアセンサ1は、排気管71における、触媒72よりも下流側位置に配置される。なお、排気管71に配置されるのは、厳密には、電位差検出部51等を含むセンサ制御ユニット(SCU)5を除く、センサ素子10を含むセンサ本体100である。便宜上、本形態においては、センサ本体100のことをアンモニアセンサ1ということがある。
 本形態のアンモニアセンサ1は、アンモニア濃度の検出だけでなく、酸素濃度及びNOx濃度の検出も可能なマルチガスセンサ(複合センサ)として形成されている。そして、アンモニアセンサ1において、酸素濃度は、アンモニア濃度を補正するために使用される。また、アンモニアセンサ1によるアンモニア濃度及びNOx濃度は、内燃機関7の制御装置としてのエンジン制御ユニット(ECU)50によって、還元剤供給装置73から排気管71へ還元剤Kとしてのアンモニアを供給する時期を決定するために使用される。
 なお、制御装置には、エンジンを制御するエンジン制御ユニット50、アンモニアセンサ1を制御するセンサ制御ユニット5の他、種々の電子制御ユニットがある。制御装置とは、種々のコンピュータ(処理装置)のことをいう。
 エンジン制御ユニット50は、アンモニアセンサ1によって、検出対象ガスG中にNOxが存在することが検出されるときには、触媒72においてアンモニアが不足していると検知し、還元剤供給装置73から尿素水を噴射し、触媒72へアンモニアを供給するよう構成されている。一方、エンジン制御ユニット50は、アンモニアセンサ1によって、検出対象ガスG中にアンモニアが存在することが検出されるときには、触媒72においてアンモニアが過剰に存在していると検知し、還元剤供給装置73からの尿素水の噴射を停止し、触媒72へのアンモニアの供給を停止するよう構成されている。触媒72には、NOxを還元するためのアンモニアが過不足なく供給されることが好ましい。
 エンジン制御ユニット50によるアンモニアの供給制御が行われることにより、触媒72の下流側位置(触媒出口721)及びアンモニアセンサ1の配置位置に存在する検出対象ガスG中のNOx及びアンモニアの各濃度の状態は、NOxがアンモニアによって適切に還元される状態と、NOxの流出量が多くなる状態と、アンモニアの流出量が多くなる状態とが、時間を変えて生じることになる。
(センサ本体100)
 図示は省略するが、アンモニアセンサ1のセンサ本体100は、ヒータ部4が配置されてアンモニア濃度及びNOx濃度を検出するためのセンサ素子10と、センサ素子10を保持して排気管71に取り付けるためのハウジングと、ハウジングの先端側に取り付けられてセンサ素子10を保護する先端側カバーと、ハウジングの基端側に取り付けられてセンサ素子10の電気配線部分を保護する基端側カバーとを備える。図1~図3に示すように、センサ素子10には、ヒータ部4を構成する発熱体41が埋設されている。
(センサ素子10)
 図1及び図2に示すように、センサ素子10は、マルチガスセンサを構成するために、アンモニア濃度を検出するためのアンモニア素子部2、並びに酸素濃度及びNOx濃度を検出するための酸素素子部3を有する。センサ素子10は、アンモニア素子部2を形成するための第1固体電解質体(固体電解質体)21、及び酸素素子部3を形成するための第2固体電解質体(他の固体電解質体)31を有する。
 本形態のセンサ素子10は、一方向に長い長尺形状に形成されている。センサ素子10の長尺方向の先端部には、後述する拡散抵抗部351が設けられている。図1においては、長尺方向を矢印Dによって示し、長尺方向Dの先端側を矢印D1によって示し、長尺方向Dの基端側を矢印D2によって示す。
 第1固体電解質体21及び第2固体電解質体31は、直方体状であって板状に形成されている。第1固体電解質体21及び第2固体電解質体31には、板状の絶縁体25,36,42が積層されている。第1固体電解質体21と第2固体電解質体31との間に位置するダクト用絶縁体25には、基準電極23が収容された基準ガスダクト24が形成されている。検出電極22は、センサ素子10の外側表面を形成するとともに検出対象ガスGに露出される、第1固体電解質体21の外側表面としての第1表面211に設けられている。第1固体電解質体21の第1表面211は、センサ素子10の最表面となり、検出対象ガスGが所定の流速で衝突する表面となる。
 図1及び図5に示すように、本形態のアンモニアセンサ1は、アンモニア素子部2、ヒータ部4及び電位差検出部51の他に、アンモニア濃度算出部52及び通電制御部58を備える。アンモニア濃度算出部52は、検出対象ガスGにおける酸素濃度、及び電位差検出部51による電位差ΔVに基づいて、酸素濃度に応じた補正が行われた、検出対象ガスGにおけるアンモニア濃度を算出するよう構成されている。通電制御部58は、検出電極22の温度が400~600℃の範囲内の目標制御温度になるよう、発熱体41への通電量を制御するよう構成されている。また、アンモニア濃度算出部52は、通電制御部58による目標制御温度が高いほど、酸素濃度が所定量変化したときのアンモニア濃度の補正量を小さくするよう構成されている。ヒータ部4は、通電によって発熱する発熱体41を有する。
(アンモニア素子部2)
 図1及び図2に示すように、第1固体電解質体21は、板状に形成されており、所定の温度において酸素イオンを伝導させる性質を有するジルコニア材料を用いて構成されている。ジルコニア材料は、ジルコニアを主成分とする種々の材料によって構成することができる。ジルコニア材料には、イットリア(酸化イットリウム)等の希土類金属元素もしくはアルカリ土類金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアを用いることができる。
 検出電極22は、アンモニア及び酸素に対する触媒活性を有するAu(金)、及びアンモニアに対するAuの吸着特性及び酸化特性を適正化するためのPd(パラジウム)を含有する貴金属材料を用いて構成されている。検出電極22の貴金属材料は、Au-Pd合金とすることができ、Au及びPdを含有するものとすることもできる。基準電極23は、酸素に対する触媒活性を有するPt(白金)等の貴金属材料を用いて構成されている。また、検出電極22及び基準電極23は、第1固体電解質体21と焼結する際の共材となるジルコニア材料を含有していてもよい。
 第1固体電解質体21の、検出対象ガスGに晒される第1表面211は、アンモニアセンサ1のセンサ素子10における最も外側の表面を形成する。そして、第1表面211に設けられた検出電極22には、検出対象ガスGが接触しやすい状態が形成されている。本形態の検出電極22の表面には、セラミックスの多孔質体等による保護層が設けられていない。そして、検出電極22には、検出対象ガスGが拡散律速されずに接触する。なお、検出電極22の表面には、検出対象ガスGの流速を極力低下させない保護層を設けることも可能である。
 第1固体電解質体21の第2表面212に設けられた基準電極23は、基準ガスAとしての大気に晒されている。第1固体電解質体21の第2表面212には、大気が導入される基準ガスダクト(大気ダクト)24が隣接して形成されている。
(電位差検出部51及び電位差ΔV)
 図1に示すように、本形態の電位差検出部51は、検出電極22に混成電位が生じたときの検出電極22と基準電極23との間の電位差ΔVを検出する。検出電極22においては、検出電極22に接触する検出対象ガスG中にアンモニアと酸素とが存在する場合に、アンモニアの酸化反応と、酸素の還元反応とが同時に進行する。アンモニアの酸化反応は、代表的には、2NH3+3O2-→N2+3H2O+6e-によって表される。酸素の還元反応は、代表的には、O2+4e-→2O2-によって表される。そして、検出電極22における、アンモニアと酸素とによる混成電位は、検出電極22における、アンモニアの酸化反応(速度)と酸素の還元反応(速度)とが等しくなるときの電位として生じる。
 図7は、検出電極22において生じる混成電位を説明するための図である。図7においては、横軸に、基準電極23に対する検出電極22の電位(電位差ΔV)をとり、縦軸に、検出電極22と基準電極23との間に流れる電流をとって、混成電位の変化の仕方を示す。また、図7においては、検出電極22においてアンモニアの酸化反応が行われる際の電位と電流の関係を示す第1ラインL1と、検出電極22において酸素の還元反応が行われる際の電位と電流の関係を示す第2ラインL2とを示す。第1ラインL1及び第2ラインL2は、いずれも右肩上がりのラインによって示す。
 電位差ΔVが0(ゼロ)の場合は、検出電極22の電位が基準電極23の電位と同じであることを示す。混成電位は、アンモニアの酸化反応を示す第1ラインL1上のプラス側の電流と、酸素の還元反応を示す第2ラインL2上のマイナス側の電流とが釣り合ったときの電位となる。そして、検出電極22における混成電位は、基準電極23に対してマイナス側の電位として検出される。
 また、図8に示すように、検出対象ガスGにおけるアンモニア濃度が高くなるときには、アンモニアの酸化反応を示す第1ラインL1の傾きθaが急になる。この場合には、第1ラインL1上のプラス側の電流と、第2ラインL2上のマイナス側の電流とが釣り合う電位が、よりマイナス側へシフトする。これにより、アンモニア濃度が高くなるほど、基準電極23に対する検出電極22の電位がマイナス側に大きくなる。言い換えれば、アンモニア濃度が高くなるほど、検出電極22と基準電極23との電位差(混成電位)ΔVが大きくなる。そのため、アンモニア濃度が高くなるほど電位差ΔVが大きくなり、電位差ΔVを検出することにより、検出対象ガスGにおけるアンモニア濃度を検出することが可能になる。
 また、図9に示すように、検出対象ガスGにおける酸素濃度が高くなるときには、酸素の還元反応を示す第2ラインL2の傾きθsが急になる。この場合には、第1ラインL1上のプラス側の電流と、第2ラインL2上のマイナス側の電流とが釣り合う電位が、マイナス側におけるゼロに近い位置へシフトする。これにより、酸素濃度が高くなるほど、基準電極23に対する検出電極22のマイナス側の電位が小さくなる。言い換えれば、酸素濃度が高くなるほど、検出電極22と基準電極23との電位差(混成電位)ΔVが小さくなる。そのため、酸素濃度が高くなるほど、電位差ΔV又はアンモニア濃度を高くする補正を行うことにより、アンモニア濃度の検出精度を高めることができる。
(検出電極22の温度と電位差ΔV)
 図10に示すように、検出電極22(及びアンモニア素子部2)の温度が高くなるときには、アンモニアの酸化反応を示す第1ラインL1の傾きθaが急になるとともに、酸素の還元反応を示す第2ラインL2の傾きθsも急になる。図10においては、検出電極22の温度が450℃から500℃に変化した場合を示す。そして、検出電極22の温度が高くなると、アンモニアの酸化反応による酸化電流と酸素の還元反応による還元電流とが大きくなるとともに、電位差(混成電位)ΔVは小さくなる。なお、検出電極22の温度が低くなると、これとは逆の変化が生じる。
 また、図10においては、検出電極22の温度が450℃及び500℃のそれぞれの場合について、酸素濃度が5%(体積%)から10%に変化したときの電位差(混成電位)ΔVの変化も示す。酸素濃度が増加したときには、前述したように電位差(混成電位)ΔVが小さくなる。そして、検出電極22の温度が450℃の場合において、酸素濃度が5%から10%に変化するときに電位差(混成電位)ΔVが小さくなる変化量は、検出電極22の温度が500℃の場合において、酸素濃度が5%から10%に変化するときに電位差(混成電位)ΔVが小さくなる変化量に比べて大きい。
 言い換えれば、検出電極22の温度が高い状態にあるほど、酸素濃度が変化したときの電位差(混成電位)ΔVの変化量は小さくなる。これに基づき、検出電極22の温度が高くなるほど、すなわち通電制御部58による目標制御温度が高くなるほど、アンモニア濃度算出部52は、酸素濃度の変化量に応じたアンモニア濃度の補正量を小さくする。
 図11には、検出電極22の温度が400~600℃の間の所定の温度にある場合に、検出対象ガスGの酸素濃度が5%から10%に変化したときに、酸素濃度の変化に応じて、アンモニア濃度算出部52によるアンモニア濃度がどれだけ補正されたかを示す。アンモニア濃度の補正量は、電位差ΔVの補正量[mV]として示す。また、この場合の電位差ΔVの補正量は、酸素濃度が高くなった場合の補正量であり、電位差ΔVを高くする補正量である。
 図11においては、検出電極22へ供給する検出対象ガスGは、窒素中に、酸素が5%(体積%)及びアンモニアが100ppm含まれる状態から、窒素中に、酸素が10%及びアンモニアが100ppm含まれる状態に変化させた。検出対象ガスGは、500ml/minの流量で検出電極22へ供給した。基準電極23は大気に接触させた。
 検出電極22の温度が400℃程度に低い場合には、酸素濃度が所定量変化したときの(酸素濃度の変化量に応じた)電位差ΔV(又はアンモニア濃度)の補正量が相対的に大きくなる。一方、検出電極22の温度が550℃程度に高い場合には、酸素濃度が所定量変化したときの電位差ΔV(又はアンモニア濃度)の補正量が相対的に小さくなる。なお、電位差ΔVはアンモニア濃度を示すため、電位差ΔVを補正することと、アンモニア濃度を補正することとは同じことを示す。
 本形態のアンモニアセンサ1においては、通電制御部58によって、検出電極22の温度が400~600℃の温度範囲内のいずれかの温度になるよう制御される。そして、検出電極22が400~600℃の温度範囲内にあることにより、酸素濃度に応じた補正を行ってアンモニア濃度を算出する精度を高めることができる。言い換えれば、検出電極22の温度が400~600℃の温度範囲内にあるといった条件は、酸素濃度に応じた補正を行ってアンモニア濃度を求める混成電位式のアンモニアセンサ1にとって不可欠であることが発明者らによって見出された。
 図12には、検出対象ガスG中に、アンモニア及び酸素以外の他ガス、例えば、CO、NO、炭化水素(C38等)が存在する場合に、他ガスが電位差(混成電位)ΔVに与える影響を示す。図12においては、他ガスがCO及びC38である場合について示す。図12において、検出対象ガスG中に酸素、CO及びC38が存在するときには、酸素の還元反応を示す第2ラインL2上のマイナス側の電流は、アンモニアの酸化反応を示す第1ラインL1上のプラス側の電流と釣り合おうとするとともに、CO及びC38の他ガスの還元反応を示す第3ラインL3上のマイナス側の電流とも釣り合おうとする。
 CO及びC38によるマイナス側の電位がアンモニアによるマイナス側の電位よりも小さいことにより、酸素の還元反応とCO及びC38の酸化反応とが釣り合う混成電位ΔV2は、酸素の還元反応とアンモニアの酸化反応とが釣り合う混成電位ΔV1よりも低くなる(マイナス側のゼロに近い位置になる)。これにより、アンモニア濃度を示す混成電位ΔV1が、他ガスの濃度を示す混成電位ΔV2による影響を受け、混成電位ΔV1の検出精度が悪化するおそれがある。言い換えれば、混成電位ΔV1は、混成電位ΔV2と複合されたような電位となるおそれがある。また、混成電位ΔV1と混成電位ΔV2との温度依存性は異なる。
 図12において、検出電極22の温度が低くなると、アンモニアの酸化反応を示す第1ラインL1の傾きθa、酸素の還元反応を示す第2ラインL2の傾きθs、及び他ガスの酸化反応を示す第3ラインL3の傾きθxが小さくなり、アンモニア濃度を示す電位差(混成電位)ΔV1が、他ガスによる影響をより受けやすくなる。
 検出電極22の温度が400℃以上である場合には、アンモニアに対する検出電極22の酸化触媒性能が、他ガスに対する検出電極22の酸化触媒性能よりも大幅に高い。そのため、アンモニアの酸化反応と酸素の還元反応とによる混成電位ΔV1が、他ガスの酸化反応と酸素の還元反応とによる混成電位ΔV2の影響をほとんど受けない。
 一方、検出電極22の温度が400℃未満である場合には、アンモニアに対する検出電極22の酸化触媒性能と、他ガスに対する検出電極22の酸化触媒性能との差が小さくなる。そのため、アンモニアの酸化反応と酸素の還元反応とによる混成電位ΔV1が、他ガスの酸化反応と酸素の還元反応とによる混成電位ΔV2の影響を受けやすくなる。
 また、検出電極22の温度が600℃超過である場合には、アンモニアの酸化反応を示す第1ラインL1の傾きθa、及び酸素の還元反応を示す第2ラインL2の傾きθsがかなり急になる。そして、アンモニアの酸化反応を示すプラス側の電流と、酸素の還元反応を示すマイナス側の電流とが、電位差ΔVがゼロの原点付近で釣り合いやすくなる。そのため、混成電位ΔV1又はアンモニア濃度の絶対値が小さくなり、アンモニア濃度の検出精度が低下する。
 従って、通電制御部58によって、検出電極22の温度が400~600℃の温度範囲内のいずれかの温度になるよう制御することによって、酸素補正後のアンモニア濃度の検出精度を高く維持することができる。なお、検出対象ガスGとしての排ガスに含まれる可能性がある、NOx、CO、HC(炭化水素)等の他ガスは、検出電極22の温度が400~600℃の範囲内にあり、検出対象ガスG中に例えば10ppm以上のアンモニアが含まれる場合には、アンモニア濃度の検出精度にあまり影響を与えないことが確認された。
(酸素素子部3)
 図1及び図5に示すように、本形態のアンモニアセンサ1は、マルチガスセンサを形成するために、アンモニア素子部2、電位差検出部51、アンモニア濃度算出部52、ヒータ部4及び通電制御部58の他に、酸素素子部3、ポンピング部53、ポンプ電流検出部54、酸素濃度算出部55、NOx検出部56及びNOx濃度算出部57を備える。また、酸素素子部3には、酸素素子部3及びアンモニア素子部2を加熱するヒータ部4が積層されている。
 酸素素子部3は、第2固体電解質体31、ガス室35、拡散抵抗部351、ポンプ電極32、NOx電極33及び他の基準電極34を有する。第2固体電解質体31は、第1固体電解質体21に対向して配置されている。第2固体電解質体31は、板状に形成されており、所定の温度において酸素イオンを伝導させる性質を有するジルコニア材料を用いて構成されている。このジルコニア材料は、第1固体電解質体21の場合と同様である。
 なお、アンモニアセンサ1がNOxを検出する機能を持たない場合には、酸素素子部3は、NOx電極33を有さず、アンモニアセンサ1はNOx検出部56及びNOx濃度算出部57を備えていなくてもよい。
 図1、図2及び図4に示すように、ガス室35は、第2固体電解質体31の第3表面311に接して形成されている。ガス室35は、ガス室用絶縁体36によって形成されている。ガス室用絶縁体36は、アルミナ等のセラミックス材料からなる。拡散抵抗部351は、多孔質のセラミックス層として形成されており、ガス室35へ拡散速度を制限して検出対象ガスGを導入するための部分である。
 ポンプ電極32は、第3表面311におけるガス室35内に収容されており、ガス室35内の検出対象ガスGに晒される。NOx電極33は、第3表面311におけるガス室35内に収容されており、ポンプ電極32によって酸素濃度が調整された後の検出対象ガスGに晒される。他の基準電極34は、第2固体電解質体31における、第3表面311とは反対側の第4表面312に設けられている。
 ポンプ電極32は、酸素に対する触媒活性を有する一方、NOxに対する触媒活性を有しない貴金属材料を用いて構成されている。ポンプ電極32の貴金属材料は、Pt-Au合金、又はPt及びAuを含有する材料から構成することができる。NOx電極33は、NOx及び酸素に対する触媒活性を有する貴金属材料を用いて構成されている。NOx電極33の貴金属材料は、Pt-Rh(ロジウム)合金、又はPt及びRhを含有する材料から構成することができる。他の基準電極34は、酸素に対する触媒活性を有するPt等の貴金属材料を用いて構成されている。また、ポンプ電極32、NOx電極33及び他の基準電極34は、第2固体電解質体31と焼結する際の共材となるジルコニア材料を含有していてもよい。
 本形態の他の基準電極34は、第2固体電解質体31を介して、ポンプ電極32と対向する位置及びNOx電極33と対向する位置のそれぞれに設けられている。なお、他の基準電極34は、ポンプ電極32及びNOx電極33と対向する位置の全体に1つ設けられていてもよい。
 図1~図3に示すように、第2固体電解質体31の第4表面312に設けられた他の基準電極34は、基準ガスAとしての大気に晒されている。第1固体電解質体21と第2固体電解質体31とは、基準ガスダクト24を形成するダクト用絶縁体25を介して積層されている。ダクト用絶縁体25は、アルミナ等のセラミックス材料からなる。
 基準ガスダクト24は、第1固体電解質体21の第2表面212における基準電極23と、第2固体電解質体31の第4表面312における他の基準電極34とに大気を接触させる状態で形成されている。基準電極23及び他の基準電極34は、基準ガスダクト24内に収容されている。基準ガスダクト24は、センサ素子10の基端からガス室35に対向する位置まで形成されている。
 アンモニアセンサ1の基端側カバー内に導入された基準ガスAは、基準ガスダクト24の基端側の開口部から基準ガスダクト24内に導入される。本形態のセンサ素子10は、第1固体電解質体21と第2固体電解質体31との間に基準ガスダクト24を有することにより、基準電極23及び他の基準電極34の全体をまとめて大気に接触させることができる。
(ポンピング部53、ポンプ電流検出部54及び酸素濃度算出部55)
 図1に示すように、ポンピング部53は、他の基準電極34をプラス側として、ポンプ電極32と他の基準電極34との間に直流電圧を印加して、ガス室35内の検出対象ガスGにおける酸素を汲み出すよう構成されている。ポンプ電極32と他の基準電極34との間に直流電圧が印加されるときには、ポンプ電極32に接触する、ガス室35内の検出対象ガスGにおける酸素が、酸素イオンとなって第2固体電解質体31を他の基準電極34に向けて通過し、基準電極23から基準ガスダクト24へと排出される。これにより、ガス室35内の酸素濃度が、NOxの検出に適した濃度に調整される。
 ポンプ電流検出部54は、ポンプ電極32と他の基準電極34との間に流れる直流電流を検出するよう構成されている。酸素濃度算出部55は、ポンプ電流検出部54によって検出された直流電流に基づいて、検出対象ガスGにおける酸素濃度を算出するよう構成されている。ポンプ電流検出部54においては、ポンピング部53によってガス室35内から基準ガスダクト24へ排出される酸素の量に比例した直流電流が検出される。
 また、ポンピング部53は、ガス室35内の検出対象ガスGにおける酸素濃度が所定の濃度になるまで、ガス室35内から基準ガスダクト24へ酸素を排出する。そのため、酸素濃度算出部55は、ポンプ電流検出部54によって検出される直流電流を監視することにより、アンモニア素子部2及び酸素素子部3に到達する検出対象ガスGにおける酸素濃度を算出することができる。
 酸素濃度算出部55によって算出される酸素濃度は、アンモニア濃度算出部52によるアンモニア濃度を補正するための酸素濃度として利用される。
(NOx検出部56及びNOx濃度算出部57)
 図1に示すように、NOx検出部56は、他の基準電極34をプラス側としてNOx電極33と他の基準電極34との間に直流電圧を印加して、NOx電極33と他の基準電極34との間に流れる直流電流を検出するよう構成されている。NOx濃度算出部57は、NOx検出部56によって検出される直流電流に基づいて、検出対象ガスGにおける補正前NOx濃度を算出し、補正前NOx濃度からアンモニア濃度算出部52によるアンモニア濃度を差し引いて補正後NOx濃度を算出するよう構成されている。NOx検出部56においては、NOxだけでなくアンモニアも検出される。そのため、NOx濃度算出部57においては、アンモニアの検出量を差し引くことにより実際のNOxの検出量が得られる。
 NOx濃度算出部57によるNOx濃度は、2種類あるものとする。NOx検出部56に生じる電流に基づくNOx濃度を補正前NOx濃度とする。補正前NOx濃度においては、NOx電極33において反応するアンモニアによるアンモニア濃度が含まれる。一方、NOx濃度算出部57による補正前NOx濃度からアンモニア濃度算出部52によるアンモニア濃度を差し引いた濃度を、補正後NOx濃度とする。補正後NOx濃度は、アンモニアによる影響が除外されたNOx濃度を示す。アンモニア濃度とNOx濃度とが比較される場合には、補正後NOx濃度が用いられる。
 NOx電極33には、ポンプ電極32によって酸素濃度が調整された後の検出対象ガスGが接触する。そして、NOx検出部56において、NOx電極33と他の基準電極34との間に直流電圧が印加されるときには、NOx電極33に接触するNOxが窒素と酸素に分解され、酸素が酸素イオンとなって第2固体電解質体31を他の基準電極34に向けて通過し、基準電極23から基準ガスダクト24へと排出される。また、NOx検出部56にアンモニアが到達するときには、アンモニアが酸化されて生成されたNOxも同様に窒素と酸素に分解される。そして、NOx濃度算出部57は、NOx検出部56によって検出される直流電流を監視することにより、酸素素子部3に到達する検出対象ガスGにおける補正前NOx濃度を算出し、補正前NOx濃度からアンモニア濃度を差し引いて、NOx濃度を補正後NOx濃度として算出する。
 アンモニアセンサ1を、アンモニア濃度だけでなく酸素濃度及びNOx濃度も検出するマルチガスセンサとしたことにより、アンモニア濃度及びNOx濃度を検出する際に、排気管71に配置するガスセンサの使用数を減らすことができる。また、NOx濃度を検出するために使用されるポンプ電極32及びポンピング部53を利用して、ポンプ電流検出部54及び酸素濃度算出部55によって酸素濃度を検出することができる。
 ポンピング部53、ポンプ電流検出部54及びNOx検出部56は、アンプ等を用いてセンサ制御ユニット5内に形成されている。酸素濃度算出部55及びNOx濃度算出部57は、コンピュータ等を用いてセンサ制御ユニット5内に形成されている。
 なお、図1においては、便宜的に、電位差検出部51、ポンピング部53、ポンプ電流検出部54及びNOx検出部56を、センサ制御ユニット5と区別して記載する。実際には、これらは、センサ制御ユニット5内に構築されている。また、図示は省略するが、各電極22,23,32,33,34には、電気接続用のリード部が、発熱体41のリード部412と同様に、センサ素子10の基端側の位置まで形成されている。
(アンモニア濃度算出部52)
 図1及び図5に示すように、アンモニア濃度算出部52は、酸素濃度算出部55による酸素濃度と電位差検出部51による電位差ΔVとに基づいて、検出対象ガスGにおけるアンモニア濃度を算出する。また、アンモニアセンサ1のセンサ制御ユニット5は、電位差検出部51による電位差ΔVに基づくアンモニア濃度を、ポンプ電流検出部54による直流電流に基づく酸素濃度によって補正して、アンモニア出力濃度を求めるとともに、NOx検出部56による直流電流に基づいてNOx濃度を求めるよう構成されている。
 図13は、混成電位式のアンモニア素子部2において、検出対象ガスGにおけるアンモニア濃度の変化に応じて検出される、電位差検出部51による検出電極22と基準電極23との間の電位差(混成電位)ΔVが、酸素濃度の影響を受けて変化することを示す。図13に示すように、電位差検出部51によって検出される電位差(混成電位)ΔVは、酸素濃度が高くなるほど小さく検出される(マイナス側のゼロに近い位置で検出される)。この理由は、図9における傾きθsによって説明したとおりである。
 図14に示すように、本形態のアンモニア濃度算出部52においては、検出対象ガスGにおける酸素濃度をパラメータとして、電位差検出部51による電位差ΔVと、酸素濃度に応じた補正が行われた酸素補正後のアンモニア濃度C1との関係を示す関係マップM1が設定されている。この関係マップM1は、酸素濃度が所定の値にあるときの電位差ΔV(酸素補正前のアンモニア濃度C0)と酸素補正後のアンモニア濃度C1との関係として作成されている。アンモニア濃度算出部52は、検出対象ガスGにおける酸素濃度及び電位差検出部51による電位差ΔVを関係マップM1に照合して、検出対象ガスGにおける酸素補正後のアンモニア濃度C1を算出するよう構成されている。
 より具体的には、アンモニア濃度算出部52は、酸素濃度算出部55による酸素濃度と、電位差検出部51による電位差ΔVとを、関係マップM1の酸素濃度及び電位差ΔVにそれぞれ照合する。そして、関係マップM1から、電位差ΔVのときの酸素補正後のアンモニア濃度C1を読み取る。そして、アンモニア濃度算出部52は、酸素濃度が高いほど、酸素補正後のアンモニア濃度C1が高くなるように補正する。こうして、図5に示すように、酸素補正後のアンモニア濃度C1は、酸素濃度に応じて補正された、アンモニアセンサ1から出力されるアンモニア出力濃度となる。なお、関係マップM1においては、電位差ΔVを、酸素補正前のアンモニア濃度C0としてもよい。
 図14においては、検出対象ガスG中の酸素濃度が、例えば、5[体積%]、10[体積%]、20[体積%]である場合の関係マップM1を示す。この関係マップM1を用いることにより、酸素濃度に応じた電位差ΔV(又はアンモニア濃度C0)の補正を容易にすることができる。電位差ΔVと酸素補正後のアンモニア濃度C1との関係マップM1は、アンモニアセンサ1の試作・実験時等において求めておくことができる。
 また、図14の関係マップM1は、検出電極22の温度ごとに設定することができる。そして、検出電極22の温度の違いを反映して、酸素濃度に応じた酸素補正後のアンモニア濃度C1を算出することができる。また、関係マップM1から算出された酸素補正後のアンモニア濃度C1を、検出電極22の温度に応じて定められた温度補正係数を用いて補正することもできる。
 電位差検出部51及びアンモニア濃度算出部52は、アンモニアセンサ1に電気接続されたセンサ制御ユニット(SCU)5内に形成されている。電位差検出部51は、検出電極22と基準電極23との電位差ΔVを測定するアンプ等を用いて形成されている。アンモニア濃度算出部52は、コンピュータ等を用いて形成されている。また、センサ制御ユニット5は、内燃機関7のエンジン制御ユニット(ECU)50に接続されており、エンジン制御ユニット50による、内燃機関7、還元剤供給装置73等の動作の制御に利用される。
 なお、アンモニア濃度算出部52は、酸素濃度に応じたアンモニア濃度の補正を行う際には、NOx検出部56による補正前NOx濃度又は補正後NOx濃度も加味してアンモニア濃度を補正することもできる。酸素素子部3におけるNOx電極33は、NOxに対する触媒活性を有するだけでなく、アンモニアに対する触媒活性も有する。そのため、アンモニア濃度は、NOx電極33において、補正前NOx濃度として検出することが可能である。これにより、アンモニア濃度算出部52においては、酸素濃度、検出電極22の温度及びNOx濃度に基づいて、電位差ΔVによるアンモニア濃度を補正することもできる。
(ヒータ部4及び通電制御部58)
 図1及び図2に示すように、第2固体電解質体31の、第1固体電解質体21が積層された側とは反対側には、酸素素子部3及びアンモニア素子部2を加熱するヒータ部4が積層されている。換言すれば、ヒータ部4は、酸素素子部3に対して、アンモニア素子部2が積層された側とは反対側に積層されている。
 ヒータ部4は、通電によって発熱する発熱体41と、発熱体41を埋設するヒータ用絶縁体42とによって形成されている。ヒータ用絶縁体42は、アルミナ等のセラミックス材料からなる。基準ガスAが導入される基準ガスダクト24は、アンモニア素子部2と酸素素子部3との間に形成されている。基準電極23及び他の基準電極34は、基準ガスダクト24内に収容されている。
 図1~図4に示すように、発熱体41は、発熱部411と、発熱部411に繋がるリード部412とによって形成されており、発熱部411は、各固体電解質体21,31と各絶縁体25,36,42とが積層された方向(以下、積層方向Hという。)において、各電極22,23,32,33,34に対向する位置に形成されている。発熱体41には、発熱体41に通電を行うための通電制御部58が接続されている。通電制御部58による発熱体41への通電量は、発熱体41へ印加する電圧を変化させることによって調整することができる。通電制御部58は、発熱体41に、PWM(パルス幅変調)制御等を行った電圧を印加するドライブ回路等を用いて形成されている。通電制御部58は、センサ制御ユニット5内に形成されている。
 アンモニア素子部2とヒータ部4との距離は、酸素素子部3とヒータ部4との距離よりも大きい。そして、ヒータ部4によって酸素素子部3を加熱する温度に比べて、ヒータ部4によってアンモニア素子部2を加熱する温度は低い。酸素素子部3のポンプ電極32及びNOx電極33は、600~900℃の作動温度範囲内において使用され、アンモニア素子部2の検出電極22は、400~600℃の作動温度範囲内において使用される。検出電極22の下限作動温度は400℃となり、上限作動温度は600℃となる。なお、検出電極22の下限作動温度は400℃とすることもできる。
 検出電極22の温度は、ヒータ部4の加熱によって、400~600℃の作動温度範囲内のいずれかの温度を目標として制御される。通電制御部58は、検出電極22の温度を目標制御温度に制御するときには、NOx電極33を、600~900℃の作動温度範囲内に加熱するよう構成されている。この構成により、通電制御部58によるヒータ部4の加熱制御によって、アンモニア素子部2の検出電極22及び酸素素子部3のNOx電極33のそれぞれを、アンモニアの検出及びNOxの検出に適切な温度に加熱することができる。
 また、酸素素子部3とアンモニア素子部2との間に基準ガスダクト24が形成されていることにより、ヒータ部4によって酸素素子部3及びアンモニア素子部2を加熱する際に、基準ガスダクト24を断熱層として作用させることができる。これにより、酸素素子部3のポンプ電極32及びNOx電極33の温度に比べて、アンモニア素子部2の検出電極22の温度を容易に低くすることができる。また、通電制御部58による通電制御を行うことにより、酸素素子部3及びアンモニア素子部2の温度を目標とする温度に制御する。
(検出電極22の組成)
 本形態の検出電極22の貴金属材料においては、AuとPdとの含有比率を適切な範囲にすることによって、Auによるアンモニアに対する感度を適切に弱めて、検出電極22のセンサ出力に検出誤差が生じにくくしている。AuとPdとの含有比率は、アンモニアの分解反応及び酸化反応が行われる検出電極22の表面において規定する。AuとPdとの含有比率は、検出電極22の表面に露出したAuの量と、検出電極22の表面に露出したPdの量との比率とすることができる。また、図15に示すように、検出電極22の表面におけるAuとPdとの含有比率は、検出電極22の最表面Fから積層方向Hへの1μmの深さまでの範囲内におけるAuとPdとの比率とすることができる。積層方向Hは、第1固体電解質体21の第1表面211に対して垂直な方向となる。
 検出電極22は、Au-Pd合金粒子及びジルコニア粒子が混ざった状態で焼成されている。AuとPdとの含有比率は、検出電極22の最表面に存在するAu-Pd合金粒子におけるAuとPdとの比率とすることができる。また、検出電極22は、Au粒子、Pd粒子及びジルコニア粒子が混ざった状態で焼成されていてもよい。
 検出電極22の表面は、Au、Pd、固体電解質の各粒子の存在によって、凹凸形状に形成されており、平坦形状には形成されていない。AuとPdとの含有比率を定める検出電極22の表面は、凹凸形状の表面となる。また、検出電極22の最表面Fから1μmの深さまでの範囲内は、凹凸形状の各部の先端から積層方向Hへの深さの範囲とすることができる。
 検出電極22の表面においては、AuとPdとのモル比がAu:Pd=100:80~100:0.5の範囲内にある。このことは、検出電極22の表面において、Auが占める割合とPdが占める割合とが、Au:Pd=100:80~100:0.5の範囲内にあることを示す。
(測定方法)
 検出電極22の表面におけるAu及びPdの含有比率は、次のように測定することができる。具体的には、検出電極22の表面におけるAu及びPdの含有比率は、例えば、X線光電子分光法(XPS)を用いて測定することができる。XPSにおいては、試料の表面にX線を照射したときに、この表面から放出される光電子の運動エネルギーの分布を測定する。そして、試料の表面から数nm程度までの深さの範囲に存在する元素の種類、存在量、化学結合状態等を測定する。XPSには、例えば、サーモフィッシャーサイエンティフィック株式会社製のESCALAB200を用いることができる。
 図15に示すように、本形態においては、検出電極22を適宜箇所において積層方向Hに切断し、この切断面における複数の測定部位Pの表面、又は最表面Fから積層方向Hへの1μmの深さの範囲内に存在するAu及びPdの量を測定する。検出電極22の表面は、検出電極22の平面方向の測定部位Pごとに決定する。そのため、検出電極22の平面方向における各測定部位Pの表面の積層方向Hにおける位置は、適宜異なることになる。
(センサ出力の感度S及び経時的変化量E)
 図16には、検出電極22の貴金属材料がAuのみからなる場合(比較品1)、検出電極22の貴金属材料がAu:100mol%に対してPd:100mol%を含有する場合(比較品2)、及び検出電極22の貴金属材料がAu:100mol%に対してPd:10mol%を含有する場合(試験品)について、試験ガスにおけるアンモニア濃度を変化させたときの検出電極22のセンサ出力の感度S、及び試験ガスのアンモニア濃度が一定であるときの検出電極22のセンサ出力の経時的変化量Eを測定した結果について示す。試験ガスは、アンモニア、酸素及び窒素を含有する気体である。試験ガスにおける酸素濃度は、10体積%とし、試験ガスにおけるアンモニア濃度は、50~500ppmの間で変化させ、試験ガスにおける残部は窒素とした。
 図16において、検出電極22のセンサ出力の感度S及び経時的変化量Eは、検出電極22と基準電極23との間の電位差ΔV[mV]の変化量とし、試験ガスにおけるアンモニア濃度[ppm]は、50ppm、100ppm、200ppm、500ppm、200ppm、100ppm、50ppmの順に300秒(5分)間隔で変化させた。
 検出電極22のセンサ出力の感度Sは、試験ガス(又は検出対象ガスG)のアンモニア濃度の変化時におけるセンサ出力の変化量を示す。また、センサ出力の感度Sは、検出電極22がアンモニア濃度の変化を検出したときに生じる、検出電極22と基準電極23との間の電位差ΔVの変化量を示す。センサ出力の感度Sは、アンモニア濃度が変化する直前の時点におけるセンサ出力と、アンモニア濃度が変化した直後の時点におけるセンサ出力との差(絶対値)によって表される。
 検出電極22のセンサ出力の経時的変化量Eは、試験ガス(又は検出対象ガスG)のアンモニア濃度が変化した直後から、アンモニア濃度が一定に保たれる状態におけるセンサ出力の変動量(ずれ量)を示す。また、センサ出力の経時的変化量Eは、検出電極22がアンモニア濃度の変化を検出した後に生じる、検出電極22と基準電極23との間の電位差ΔVのずれ量を示す。センサ出力の経時的変化量Eは、アンモニア濃度が変化した直後の時点におけるセンサ出力と、アンモニア濃度がさらに変化した時点におけるセンサ出力との差(絶対値)によって表される。
 図16において、比較品1,2及び試験品についての検出電極22のセンサ出力の大きさの絶対値は、センサ出力が0mVであるゼロ点からオフセットした状態で検出される。このオフセット量は、アンモニアセンサ1の制御装置において補正されて調整される。
 検出電極22の貴金属材料がAuのみからなる比較品1においては、センサ出力の感度Sが大きく、アンモニアに対する検出電極22の感度が高いことが分かる。しかし、比較品1においては、センサ出力の経時的変化量Eも大きく、センサ出力に検出誤差が生じやすいことが分かる。
 検出電極22の貴金属材料がAu:100mol%に対してPd:100mol%を含有する比較品2においては、センサ出力の感度Sが小さく、アンモニアに対する検出電極22の感度が低いことが分かる。また、比較品2においては、センサ出力の経時的変化量Eが大きく、センサ出力に検出誤差も生じやすいことが分かる。
 一方、検出電極22の貴金属材料がAu:100mol%に対してPd:10mol%を含有する試験品においては、センサ出力の感度Sが比較的大きく、アンモニアに対する検出電極22の感度が適度に高いことが分かる。また、試験品においては、センサ出力の経時的変化量Eが小さく、センサ出力に検出誤差が生じにくいことが分かる。
 図17には、検出電極22の表面における、Au:100mol%に対するPdの含有比率を0~100mol%の範囲内で変化させたときの、検出電極22のセンサ出力の経時的変化量E[mV/min]を測定した結果を示す。この測定において用いた試験ガスの組成は、図16の場合と同様である。図17は、試験ガスのアンモニア濃度が50ppmから100ppmに変化した後、試験ガスのアンモニア濃度を100ppmに保つ状態において生じた、検出電極22のセンサ出力の経時的変化量Eを示す。Pdが0mol%である場合は、検出電極22の貴金属材料がAuのみからなる場合を示す。
 図17において、Au:100mol%に対するPdの含有比率が20~40mol%である場合には、経時的変化量Eが0mV/minに近く、経時的変化量Eが小さく抑えられることが分かる。一方、Auに対するPdの含有比率が20mol%未満の場合、及びAuに対するPdの含有比率が40mol%超過の場合には、経時的変化量Eが大きくなっていることが分かる。
 特に、Auに対するPdの含有比率が30mol%付近である場合を境界にして、Pdの含有比率が小さくなると、経時的変化量Eがプラス側に増加し、Pdの含有比率が大きくなると、経時的変化量Eがマイナス側に増加する。Pdの含有比率が20mol%未満になると、Auの含有比率が大きくなることにより、Auによる吸着特性が高くなって、経時的変化量Eがプラス側に増加する。一方、Pdの含有比率が40mol%超過になると、Pdの含有比率が大きくなることにより、Pdによる酸化特性が高くなって、経時的変化量Eがマイナス側に増加する。
 図18には、検出電極22の表面における、Au:100mol%に対するPdの含有比率を0~100mol%の範囲内で変化させたときの、検出電極22のセンサ出力の感度S[mV/50ppm]を測定した結果を示す。この測定において用いた試験ガスの組成は、図16の場合と同様である。図18は、試験ガスのアンモニア濃度が50ppmから100ppmに変化した時に生じた、検出電極22のセンサ出力の変化量である感度Sを示す。
 図18において、Au:100mol%に対するPdの含有比率が100mol%から0mol%へ低くなるに連れて、検出電極22のセンサ出力の感度Sが高くなっていることが分かる。特に、Au:100mol%に対するPdの含有比率が20mol%以下の場合には、アンモニアに対する検出電極22のセンサ出力の感度Sが高いことが分かる。
 検出電極22の表面における、Au:100mol%に対するPdの含有比率は、アンモニアに対する検出電極22の感度ができるだけ高く、かつ検出電極22の経時的変化ができるだけ小さい範囲で選択する。そして、センサ出力の経時的変化量E[mV/min]を、センサ出力の感度S[mV/ppm]によって除算した経時的変化指標I[ppm/min]に基づいて、検出電極22の表面におけるAu:100mol%に対するPdの含有比率を決定する。経時的変化指標Iは、アンモニア濃度が1ppm当たりの電位変化量に換算して、I=E/S×50(ppm)によって求めた。
 経時的変化指標Iは、アンモニア濃度の変化を受けて変化するセンサ出力の感度(変化量)の大きさに対して、アンモニア濃度の変化後に、センサ出力の変動(ずれ)量がどれだけ生じるかについて示すものである。経時的変化指標は、0ppm/minに近いほど、センサ出力の変動(ずれ)が生じにくいことを示す。
 図19には、図17及び図18の測定結果をまとめて、Au:100mol%に対するPdの含有比率ごとに求めた経時的変化指標Iについて示す。図19に示すように、Au:100mol%に対するPdの含有比率が80mol%を超えると、経時的変化指標Iが急激に悪化することが分かる。そのため、Au:100mol%に対するPdの含有比率は80mol%以下にすることにより、アンモニアに対するセンサ出力の感度を適切に維持しつつ、センサ出力の経時的変化を適切に抑えることができる。
 また、Au:100mol%に対するPdの含有比率が0.5mol%以上40mol%以下である場合には、アンモニアに対するセンサ出力の感度の維持、及びセンサ出力の経時的変化の抑制をより効果的に行うことができる。また、Au:100mol%に対するPdの含有比率が20~40mol%である場合には、経時的変化指標Iの値が0ppm/minに近くなり、アンモニアに対するセンサ出力の感度の維持、及びセンサ出力の経時的変化の抑制の観点から最も適切である。
 検出電極22の表面におけるAuは、吸着特性が高く、アンモニアに対する感度が高い。ただし、Auは、吸着特性が高いために、図19の経時的変化指標Iをプラス側に大きくする。一方、検出電極22の表面におけるPdは、酸化特性が高く、アンモニアに対する感度が低い。ただし、Pdは、酸化特性が高いために、図19の経時的変化指標Iをマイナス側に大きくする。そのため、経時的変化指標Iの値を0ppm/minに近くするためには、検出電極22の表面における、Auによる吸着特性とPdによる酸化特性とのバランスを適切にすることが重要であることが分かる。
(作用効果)
 本形態のアンモニアセンサ1は、酸素の還元反応とアンモニアの酸化反応とが釣り合うときの電位差ΔVを検出する混成電位式のものである。そして、発明者の鋭意研究の結果、検出電極22の貴金属におけるAuとPdとの含有比率が、適切な比率であることにより、アンモニアに対する検出電極22の吸着特性及び酸化特性を適切に維持しつつ、検出電極22のセンサ出力の経時的変化を適切に抑えることができることが見出された。
 検出電極22の表面における、Auに対するPdの含有比率が高すぎると、検出電極22の酸化特性が高くなり、検出電極22の感度が低下するだけでなく、検出電極22のセンサ出力の経時的変化がマイナス側に大きくなる。検出電極22において、Auに対するPdの含有比率が0mol%を超えて80mol%以下であることにより、検出電極22の吸着特性と酸化特性とのバランスを適切に維持しつつ、検出電極22のセンサ出力の経時的変化を適切に抑えることができる。
 検出電極22の吸着特性及び酸化特性は、アンモニアに対する検出電極22の感度を左右する。そして、検出電極22の感度が高く、検出電極22のセンサ出力に経時的変化が生じにくいことにより、検出電極22のセンサ出力に検出誤差が生じにくくし、検出電極22によるアンモニア濃度の検出精度を高めることができる。
 それ故、本形態のアンモニアセンサ1によれば、アンモニア濃度の検出精度を高めることができる。
 アンモニアに対する検出電極22の吸着特性は、検出電極22の表面における、Auに対するPdの含有比率が高くなるほど低下する。検出電極22の表面における、Auに対するPdの含有比率をできるだけ低くした方が、検出電極22の吸着特性の低下を抑え、検出電極22の感度を高く維持することができる。検出電極22の表面における、Auに対するPdの含有比率は、0.5mol%以上とすることができる。
 一方、検出電極22のセンサ出力の経時的変化は、アンモニアに対する検出電極22の吸着特性が高くなるとプラス側に生じやすくなり、アンモニアに対する検出電極22の酸化特性が高くなるとマイナス側に生じやすくなる。センサ出力の経時的変化がプラス側又はマイナス側に大きく生じると、アンモニア濃度が所定の濃度に変化した直後のセンサ出力と、アンモニア濃度が所定の濃度に変化してから所定時間経過した後のセンサ出力とに差が生じやすくなる。
 検出電極22のセンサ出力の経時的変化は、検出電極22の表面における、Auに対するPdの含有比率が20~40mol%程度である場合に最も小さくなる。検出電極22のセンサ出力の経時的変化をより小さく抑えるためには、検出電極22の表面における、Auに対するPdの含有比率は40mol%以下とすることができる。
<実施形態2>
 本形態は、酸素素子部3を備えないセンサ素子10について示す。図20に示すように、アンモニアセンサ1がアンモニア濃度のみを検出する場合には、センサ素子10は、検出電極22と基準電極23とが設けられた第1固体電解質体21と、基準ガスダクト24が形成された絶縁体25と、発熱体41が埋設された絶縁体42とが積層されたものとすることができる。本形態の固体電解質体は1つであるが、検出電極22及び基準電極23が設けられた第1固体電解質体21として示す。
 検出電極22は、検出対象ガスGに晒される第1固体電解質体21の外側表面としての第1表面211に配置されており、基準電極23は、基準ガスダクト24内に配置されている。この場合にも、検出電極22及び基準電極23の構成は、実施形態1の場合と同様にすることができる。また、この場合には、アンモニアセンサ1においてアンモニア濃度を求めるために、他のガスセンサによって測定された酸素濃度を利用することができる。
 本形態のアンモニアセンサ1における、その他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。
<実施形態3>
 本形態は、酸素素子部3及び基準ガスダクト24を備えないセンサ素子10について示す。図21及び図22に示すように、基準電極23を基準ガスダクト24内に配置しない場合には、検出電極22及び基準電極23を、センサ素子10の外側表面を構成する、第1固体電解質体21の第1表面211に配置することができる。この場合には、検出電極22と基準電極23とのアンモニアに対する触媒活性の違いに基づき、検出対象ガスGにおけるアンモニアの濃度を検出することができる。この場合にも、検出電極22及び基準電極23の構成は、実施形態1の場合と同様にすることができる。
 本形態のアンモニアセンサ1における、その他の構成、作用効果等については、実施形態1,2の場合と同様である。また、本形態においても、実施形態1,2に示した符号と同一の符号が示す構成要素は、実施形態1,2の場合と同様である。
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。さらに、本開示から想定される様々な構成要素の組み合わせ、形態等も本開示の技術思想に含まれる。

Claims (3)

  1.  酸素イオン伝導性の固体電解質体(21)、前記固体電解質体の表面に設けられて、検出対象ガス(G)に晒される検出電極(22)、及び前記固体電解質体の表面に設けられた基準電極(23)を有するアンモニア素子部(2)と、
     通電によって発熱する発熱部(411)を有し、前記発熱部の発熱によって前記固体電解質体、前記検出電極及び前記基準電極を加熱するヒータ部(4)と、
     前記検出電極における、前記検出対象ガスに含まれる酸素の電気化学的還元反応と前記検出対象ガスに含まれるアンモニアの電気化学的酸化反応とが釣り合うときに生じる、前記検出電極と前記基準電極との間の電位差(ΔV)を検出する電位差検出部(51)と、を備え、
     前記検出電極は、少なくともAu及びPdを含有しており、
     前記検出電極の表面におけるAu及びPdの含有比率は、Auが100mol%に対してPdが80mol%以下である、アンモニアセンサ(1)。
  2.  前記検出電極の表面におけるAu及びPdの含有比率は、Auが100mol%に対してPdが0.5mol%以上40mol%以下である、請求項1に記載のアンモニアセンサ。
  3.  酸素イオン伝導性の他の固体電解質体(31)、前記固体電解質体と前記他の固体電解質体との間に形成され、拡散抵抗部(351)を介して前記検出対象ガスが導入されるガス室(35)、前記他の固体電解質体の表面に設けられ、前記ガス室内に収容されて検出対象ガス(G)に晒されるポンプ電極(32)及びNOx電極(33)、並びに前記他の固体電解質体の、前記ポンプ電極及びNOx電極が設けられた表面と反対側の表面に設けられた他の基準電極(34)を有する酸素素子部(3)と、
     前記ポンプ電極と前記他の基準電極との間に印加する直流電圧によって、前記ガス室内の前記検出対象ガスにおける酸素を汲み出すポンピング部(53)と、
     前記ポンプ電極と前記他の基準電極との間に流れる直流電流を検出するポンプ電流検出部(54)と、
     前記NOx電極と前記他の基準電極との間に直流電圧を印加して、前記NOx電極と前記他の基準電極との間に流れる直流電流を検出するNOx検出部(56)と、をさらに備え、
     前記電位差検出部による電位差に基づくアンモニア濃度を、前記ポンプ電流検出部による直流電流に基づく酸素濃度によって補正して、アンモニア出力濃度を求めるとともに、前記NOx検出部による直流電流に基づいてNOx濃度を求めるよう構成されている、請求項1又は2に記載のアンモニアセンサ。
PCT/JP2019/047984 2018-12-21 2019-12-09 アンモニアセンサ WO2020129717A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019006347.2T DE112019006347T5 (de) 2018-12-21 2019-12-09 Ammoniak-sensor
US17/350,143 US20210310984A1 (en) 2018-12-21 2021-06-17 Ammonia sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239783 2018-12-21
JP2018239783A JP7146619B2 (ja) 2018-12-21 2018-12-21 アンモニアセンサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/350,143 Continuation US20210310984A1 (en) 2018-12-21 2021-06-17 Ammonia sensor

Publications (1)

Publication Number Publication Date
WO2020129717A1 true WO2020129717A1 (ja) 2020-06-25

Family

ID=71102750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047984 WO2020129717A1 (ja) 2018-12-21 2019-12-09 アンモニアセンサ

Country Status (4)

Country Link
US (1) US20210310984A1 (ja)
JP (1) JP7146619B2 (ja)
DE (1) DE112019006347T5 (ja)
WO (1) WO2020129717A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153781A (ja) * 2015-02-16 2016-08-25 日本特殊陶業株式会社 ガスセンサ
US20180252673A1 (en) * 2017-03-02 2018-09-06 Delphi Technologies Ip Limited Multi-Species Gas Constituent Sensor with Pulse Excitation Measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156849A (ja) * 1982-03-15 1983-09-17 Toyota Motor Corp 酸素濃度センサの電極およびその形成方法
JPS6066144A (ja) * 1983-09-20 1985-04-16 Matsushita Electric Ind Co Ltd 酸素濃度検出器用素子の電極の製造方法
JPH1017316A (ja) * 1996-06-28 1998-01-20 Mitsui Petrochem Ind Ltd 金属炭酸塩の製造方法、金属炭酸塩の薄膜化方法、および炭酸ガスセンサ
WO2015189888A1 (ja) 2014-06-09 2015-12-17 富士通株式会社 ガスセンサー、及びセンサー装置
JP5965564B1 (ja) 2016-04-15 2016-08-10 日本碍子株式会社 アンモニアガスセンサおよびアンモニアガスの濃度測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153781A (ja) * 2015-02-16 2016-08-25 日本特殊陶業株式会社 ガスセンサ
US20180252673A1 (en) * 2017-03-02 2018-09-06 Delphi Technologies Ip Limited Multi-Species Gas Constituent Sensor with Pulse Excitation Measurement

Also Published As

Publication number Publication date
JP2020101446A (ja) 2020-07-02
JP7146619B2 (ja) 2022-10-04
US20210310984A1 (en) 2021-10-07
DE112019006347T5 (de) 2021-09-02

Similar Documents

Publication Publication Date Title
CN108343496B (zh) 催化器劣化诊断方法和催化器劣化诊断系统
US11530665B2 (en) Deterioration determination apparatus for ammonia sensor
WO2020145042A1 (ja) ガス濃度検出装置
US10969362B2 (en) Particular-gas concentration-measuring apparatus and particular-gas concentration measuring system
JP5058224B2 (ja) NOxセンサ
JP3664558B2 (ja) ガスセンサ
JPH1019842A (ja) ガスセンサ、ガスセンサの制御方法、ガス濃度制御器及びガス濃度の制御方法
JP7071873B2 (ja) マルチガスセンサ
JP7075818B2 (ja) マルチガスセンサ
JP7085897B2 (ja) アンモニア濃度検出装置
WO2020100644A1 (ja) ガスセンサ
WO2020129717A1 (ja) アンモニアセンサ
JP2001133429A (ja) 車載用noxセンサのオフセット再校正方法
JP7071874B2 (ja) アンモニア濃度検出装置
JP7089942B2 (ja) アンモニア濃度検出装置
WO2021251036A1 (ja) アンモニア濃度検出装置
JP7402786B2 (ja) ガス濃度検出装置
JP7230211B2 (ja) 測定ガス中の、結合酸素を有する測定ガス成分の少なくとも一部を検出するセンサシステムの動作方法
JP7158232B2 (ja) ガスセンサ
JP7071951B2 (ja) ガスセンサ
JP2023003623A (ja) ガス検出装置
JP2022089378A (ja) ガス濃度検出装置
JP2023116060A (ja) ガスセンサ素子及びガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900010

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19900010

Country of ref document: EP

Kind code of ref document: A1