JP6479441B2 - 基板検査装置および基板検査方法 - Google Patents

基板検査装置および基板検査方法 Download PDF

Info

Publication number
JP6479441B2
JP6479441B2 JP2014242635A JP2014242635A JP6479441B2 JP 6479441 B2 JP6479441 B2 JP 6479441B2 JP 2014242635 A JP2014242635 A JP 2014242635A JP 2014242635 A JP2014242635 A JP 2014242635A JP 6479441 B2 JP6479441 B2 JP 6479441B2
Authority
JP
Japan
Prior art keywords
substrate
probe
error
contact
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014242635A
Other languages
English (en)
Other versions
JP2016102772A (ja
Inventor
正彦 高田
正彦 高田
靖史 目黒
靖史 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2014242635A priority Critical patent/JP6479441B2/ja
Publication of JP2016102772A publication Critical patent/JP2016102772A/ja
Application granted granted Critical
Publication of JP6479441B2 publication Critical patent/JP6479441B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、基板の導体部にプローブを接触させて基板を検査する基板検査装置および基板検査方法に関するものである。
この種の基板検査装置として、下記特許文献1に開示されたコンタクトプローブ移動式基板両面検査装置(以下、「基板検査装置」ともいう)が知られている。この基板検査装置は、複数のX−Yロボット、複数の上下スライド機構、複数のコンタクトプローブ、計算器および制御情報処理部等を備えて構成されている。この基板検査装置では、制御情報処理部が、CADデータ等に基づいて各X−Yロボットを制御して、各コンタクトプローブをX−Y方向に個別に移動させる。また、制御情報処理部は、各上下スライド機構を制御して各コンタクトプローブを上方または下方にそれぞれ移動させることにより、各コンタクトプローブを基板に接触(コンタクト)させる。また、計算器が、各コンタクトプローブを介して入力した電気信号に基づいて抵抗値を測定し、制御情報処理部が測定データの整理を行う。
ここで、この種の基板検査装置では、一般的に、コンタクトプローブを移動させる際に、X−Yロボットや上下スライド機構を構成する機構部品の加工精度、バックラッシュおよび弾性変形等によるロストモーションに起因して、目標位置(意図した位置)と実際に移動した位置との間に誤差が生じる。このため、コンタクトプローブを基板に確実に接触させるためには、この移動時の誤差を特定し、コンタクトプローブを移動させる際の移動距離をその誤差の分だけ補正する必要がある。この場合、この上下方向の誤差は、一般的に次のような特定方法で特定される。まず、誤差特定用の基板を載置台に載置し、一対の上下スライド機構を制御してコンタクトプローブをそれぞれ基板に向けて移動させ、各コンタクトプローブを基板における同じ導体部に接触させる。この場合、各上下スライド機構にコンタクトプローブを移動させる移動距離は、例えば、コンタクトプローブの待機位置を理論上(設計上)の基準位置として、その待機位置(基準位置)からコンタクトプローブが導体部に接触する接触位置までの理論上の距離(第1距離)、およびコンタクトプローブを導体部に確実に接触させるためにコンタクトプローブを接触位置からさらに移動させる理論上の距離(第2距離)の合計距離(第1距離+第2距離)で規定される。次いで、いずれか一方の上下スライド機構を制御して一方のコンタクトプローブを少しずつ上方に移動させつつ、各コンタクトプローブ間の抵抗を測定する。この際に、抵抗が極大(測定不能)となったときまでの移動距離、つまり移動させている一方のコンタクトプローブが導体部から離反したときまでの移動距離(第3距離)を特定する。この場合、第3距離と第2距離との差分値が一方の上下スライド機構についての誤差となる。続いて、上記した手順で、他方の上下スライド機構についての誤差を特定する。
特開平7−35808号公報(第6頁、第1図)
ところが、上記の特定方法で誤差を特定する従来の基板検査装置には、改善すべき以下の課題がある。すなわち従来の基板検査装置では、1つの上下スライド機構についての誤差を特定する際に一対の上下スライド機構を制御する必要があるため、特定作業が煩雑で効率が悪という課題が存在する。また、従来の基板検査装置では、抵抗の測定値が極大となったときにコンタクトプローブが導体部から離反したと判別しているため、基板の導体部とコンタクトプローブとの接触抵抗が大きいときには、この判別が正確に行われずに、誤差を正確に特定することが困難となるおそれがある。さらに、従来の基板検査装置では、上下スライド機構の誤差が大きいときには、誤差を特定する工程において、コンタクトプローブを最初に移動させる理論上の移動距離(上記した第1距離および第2距離の合計距離)がコンタクトプローブの弾性変形可能な変形量を超え、その結果、コンタクトプローブが破損するおそれがある。この場合、安全率を大きく規定して、理論上の移動距離を短く規定する方法も考えられる。しかしながら、この方法では、移動距離が短すぎるときにはコンタクトプローブが導体部に接触しないおそれがある。このため、一対の上下スライド機構に対してコンタクトプローブを移動させる従来の基板検査装置では、各上下スライド機構における各々の誤差が互いに大きく異なるときには、各コンタクトプローブの破損を防止し、かつ各コンタクトプローブを導体部に確実に接触させるという条件を満たす各上下スライド機構に共通する適正な理論上の移動距離を規定することが困難となる。具体的には、一対の上下スライド機構における一方の上下スライド機構の誤差が大きく、他方の上下スライド機構の誤差が小さい場合において、誤差が大きい一方の上下スライド機構に合わせて理論上の移動距離を十分に短く規定したときには、誤差が小さい他方のスライド機構による移動距離が短すぎてコンタクトプローブが導体部に接触しないおそれがある。これとは逆に、誤差が小さい他方の上下スライド機構に合わせて理論上の移動距離を少しだけ短く規定したときには、誤差が大きい一方のスライド機構による移動距離が長すぎてコンタクトプローブが破損するおそれがある。
本発明は、かかる課題に鑑みてなされたものであり、プローブ部の破損を防止しつつ、移動機構の機械的な誤差を効率よくしかも正確に特定し得る基板検査装置および基板検査方法を提供することを主目的とする。
上記目的を達成すべく請求項1記載の基板検査装置は、検査対象の基板に対して接離する接離方向にプローブ部を移動させる移動機構と、当該移動機構によって前記検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する検査部とを備えた基板検査装置であって、前記プローブ部を目標位置に位置させるべく前記移動機構が当該プローブ部を前記接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定する処理部と、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御する制御部と、前記プローブ部と基準電極との間に誤差特定用の基板における導体部が位置している状態で当該プローブ部と当該基準電極との間の静電容量を測定する測定部とを備え、前記処理部は、前記誤差特定用の基板における導体部と前記プローブ部とが非接触状態となる位置を前記目標位置とする前記第1位置に位置した前記プローブ部を前記移動機構が当該誤差特定用の基板に対して接近する接近方向にさらに移動させている状態において、前記測定部によって測定された当該プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記非接触状態から接触状態に移行したことを特定すると共に、前記非接触状態から前記接触状態に移行したときの前記第1位置からの前記プローブ部の前記接近方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する。
また、請求項2記載の基板検査装置は、検査対象の基板に対して接離する接離方向にプローブ部を移動させる移動機構と、当該移動機構によって前記検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する検査部とを備えた基板検査装置であって、前記プローブ部を目標位置に位置させるべく前記移動機構が当該プローブ部を前記接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定する処理部と、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御する制御部と、前記プローブ部と基準電極との間に誤差特定用の基板における導体部が位置している状態で当該プローブ部と当該基準電極との間の静電容量を測定する測定部とを備え、前記処理部は、前記誤差特定用の基板における導体部と前記プローブ部とが接触状態となる位置を前記目標位置とする前記第1位置に位置した前記プローブ部を前記移動機構が当該誤差特定用の基板から離間する離間方向にさらに移動させている状態において、前記測定部によって測定された当該プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記接触状態から非接触状態に移行したことを特定すると共に、前記接触状態から前記非接触状態に移行したときの前記第1位置からの前記プローブ部の前記離間方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する
また、請求項3記載の基板検査方法は、移動機構がプローブ部を目標位置に位置させるべく誤差特定用の基板に対して接離する接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定し、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御し、前記移動機構によって検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する基板検査方法であって、前記プローブ部と基準電極との間に前記誤差特定用の基板における導体部が位置している状態で当該誤差特定用の基板における導体部と当該プローブ部とが非接触状態となる位置を前記目標位置とする前記第1位置に位置した当該プローブ部を前記移動機構が当該誤差特定用の基板に対して接近する接近方向にさらに移動させている状態において当該プローブ部と当該基準電極との間の静電容量を測定し、当該測定した前記プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記非接触状態から接触状態に移行したことを特定すると共に、前記非接触状態から前記接触状態に移行したときの前記第1位置からの前記プローブ部の前記接近方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する。
また、請求項4記載の基板検査方法は、移動機構がプローブ部を目標位置に位置させるべく誤差特定用の基板に対して接離する接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定し、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御し、前記移動機構によって検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する基板検査方法であって、前記プローブ部と基準電極との間に前記誤差特定用の基板における導体部が位置している状態で当該誤差特定用の基板における導体部と当該プローブ部とが接触状態となる位置を前記目標位置とする前記第1位置に位置した当該プローブ部を前記移動機構が当該誤差特定用の基板から離間する離間方向にさらに移動させている状態において当該プローブ部と当該基準電極との間の静電容量を測定し、当該測定した前記プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記接触状態から非接触状態に移行したことを特定すると共に、前記接触状態から前記非接触状態に移行したときの前記第1位置からの前記プローブ部の前記離間方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する
請求項1,2記載の基板検査装置、および請求項3,4記載の基板検査方法では、移動機構がプローブ部を第1位置から接離方向に移動させている状態においてプローブ部と基準電極との間の静電容量を測定し、導体部とプローブ部とが非接触状態および接触状態のいずれか一方の状態から他方の状態に移行したことを静電容量の変化に基づいて特定すると共に、移行したときの第1位置からのプローブ部13の接離方向の実際の移動距離を特定し、理論上の移動距離と実際の移動距離との差分値を誤差として特定する。このため、この基板検査装置および基板検査方法によれば、1つの移動機構についての誤差を特定する際には、その移動機構だけを制御すればよいため、移動機構についての誤差を特定する際に一対の移動機構を制御する必要がある従来の構成および方法と比較して、各プローブ部の破損を防止可能な適正な目標位置(第1位置)にプローブ部を移動させる際の移動機構の制御を容易に行うことができる結果、誤差を特定する作業の効率を十分に向上させることができる。また、この基板検査装置および基板検査方法によれば、導体部とプローブ部とが非接触状態および接触状態のいずれか一方の状態から他方の状態に移行したことを静電容量の変化に基づいて特定するため、2つのプローブ部間の抵抗を測定してその抵抗値の変化に基づいて移行したことを特定する従来の構成および方法と比較して、導体部とプローブ部との接触抵抗の影響を少なく抑えることができる結果、移行したことを正確に特定することができる。
の場合、非接触状態および接触状態のいずれか一方の状態として接触状態を規定する構成では、誤差を特定する際に最初にプローブ部を位置させるべき目標位置を導体部とプローブ部とが接触状態となる位置に設定する必要があるため、移動機構の誤差が大きいときには、目標位置に位置させるべくプローブ部を移動させたときの実際の位置が基板に近すぎて、プローブ部が基板に衝突して破損するおそれがある。これに対して、この基板検査装置および基板検査方法では、誤差を特定する際に最初にプローブ部を位置させるべき目標位置を導体部とプローブ部とが非接触状態となる位置に設定することができるため、導体部から十分に離間すると予想される位置を目標位置として設定することで、プローブ部の破損を確実に防止することができる。
基板検査装置1の構成を示す構成図である。 誤差Lrの特定方法を説明する第1の説明図である。 誤差Lrの特定方法を説明する第2の説明図である。 基板検査方法を説明する説明図である。
以下、基板検査装置および基板検査方法の実施の形態について、図面を参照して説明する。
最初に、基板検査装置の一例としての図1に示す基板検査装置1の構成について説明する。基板検査装置1は、同図に示すように、載置台11、電極板12、プローブ部13、複数の移動機構14(同図では、1つの移動機構14だけを図示している)、測定部15、記憶部16および制御部17を備えて、基板100を検査可能に構成されている。
載置台11は、非導電性を有する材料によって形成されて、図1に示すように、電極板12および基板100を載置可能に構成されている。また、載置台11は、一例として、図外の吸気装置による空気の吸引によって電極板12および基板100を吸着して固定可能に構成されている。
電極板12は、基準電極に相当し、導電性を有する材料によって板状に構成されている。また、電極板12には、小径の通気孔(図示せず)が多数の形成されており、載置された基板100を載置台11による空気の吸引によって吸着することが可能となっている。
プローブ部13は、一例として、図1に示すように、プローブピン31と、プローブピン31を保持するアーム部32と、アーム部32を支持する支持部33とを備えて構成されている。この場合、アーム部32は、非導電性および弾性を有す材料で形成され、移動機構14によって実行される後述するプロービング処理において、図4に示すように、プローブピン31(プローブピン31の先端部)が基板100の導体パターン101に接触した状態で弾性変形することにより、その弾性力によってプローブピン31が導体パターン101を押圧するように構成されている。
移動機構14は、制御部17の制御に従い、XY方向(電極板12に載置された基板100の表面に沿った方向)、およびZ方向(上下方向であって、電極板12に載置された基板100の表面に対して接離する接離方向(この例では直交方向))にプローブ部13を移動させる。
測定部15は、測定用の交流電圧Vaを出力する図外の電源部を備えて構成され、基板100における導体パターン101(導体部)に接触させたプローブピン31を介して導体パターン101に交流電圧Vaを供給したときにプローブピン31と電極板12との間に流れる交流電流を検出し、その電流値、交流電圧Vaの電圧値、および交流電流と交流電圧Vaとの位相差に基づき、プローブピン31(プローブ部13)と電極板12との間の静電容量Caを測定する測定処理を実行する。
記憶部16は、測定部15によって測定される静電容量Caを記憶する。また、記憶部16は、制御部17によって実行される後述する誤差特定処理において特定される誤差Lrを記憶する。また、記憶部16は、制御部17によって実行される後述する検査処理において用いられる、検査対象の基板100に関する基板情報Db(例えば、導体パターン101の位置を示す情報等)や静電容量の基準値Cdを記憶する。
また、記憶部16は、制御部17によって実行される後述する誤差特定処理やプロービング処理において用いられる、移動機構14についての待機位置P1(図2参照)、移動開始位置P2(目標位置に相当する:同図参照)、および移動開始位置P2から電極板12に載置された基板100の導体パターン101にプローブピン31が接触するまでプローブ部13を移動させるときの理論上の移動距離L3(図3参照)を特定可能な位置情報Dpを記憶する。この場合、待機位置P1は、移動機構14が電極板12の上方(電極板12に載置された基板100の上方)にプローブ部13を位置させて待機しているときに、プローブ部13(具体的には、プローブ部13における支持部33の下端部:図2参照)が位置すべき理論上(設計上)の位置であって、移動機構14毎に予め規定されている。また、移動開始位置P2は、待機位置P1から予め決められた距離だけ下向きに離間した位置であって、載置台11の載置面(上面)の位置や、電極板12および基板100の厚み等を考慮して、プローブピン31が基板100に接触しない位置として、移動機構14毎に予め規定されている。
制御部17は、図外の操作部に対する操作に応じて基板検査装置1を構成する各構成要素を制御する。具体的には、制御部17は、移動機構14を制御して、プローブ部13を移動させて、基板100の導体パターン101にプローブピン31を接触させるプロービング処理を実行する。また、制御部17は、測定部15を制御して測定処理を実行させる。
また、制御部17は、測定部15と共に処理部を構成し、誤差特定処理を実行する。この誤差特定処理では、制御部17は、移動機構14を構成する機構部品の加工精度、バックラッシュおよび弾性変形等によるロストモーションに起因して、プローブ部13を位置させるべき位置(目標位置)と実際の位置(以下、「第1位置Pr」ともいう)との間に生じる機械的な誤差Lr(目標位置と第1位置Prとの間のZ方向の距離)を特定する。この場合、制御部17は、移動機構14によるプロービング処理においてZ方向(接離方向)にプローブ部13を移動させる際の指定距離L4(図4参照)を、誤差Lrに基づいて補正する。また、制御部17は、測定部15と共に検査部を構成し、測定部15によって測定された静電容量Caと基準値Cdとを比較して基板100を検査する検査処理を実行する。
次に、基板検査装置1を用いて基板100を検査する基板検査方法について、図面を参照して説明する。
まず、検査対象の基板100の検査に先立ち、移動機構14の機械的な誤差Lrを特定する。具体的には、載置台11に電極板12を載置し、次いで、図1に示すように、表面に面積の大きな導体パターン101が生成された誤差特定用の基板100を電極板12の上に載置する。続いて、図外の吸気装置を作動させる。この際に、載置台11に形成されている吸気孔からの空気の吸引によって電極板12が載置台11に固定されると共に、基板100が電極板12に固定される。
次いで、図外の操作部を操作して、誤差特定処理の実行を指示する。これに応じて、制御部17が、誤差特定処理を実行する。この誤差特定処理では、制御部17は、記憶部16から位置情報Dpを読み出す。続いて、制御部17は、各移動機構14の1つを選択し、その移動機構14(以下、「処理対象の移動機構14」ともいう)についての待機位置P1を位置情報Dpから特定する。次いで、制御部17は、処理対象の移動機構14を制御して、図2に破線で示すように、プローブ部13における支持部33の下端部が待機位置P1に位置するようにプローブ部13を移動させる。
続いて、制御部17は、処理対象の移動機構14についての移動開始位置P2を位置情報Dpから特定する。次いで、制御部17は、待機位置P1と移動開始位置P2との間のZ方向の理論上(設計上)の離間距離L1(図2参照)を特定する。続いて、特定した離間距離L1だけプローブ部13をZ方向に移動させるべく処理対象の移動機構14を制御する。この場合、同図に示すように、処理対象の移動機構14のロストモーションに起因して、プローブ部13が、実際には、移動開始位置P2よりも下方の第1位置Prに位置したものとする。
次いで、制御部17は、移動機構14を制御して、第1位置Prに位置したプローブ部13をZ方向に徐々に(低速で)移動(この例では、下降)させる移動処理を開始する。また、制御部17は、移動処理の開始に合わせて、測定部15を制御して測定処理を開始させる。この測定処理では、測定部15は、測定用の交流電圧Vaを電源部から出力し、その交流電圧Vaの出力によってプローブピン31と電極板12との間に交流電流が流れたときに、その交流電流を検出し、その電流値、交流電圧Vaの電圧値、および交流電流と交流電圧Vaとの位相差に基づき、プローブピン31と電極板12との間の静電容量Caを測定する。この場合、移動処理の開始時点では、プローブピン31が導体パターン101に接触していないため(図2参照)、測定部15によって、0F(または、ほぼ0F)の静電容量Caが測定され、プローブピン31が導体パターン101に接触するまで、この状態が継続する。
続いて、図3に示すように、プローブピン31が導体パターン101に接触したときには、導体パターン101と電極板12との間の物性に応じたある程度の大きさの静電容量Caが測定部15によって測定される。つまり、プローブピン31が導体パターン101に接触したときには、静電容量Caが0F(または、ほぼ0F)からある程度の大きさに変化する。この際に、制御部17は、導体パターン101とプローブピン31とが非接触状態から接触状態に移行(非接触状態および接触状態のいずれか一方の状態から他方の状態への移行の一例)したと判別する。つまり、制御部17は、導体パターン101とプローブピン31とが非接触状態から接触状態に移行したことを静電容量Caの変化に基づいて特定する。
次いで、制御部17は、移動処理を終了して、移動機構14によるプローブ部13の移動を停止させる。続いて、制御部17は、導体パターン101とプローブピン31とが非接触状態から接触状態に移行したときの第1位置Prからのプローブ部13のZ方向の実際の移動距離L2(図3参照)を特定する。次いで、制御部17は、移動開始位置P2から導体パターン101にプローブピン31が接触するまでプローブ部13を移動させるときの理論上の移動距離L3(つまり、実際の移動距離L2に対応する理論上の移動距離L3:同図参照)を位置情報Dpから特定する。続いて、制御部17は、実際の移動距離L2と理論上の移動距離L3との差分値を誤差Lrとして算出(特定)する(図同参照)。次いで、制御部17は、誤差Lrを記憶部16に記憶させる。
この場合、実際の移動距離L2と理論上の移動距離L3とが異なるとき、つまり、実際の移動距離L2および理論上の移動距離L3の差分値が「0」以外のときには、目標位置としての移動開始位置P2と、プローブ部13を移動開始位置P2に位置させるべくZ方向にプローブ部13を移動させたときにプローブ部13が位置する第1位置Prとが異なっていることとなり、この移動開始位置P2と第1位置Prとの誤差(移動開始位置P2と第1位置Prとの間のZ方向の距離)が上記した誤差Lrに相当する。
続いて、制御部17は、他の1つの移動機構14を選択して、上記した手順で誤差Lrを特定して、記憶部16に記憶させる。次いで、全ての移動機構14についての誤差Lrの特定および記憶部16への記憶が完了したときには、制御部17は、誤差特定処理を終了する。
続いて、検査対象の基板100を検査するときには、図4に示すように、電極板12の上に基板100を載置し、次いで、吸気装置を作動させて電極板12および基板100を固定する。続いて、操作部を操作して、検査処理の開始を指示する。これに応じて、制御部17が、検査処理を開始する。この検査処理では、制御部17は、検査対象の基板100についての基板情報Dbを記憶部16から読み出す。次いで、制御部17は、基板情報Dbから導体パターン101の位置を特定し、移動機構14を制御してプローブ部13をXY方向に移動させ、導体パターン101の上方における待機位置P1にプローブ部13を位置させる。
続いて、制御部17は、位置情報Dpおよび基板情報Dbに基づき、プローブピン31が導体パターン101に接触し、さらにプローブピン31を導体パターン101に確実に接触させるためにプローブ部13のアーム部32を弾性変形させる(撓ませる)のに必要な待機位置P1からのZ方向の理論上(設計上)の指定距離L4(図4参照)を特定する。次いで、制御部17は、記憶部16に記憶されている移動機構14についての誤差Lrを読み出して、指定距離L4対して誤差Lrを増減する(この例では、減ずる)ことによって指定距離L4を補正する。続いて、制御部17は、移動機構14を制御して補正後の指定距離L5だけZ方向にプローブ部13を移動させる。これにより、同図に示すように、プローブピン31が導体パターン101に接触する。また、この際に、アーム部32が撓むことによって生じる弾性力で、プローブピン31が導体パターン101を押圧する。このため、プローブピン31が導体パターン101に確実に接触する。
次いで、制御部17は、測定部15を制御して、測定処理を実行させる。この際に、測定部15が、上記したように、測定用の交流電圧Vaを出力し、その交流電圧Vaの出力によってプローブピン31と電極板12との間に流れる交流電流の電流値、交流電圧Vaの電圧値、および交流電流と交流電圧Vaとの位相差に基づいてプローブピン31と電極板12との間の静電容量Caを測定する。続いて、制御部17は、測定部15によって測定された静電容量Caと記憶部16に記憶されている基準値Cdとを比較して導体パターン101の良否を判定する。
この場合、制御部17は、一例として、静電容量Caが基準値Cdを中心とする基準範囲内のときに、導体パターン101が良好であると判定する。また、制御部17は、静電容量Caが基準範囲の上限値を超えるときには、導体パターン101が他の導体パターン101等と短絡している不良状態であると判定し、静電容量Caが基準範囲の下限値未満のときには、導体パターン101が断線している不良状態であると判定する。次いで、制御部17は、同様にして、他の導体パターン101にいての良否を判定し、各導体パターン101についての良否結果に基づいて基板100の良否を判定し、その判定結果(検査結果)を図外の表示部に表示させて検査処理を終了する。
このように、この基板検査装置1および基板検査方法では、移動機構14がプローブ部13を第1位置PrからZ方向に移動させている状態においてプローブピン31(プローブ部13)と電極板12との間の静電容量Caを測定し、導体パターン101とプローブピン31とが非接触状態から接触状態に移行したことを静電容量Caの変化に基づいて特定すると共に、移行したときの第1位置Prからのプローブ部13のZ方向の実際の移動距離L2を特定し、理論上の移動距離L3と実際の移動距離L2との差分値を誤差Lrとして特定する。このため、この基板検査装置1および基板検査方法によれば、1つの移動機構14についての誤差Lrを特定する際には、その移動機構14だけを制御すればよいため、移動機構14についての誤差Lrを特定する際に一対の移動機構14を制御する必要がある従来の構成および方法と比較して、各プローブ部13の破損を防止可能な適正な移動開始位置P2(第1位置Pr)にプローブ部13を移動させる際の移動機構14の制御を容易に行うことができる結果、誤差Lrを特定する作業の効率を十分に向上させることができる。また、この基板検査装置1および基板検査方法によれば、導体パターン101とプローブピン31とが非接触状態から接触状態に移行したことを静電容量Caの変化に基づいて特定するため、2つのプローブピン31間の抵抗を測定してその抵抗値の変化に基づいて移行したことを特定する従来の構成および方法と比較して、導体パターン101とプローブピン31との接触抵抗の影響を少なく抑えることができる結果、移行したことを正確に特定することができる。
また、この基板検査装置1および基板検査方法では、非接触状態および接触状態のいずれか一方の状態として非接触状態が規定されている。この場合、非接触状態および接触状態のいずれか一方の状態として接触状態を規定する構成では、誤差Lrを特定する際に最初にプローブ部13を位置させるべき移動開始位置P2(目標位置)を導体パターン101とプローブピン31とが接触状態となる位置に設定する必要があるため、移動機構14の誤差Lrが大きいときには、移動開始位置P2に位置させるべくプローブ部13を移動させたときの実際の位置が基板100に近すぎて、プローブ部13が基板100に衝突して破損するおそれがある。これに対して、この基板検査装置1および基板検査方法では、誤差を特定する際に最初にプローブ部13を位置させるべき移動開始位置P2を導体パターン101とプローブ部13とが非接触状態となる位置に設定することができるため、導体パターン101から十分に離間すると予想される位置を移動開始位置P2として設定することで、プローブ部13の破損を確実に防止することができる。
なお、基板検査装置および基板検査方法は、上記の構成および方法に限定されない。例えば、誤差特定処理において、基板100における導体パターン101とプローブピン31とが非接触状態となる位置を移動開始位置P2として規定する例について上記したが、プローブピン31と導体パターン101とが接触状態でかつアーム部32が弾性変形する(撓む)状態となる位置を移動開始位置P2として規定する構成および方法を採用することもできる。この場合、この構成および方法では、移動開始位置P2からプローブ部13を徐々に上昇させて、プローブピン31と導体パターン101とが接触状態から非接触状態に移行したことを静電容量Caの変化に基づいて静電容量の変化に基づいて特定する。
また、載置台11とは別体の電極板12を用いる例について上記したが、載置台11と電極板12とを一体とした構成や、載置台11が導電性を有する(載置台11自体が電極板12としても機能する)構成、およびこれらを用いる方法を採用することもできる。
また、基準電極(グランドパターンや電源パターンなど)などの面積の大きな導体パターンが基板100の内部や裏面に形成されているときには、その導体パターンを電極板12として用いる構成および方法を採用することもできる。
また、上記の例では、検査対象の基板100を検査する検査処理においても、静電容量Caに基づいて導体パターン101の良否を判別しているが、検査処理においては、2つのプローブピン31の間の抵抗値を測定し、その測定値(抵抗値)に基づいて導体パターン101の良否を判別することもできる。
1 基板検査装置1
12 電極板
13 プローブ部
14 移動機構
15 測定部
17 制御部
100 基板
101 導体パターン
Ca 静電容量
Lr 誤差
L2 移動距離
L3 離間距離
P2 移動開始位置
Pr 第1位置

Claims (4)

  1. 検査対象の基板に対して接離する接離方向にプローブ部を移動させる移動機構と、当該移動機構によって前記検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する検査部とを備えた基板検査装置であって、
    前記プローブ部を目標位置に位置させるべく前記移動機構が当該プローブ部を前記接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定する処理部と、
    前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御する制御部と、
    前記プローブ部と基準電極との間に誤差特定用の基板における導体部が位置している状態で当該プローブ部と当該基準電極との間の静電容量を測定する測定部とを備え、
    前記処理部は、前記誤差特定用の基板における導体部と前記プローブ部とが非接触状態となる位置を前記目標位置とする前記第1位置に位置した前記プローブ部を前記移動機構が当該誤差特定用の基板に対して接近する接近方向にさらに移動させている状態において、前記測定部によって測定された当該プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記非接触状態から接触状態に移行したことを特定すると共に、前記非接触状態から前記接触状態に移行したときの前記第1位置からの前記プローブ部の前記接近方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する基板検査装置。
  2. 検査対象の基板に対して接離する接離方向にプローブ部を移動させる移動機構と、当該移動機構によって前記検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する検査部とを備えた基板検査装置であって、
    前記プローブ部を目標位置に位置させるべく前記移動機構が当該プローブ部を前記接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定する処理部と、
    前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御する制御部と、
    前記プローブ部と基準電極との間に誤差特定用の基板における導体部が位置している状態で当該プローブ部と当該基準電極との間の静電容量を測定する測定部とを備え、
    前記処理部は、前記誤差特定用の基板における導体部と前記プローブ部とが接触状態となる位置を前記目標位置とする前記第1位置に位置した前記プローブ部を前記移動機構が当該誤差特定用の基板から離間する離間方向にさらに移動させている状態において、前記測定部によって測定された当該プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記接触状態から非接触状態に移行したことを特定すると共に、前記接触状態から前記非接触状態に移行したときの前記第1位置からの前記プローブ部の前記離間方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する基板検査装置。
  3. 移動機構がプローブ部を目標位置に位置させるべく誤差特定用の基板に対して接離する接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定し、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御し、前記移動機構によって検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する基板検査方法であって、
    前記プローブ部と基準電極との間に前記誤差特定用の基板における導体部が位置している状態で当該誤差特定用の基板における導体部と当該プローブ部とが非接触状態となる位置を前記目標位置とする前記第1位置に位置した当該プローブ部を前記移動機構が当該誤差特定用の基板に対して接近する接近方向にさらに移動させている状態において当該プローブ部と当該基準電極との間の静電容量を測定し、当該測定した前記プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記非接触状態から接触状態に移行したことを特定すると共に、前記非接触状態から前記接触状態に移行したときの前記第1位置からの前記プローブ部の前記接近方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する基板検査方法。
  4. 移動機構がプローブ部を目標位置に位置させるべく誤差特定用の基板に対して接離する接離方向に移動させたときに当該プローブ部が実際に位置する第1位置と当該目標位置との誤差を特定し、前記接離方向に前記プローブ部を移動させる際に指定する指定距離を前記誤差に基づいて補正すると共に補正後の当該指定距離で前記移動機構を制御し、前記移動機構によって検査対象の基板における導体部に接触させられている前記プローブ部を介して入出力する電気信号に基づいて当該検査対象の基板を検査する基板検査方法であって、
    前記プローブ部と基準電極との間に前記誤差特定用の基板における導体部が位置している状態で当該誤差特定用の基板における導体部と当該プローブ部とが接触状態となる位置を前記目標位置とする前記第1位置に位置した当該プローブ部を前記移動機構が当該誤差特定用の基板から離間する離間方向にさらに移動させている状態において当該プローブ部と当該基準電極との間の静電容量を測定し、当該測定した前記プローブ部と前記基準電極との間の前記静電容量の変化に基づき、前記誤差特定用の基板における導体部と前記プローブ部とが前記接触状態から非接触状態に移行したことを特定すると共に、前記接触状態から前記非接触状態に移行したときの前記第1位置からの前記プローブ部の前記離間方向の実際の移動距離を特定し、当該実際の移動距離に対応する理論上の移動距離と当該実際の移動距離との差分値を前記誤差として特定する基板検査方法。
JP2014242635A 2014-11-29 2014-11-29 基板検査装置および基板検査方法 Expired - Fee Related JP6479441B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242635A JP6479441B2 (ja) 2014-11-29 2014-11-29 基板検査装置および基板検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242635A JP6479441B2 (ja) 2014-11-29 2014-11-29 基板検査装置および基板検査方法

Publications (2)

Publication Number Publication Date
JP2016102772A JP2016102772A (ja) 2016-06-02
JP6479441B2 true JP6479441B2 (ja) 2019-03-06

Family

ID=56087928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242635A Expired - Fee Related JP6479441B2 (ja) 2014-11-29 2014-11-29 基板検査装置および基板検査方法

Country Status (1)

Country Link
JP (1) JP6479441B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943648B2 (ja) * 2017-06-30 2021-10-06 日置電機株式会社 基板検査装置および基板検査方法
JP2019124671A (ja) * 2018-01-19 2019-07-25 浜松ホトニクス株式会社 検査装置及び検査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068338A (ja) * 1998-08-21 2000-03-03 Sony Corp ウエハプローバおよびウエハの位置決め方法
JP4225843B2 (ja) * 2003-06-12 2009-02-18 日置電機株式会社 回路基板検査装置
JP4255775B2 (ja) * 2003-08-07 2009-04-15 日置電機株式会社 回路基板検査装置
JP5356749B2 (ja) * 2008-08-06 2013-12-04 日置電機株式会社 基板検査装置およびプローブのz軸オフセット取得方法
JP2014016300A (ja) * 2012-07-11 2014-01-30 Hioki Ee Corp 基板検査装置および基板検査方法

Also Published As

Publication number Publication date
JP2016102772A (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
KR101195678B1 (ko) 회로 기판의 검사 방법 및 검사 장치
JP6479441B2 (ja) 基板検査装置および基板検査方法
JP4652699B2 (ja) 基板検査装置、位置調整方法
TW201833562A (zh) 探針機及探針尖端位置定位和獲得探針與清針紙接觸資訊的方法
JP2007095938A (ja) テスタ、プローバ、ウエハテストシステム及び電気的接触位置検出方法
JP6303753B2 (ja) タッチパネル検査装置、及びタッチパネル検査方法
CN107014288B (zh) 使用电气连续性验证末端执行器平坦度
JP5290672B2 (ja) 回路基板検査装置
JP2003279624A (ja) 電子部品試験装置
JP2008261678A (ja) 検査プローブ接触検知機構および回路基板検査装置
JP6058325B2 (ja) 基板検査装置および基板検査方法
JP5962566B2 (ja) コンタクトプローブの検査方法、検査装置
JP2015163854A (ja) 可撓性回路基板を対象とする検査装置及び検査方法
JP5179276B2 (ja) 回路基板検査装置
TW201335605A (zh) 用以觸控面板之偵測線的檢測設備及其檢測方法
JP5896878B2 (ja) 評価装置および評価方法
JP6366460B2 (ja) プロービング装置、回路基板検査装置およびプロービング方法
JP2017101947A (ja) 基板検査装置および基板検査方法
JP6534582B2 (ja) 判定装置、基板検査装置および判定方法
JP4255774B2 (ja) 回路基板検査装置
JP4308038B2 (ja) 部品実装検査方法および回路基板検査装置
JP6943648B2 (ja) 基板検査装置および基板検査方法
CN108152599B (zh) 一种晶圆的电容测试方法和测试装置
JP2008185509A (ja) 回路基板検査装置
JP4382521B2 (ja) 部品実装検査方法および回路基板検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees