WO2020129135A1 - プローブピン検査機構および検査装置 - Google Patents

プローブピン検査機構および検査装置 Download PDF

Info

Publication number
WO2020129135A1
WO2020129135A1 PCT/JP2018/046417 JP2018046417W WO2020129135A1 WO 2020129135 A1 WO2020129135 A1 WO 2020129135A1 JP 2018046417 W JP2018046417 W JP 2018046417W WO 2020129135 A1 WO2020129135 A1 WO 2020129135A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe pin
pin
inspection
probe
pair
Prior art date
Application number
PCT/JP2018/046417
Other languages
English (en)
French (fr)
Inventor
佐藤 真吾
彰博 高橋
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2018/046417 priority Critical patent/WO2020129135A1/ja
Priority to US17/414,224 priority patent/US11733268B2/en
Priority to JP2020560664A priority patent/JP7039730B2/ja
Priority to CN201880097345.XA priority patent/CN112673268A/zh
Publication of WO2020129135A1 publication Critical patent/WO2020129135A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06794Devices for sensing when probes are in contact, or in position to contact, with measured object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the embodiment of the present invention relates to a probe pin inspection mechanism and an inspection device.
  • a charge/discharge inspection device that inspects a secondary battery in a state where a pair of probe pins are pressed against a pair of electrode terminals of the secondary battery.
  • the probe pin inspection mechanism of the embodiment includes a base, a pair of movable bodies, a movable body elastic body, and a conductor.
  • Each of the pair of movable bodies is supported by the base so as to be movable in a first direction from a first position with respect to the base, and is in contact with a probe pin in an end in a second direction opposite to the first direction. And a terminal electrically connected to the end, and are arranged in a direction intersecting the first direction.
  • the pair of movable body elastic bodies is provided for each movable body, is interposed between the movable body and the base, and elastically pushes the movable body in the second direction.
  • the conductor is supported by the base, and contacts the terminals of the pair of movable bodies to electrically connect the terminals.
  • Each of the ends of the pair of movable bodies is capable of contacting with a different probe pin.
  • the state of the terminal and the conductor is switched between a conducting state in which the terminal and the conductor are in contact with each other and a non-conducting state in which the terminal and the conductor are separated from each other.
  • FIG. 1 is an exemplary front view of a probe pin inspection mechanism and a probe pin module according to the first embodiment.
  • FIG. 2 is an exemplary perspective view of the secondary battery of the first embodiment.
  • FIG. 3 is an exemplary view of a state in which the probe pin inspection mechanism of the first embodiment is pressed against the probe pin module, and is a view when both of the pair of probe pins are normal.
  • FIG. 4 is an exemplary diagram of a state in which the probe pin inspection mechanism of the first embodiment is pressed against the probe pin module, and is a diagram when one of the pair of probe pins is abnormal.
  • FIG. 5 is an exemplary front view of the charge and discharge inspection device of the second embodiment.
  • FIG. 6 is an exemplary front view of the probe pin module of the second embodiment.
  • FIG. 7 is an exemplary bottom view of the probe pin module of the second embodiment.
  • FIG. 8 is an exemplary front view of the tray according to the second embodiment, showing a state in which the tray accommodates the probe pin inspection mechanism.
  • FIG. 9 is an exemplary plan view of the tray of the second embodiment, showing a state in which the tray accommodates the probe pin inspection mechanism.
  • FIG. 10 is an exemplary block diagram of the charge and discharge inspection device of the second embodiment.
  • FIG. 11 is a block diagram showing the functional configuration of the control device of the second embodiment.
  • FIG. 12 is an exemplary flowchart of the probe pin inspection process executed by the control device of the second embodiment.
  • the ordinal numbers are given for convenience of distinguishing members (parts), parts, etc., and do not indicate the priority order or order. Further, in this embodiment, for convenience, three directions orthogonal to each other are defined.
  • the X direction is along the depth direction (front-back direction) of the probe pin inspection mechanism 1
  • the Y direction is along the left-right direction (width direction) of the probe pin inspection mechanism 1
  • the Z direction is the vertical direction of the probe pin inspection mechanism 1.
  • the lower portion D1 is an example of the first direction
  • the upper portion D2 is an example of the second direction.
  • FIG. 1 is an exemplary front view of a probe pin inspection mechanism and a probe pin module according to the first embodiment.
  • the probe pin inspection mechanism 1 shown in FIG. 1 is used to inspect a pair of probe pins 5.
  • the pair of probe pins 5 are used, for example, for charge/discharge inspection of the secondary battery 10 (see FIG. 2 ).
  • the secondary battery, probe pin, and probe probe pin inspection mechanism will be described in detail below in this order.
  • FIG. 2 is an exemplary perspective view of the secondary battery 10 of the first embodiment.
  • the secondary battery 10 has a housing 20, a positive electrode terminal 23, and a negative electrode terminal 24.
  • the secondary battery 10 is, for example, a lithium ion secondary battery.
  • the housing 20 has a flat rectangular parallelepiped shape.
  • An electrode body as a power generation unit is housed inside the housing 20.
  • the positive electrode terminal 23 and the negative electrode terminal 24 are exposed to the outside of the housing 20 while being supported by the top wall 22 of the housing 20.
  • the positive electrode terminal 23 and the negative electrode terminal 24 are arranged in the left-right direction of the ceiling wall 22 (housing 20) with a space therebetween.
  • the positive electrode terminal 23 and the negative electrode terminal 24 are electrically connected to the positive electrode and the negative electrode of the electrode body, respectively.
  • the positive electrode terminal 23 and the negative electrode terminal 24 are each an example of an electrode terminal.
  • the probe pin 5 will be described in detail.
  • the pair of probe pins 5 are supported by the base 40 in a state of being arranged in the left-right direction intersecting the vertical direction (upper D2 and lower D1).
  • the pair of probe pins 5 are also referred to as probe pins 5A and 5B.
  • the pair of probe pins 5 and the base 40 form a probe pin module 41.
  • the probe pin module 41 is also called a probe pin unit.
  • the probe pin 5 has a support 31, a first pin 32, a second pin 33, a first pin elastic body 34, and a second pin elastic body (not shown).
  • the first pin 32 and the second pin 33 are also called contact pins or plungers.
  • the first pin 32 is an example of a pin
  • the first pin elastic body 34 is an example of a pin elastic body.
  • the support 31 is fixed to the base 40 with the base 40 penetrating vertically.
  • the support 31 is formed in a stepped cylindrical shape.
  • the first pin 32 is formed in a cylindrical shape. A part of the first pin 32 is put in the support body 31, and the first pin 32 is slidable on the support body 31. The first pin 32 is vertically guided by the support 31. Further, the first pin 32 contacts the stopper at the initial position where the first pin 32 projects downward from the support 31 by a predetermined amount, and the downward movement is restricted by the stopper. The first pin 32 is pushed downward by D1 by the first pin elastic body 34. A current is passed through the first pin 32.
  • a part of the second pin 33 is put in the first pin 32, and the second pin 33 can slide on the first pin 32.
  • the second pin 33 is vertically guided by the first pin 32. Further, the second pin 33 abuts the stopper at the initial position where the second pin 33 projects downward from the first pin 32 by a predetermined amount, and the downward movement is restricted by the stopper.
  • the second pin 33 is pushed downward D1 by the second pin elastic body.
  • a voltmeter is connected to the second pin 33. That is, the second pin 33 is for voltage detection.
  • the probe pin inspection mechanism 1 includes a base 50, a pair of movable bodies 51, and a pair of movable body elastic bodies 52.
  • the base 50 has a frame 53 and a guide member 54.
  • the frame 53 is formed in a substantially rectangular frame shape and has a top wall 53a, a bottom wall 53b, and a pair of side walls 53c and 53d.
  • the horizontal width and the depth width (length) of the frame 53 (base 50) are the same as the horizontal width and the depth width (length) of the housing 20 of the secondary battery 10.
  • the base 50 is made of an insulating material such as a synthetic resin material.
  • the frame 53 is also called a body.
  • a protrusion 53e is provided on the lower surface of the ceiling wall 53a.
  • the projecting portion 53e projects downward from the top wall 53a to the lower side D1.
  • the conductor 55 is fixed to the tip of the protrusion 53e. That is, the conductor 55 is supported by the frame 53.
  • the conductor 55 is formed in a flat plate shape.
  • the conductor 55 has a pair of terminals 55a at both ends in the left-right direction of the conductor 55.
  • the conductor 55 is made of a metal material and has conductivity.
  • the guide member 54 has a tubular portion 54a, an upper flange portion 54b, and a lower flange portion 54c.
  • the tubular portion 54a has, for example, a cylindrical shape.
  • the tubular portion 54a extends in the vertical direction and penetrates the top wall 53a of the frame 53 in the vertical direction.
  • the upper flange portion 54b and the lower flange portion 54c respectively project from the outer peripheral portion of the tubular portion 54a to the radially outer side of the tubular portion 54a.
  • the upper flange portion 54b and the lower flange portion 54c have, for example, an annular shape.
  • the upper flange portion 54b is superposed on the upper surface of the ceiling wall 53a, and the lower flange portion 54c is superposed on the lower surface of the ceiling wall 53a.
  • the guide member 54 is fixed to the ceiling wall 53a by sandwiching the ceiling wall 53a with the upper flange portion 54b and the lower flange portion 54c.
  • the guide member 54 can be configured by a combination of a plurality of members.
  • the pair of movable bodies 51 are arranged on the top wall 53a of the base 50 in a state of being arranged in the left-right direction intersecting the vertical direction (upper D2 and lower D1).
  • the pair of movable bodies 51 will also be referred to as a movable body 51A and a movable body 51B.
  • the movable body 51 has an upper end portion 51a and a lower end portion 51b. Each upper end portion 51a of the pair of movable bodies 51 can be brought into contact with different probe pins 5. Specifically, the upper end 51a of the movable body 51A can contact the probe pin 5A, and the upper end 51a of the movable body 51B can contact the probe pin 5B.
  • the movable body 51 has a stepped columnar portion 51c including an upper end portion 51a and a lower end portion 51b, and a terminal 51g protruding from the columnar portion 51c.
  • the movable body 51 is made of a metal material and has conductivity. That is, the upper end portion 51a has conductivity.
  • the columnar portion 51c has an upper large diameter portion 51d, a lower large diameter portion 51e, and a connecting portion 51f.
  • the upper large diameter portion 51d includes an upper end portion 51a.
  • the upper large diameter portion 51d and the lower large diameter portion 51e are each formed in a cylindrical shape.
  • the upper large diameter portion 51d and the lower large diameter portion 51e are vertically separated from each other.
  • the upper large diameter portion 51d is located above the top wall 53a, and the lower large diameter portion 51e is located below the top wall 53a.
  • the connecting portion 51f is interposed between the upper large diameter portion 51d and the lower large diameter portion 51e, and connects the upper large diameter portion 51d and the lower large diameter portion 51e.
  • the connection portion 51f is formed in a cylindrical shape.
  • the diameter of the connecting portion 51f is smaller than the diameter of each of the upper large diameter portion 51d and the lower large diameter portion 51e.
  • a part of the connecting portion 51f between the upper large-diameter portion 51d and the lower large-diameter portion 51e is inserted into the tubular portion 54a of the guide member 54, and the connecting portion 51f can slide on the tubular portion 54a. Is.
  • the connecting portion 51f and thus the movable body 51 are vertically guided by the tubular portion 54a.
  • the movable body 51 When the movable body 51 is located at the first position P1 with respect to the base 50, the lower large-diameter portion 51e and the lower end portion of the tubular portion 54a of the guide member 54 are in vertical contact with each other, and the upper portion of the movable body 51 The movement to D2 is restricted by the tubular portion 54a. That is, the tubular portion 54a functions as a stopper.
  • the movable body 51 is supported by the base 50 so as to be movable from the first position P1 to the lower side D1.
  • the first position P1 is also referred to as an initial position.
  • the terminal 51g projects from the lower large diameter portion 51e to the outside in the radial direction of the columnar portion 51c.
  • the terminal 51g is formed in a strip plate shape.
  • the terminal 51g is electrically connected to the upper end portion 51a via the columnar portion 51c.
  • the terminal 51g can contact the lower surface of the terminal 55a of the conductor 55.
  • the terminal 51g of the movable body 51A can contact the one (left side) terminal 55a
  • the terminal 51g of the movable body 51B can contact the other (right side) terminal 55a.
  • the terminal 51g is in contact with the lower surface of the terminal 55a of the conductor 55 and is electrically connected to the conductor 55. In this way, the terminal 51g can be electrically connected to the conductor 55.
  • the movable body elastic body 52 is provided for each movable body 51.
  • the movable body elastic body 52 is a coil spring.
  • the movable body elastic body 52 is interposed between the upper large diameter portion 51d of the movable body 51 and the upper flange portion 54b of the guide member 54 of the base 50 in a compressed state.
  • the movable body elastic body 52 elastically pushes the movable body 51 upward D2.
  • the movable body 51 is elastically pushed upward by the elastic body 52 for movable body in a state where the lower large-diameter portion 51e and the lower flange portion 54c of the guide member 54 are in contact with each other in the vertical direction.
  • the first position P1 is held.
  • the terminal 51g is in contact with the lower surface of the terminal 55a of the conductor 55 and is electrically connected to the conductor 55.
  • the state where both terminals 51g of the pair of movable bodies 51 and the pair of terminals 55a of the conductor 55 are in contact with each other is a conduction state.
  • the conductive state is a state in which the pair of terminals 51g of the pair of movable bodies 51 are electrically connected.
  • the conductor 55 electrically connects the terminals 51g of the pair of movable bodies 51 by contacting the terminals 51g of the pair of movable bodies 51.
  • a state in which at least one terminal 51g of the pair of movable bodies 51 and the terminal 55a of the conductor 55 are separated is a non-conductive state.
  • the non-conductive state is a state in which the terminals 51g of the pair of movable bodies 51 are electrically cut off.
  • the state of the terminal 51g and the conductor 55 is the conductive state in which the terminal 51g and the conductor 55 are in contact with each other and the terminal 51g according to the position of the movable body 51. And the non-conductive state in which the conductor 55 is separated from each other.
  • the force (elastic force) of the movable body elastic body 52 that pushes the movable body 51 located at the first position P1 upward D2 is the first pin 32 of the normal first pin elastic body 34 of the probe pin 5. Is greater than the force that pushes D1 downward.
  • the first pin 32 moves to the upper D2 when a prescribed pressing force to the upper D2 is applied to the first pin 32.
  • the terminal 51g and the conductor 55 are in the conductive state when the movable body 51 is located at the first position P1.
  • the terminal 51g and the conductor 55 are in a non-conductive state.
  • FIG. 3 is an exemplary diagram of a state in which the probe pin inspection mechanism 1 of the first embodiment is pressed against the probe pin module 41, and is a diagram when both of the pair of probe pins 5 are normal.
  • FIG. 4 is an exemplary view showing a state in which the probe pin inspection mechanism 1 of the first embodiment is pressed against the probe pin module 41, and one of the pair of probe pins 5 (probe pin 5A) is abnormal. It is a figure.
  • the probe pin inspection mechanism 1 and the probe pin module 41 are separated from each other (FIG. 1), the probe pin inspection mechanism 1 and the probe pin module 41 are relatively brought close to each other, and the upper end portions 51a of the pair of movable bodies 51 are paired with each other.
  • the probe pins 5 are pressed against the respective lower ends of the first pins 32 and the second pins 33 (FIGS. 3 and 4). As an example, the probe pin inspection mechanism 1 is moved toward the probe pin module 41 by a specified distance.
  • the force (elastic force) that pushes the movable body 51 located at the first position P1 upward D2 is the force that pushes the first pin 32 of the normal first pin elastic body 34 of the probe pin 5 downward D1. Greater than. Therefore, when the pair of probe pins 5 is normal, as shown in FIG. 3, the movable body 51 resists the force of the first pin elastic body 34 while being positioned at the first position P1. Then, the first pin 32 is moved upward relative to the base 40. In this case, the terminal 51g contacts the lower surface of the terminal 55a of the conductor 55 and is electrically connected to the conductor 55, and the terminal 51g and the conductor 55 are in a conductive state. Therefore, when a voltage is applied between the pair of probe pins 5, a current flows between the pair of probe pins 5 via the probe pin inspection mechanism 1. Therefore, it can be understood that both the pair of probe pins 5 are normal by detecting the flowing current.
  • the movable body 51A operates as follows. In this case, as shown in FIG. 4, the movable body 51A is located below the first position P1 relative to the frame 53 by the elastic force of the first pin elastic body 34 of the probe pin 5A. It is pushed down to the 2 position P2.
  • the terminal 51g is separated from the lower surface of the terminal 55a of the conductor 55 and electrically cut off from the conductor 55, and the terminal 51g and the conductor 55 are brought out of conduction. Therefore, even if a voltage is applied between the pair of probe pins 5, no current flows between the pair of probe pins 5 via the probe pin inspection mechanism 1. Therefore, by detecting that no current flows, it can be seen that at least one of the pair of probe pins 5 is abnormal. This abnormality (defect) may occur, for example, when the first pin 32 is caught by the support 31 due to a positional shift between the support 31 and the first pin 32, rattling, or the like.
  • the probe pin inspection mechanism 1 includes the base 50, the pair of movable bodies 51, the pair of movable body elastic bodies 52, and the conductor 55.
  • Each of the pair of movable bodies 51 is supported by the base 50 so as to be movable in the downward direction D1 (first direction) from the first position P1 with respect to the base 50.
  • the pair of movable bodies 51 has an upper end portion 51a (end portion) that can contact the probe pin 5 and a terminal 51g electrically connected to the upper end portion 51a.
  • the pair of movable bodies 51 are arranged in a direction (left-right direction) intersecting the lower side D1.
  • the pair of movable body elastic bodies 52 is provided for each movable body 51, is interposed between the movable body 51 and the base 50, and elastically pushes the movable body 51 upward D2.
  • the conductor 55 is supported by the base 50, and contacts the terminals 51g of the pair of movable bodies 51 to electrically connect the terminals 51g.
  • Each upper end portion 51a of the pair of movable bodies 51 can be brought into contact with different probe pins 5.
  • the terminal 51g and the conductor 55 are in a conducting state in which the terminal 51g and the conductor 55 are in contact with each other and a non-conducting state in which the terminal 51g and the conductor 55 are separated from each other. Switch to.
  • the pair of probe pins 5 can be inspected at the same time (in the same process). Therefore, as compared with the case where the pair of probe pins 5 are separately inspected, whether the pair of probe pins 5 is normal or not can be determined. It is easy to shorten the time required for inspection.
  • the probe pin 5 is supported by the support body 31 and the support body 31 so as to be movable in the upper direction D2, and protrudes downward from the support body 31 in the lower direction D1 so as to be able to contact the upper end portion 51a.
  • a first pin elastic body 34 pin elastic body
  • the force of the movable body elastic body 52 to push the movable body 51 located at the first position P1 upward D2 is the force to push the first pin 32 of the normal first pin elastic body 34 of the probe pin 5 downward D1. Greater than. According to such a configuration, when the probe pin 5 is normal, the movable body 51 is located at the first position P1 even if it is pushed by the probe pin 5.
  • FIG. 5 is an exemplary front view of the charging/discharging inspection device 100 of the second embodiment.
  • the present embodiment is an example of a charge/discharge inspection device 100 provided with the probe pin inspection mechanism 1 of the first embodiment.
  • the charge/discharge inspection device 100 can perform charge/discharge inspection of the secondary battery 10 and inspection of the probe pin 5.
  • the charging/discharging inspection device 100 has a plurality of inspection modules 101 and a tray 102. Note that the numbers of the inspection modules 101 and the trays 102 are not limited to the example shown in FIG. 5, and may be other than the numbers shown in FIG.
  • the charge/discharge inspection device 100 is an example of an inspection device.
  • the inspection device may be an inspection device other than the charge/discharge inspection device 100.
  • the inspection module 101 has a housing 110, a moving mechanism 111, and a probe pin module 112.
  • the housing 110 is formed in a rectangular frame shape.
  • a moving mechanism 111 and a probe pin module 112 are housed inside the housing 110.
  • the moving mechanism 111 has a base plate 113, a stage 114, and a plurality of expansion/contraction mechanisms 115.
  • the base plate 113 is fixed to the inspection module 101.
  • the base plate 113 is also called a base.
  • the stage 114 is provided to be vertically spaced from the base plate 113. Specifically, the stage 114 is located below the base plate 113.
  • the stage 114 has a plate portion 114a and two support portions 114b.
  • the support 114b has a pair of rails 114c. Each of the pair of rails 114c extends along the depth direction (X direction) of the housing 110, and is arranged at intervals in the left-right direction.
  • Each supporting portion 114b can support one tray 102, respectively. That is, one stage 114 can support two trays 102. Further, the pair of rails 114c can guide the tray 102 along the depth direction (X direction) of the housing 110.
  • the plurality of expansion/contraction mechanisms 115 are interposed between the base plate 113 and the stage 114.
  • the plurality of expansion/contraction mechanisms 115 are expandable/contractable in the vertical direction.
  • the plurality of expansion/contraction mechanisms 115 expand/contract in the vertical direction by the driving force of a drive source (not shown), thereby moving the base plate 113 and the stage 114 relatively in the vertical direction.
  • the plurality of expansion/contraction mechanisms 115 move the stage 14 in the vertical direction.
  • the expansion/contraction mechanism 115 can be configured by, for example, a hydraulic cylinder, a pneumatic cylinder, a ball screw, or the like.
  • FIG. 6 is an exemplary front view of the probe pin module 112 of the second embodiment.
  • FIG. 7 is an exemplary bottom view of the probe pin module 112 of the second embodiment.
  • the probe pin module 112 of this embodiment is different from the probe pin module 41 of the first embodiment in the number of probe pins 5.
  • the probe pin module 112 of this embodiment has a plurality of pairs of two probe pins 5. These multiple sets of probe pins 5 are supported by the base 40.
  • FIG. 8 is an exemplary front view of the tray 102 of the second embodiment, showing a state in which the tray 102 houses the probe pin inspection mechanism 1.
  • FIG. 9 is an exemplary plan view of the tray 102 of the second embodiment, and is a view showing a state in which the tray 102 houses the probe pin inspection mechanism 1.
  • the tray 102 can accommodate (support) a plurality of probe pin inspection mechanisms 1.
  • the tray 102 has a plurality of recessed accommodating portions 102 a that support the frame 53 in the base 50 of the probe pin inspection mechanism 1.
  • the accommodating portion 102a can support the secondary battery 10 instead of the probe pin inspection mechanism 1. That is, the tray 102 is configured to be able to selectively support the secondary battery 10 and the probe pin inspection mechanism 1.
  • the secondary battery 10 and the probe pin inspection mechanism 1 are support targets (objects) that the tray 102 can support.
  • the tray 102 is transported to the support portion 114b (a pair of rails 114c) of the stage 114 by the transport mechanism 116 (see FIG. 10). That is, the transport mechanism 116 supplies the tray 102 to the moving mechanism 111.
  • the transport mechanism 116 has a rail that guides the tray 102, a transport roller that transports the tray 102 along the rail, and a drive source (not shown) such as a motor that drives the transport roller.
  • the tray 102 may be supplied to the moving mechanism 111 by a robot arm or the like instead of the transport mechanism 116.
  • the transport mechanism 116 and the robot arm are also referred to as a supply mechanism.
  • FIG. 10 is an exemplary block diagram of the charge/discharge inspection apparatus 100 according to the second embodiment.
  • the charging/discharging inspection device 100 includes a control device 120.
  • the control device 120 is a computer that controls the overall operation of the charge/discharge inspection device 100 and realizes various functions of the charge/discharge inspection device 100.
  • the control device 120 has a CPU (Central Processing Unit) 121, a ROM (Read Only Memory) 122, and a RAM (Random Access Memory) 123.
  • the CPU 121 executes various arithmetic processes and controls according to various programs stored in a storage unit such as the ROM 122 and the storage device 124.
  • the CPU 121 is an example of a hardware processor.
  • the ROM 122 stores various programs executed by the CPU 121 and various data.
  • the RAM 123 temporarily stores various programs executed by the CPU 121 and rewritably stores various data.
  • the storage device 124, the moving mechanism 111, the transport mechanism 116, the input device 125, the display device 126, the sensor 127, and the like are connected to the control device 120.
  • the input device 125 is composed of, for example, a keyboard or the like, and inputs information according to an input operation on the input device 125 to the control device 120.
  • the display device 126 is composed of, for example, a liquid crystal display or the like, and displays various information under the control of the control device 120.
  • the sensor 127 detects the tray 102 supplied to the support portion 114b of the stage 114 of the moving mechanism 111 and outputs the detection result to the control device 120.
  • the control device 120 can perform the well-known charge/discharge inspection of the secondary battery 10 and the inspection of the probe pin 5 (probe pin inspection process).
  • the charging/discharging inspection of the secondary battery 10 is performed, for example, with the pair of probe pins 5 of the probe pin module 112 being in contact with the positive electrode terminal 23 and the negative electrode terminal 24 of the secondary battery 10 housed in the tray 102. Is a process of inspecting whether or not the secondary battery 10 is normal based on the result of charging/discharging by performing the charging/discharging by the charging/discharging circuit.
  • FIG. 11 is a block diagram showing the functional configuration of the control device 120 of the second embodiment.
  • the control device 120 has a transport control unit 120a and a detection unit 120b as a functional configuration.
  • These functional configurations are realized as a result of the CPU 121 of the control device 120 executing a program stored in a storage unit such as the ROM 122 and the storage device 124.
  • a part or all of these functional configurations may be realized by dedicated hardware (circuit).
  • the transfer control unit 120a controls the transfer mechanism 116.
  • the transport control unit 120a is also referred to as a supply control unit.
  • the detection unit 120b detects an abnormality of the probe pin 5 based on the states of the terminal 51g of the movable body 51 and the conductor 55.
  • the detection unit 120b performs, for each probe pin module 41, a probe pin inspection process that is a detection process for detecting an abnormality in the probe pin 5.
  • the detection unit 120b performs a probe pin inspection process for detecting an abnormality of the probe pin 5 of the probe pin module 41 corresponding to the moving mechanism 111. To do.
  • FIG. 12 is an exemplary flowchart of the probe pin inspection process executed by the control device 120 of the second embodiment.
  • the tray 102 is not set on each stage 114 at the start of the probe pin inspection process.
  • the transfer control unit 120a supplies a plurality of probe pin inspection mechanisms 1 to the stage 114 (S1). Specifically, the transfer control unit 120a transfers the two trays 102, on which the plurality of probe pin inspection mechanisms 1 are set, to one stage 114.
  • the transport control unit 120a also supplies the probe pin inspection mechanism 1 to the stage 114 in which the specific information for identifying the stage 14 is not stored in the first area provided in the RAM 123.
  • the first area is an area for storing the inspected stage 114.
  • the specific information of the stage 114 is, for example, a number or the like.
  • the detection unit 120b controls the moving mechanism 111 so that the stage 114 to which the tray 102 is supplied moves up by a predetermined amount (S2).
  • the position where the stage 114 to which the tray 102 is supplied is raised by a predetermined amount is also referred to as an inspection position.
  • the terminal 51g is electrically disconnected from the conductor 55 without coming into contact with the lower surface of the terminal 55a of the conductor 55, and is electrically connected to the terminal 51g.
  • the body 55 is brought out of conduction.
  • the detection unit 120b determines whether or not there is an abnormality in the plurality of probe pins 5 supplied to the stage 114 (S3).
  • the stage 114 to which the plurality of probe pins 5 (tray 102) has been supplied is identified based on the detection result of the sensor 127.
  • the detection unit 120b applies a voltage between the pair of probe pin inspection mechanisms 1 by the charge/discharge circuit while the stage 114 is located at the inspection position. In this case, when the probe pin inspection mechanism 1 is normal and the terminal 51g and the conductor 55 are in a conductive state, a current flows between the pair of probe pins 5 via the probe pin inspection mechanism 1.
  • the detection unit 120b detects, for example, a current flowing between the pair of probe pins 5 with an ammeter.
  • the detection unit 120b determines that the pair of probe pins 5 is normal when a current flows between the pair of probe pins 5. On the other hand, the detection unit 120b determines that at least one of the pair of probe pins 5 is abnormal when the current does not flow between the pair of probe pins 5 for the specified time. The detection unit 120b performs the above process for each pair of probe pins 5, that is, for each probe pin inspection mechanism 1. Then, the detection unit 120b stores the specific information of the stage 114 on which the probe pin inspection mechanism 1 is inspected in the first area of the RAM 123. The process of S3 can be referred to as a contact check process.
  • the detection unit 120b determines that at least one of the probe pins 5 supplied to the stage 114 is abnormal (S4: Yes)
  • the process proceeds to S6.
  • the detection unit 120b outputs abnormality information indicating that at least one of the probe pins 5 supplied to the stage 114 has an abnormality.
  • the detection unit 120b causes the display device 126 to display the abnormality information.
  • the abnormality information includes the specific information of the stage 114.
  • the detection unit 120b determines whether the inspection of the probe pin 5 has been completed for all the stages 114 based on the identification information of the stage 114 stored in the first area of the RAM 123.
  • the process returns to S1.
  • the detection unit 120b determines that the inspection of the probe pins 5 has been completed for all the stages 114 (S5: Yes)
  • the processing ends.
  • the charging/discharging inspection device 100 includes the probe pin inspection mechanism 1 and the detection unit 120b that detects an abnormality of the probe pin 5 based on the states of the terminal 51g and the conductor 55. I have it.
  • the pair of probe pins 5 can be inspected at the same time (in the same step), and therefore, as compared with the case of separately inspecting the pair of probe pins 5, It is easy to shorten the time required to inspect whether the pair of probe pins 5 are normal.
  • the charging/discharging inspection device 100 includes a tray 102 (supporting tool) that includes a probe pin module having a plurality of probe pins, a rechargeable battery 10 and a probe pin inspection mechanism 1 that can be supported. ), the probe pin module 112 and the tray 102 are relatively moved along the lower direction D1, and the probe pin 5 and the support target supported by the tray 102 are brought into contact with each other. With such a configuration, the inspection of the secondary battery 10 and the inspection of the probe pin 5 can be performed by the same charge/discharge inspection device 100.
  • the tray 102 can selectively support the plurality of secondary batteries 10 and the plurality of probe pin inspection mechanisms 1. With such a configuration, the tray 102 can be shared between the inspection of the secondary battery 10 and the inspection of the probe pin inspection mechanism 1.
  • the charge/discharge inspection apparatus 100 includes a plurality of probe pin modules 41, a plurality of trays 102 provided for each probe pin module 41, and a plurality of moving mechanisms provided for each probe pin module 41. 111 is provided.
  • the detection unit 120b performs detection processing for detecting an abnormality in the probe pin 5 for each probe pin module 41. With such a configuration, it is possible to detect an abnormality in the probe pin 5 for each probe pin module 41.
  • the detecting unit 120b detects an abnormality in the probe pin 5 of the probe pin module 41 corresponding to the moving mechanism 111. Perform the detection process to detect. With this configuration, the probe pin modules 41 can be sequentially inspected.

Abstract

実施形態のプローブピン検査機構は、ベースと、一対の可動体と、可動体用弾性体と、導電体と、を備えている。一対の可動体は、それぞれが、ベースを基準とした第1位置から第1方向に移動可能にベースに支持され、端部と端部と電気的に接続された端子とを有している。一対の可動体用弾性体は、可動体を第2方向に弾性的に押す。導電体は、ベースに支持され、一対の可動体の各端子と接触することにより各端子を電気的に接続する。端子と導電体との状態が、可動体の位置に応じて、端子と導電体とが接触する導通状態と端子と導電体とが離間する非導通状態とに切り替わる。

Description

プローブピン検査機構および検査装置
 本発明の実施形態は、プローブピン検査機構および検査装置に関する。
 従来、例えば、二次電池の一対の電極端子に一対のブローブピンを押し付けた状態で二次電池を検査する充放電検査装置が知られている。
特許第4209707号公報
 上記のような一対のプローブピンが正常か否かの検査に要する時間を短縮しやすい新規な構成が得られれば、有益である。
 実施形態のプローブピン検査機構は、ベースと、一対の可動体と、可動体用弾性体と、導電体と、を備えている。前記一対の可動体は、それぞれが、前記ベースを基準とした第1位置から第1方向に移動可能に前記ベースに支持され、プローブピンと接触可能な前記第1方向の反対の第2方向の端部と前記端部と電気的に接続された端子とを有し、前記第1方向と交差する方向に並べられている。前記一対の可動体用弾性体は、前記可動体ごとに設けられ、前記可動体と前記ベースとの間に介在し、前記可動体を前記第2方向に弾性的に押す。前記導電体は、前記ベースに支持され、一対の前記可動体の各前記端子と接触することにより各前記端子を電気的に接続する。一対の前記可動体の各前記端部は、別々の前記プローブピンと接触可能である。前記端子と前記導電体との状態が、前記可動体の位置に応じて、当該端子と当該導電体とが接触する導通状態と当該端子と当該導電体とが離間する非導通状態とに切り替わる。
図1は、第1実施形態のプローブピン検査機構およびプローブピンモジュールの例示的な正面図である。 図2は、第1実施形態の二次電池の例示的な斜視図である。 図3は、第1実施形態のプローブピン検査機構がプローブピンモジュールに押し付けられた状態の例示的な図であって、一対のプローブピンの両方が正常の場合の図である。 図4は、第1実施形態のプローブピン検査機構がプローブピンモジュールに押し付けられた状態の例示的な図であって、一対のプローブピンの一方が異常の場合の図である。 図5は、第2実施形態の充放電検査装置の例示的な正面図である。 図6は、第2実施形態のプローブピンモジュールの例示的な正面図である。 図7は、第2実施形態のプローブピンモジュールの例示的な底面図である。 図8は、第2実施形態のトレイの例示的な正面図であって、トレイがプローブピン検査機構を収容した状態の図である。 図9は、第2実施形態のトレイの例示的な平面図であって、トレイがプローブピン検査機構を収容した状態の図である。 図10は、第2実施形態の充放電検査装置の例示的なブロック図である。 図11は、第2実施形態の制御装置の機能的構成を示したブロック図である。 図12は、第2実施形態の制御装置が実行するプローブピン検査処理の例示的なフローチャートである。
 以下、図面を参照して、実施形態について説明する。なお、以下の例示的な複数の実施形態には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付されるとともに、重複する説明が省略される。
 また、本明細書において、序数は、部材(部品)や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。また、本実施形態では、便宜上、互いに直交する三方向が定義されている。X方向は、プローブピン検査機構1の奥行方向(前後方向)に沿い、Y方向は、プローブピン検査機構1の左右方向(幅方向)に沿い、Z方向は、プローブピン検査機構1の上下方向(高さ方向)に沿う。下方D1は、第1方向の一例であり、上方D2は、第2方向の一例である。
<第1実施形態>
 図1は、第1実施形態のプローブピン検査機構およびプローブピンモジュールの例示的な正面図である。図1に示されるプローブピン検査機構1は、一対のプローブピン5の検査に用いられる。一対のプローブピン5は、例えば、二次電池10(図2参照)の充放電検査に用いられる。以下、二次電池、プローブピン、ポンプローブピン検査機構をこの順で詳しく説明する。
 図2は、第1実施形態の二次電池10の例示的な斜視図である。図2に示されるように、二次電池10は、筐体20と、正極端子23と、負極端子24と、を有している。二次電池10は、例えば、リチウムイオン二次電池である。
 筐体20は、扁平な直方体状に構成されている。筐体20の内部には、発電部としての電極体が収容されている。
 正極端子23および負極端子24は、筐体20の天壁22に支持された状態で筐体20の外部に露出している。正極端子23および負極端子24は、互いに間隔を空けて天壁22(筐体20)の左右方向に並べられている。正極端子23および負極端子24は、それぞれ、電極体の正極および負極と電気的に接続されている。正極端子23および負極端子24は、それぞれ、電極端子の一例である。
 次に、プローブピン5について詳細に説明する。図1に示されるように、一対のプローブピン5は、上下方向(上方D2および下方D1)と交差する左右方向に並べられた状態で、ベース40に支持されている。以後、複数のプローブピン5を区別する場合には、一対のプローブピン5をプローブピン5A、5Bとも称する。一対のプローブピン5とベース40とは、プローブピンモジュール41を構成している。プローブピンモジュール41は、ブローブピンユニットとも称される。
 プローブピン5は、支持体31と、第1ピン32と、第2ピン33と、第1ピン用弾性体34と、第2ピン用弾性体(不図示)と、を有している。第1ピン32および第2ピン33は、コンタクトピンやプランジャーとも称される。第1ピン32は、ピンの一例であり、第1ピン用弾性体34は、ピン用弾性体の一例である。
 支持体31は、ベース40を上下方向に貫通した状態でベース40に固定されている。支持体31は、段付き円筒状に形成されている。
 第1ピン32は、円筒状に形成されている。第1ピン32の一部は、支持体31内に入れられており、第1ピン32は、支持体31に摺動可能である。第1ピン32は、支持体31に上下方向に案内される。また、第1ピン32は、支持体31から下方D1に所定量突出した初期位置で、ストッパと当接し、当該ストッパによって下方への移動が制限される。また、第1ピン32は、第1ピン用弾性体34によって下方D1に押されている。第1ピン32には、電流が流される。
 第2ピン33の一部は、第1ピン32内に入れられており、第2ピン33は、第1ピン32に摺動可能である。第2ピン33は、第1ピン32に上下方向に案内される。また、第2ピン33は、第1ピン32から下方D1に所定量突出した初期位置で、ストッパと当接し、当該ストッパによって下方への移動が制限される。また、第2ピン33は、第2ピン用弾性体によって下方D1に押されている。第2ピン33には、電圧計が接続される。すなわち、第2ピン33は、電圧検出用である。
 次に、プローブピン検査機構1について詳細に説明する。図1に示されるように、プローブピン検査機構1は、ベース50と、一対の可動体51と、一対の可動体用弾性体52と、を有している。
 ベース50は、フレーム53と、案内部材54と、を有している。フレーム53は、略矩形枠状に形成されており、天壁53a、底壁53b、および一対の側壁53c,53dを有している。フレーム53(ベース50)の左右方向の幅および奥行き方向の幅(長さ)は、二次電池10の筐体20の左右方向の幅および奥行き方向の幅(長さ)と同じである。ベース50は、合成樹脂材料等の絶縁材料によって構成されている。フレーム53は、ボディとも称される。
 天壁53aの下面には、突出部53eが設けられている。突出部53eは、天壁53aから下方D1に突出している。また、突出部53eの先端部には、導電体55が固定されている。すなわち、導電体55は、フレーム53に支持されている。導電体55は、平板状に形成されている。導電体55は、当該導電体55の左右方向の両端部に一対の端子55aを有している。導電体55は、金属材料によって構成されて、導電性を有している。
 案内部材54は、筒部54aと、上側フランジ部54bと、下側フランジ部54cと、を有している。筒部54aは、例えば円筒状である。筒部54aは、上下方向に延びて、フレーム53の天壁53aを上下方向に貫通している。上側フランジ部54bおよび下側フランジ部54cは、それぞれ、筒部54aの外周部から筒部54aの径方向外側に張り出している。上側フランジ部54bおよび下側フランジ部54cは、例えば円環状である。上側フランジ部54bは、天壁53aの上面に重ねられ、下側フランジ部54cは、天壁53aの下面に重ねられている。案内部材54は、上側フランジ部54bおよび下側フランジ部54cとによる天壁53aの挟み込みよって、天壁53aに固定されている。案内部材54は、複数の部材の組み合わせによって構成されうる。
 一対の可動体51は、上下方向(上方D2および下方D1)と交差する左右方向に並べられた状態で、ベース50の天壁53aに配置されている。以後、一対の可動体51を区別して説明する場合には、一対の可動体51を可動体51Aおよび可動体51Bとも称する。
 可動体51は、上端部51aと、下端部51bと、を有している。一対の可動体51の各上端部51aは、別々のプローブピン5と接触可能である。具体的には、可動体51Aの上端部51aは、プローブピン5Aと接触可能であり、可動体51Bの上端部51aは、プローブピン5Bと接触可能である。
 可動体51は、上端部51aおよび下端部51bを含んだ段付き形状の円柱部51cと、円柱部51cから張り出した端子51gと、を有している。可動体51は、金属材料によって構成され、導電性を有している。すなわち、上端部51aは、導電性を有している。
 円柱部51cは、上側大径部51dと、下側大径部51eと、接続部51fと、を有している。上側大径部51dは、上端部51aを含む。上側大径部51dおよび下側大径部51eは、それぞれ、円柱状に形成されている。上側大径部51dと下側大径部51eは、上下方向に離間している。上側大径部51dは、天壁53aの上方に位置し、下側大径部51eは、天壁53aの下方に位置している。接続部51fは、上側大径部51dと下側大径部51eとの間に介在し、上側大径部51dと下側大径部51eとを接続している。接続部51fは、円柱状に形成されている。接続部51fの径は、上側大径部51dおよび下側大径部51eのそれぞれの径よりも小さい。接続部51fにおける上側大径部51dと下側大径部51eとの間の一部は、案内部材54の筒部54a内に入れられており、接続部51fは、筒部54aに摺動可能である。接続部51fひいては可動体51は、筒部54aに上下方向に案内される。
 可動体51がベース50を基準とした第1位置P1に位置した状態では、下側大径部51eと案内部材54の筒部54aの下端部とが上下方向に接触しおり、可動体51の上方D2への移動が筒部54aによって制限される。すなわち、筒部54aは、ストッパとして機能する。可動体51は、第1位置P1から下方D1に移動可能にベース50に支持されている。第1位置P1は、初期位置とも称される。
 端子51gは、下側大径部51eから円柱部51cの径方向外側に張り出している。端子51gは、帯板状に形成されている。端子51gは、円柱部51cを介して上端部51aと電気的に接続されている。端子51gは、導電体55の端子55aの下面と接触可能である。具体的には、可動体51Aの端子51gは、一方(左側)の端子55aと接触可能であり、可動体51Bの端子51gは、他方(右側)の端子55aと接触可能である。可動体51が第1位置P1に位置した状態では、端子51gは、導電体55の端子55aの下面と接触しており、導電体55と電気的に接続されている。このように、端子51gは導電体55と電気的に接続可能である。
 可動体用弾性体52は、可動体51ごとに設けられている。可動体用弾性体52は、コイルバネである。可動体用弾性体52は、可動体51の上側大径部51dとベース50の案内部材54における上側フランジ部54bとの間に圧縮状態で介在している。可動体用弾性体52は、可動体51を上方D2に弾性的に押す。
 可動体51は、下側大径部51eと案内部材54の下側フランジ部54cとが上下方向で接触した状態で、可動体用弾性体52によって上方D2に弾性的に押されることにより、第1位置P1に保持される。上述のように、可動体51が第1位置P1に位置した状態では、端子51gは、導電体55の端子55aの下面と接触しており、導電体55と電気的に接続されている。一対の可動体51の両方の端子51gと導電体55の一対の端子55aとが接触した状態が、導通状態である。すなわち、導通状態は、一対の可動体51の一対の端子51gが電気的に接続された状態である。このように、導電体55は、一対の可動体51の各端子51gと接触することにより各端子51gを電気的に接続する。
 導通状態から、上端部51aが可動体用弾性体52の弾性力に抗して下方D1に押されることにより、可動体51が、第1位置P1よりも下方D1の位置に移動し、端子51gが導電体55の端子55aから離間する。一対の可動体51の少なくとも一方の端子51gと導電体55の端子55aとが離間した状態が、非導通状態である。非導通状態は、一対の可動体51の端子51gが電気的に遮断された状態である。
 以上のように、プローブピン検査機構1においては、端子51gと導電体55との状態が、可動体51の位置に応じて、端子51gと導電体55とが接触する導通状態と、当該端子51gと当該導電体55とが離間する非導通状態と、に切り替わる。
 また、可動体用弾性体52の、第1位置P1に位置する可動体51を上方D2に押す力(弾性力)は、正常なプローブピン5の第1ピン用弾性体34における第1ピン32を下方D1に押す力よりも大きい。ここで、正常なプローブピン5は、上方D2への規定の押圧力を第1ピン32に加えた場合に、第1ピン32が上方D2へ移動する。
 上記の構成のプローブピン検査機構1では、可動体51が第1位置P1に位置した場合に、端子51gと導電体55とは、前記導通状態である。一方、第1位置P1よりも下方D1の第2位置P2(図4参照)に可動体51が位置した場合に、端子51gと導電体55とは、非導通状態である。
 次に、プローブピン検査機構1を用いたプローブピン検査機構1の検査方法について説明する。図3は、第1実施形態のプローブピン検査機構1がプローブピンモジュール41に押し付けられた状態の例示的な図であって、一対のプローブピン5の両方が正常の場合の図である。図4は、第1実施形態のプローブピン検査機構1がプローブピンモジュール41に押し付けられた状態の例示的な図であって、一対のプローブピン5の一方(プローブピン5A)が異常の場合の図である。
 プローブピン検査機構1とプローブピンモジュール41とが離間した状態(図1)からプローブピン検査機構1とプローブピンモジュール41とを相対的に近接させて、一対の可動体51の上端部51aを一対のプローブピン5の第1ピン32および第2ピン33のそれぞれの下端部に押し付ける(図3,4)。一例として、プローブピン検査機構1をプローブピンモジュール41に向けて規定の距離だけ移動させる。
 上記のとおり、第1位置P1に位置する可動体51を上方D2に押す力(弾性力)が、正常なプローブピン5の第1ピン用弾性体34における第1ピン32を下方D1に押す力よりも大きい。よって、一対のプローブピン5が正常の場合には、図3に示されるように、可動体51は、第1位置P1の位置に位置した状態で、第1ピン用弾性体34の力に抗して、第1ピン32をベース40に対して相対的に上方に移動させる。この場合には、端子51gが、導電体55の端子55aの下面と接触して導電体55と電気的に接続され、端子51gと導電体55とが導通状態となっている。よって、一対のプローブピン5間に電圧を印加すると、一対のプローブピン5間にプローブピン検査機構1を介して電流が流れる。よって、流れた電流を検出することにより、一対のプローブピン5の両方が正常であることが分かる。
 一方、一対のプローブピン5のうち一方(例えば、プローブピン5A)が異常であって、当該プローブピン5Aにおいて、第2ピン33が可動体用弾性体52の弾性力によって上方に押されてもベース40に対して相対的に上方に移動しない、すなわち第2ピン33がベース40に対して相対的に移動しない場合には、可動体51Aは下記のように動作する。この場合、図4に示されるように、可動体51Aは、プローブピン5Aの第1ピン用弾性体34の弾性力によって、フレーム53を基準としたとの第1位置P1よりも下方D1の第2位置P2に押し下げられる。これにより、端子51gが、導電体55の端子55aの下面から離間して導電体55と電気的に遮断され、端子51gと導電体55とが非導通状態となる。よって、一対のプローブピン5の間に電圧を印加しても、一対のプローブピン5間にプローブピン検査機構1を介して電流が流れない。よって、電流が流れないことを検出することにより、一対のプローブピン5の少なくとも一方が異常であることが分かる。この異常(欠陥)は、例えば、支持体31と第1ピン32との位置ずれやガタツキ等により支持体31に第1ピン32が引っ掛かること等により発生しうる。
 以上のように、本実施形態では、プローブピン検査機構1は、ベース50と、一対の可動体51と、一対の可動体用弾性体52と、導電体55と、を備えている。一対の可動体51は、それぞれが、ベース50を基準とした第1位置P1から下方D1(第1方向)に移動可能にベース50に支持されている。一対の可動体51は、プローブピン5と接触可能な上端部51a(端部)と上端部51aと電気的に接続された端子51gとを有している。一対の可動体51は、下方D1と交差する方向(左右方向)に並べられている。一対の可動体用弾性体52は、可動体51ごとに設けられ、可動体51とベース50との間に介在し、可動体51を上方D2に弾性的に押す。導電体55は、ベース50に支持され、一対の可動体51の各端子51gと接触することにより各端子51gを電気的に接続する。一対の可動体51の各上端部51aは、別々のプローブピン5と接触可能である。端子51gと導電体55との状態が、可動体51の位置に応じて、当該端子51gと当該導電体55とが接触する導通状態と当該端子51gと当該導電体55とが離間する非導通状態とに切り替わる。このような構成によれば、一対のプローブピン5を同時に(同一工程で)検査することができるので、一対のプローブピン5を別々に検査する場合に比べて、一対のプローブピン5が正常か否かの検査に要する時間を短縮しやすい。
 また、本実施形態では、プローブピン5は、支持体31と、上方D2に移動可能に支持体31に支持されるとともに支持体31から下方D1に突出し上端部51aと接触可能な第1ピン32(ピン)と、第1ピン32を下方D1に押す第1ピン用弾性体34(ピン用弾性体)と、を有している。可動体用弾性体52の、第1位置P1に位置する可動体51を上方D2に押す力は、正常なプローブピン5の第1ピン用弾性体34における第1ピン32を下方D1に押す力よりも大きい。このような構成によれば、プローブピン5が正常の場合には、可動体51は、プローブピン5に押されても第1位置P1に位置する。
<第2実施形態>
 図5は、第2実施形態の充放電検査装置100の例示的な正面図である。本実施形態は、第1実施形態のプローブピン検査機構1が設けられた充放電検査装置100の例である。
 充放電検査装置100は、二次電池10の充放電検査およびプローブピン5の検査を行なうことができる。充放電検査装置100は、複数の検査モジュール101と、トレイ102と、を有している。なお、検査モジュール101およびトレイ102の数は、図5に示される例に限定されず、図5に示される数以外であってもよい。充放電検査装置100は、検査装置の一例である。また、検査装置は、充放電検査装置100以外の検査装置であってもよい。
 複数の検査モジュール101は、互いに上下方向に重ねられている。検査モジュール101は、筐体110と、移動機構111と、プローブピンモジュール112と、を有している。
 筐体110は、矩形枠状に形成されている。筐体110の内部に移動機構111およびプローブピンモジュール112が収容されている。
 移動機構111は、ベース板113と、ステージ114と、複数の伸縮機構115と、を有している。ベース板113は、検査モジュール101に固定されている。ベース板113は、ベースとも称される。
 ステージ114は、ベース板113と上下方向に間隔を開けて設けられている。具体的には、ステージ114は、ベース板113の下方に位置している。ステージ114は、板部114aと、二つの支持部114bと、を有している。支持部114bは、一対のレール114cを有している。一対のレール114cは、それぞれ、筐体110の奥行き方向(X方向)に沿って延びるとともに、互いに左右方向に間隔を空けて並べられている。各支持部114bは、それぞれ、一つのトレイ102を支持可能である。すなわち、一つのステージ114は、二つのトレイ102を支持可能である。また、一対のレール114cは、トレイ102を筐体110の奥行き方向(X方向)に沿って案内可能である。
 複数の伸縮機構115は、ベース板113とステージ114との間に介在している。複数の伸縮機構115は、上下方向に伸縮可能である。複数の伸縮機構115は、駆動源(不図示)の駆動力によって上下方向に伸縮することにより、ベース板113とステージ114とを上下方向に相対的に移動させる。具体的には、複数の伸縮機構115は、ステージ14を上下方向に移動させる。伸縮機構115は、例えば、油圧シリンダや空気圧シリンダ、ボールネジ等によって構成されうる。
 図6は、第2実施形態のプローブピンモジュール112の例示的な正面図である。図7は、第2実施形態のプローブピンモジュール112の例示的な底面図である。図6,7に示されるように、本実施形態のプローブピンモジュール112は、第1実施形態のプローブピンモジュール41に対してプローブピン5の数が異なる。本実施形態のプローブピンモジュール112は、二つ一組のプローブピン5を複数組有している。これらの複数組のプローブピン5は、ベース40に支持されている。
 図8は、第2実施形態のトレイ102の例示的な正面図であって、トレイ102がプローブピン検査機構1を収容した状態の図である。図9は、第2実施形態のトレイ102の例示的な平面図であって、トレイ102がプローブピン検査機構1を収容した状態の図である。図8,9に示されるように、トレイ102は、複数のプローブピン検査機構1を収容可能(支持可能)である。具体的には、図9に示されるように、トレイ102は、プローブピン検査機構1のベース50におけるフレーム53を支持する複数の凹状の収容部102aを有している。収容部102aは、プローブピン検査機構1に替えて二次電池10も支持可能である。すなわち、トレイ102は、二次電池10とプローブピン検査機構1とを選択的に支持可能に構成されている。二次電池10とプローブピン検査機構1とは、トレイ102が支持可能な支持対象(物体)である。
 トレイ102は、搬送機構116(図10参照)によってステージ114の支持部114b(一対のレール114c)に搬送される。すなわち、搬送機構116は、トレイ102を移動機構111に供給する。搬送機構116は、トレイ102を案内するレール、トレイ102をレールに沿って搬送する搬送ローラ、および搬送ローラを駆動するモータ等の駆動源(いずれも不図示)を有している。なお、搬送機構116に替えてロボットアーム等によって、トレイ102を移動機構111に供給してもよい。搬送機構116やロボットアームは、供給機構とも称される。
 図10は、第2実施形態の充放電検査装置100の例示的なブロックである。図10に示されるように、充放電検査装置100は、制御装置120を備えている。制御装置120は、充放電検査装置100の全体の動作を制御し、充放電検査装置100の各種の機能を実現するコンピュータである。制御装置120は、CPU(Central Processing Unit)121、ROM(Read Only Memory)122、およびRAM(Random Access Memory)123を有している。CPU121は、ROM122や記憶装置124等の記憶部に記憶された各種プログラムに従って各種の演算処理および制御を実行する。CPU121は、ハードウェアプロセッサの一例である。ROM122は、CPU121が実行する各種プログラムや各種データを記憶する。RAM123は、CPU121が実行する各種プログラムを一時的に記憶したり各種データを書き換え可能に記憶する。
 制御装置120には、記憶装置124、移動機構111、搬送機構116、入力装置125、表示装置126、およびセンサ127等が接続されている。
 入力装置125は、例えばキーボード等によって構成され、当該入力装置125に対する入力操作に応じた情報を制御装置120に入力する。表示装置126は、例えば液晶ディスプレイ等によって構成され、制御装置120の制御によって各種の情報を表示する。
 センサ127は、移動機構111のステージ114における支持部114bに供給されたトレイ102を検出して、検出結果を制御装置120に出力する。
 制御装置120は、二次電池10の周知の充放電検査と、プローブピン5の検査(プローブピン検査処理)と、を行なうことができる。二次電池10の充放電検査は、例えば、プローブピンモジュール112の一対のプローブピン5をトレイ102に収容した二次電池10の正極端子23および負極端子24に接触させた状態で二次電池10の充放電を充放電回路によって行って、充放電の結果に基づいて二次電池10が正常か否かを検査する処理である。
 次に、制御装置120が行なうプローブピン検査処理について説明する。図11は、第2実施形態の制御装置120の機能的構成を示したブロック図である。図11に示されるように、制御装置120は、機能的構成として、搬送制御部120aおよび検出部120bを有している。これらの機能的構成は、制御装置120のCPU121がROM122や記憶装置124等の記憶部に記憶されたプログラムを実行した結果として実現される。なお、実施形態では、これらの機能的構成の一部または全部が専用のハードウェア(回路)によって実現されてもよい。
 搬送制御部120aは、搬送機構116を制御する。搬送制御部120aは、供給制御部とも称される。
 検出部120bは、可動体51の端子51gと導電体55との状態に基づいてプローブピン5の異常を検出する。検出部120bは、プローブピンモジュール41ごとに、プローブピン5の異常を検出する検出処理であるプローブピン検査処理を行なう。検出部120bは、プローブピン検査機構1を支持したトレイ102が移動機構111に供給されると、当該移動機構111に対応するプローブピンモジュール41のプローブピン5の異常を検出するプローブピン検査処理を行なう。
 次に、図12を参照して、制御装置120が実行するプローブピン検査処理について説明する。図12は、第2実施形態の制御装置120が実行するプローブピン検査処理の例示的なフローチャートである。本例は、プローブピン検査処理の開始時点で、各ステージ114にトレイ102がセットされていない例である。
 図12に示されるように、搬送制御部120aは、ステージ114に複数のプローブピン検査機構1を供給する(S1)。具体的には、搬送制御部120aは、複数のプローブピン検査機構1がセットされた二つのトレイ102を一つのステージ114に搬送する。また、搬送制御部120aは、RAM123に設けられた第1領域に、ステージ14を特定する特定情報が記憶されていないステージ114にプローブピン検査機構1を供給する。第1領域は、検査済みのステージ114を記憶するための領域である。ここで、ステージ114の特定情報は、例えば番号等である。
 次に、検出部120bが、トレイ102が供給されたステージ114が所定量だけ上昇するように、移動機構111を制御する(S2)。トレイ102が供給されたステージ114が所定量だけ上昇した位置は、検査位置とも称される。プローブピン検査機構1が正常の場合には、上述のように、端子51gが、導電体55の端子55aの下面と接触して導電体55と電気的に接続され、端子51gと導電体55とが導通状態となる。一方、プローブピン検査機構1が異常の場合には、上述のように、端子51gが、導電体55の端子55aの下面と接触せずに導電体55と電気的に遮断され、端子51gと導電体55とが非導通状態となる。
 次に、検出部120bが、ステージ114に供給された複数のプローブピン5の異常の有無を判定する(S3)。複数のプローブピン5(トレイ102)が供給されたステージ114は、センサ127の検出結果に基づいて特定される。検出部120bは、ステージ114が検査位置に位置した状態で、充放電回路によって、一対のプローブピン検査機構1間に電圧を印加する。この場合、プローブピン検査機構1が正常で端子51gと導電体55とが導通状態の場合には、一対のプローブピン5間にプローブピン検査機構1を介して電流が流れる。検出部120bは、例えば、一対のプローブピン5間に流れる電流を電流計によって検出する。検出部120bは、一対のプローブピン5間に電流が流れた場合には、一対のプローブピン5は正常であると判定する。一方、検出部120bは、一対のプローブピン5間に、規定の時間の間、電流が流れなかった場合には、一対のプローブピン5の少なくとも一方が異常であると判定する。検出部120bは、上記処理を一対のプローブピン5ごと、すなわち一つのプローブピン検査機構1ごとに行なう。そして、検出部120bは、プローブピン検査機構1の検査を行なったステージ114の特定情報をRAM123の第1領域に記憶させる。S3の処理は、コンタクトチェック処理と称されうる。
 検出部120bは、ステージ114に供給された複数のプローブピン5の全てに異常が無い、すなわち、ステージ114に供給された複数のプローブピン5の全てが正常であると判定した場合には(S4:No)、S5に進む。
 一方、検出部120bは、ステージ114に供給された複数のプローブピン5のうち少なくとも一つに異常があると判定した場合には(S4:Yes)、S6に進む。S6では、検出部120bは、ステージ114に供給された複数のプローブピン5のうち少なくとも一つに異常がある旨の異常情報を出力する。具体的には、検出部120bは、異常情報を表示装置126に表示させる。異常情報は、ステージ114の特定情報を含む。
 S5では、検出部120bは、全てのステージ114に対してプローブピン5の検査が完了したか否かをRAM123の第1領域に記憶されたステージ114の特定情報に基づいて判定する。検出部120bは、全てのステージ114に対するプローブピン5の検査が完了していない、すなわち、未だ検査していないステージ114が有ると判定した場合には(S5:No)には、S1に戻る。一方、検出部120bは、全てのステージ114に対してプローブピン5の検査が完了したと判定した場合には(S5:Yes)、処理を終了する。
 以上のように、本実施形態では、充放電検査装置100は、プローブピン検査機構1と、端子51gと導電体55との状態に基づいてプローブピン5の異常を検出する検出部120bと、を備えている。このような構成によれば、第1実施形態と同様に、一対のプローブピン5を同時に(同一工程で)検査することができるので、一対のプローブピン5を別々に検査する場合に比べて、一対のプローブピン5が正常か否かの検査に要する時間を短縮しやすい。
 また、本実施形態では、充放電検査装置100は、複数のプローブピンを有したプローブピンモジュールと、支持可能な支持対象に二次電池10とプローブピン検査機構1とを含むトレイ102(支持具)と、プローブピンモジュール112とトレイ102とを下方D1に沿って相対的に移動させ、プローブピン5とトレイ102に支持された支持対象とを接触させる。このような構成によれば、二次電池10の検査とプローブピン5との検査を同一の充放電検査装置100によって行なうことができる。
 また、本実施形態では、トレイ102は、複数の二次電池10と複数のプローブピン検査機構1とを選択的に支持可能である。このような構成によれば、二次電池10の検査とプローブピン検査機構1の検査とにおいて、トレイ102を共用することができる。
 また、本実施形態では、充放電検査装置100は、複数のプローブピンモジュール41と、プローブピンモジュール41ごとに設けられた複数のトレイ102と、プローブピンモジュール41ごとに設けられた複数の移動機構111と、を備えている。検出部120bは、プローブピンモジュール41ごとに、プローブピン5の異常を検出する検出処理を行なう。このような構成によれば、プローブピンモジュール41ごとに、プローブピン5の異常を検出することができる。
 また、本実施形態では、検出部120bは、プローブピン検査機構1を支持したトレイ102が移動機構111に供給されると、当該移動機構111に対応するプローブピンモジュール41のプローブピン5の異常を検出する検出処理を行なう。このような構成によれば、プローブピンモジュール41を順次検査することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1.  ベースと、
     それぞれが、前記ベースを基準とした第1位置から第1方向に移動可能に前記ベースに支持され、プローブピンと接触可能な前記第1方向の反対の第2方向の端部と前記端部と電気的に接続された端子とを有し、前記第1方向と交差する方向に並べられた一対の可動体と、
     前記可動体ごとに設けられ、前記可動体と前記ベースとの間に介在し、前記可動体を前記第2方向に弾性的に押す一対の可動体用弾性体と、
     前記ベースに支持され、一対の前記可動体の各前記端子と接触することにより各前記端子を電気的に接続する導電体と、
     を備え、
     一対の前記可動体の各前記端部は、別々の前記プローブピンと接触可能であり、
     前記端子と前記導電体との状態が、前記可動体の位置に応じて、当該端子と当該導電体とが接触する導通状態と当該端子と当該導電体とが離間する非導通状態とに切り替わる、プローブピン検査機構。
  2.  前記プローブピンは、支持体と、前記第2方向に移動可能に前記支持体に支持されるとともに前記支持体から前記第1方向に突出し前記端部と接触可能なピンと、前記ピンを前記第1方向に押すピン用弾性体と、を有し、
     前記可動体用弾性体の、前記第1位置に位置する前記可動体を前記第2方向に押す力は、正常な前記プローブピンの前記ピン用弾性体における前記ピンを前記第1方向に押す力よりも大きい、請求項1に記載のプローブピン検査機構。
  3.  前記可動体が前記第1位置に位置した場合に、前記端子と前記導電体とは、前記導通状態であり、前記第1位置よりも前記第1方向の第2位置P2に前記可動体が位置した場合に、前記端子と前記導電体とは、前記非導通状態である、請求項1または2に記載のプローブピン検査機構。
  4.  請求項1~3のうちいずれか一つに記載のプローブピン検査機構と、
     前記端子と前記導電体との状態に基づいて前記プローブピンの異常を検出する検出部と、
     を備えた検査装置。
  5.  複数の前記プローブピンを有したプローブピンモジュールと、
     支持可能な支持対象に二次電池と前記プローブピン検査機構とを含む支持具と、
     前記プローブピンモジュールと前記支持具とを前記第1方向に沿って相対的に移動させ、前記プローブピンと前記支持具に支持された前記支持対象とを接触させる移動機構と、
     を備えた、請求項4に記載の検査装置。
  6.  前記支持具は、複数の前記二次電池と複数の前記プローブピン検査機構とを選択的に支持可能である、請求項5に記載の検査装置。
  7.  複数の前記プローブピンモジュールと、
     前記プローブピンモジュールごとに設けられた複数の前記支持具と、
     前記プローブピンモジュールごとに設けられた複数の前記移動機構と、
     を備え、
     前記検出部は、前記プローブピンモジュールごとに、前記プローブピンの異常を検出する検出処理を行なう、請求項5または6に記載の検査装置。
  8.  前記検出部は、前記プローブピン検査機構を支持した前記支持具が前記移動機構に供給されると、当該移動機構に対応する前記プローブピンモジュールの前記プローブピンの異常を検出する検出処理を行なう、請求項5~7のいずれか一つに記載の検査装置。
PCT/JP2018/046417 2018-12-17 2018-12-17 プローブピン検査機構および検査装置 WO2020129135A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/046417 WO2020129135A1 (ja) 2018-12-17 2018-12-17 プローブピン検査機構および検査装置
US17/414,224 US11733268B2 (en) 2018-12-17 2018-12-17 Probe pin inspection mechanism and inspection apparatus
JP2020560664A JP7039730B2 (ja) 2018-12-17 2018-12-17 プローブピン検査機構および検査装置
CN201880097345.XA CN112673268A (zh) 2018-12-17 2018-12-17 探针检查机构以及检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046417 WO2020129135A1 (ja) 2018-12-17 2018-12-17 プローブピン検査機構および検査装置

Publications (1)

Publication Number Publication Date
WO2020129135A1 true WO2020129135A1 (ja) 2020-06-25

Family

ID=71100493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046417 WO2020129135A1 (ja) 2018-12-17 2018-12-17 プローブピン検査機構および検査装置

Country Status (4)

Country Link
US (1) US11733268B2 (ja)
JP (1) JP7039730B2 (ja)
CN (1) CN112673268A (ja)
WO (1) WO2020129135A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220393221A1 (en) * 2021-06-02 2022-12-08 Zhejiang Hangke Technologies Co., Ltd Battery capacity dividing mechanism
TWI827269B (zh) * 2022-09-21 2023-12-21 致茂電子股份有限公司 檢測裝置及其探針模組

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117192174B (zh) * 2023-11-06 2024-01-26 山西互感器电测设备有限公司 一次电流回路自动接触装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226234A (ja) * 1994-02-15 1995-08-22 Toshiba Battery Co Ltd 筒型2次電池の充放電装置
WO1998045722A1 (en) * 1997-04-08 1998-10-15 Arbin Corporation Battery test system
JP2004286497A (ja) * 2003-03-20 2004-10-14 Hioki Ee Corp 可動プローブピンの接触圧検査機構およびその方法
JP2013055805A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 充放電装置
DE102011087393A1 (de) * 2011-11-30 2013-06-06 Robert Bosch Gmbh Prüfanordnung zum Prüfen von Kontaktnadelelementen eines Elektronikbaugruppen-Testsystems und Verfahren hierzu
JP2013149440A (ja) * 2012-01-18 2013-08-01 Nittetsu Elex Co Ltd 着脱自在の充放電検査装置を有する電池の充放電検査設備及びそれを用いた電池の充放電検査方法
JP2013238554A (ja) * 2012-05-17 2013-11-28 Kaga Electronics Co Ltd 検査装置
WO2018235234A1 (ja) * 2017-06-22 2018-12-27 新電元工業株式会社 コンタクトプローブ検査装置、及び、コンタクトプローブ検査装置の制御方法
WO2018235233A1 (ja) * 2017-06-22 2018-12-27 新電元工業株式会社 コンタクトプローブ検査装置、及び、コンタクトプローブ検査装置の制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331163A1 (de) * 1988-03-04 1989-09-06 Manfred Prokopp Kontaktiervorrichtung für Prüfvorrichtungen zum Prüfen von Leiterplatten oder dgl.
JP3418720B2 (ja) * 1999-02-24 2003-06-23 株式会社住友金属マイクロデバイス 基板検査装置及び基板検査方法
JP4368027B2 (ja) 1999-04-01 2009-11-18 株式会社アドバンテスト 電源ユニット、半導体デバイス試験装置、及び半導体デバイス試験方法
JP2008275406A (ja) * 2007-04-27 2008-11-13 Micronics Japan Co Ltd プローブ装置及び検査装置
JP4660616B2 (ja) * 2009-08-31 2011-03-30 株式会社東芝 基板検査装置
US9069011B2 (en) * 2009-09-11 2015-06-30 Exelon Generation Company, Llc Electrical terminal test point and methods of use
US9207283B2 (en) * 2013-03-14 2015-12-08 Atc Logistics & Electronics, Inc. Universal battery charger and method of use thereof
JP6004096B2 (ja) * 2013-05-01 2016-10-12 日産自動車株式会社 薄型二次電池の充放電検査装置および充放電検査方法
JP6045993B2 (ja) * 2013-07-08 2016-12-14 東京エレクトロン株式会社 プローブ装置
JP6359362B2 (ja) 2014-07-07 2018-07-18 株式会社東芝 電池モジュール
JP6520371B2 (ja) * 2015-05-13 2019-05-29 富士ゼロックス株式会社 基板検査装置、基板検査方法、及び基板検査プログラム
JP6501726B2 (ja) * 2016-04-19 2019-04-17 三菱電機株式会社 プローブ位置検査装置および半導体評価装置ならびにプローブ位置検査方法
US11502440B2 (en) * 2020-10-23 2022-11-15 Carlisle Interconnect Technologies, Inc. Multiport connector interface system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226234A (ja) * 1994-02-15 1995-08-22 Toshiba Battery Co Ltd 筒型2次電池の充放電装置
WO1998045722A1 (en) * 1997-04-08 1998-10-15 Arbin Corporation Battery test system
JP2004286497A (ja) * 2003-03-20 2004-10-14 Hioki Ee Corp 可動プローブピンの接触圧検査機構およびその方法
JP2013055805A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 充放電装置
DE102011087393A1 (de) * 2011-11-30 2013-06-06 Robert Bosch Gmbh Prüfanordnung zum Prüfen von Kontaktnadelelementen eines Elektronikbaugruppen-Testsystems und Verfahren hierzu
JP2013149440A (ja) * 2012-01-18 2013-08-01 Nittetsu Elex Co Ltd 着脱自在の充放電検査装置を有する電池の充放電検査設備及びそれを用いた電池の充放電検査方法
JP2013238554A (ja) * 2012-05-17 2013-11-28 Kaga Electronics Co Ltd 検査装置
WO2018235234A1 (ja) * 2017-06-22 2018-12-27 新電元工業株式会社 コンタクトプローブ検査装置、及び、コンタクトプローブ検査装置の制御方法
WO2018235233A1 (ja) * 2017-06-22 2018-12-27 新電元工業株式会社 コンタクトプローブ検査装置、及び、コンタクトプローブ検査装置の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220393221A1 (en) * 2021-06-02 2022-12-08 Zhejiang Hangke Technologies Co., Ltd Battery capacity dividing mechanism
TWI827269B (zh) * 2022-09-21 2023-12-21 致茂電子股份有限公司 檢測裝置及其探針模組

Also Published As

Publication number Publication date
JPWO2020129135A1 (ja) 2021-09-27
US11733268B2 (en) 2023-08-22
CN112673268A (zh) 2021-04-16
JP7039730B2 (ja) 2022-03-22
US20220065896A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2020129135A1 (ja) プローブピン検査機構および検査装置
KR102291536B1 (ko) 배터리 팩 검사 장치 및 방법
JP6520356B2 (ja) 検査装置および検査方法
KR102002848B1 (ko) Mi­pcm 검사 장치
KR20110015272A (ko) 테스터 및 이를 구비한 반도체 디바이스 검사 장치
KR101979060B1 (ko) 프로브 유닛, 기판 검사 장치 및 프로브 유닛 제조 방법
JP7445469B2 (ja) 小型二次電池の搬送トレイ及びその搬送方法
TW201530166A (zh) 半導體元件對準插座單元以及含其之半導體元件測試裝置
KR20150115728A (ko) 프로브 유닛, 기판 검사 장치 및 프로브 유닛 조립 방법
KR20160042768A (ko) 충방전 검사 장치의 프로브 청소 장치 및 프로브 청소 방법
JP2007285882A (ja) 基板検査用接触子、基板検査用治具および基板検査装置
TWI698386B (zh) 電子零件搬送裝置及電子零件檢查裝置
KR20150044231A (ko) 전지케이스 크기 검사장치
JP7344062B2 (ja) 小型二次電池の搬送トレイ及びその搬送方法
KR101824582B1 (ko) 배터리 치수 자동 측정장치와 그 방법
JP7382189B2 (ja) 小型二次電池の充放電検査装置及びその充放電検査方法
JP6479441B2 (ja) 基板検査装置および基板検査方法
JP2014165068A (ja) 試験電池ホルダー及びそれを備える充放電試験装置
JP2014165059A (ja) 電池容器変形検査装置
KR102270542B1 (ko) 검사 시스템
JP2017063207A (ja) プローブカード搬送具
JP2021174652A (ja) 充放電検査設備の校正装置
JP2006250546A (ja) ショート検出装置
JP2005172492A (ja) 半導体パッケージのテストシステム及びテスト方法
JP2018136239A (ja) 電子部品搬送装置及び電子部品検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943753

Country of ref document: EP

Kind code of ref document: A1