WO2020125808A1 - 一种制作具有支撑结构的薄型真空隔热片的方法 - Google Patents

一种制作具有支撑结构的薄型真空隔热片的方法 Download PDF

Info

Publication number
WO2020125808A1
WO2020125808A1 PCT/CN2019/130281 CN2019130281W WO2020125808A1 WO 2020125808 A1 WO2020125808 A1 WO 2020125808A1 CN 2019130281 W CN2019130281 W CN 2019130281W WO 2020125808 A1 WO2020125808 A1 WO 2020125808A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
solder
thin vacuum
sheet structure
heat insulating
Prior art date
Application number
PCT/CN2019/130281
Other languages
English (en)
French (fr)
Inventor
陈振贤
Original Assignee
广州力及热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州力及热管理科技有限公司 filed Critical 广州力及热管理科技有限公司
Publication of WO2020125808A1 publication Critical patent/WO2020125808A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a method for manufacturing a thin vacuum heat insulating sheet, and particularly to a method for manufacturing a thin vacuum heat insulating sheet having a supporting structure.
  • the development trend of electronic and handheld communication device products continues to be thinner and more functional, and people have increasingly higher requirements on the operation speed and function of the microprocessor in the device.
  • the microprocessor is the core component of electronic and communication products. It is easy to generate heat under high-speed operation and become the main heating element of electronic devices, causing local processing hot spots (Hot Spot). If there is no good thermal management scheme and heat dissipation system, it often causes the microprocessor to overheat and fail to perform its proper function, even affecting the life and reliability of the entire electronic device system. Therefore, electronic products require excellent heat dissipation design, especially ultra-thin electronic devices such as smartphones and tablet PCs need to have excellent thermal management capabilities.
  • the effective solution for the heat removal and heat dissipation of hotspots in electronic and communications products is to contact one side of the heat source and the other side of the graphite sheet (Graphitte sheet) or flat micro heat pipe (Flatten Micro Heat Pipe) or Vapor Chamber (Vapor Chamber).
  • graphite sheet graphitte sheet
  • flat micro heat pipe Flat Micro Heat Pipe
  • Vapor Chamber Vapor Chamber
  • the space between the microprocessor and the housing that allows the placement of heat-dissipating components is often less than 1 mm. Therefore, the other side of the heat dissipation element in the heat source area will directly thermally contact the casing, and the high temperature generated by the hot spot is also easily transmitted directly to the casing, causing the hot spot temperature on the surface of the casing to be too high. Therefore, in order to prevent the surface temperature of the casing from being too high, it is necessary to place a layer of heat insulation sheet between the casing in the hot spot area and part of the heat dissipation element to block the conduction of heat flow.
  • the object of the present invention is to provide a method for manufacturing a thin vacuum heat insulating sheet with a supporting structure, which can effectively overcome the defects of the prior art and effectively block the heat insulating energy in a limited thickness space.
  • the present invention discloses a method for manufacturing a thin vacuum insulation sheet with a supporting structure, which is characterized by including the following steps:
  • the air in the gap space is evacuated and the periphery of the gap space is sealed to form a thin vacuum heat insulating sheet.
  • the step of disposing the second sheet structure on the first surface of the first sheet structure to form the gap space between the second sheet structure and the first sheet structure further comprising:
  • the step of extracting the air in the gap space and sealing the gap space to form the thin vacuum insulation sheet further includes:
  • the air in the interstitial space is evacuated through the duct, and then the duct is blocked and sealed to form the thin vacuum insulation sheet.
  • the step of forming the second sheet-like structure on the first surface of the first sheet-like structure to form the gap space between the second sheet-like structure and the first sheet-like structure further There is one step:
  • step of welding the first sheet structure and the second sheet structure further includes:
  • the solder After heating the solder to the melting point of the solder, the solder is cooled to hermetically solder the first sheet structure and the second sheet structure.
  • the first surface of the first sheet structure has an outer annular solder mask and an inner annular solder mask, the outer annular solder mask surrounds the outer side of the inner annular solder mask;
  • the composite material glue system is arranged inside the inner annular solder resist layer of the first surface
  • the step of arranging the solder around the first surface further includes arranging the solder around the outer annular solder resist layer and the inner annular solder resist layer on the first surface.
  • the first sheet structure and the second sheet structure are hermetically welded, the thermal conductivity of the support structure is lower than the thermal conductivity of the solder after cooling Coefficient, and the hardness of the support structure is higher than the hardness of the solder after cooling.
  • the step of forming the second sheet-like structure on the first surface of the first sheet-like structure to form the gap space between the second sheet-like structure and the first sheet-like structure further There is one step:
  • step of forming the second sheet structure on the first surface of the first sheet structure to form the gap space between the second sheet structure and the first sheet structure further includes :
  • the second surface of the second sheet structure is disposed on the first surface of the first sheet structure so that the second sheet structure and the first sheet structure are formed by the support structure The clearance space.
  • step of welding the first sheet structure and the second sheet structure further includes:
  • the solder is heated and cooled to solder the first sheet structure and the second sheet structure.
  • the step of arranging the composite material colloid on the first surface of the first sheet structure further includes arranging the composite material colloid on the first sheet structure by means of steel plate printing or dispensing surface.
  • the fiber material in the step of mixing the fiber material and the resin into the composite material colloid, is a glass fiber material.
  • the thickness of the thin vacuum heat insulation sheet is less than 1mm, and the height of the gap space is less than 0.5mm.
  • a method for manufacturing a thin vacuum heat insulating sheet with a supporting structure is also disclosed, which is characterized by including the following steps:
  • the solder is heated and cooled to hermetically weld the first sheet structure and the second sheet structure to form a thin vacuum heat insulating sheet.
  • the present invention provides a method for manufacturing a thin vacuum insulation sheet with a supporting structure, which can effectively isolate heat conduction and heat convection between two insulation sheets, and
  • the supporting structure makes the two heat insulation sheets not deformed and collapsed due to the air pressure, so as to effectively perform the function of heat insulation.
  • FIG. 1a is a schematic diagram showing the appearance of a thin vacuum heat insulating sheet according to an embodiment of the invention.
  • FIG. 1b is a cross-sectional view according to line A-A in FIG. 1a.
  • FIG. 2 is a flow chart showing a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • 3a to 3c are schematic diagrams showing the manufacturing process of a thin vacuum heat insulating sheet according to an embodiment of the invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • FIG. 5a is a schematic diagram showing a simple structure of a thin vacuum heat insulating sheet including a catheter according to an embodiment of the present invention.
  • FIG. 5b is a cross-sectional view according to line B-B in FIG. 5a.
  • FIG. 6 is a flow chart showing the steps of a method for manufacturing a thin vacuum insulation sheet with a supporting structure according to an embodiment of the invention.
  • FIG. 7a is a schematic diagram showing a simple structure of a thin vacuum heat insulating sheet according to an embodiment of the invention.
  • 7b is a cross-sectional view of the outer ring-shaped solder resist layer and the inner ring-shaped solder resist layer according to the line segment C-C in FIG. 7a.
  • 7c is a cross-sectional view according to line C-C in FIG. 7a.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a thin vacuum insulation sheet with a supporting structure according to another specific embodiment of the present invention.
  • FIG. 1a is a schematic diagram showing a simple structure of a thin vacuum heat insulating sheet 1 according to an embodiment of the invention.
  • FIG. 1b is a cross-sectional view according to line A-A in FIG. 1a.
  • FIG. 2 is a flow chart showing a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • 3a to 3c are schematic diagrams showing the manufacturing process of the thin vacuum insulation sheet 1 according to an embodiment of the present invention.
  • a method for manufacturing a thin vacuum insulation sheet with a supporting structure includes the following steps: mixing fiber material and resin to form a composite gel 13 (S1); arranging the composite gel 13 in the first The first surface 111 of the sheet-like structure 11 (S2); pressurize and heat the first sheet-like structure 11 to cure the composite colloid 13 on the first surface 111 to form the support structure 14 (S3);
  • the structure 12 is disposed on the first surface 111 of the first sheet structure 11 to form a gap space 15 between the second sheet structure 12 and the first sheet structure 11 (S4); welding the first sheet structure 11 and The second sheet-like structure 12 (S5); and the air of the gap space 15 is extracted and the periphery of the gap space 15 is sealed to form a thin vacuum heat insulating sheet 1 (S6).
  • the fiber material used in the present invention is glass fiber, but it is not limited thereto, and the resin may be epoxy resin.
  • the composite colloid 13 formed by mixing the fiber material and the resin may also contain a curing agent and an organic solvent, wherein the curing agent can easily cure the composite colloid 13 and the organic solvent can increase the fluidity of the composite colloid 13 to
  • the composite material colloid 13 is easily arranged on the first surface 111 of the first sheet structure 11.
  • the composite material colloid 13 is arranged on the first sheet-like structure 11, wherein the arrangement method may be steel plate printing or dispensing so that the composite material colloid 13 is added During the pressing and heating, it can be evenly distributed in the first sheet structure 11.
  • the curing agent in the composite material colloid 13 can be fixed on the first surface 111 of the first sheet structure 11 after curing.
  • the composite material colloid 13 is heated and pressed to form a support structure 14.
  • the second sheet structure 12 is disposed on the first surface 111 of the first sheet structure 11, a gap space 15 is formed between the first sheet structure 11, the second sheet structure 12 and the support structure 14.
  • the first sheet-like structure 11 and the second sheet-like structure 12 may be metal of the same material, such as a copper sheet or a stainless steel sheet coated with a solderable material layer on the surface.
  • the surroundings of the first surface 111 of the first sheet-like structure 11 and the second surface 122 of the second sheet-like structure 12 are soldered with solder 16, and then the air in the interstitial space is extracted.
  • a thin vacuum heat insulating sheet 1 is formed between the first sheet structure 11 and the second sheet structure 12 to seal the vacuum space. Since the efficiency of heat conduction and heat convection is very poor in the case of vacuum, the first sheet-like structure 11 and the second sheet-like structure 12 have a good thermal barrier capability, that is, a thin vacuum insulation sheet 1 Can effectively isolate the heat energy in the Z axis direction.
  • the arrangement of the thin vacuum heat insulation sheet 1 is shown in FIGS.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • FIG. 5a is a schematic diagram showing a simple structure of a thin vacuum insulation sheet 1 including a duct 17 according to an embodiment of the present invention.
  • FIG. 5b is a cross-sectional view according to line B-B in FIG. 5a.
  • a duct 17 is further made to communicate with the gap space (S41), and the air in the gap space 15 is drawn through the duct 17 , The duct 17 is blocked to form a thin vacuum heat insulating sheet 1 (S61).
  • the material of the catheter 17 is the same metal as the first sheet structure 11 and the second sheet structure 12.
  • the duct 17 is disposed between the first sheet structure 11 and the second sheet structure 12, and the first end 171 of the duct 17 is located in the gap space 15, and the second end 172 relative to the first end 171 is located in the external environment.
  • the air in the gap space 15 is evacuated from the second end 172 of the duct 17, and after the gap space 15 is evacuated, it can be used
  • the method of welding or welding seals the second end 172 of the duct 17 to prevent outside air from entering the interstitial space 15 through the duct 17 again.
  • the second end 172 of the catheter 17 may be crushed first, and then cut to an appropriate length. Therefore, the gap space 15 is evacuated by the duct 17 to achieve the heat insulation effect between the first sheet structure 11 and the second sheet structure 12.
  • FIG. 6 illustrates a flowchart of a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • the solder 16 Before soldering the first sheet-like structure 11 and the second sheet-like structure 12, the solder 16 is arranged around the first surface 111 of the first sheet-like structure 11 (S42); during soldering, the solder 16 is heated to the melting point of the solder After cooling, the first sheet structure 11 and the second sheet structure 12 are hermetically welded (S51).
  • the solder 16 may be a solder material, and the solder 16 is arranged on the first surface 111 of the first sheet structure 11 around the composite material colloid.
  • the second sheet structure 12 is disposed on the first sheet structure 11 and heated to the melting point of the solder.
  • the solder 16 will melt and adhere to the first surface 111 of the first sheet structure 11 and the second sheet structure 12 ⁇ second surface 122.
  • the solder 16 solders the first sheet structure 11 and the second sheet structure 12 to form a sealed space in which the air in the gap space 15 and the outside air cannot communicate with each other.
  • the solder 16 is placed around the first surface 111 of the first sheet-like structure 11, then the conduit 17 is placed on the solder 16, and finally, the second sheet-like structure 12 is placed on the first sheet After the first surface 111 of the structure 11 is heated, the solder 16 is heated for soldering.
  • the conduit 17 is first placed on the first sheet structure 11, and then the solder 16 is laid on the first surface 111 of the first sheet structure 11. At this time, part of the solder 16 will be arranged on the conduit 17 on.
  • the second sheet structure 12 is placed on the first surface 111 of the first sheet structure 11 and then the solder 16 is heated to perform soldering.
  • the solder 16 is placed around the first surface 111 of the first sheet structure 11, and then, the second sheet structure 12 is placed on the first sheet structure 11 and then the catheter 17 is inserted. At this time, the duct 17 is located in the solder.
  • the catheter 17 can be completely welded to Between the first sheet structure 11 and the second sheet structure 12. Therefore, after the duct 17 evacuates the air in the gap space 15 to a vacuum and cuts or welds the duct, the first sheet-like structure 11 and the second sheet-like structure 12 can still become an airtight space.
  • Fig. 7a is a schematic diagram showing a simple structure of a thin vacuum heat insulating sheet 1 according to an embodiment of the present invention.
  • 7b is a cross-sectional view of the outer annular solder resist layer 1111 and the inner annular solder resist layer 1112 according to the line segment C-C in FIG. 7a.
  • 7c is a cross-sectional view according to line C-C in FIG. 7a.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a thin vacuum heat insulating sheet with a supporting structure according to a specific embodiment of the present invention.
  • the first surface 111 of the first sheet structure 11 has an outer annular solder resist layer 1111 and an inner annular solder resist layer 1112, and the outer annular solder resist layer 1111 is wound around the outer side of the inner annular solder resist layer 1112 .
  • the supporting structure is arranged inside the inner annular solder resist layer 1112 of the first surface 111 (S21), and the solder 16 surrounds the outer annular solder resist layer 1111 and the inner annular solder resist layer 1112 of the first surface 111 (S43) .
  • the outer annular solder resist layer 1111 and the inner annular solder resist layer 1112 can precisely control the placement position of the solder 16 to produce a thin vacuum heat insulating sheet 1 with a good yield.
  • the support structure 14 is formed under normal pressure and is not affected by the temperature of the solder and softens.
  • the support structure 14 can still support the first sheet-like structure 11 and the second sheet-like structure, so as to avoid the gap space of the thin vacuum heat insulating sheet 1 being drawn to a vacuum, the first sheet-like structure 11 and the second sheet-like structure Inward deformation and collapse.
  • the thermal conductivity of the support structure 14 is lower than the thermal conductivity of the solder 16 after cooling, and the hardness of the support structure 14 is higher than the hardness of the solder 16 after cooling.
  • the gap space 15 is under vacuum, the gas pressure of the gap space 15 is less than the outside atmospheric pressure, and the first sheet structure 11 and the second sheet structure 12 will be squeezed by the external pressure to the gap space The direction of 15 is deformed. Therefore, the support structure 14 formed by the heating of the composite colloid under pressure can maintain the distance between the first sheet structure 11 and the second sheet structure 12 at both ends without causing deformation and collapse.
  • both ends of the support structure 14 will contact the first sheet-like structure 11 and the second sheet-like structure 12, respectively, when the thermal conductivity of the support structure 14 is lower than that of the solder 16, the first sheet-like structure can be reduced
  • the heat conduction effect of the support structure 14 between the structure 11 and the second sheet structure 12 ensures the effect of heat resistance.
  • the gap space 15 is under vacuum, the farther away from the solder 16, the greater the pressure from the outside. Therefore, the hardness of the support structure 14 is higher than the hardness of the solder 16 after cooling to avoid the first sheet structure 11 and the second sheet structure 12 are deformed.
  • each support column in the support structure 14 supports the first sheet-like structure 11 and the second sheet-like structure 12, the volume is smaller, and the solder 16 needs to bear greater pressure, so the hardness of the support structure 14 must be high The hardness of the solder 16 after cooling to maintain the support function.
  • the solder 16 is arranged around the second surface 122 of the second sheet structure 12 and the second sheet structure 12 In the step of forming a gap space 15 between the first sheet structure 11 and the second sheet structure 12, the second surface 122 of the second sheet structure 12 is disposed on the first surface 111 of the first sheet structure 11 so that A gap space 15 is formed between the two sheet structures 12 and the first sheet structure 11 by the support structure 14.
  • the solder 16 solders the first sheet structure 11 and the second sheet structure 12 to each other, the solder 16 can be arranged around the first surface 111 of the first sheet structure 11 except for In this specific embodiment, the solder 16 can also be arranged on the second surface 122 of the second sheet structure 12.
  • the functions of the related units in this specific embodiment are substantially the same as the corresponding units described above, and will not be repeated here.
  • the method of this specific embodiment can simultaneously solidify the support structure 14 and arrange the solder 16, which can shorten the manufacturing time of the thin vacuum insulation sheet 1.
  • the thickness of the thin vacuum insulation sheet 1 is less than 1 mm, and the height of the gap space is less than 0.5 mm.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a thin vacuum insulation sheet with a supporting structure according to another specific embodiment of the present invention.
  • the present invention also provides a method for manufacturing a thin vacuum insulation sheet with a supporting structure, which includes the following steps: mixing fiber materials and resin to become a composite material colloid (S1'); arranging composite The material colloid is on the first surface of the first sheet structure (S2'); the first sheet structure is pressurized and heated to cure the composite colloid on the first surface to form a support structure (S3'); in a vacuum environment, The second sheet structure is provided on the first surface of the first sheet structure so that a gap space (S4') is formed between the second sheet structure and the first sheet structure; and the first sheet structure and the first Two-piece structure to form a thin vacuum insulation sheet (S5').
  • the gap space formed by the first sheet structure, the second sheet structure and the support structure is also in a vacuum state
  • the sealed space is also a vacuum space to achieve the effect of heat resistance.
  • the present invention provides a method for manufacturing a thin vacuum insulation sheet with a supporting structure, which can effectively isolate heat conduction and heat convection between two insulation sheets, and
  • the supporting structure makes the two insulation sheets not deformed and collapsed due to the air pressure, so as to effectively perform the function of vacuum insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Thermal Insulation (AREA)

Abstract

一种制作具有支撑结构的薄型真空隔热片(1)的方法,包含以下步骤:混合纤维材料与树脂以形成复合材料胶体(13);布置复合材料胶体(13)于第一片状结构(11)的第一表面(111);加压并加热第一片状结构(11)使复合材料胶体(13)于第一表面(111)固化形成支撑结构(14);将第二片状结构(12)设置于第一片状结构(11)的第一表面(111)上,使其之间形成间隙空间(15);焊接第一片状结构(11)及第二片状结构(12);抽出间隙空间(15)的空气并密封间隙空间(15)周围以形成薄型真空隔热片(1)。

Description

一种制作具有支撑结构的薄型真空隔热片的方法 技术领域
本发明系关于一种制作薄型真空隔热片的方法,特别地,关于一种制作具有支撑结构的薄型真空隔热片的方法。
背景技术
电子及手持通讯装置产品的发展趋势不断地朝向薄型化与高功能化,人们对装置内微处理器(Microprocessor)运算速度及功能的要求也越来越高。微处理器是电子及通讯产品的核心元件,在高速运算下容易产生热而成为电子装置的主要发热元件,造成局部性的处理热点(Hot Spot)。倘若没有良好热管理方案及散热系统,往往造成微处理器过热而无法发挥出应有的功能,甚至影响到整个电子装置系统的寿命及可靠度。因此,电子产品需要优良的散热设计,尤其像智能手机(Smartphone)及平板电脑(Tablet PC)这种超薄的电子装置更需要有优良的热管理能力。目前电子及通讯产品处理热点的解热及散热的有效方案是将石墨片(Graphitte sheet)或扁平微热导管(Flatten Micro Heat Pipe)或均温板(Vapor Chamber)的一面接触发热源而另一面接触该电子装置的机殻,希望能以较有效的方式将微处理器所产生的高密度热量快速传导并分布至机壳并藉此将热辐射至空气中。
然而由于某些电子或通讯产品,例如智慧型手机,产品设计的非常的轻薄,微处理器和机殻之间容许安置散热元件的厚度空间往往小于1mm。因此在热源区散热元件的另外一面将直接地热接触机殻,热点产生的高温亦很容易直接传导到机殻而造成机殻表面的热点温度过高。因此,为了避免机殻表面温度过高而需要在热点区的机殻及散热元件部分区域之间安置一层隔热片以阻絶热流的传导。同时,在电路板上发热元件与其它对热较为敏感的电子或光电元件间亦有需要用一层隔热片来做适当的隔离。因此,轻薄短小的电子及通讯装置除了要有有效的散热设计外,如何在装置局部的位置的有限的厚度及空间中实现高效率地隔热,亦成为亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种制作具有支撑结构的薄型真空隔热片的方法,其能有效克服现有技术的缺陷,于有限的厚度空间中有效地阻隔热能。
为实现上述目的,本发明公开了一种制作具有支撑结构的薄型真空隔热片的方法,其特征在于包含有如下步骤:
混合一纤维材料与一树脂以成为一复合材料胶体;
布置该复合材料胶体于一第一片状结构的一第一表面;
加压并加热该第一片状结构以使该复合材料胶体于该第一表面上固化形成一支撑结构;
将一第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成一间隙空间;
焊接该第一片状结构以及该第二片状结构;以及
抽出该间隙空间的空气并且密封该间隙空间周围以形成一薄型真空隔热片。
其中:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤,进一步包含:
将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间藉由该支撑结构形成该间隙空间,并制作一导管连通该间隙空间;
且抽出该间隙空间的空气并且密封该间隙空间以形成该薄型真空隔热片的步骤,进一步包含:
藉由该导管抽出该间隙空间的空气,接着阻断并密封该导管以形成该薄型真空隔热片。
其中:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤之前,进一步包含有一步骤:
环绕布置一焊料于该第一表面的周围;
且焊接该第一片状结构以及该第二片状结构的步骤进一步包含:
加热该焊料至该焊料的熔点后冷却该焊料,以气密焊接该第一片状结构以及该第二片状结构。
其中:该第一片状结构的该第一表面具有一外环形阻焊层和一内环形阻焊层,该外环形阻焊层环绕于该内环形阻焊层的外侧;
其中,于布置该复合材料胶体于该第一片状结构的该第一表面的步骤中,该复合材料胶体系布置于该第一表面的该内环形阻焊层的内侧;以及
于环绕布置该焊料于该第一表面的周围的步骤,进一步包含环绕布置该焊料于该第一表面的该外环形阻焊层与该内环形阻焊层之间。
其中:加热该焊料至该焊料的熔点后冷却该焊料,以气密焊接该第一片状结构以及该第二片状结构的步骤中,该支撑结构的导热系数低于该焊料冷却后的导 热系数,且该支撑结构的硬度高于该焊料冷却后的硬度。
其中:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤之前,进一步包含有一步骤:
环绕布置一焊料于该第二片状结构的一第二表面的周围;
且将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤中,进一步包含:
将该第二片状结构的该第二表面设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间藉由该支撑结构形成该间隙空间。
且焊接该第一片状结构以及该第二片状结构的步骤进一步包含:
加热该焊料并冷却以焊接该第一片状结构以及该第二片状结构。
其中:布置该复合材料胶体于该第一片状结构的该第一表面的步骤中,进一步包含利用钢板印刷或是点胶的方式布置该复合材料胶体于该第一片状结构的该第一表面。
其中:混合该纤维材料与该树脂成为该复合材料胶体的步骤中,该纤维材料为玻璃纤维材料。
其中:该薄型真空隔热片的厚度小于1mm,该间隙空间的高度小于0.5mm。
还公开了一种制作具有支撑结构的薄型真空隔热片的方法,其特征在于包含有如下步骤:
混合一纤维材料与一树脂以成为一复合材料胶体;
布置该复合材料胶体于一第一片状结构的一第一表面;
加压并加热该第一片状结构以使该复合材料胶体于该第一表面上固化形成一支撑结构;
在一真空环境中将一第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成一间隙空间;以及
加热该焊料并冷却以气密焊接该第一片状结构以及该第二片状结构以形成一薄型真空隔热片。
综上所述,本发明提供了一种制作具有支撑结构的薄型真空隔热片的方法,能够有效地隔绝两隔热片之间的热传导及热对流,并且,藉由两隔热片之间的支撑结构使得两隔热片不会因气压而产生变形及塌陷,以有效地进行隔热的功能。
附图说明
图1a系绘示根据本发明的一具体实施例的薄型真空隔热片的外观示意图。
图1b系绘示根据图1a中线段A-A的剖视图。
图2系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。
图3a至3c系绘示根据本发明的一具体实施例的薄型真空隔热片的制程示意图。
图4系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。
图5a系绘示根据本发明的一具体实施例的包含导管的薄型真空隔热片的简易结构示意图。
图5b系绘示根据图5a中线段B-B的剖视图。
图6系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。
图7a系绘示根据本发明的一具体实施例的薄型真空隔热片的简易结构示意图。
图7b系绘示根据图7a中线段C-C的外环形阻焊层及内环形阻焊层的剖视图。
图7c系绘示根据图7a中线段C-C的剖视图。
图8系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。
图9系绘示根据本发明的另一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以具体实施例并参照所附图式进行详述与讨论。值得注意的是,这些具体实施例仅为本发明代表性的具体实施例,其中所举例的特定方法、装置、条件、材质等并非用以限定本发明或对应的具体实施例。又,图中各装置仅系用于表达其相对位置且未按其实际比例绘述,合先叙明。
在本发明的描述中,需要理解的是,术语“纵向、横向、上、下、前、后、左、右、顶、底、内、外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示所述的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参考图1a、图1b、图2以及图3a至3c。图1a系绘示根据本发明的一具体实施例的薄型真空隔热片1的简易结构示意图。图1b系绘示根据图1a中线段A-A的剖视图。图2系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。图3a至3c系绘示根据本发明的一具体实施例的薄 型真空隔热片1的制程示意图。本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法,其包含以下步骤:混合纤维材料与树脂以成为复合材料胶体13(S1);布置复合材料胶体13于第一片状结构11的第一表面111(S2);加压并加热第一片状结构11以使复合材料胶体13于第一表面111上固化形成支撑结构14(S3);将第二片状结构12设置于第一片状结构11的第一表面111上,以使第二片状结构12以及第一片状结构11之间形成间隙空间15(S4);焊接第一片状结构11以及第二片状结构12(S5);以及抽出间隙空间15的空气并且密封间隙空间15周围以形成薄型真空隔热片1(S6)。
于实务中,本发明使用的纤维材料为玻璃纤维,但不限于此,而树脂可为环氧树脂。在混合纤维材料以及树脂后形成的复合材料胶体13中,亦可包含固化剂以及有机溶剂,其中,固化剂可使复合材料胶体13容易固化,而有机溶剂能够增加复合材料胶体13的流动性以容易地布置复合材料胶体13于第一片状结构11的第一表面111。而布置复合材料胶体13于第一片状结构11时,系将复合材料胶体13布置于第一表面111之上,其中,布置方式可为钢板印刷或点胶的方式使复合材料胶体13在加压和加热的过程中能够平均地分布于第一片状结构11。当加压并加热含有复合材料胶体13的第一片状结构11时,复合材料胶体13中的固化剂经由固化后能够固定于第一片状结构11的第一表面111之上。复合材料胶体13经加热加压后形成支撑结构14。进一步地,当第二片状结构12设置于第一片状结构11的第一表面111上时,第一片状结构11、第二片状结构12与支撑结构14之间形成间隙空间15。第一片状结构11与第二片状结构12可为相同材料的金属,例如铜片或表面镀有可焊材料层的不锈钢片。接着,使用焊料16焊接第一片状结构11的第一表面111以及第二片状结构12的第二表面122的周围,再抽出间隙空间的空气。此时,第一片状结构11和第二片状结构12之间为密封真空的空间而形成薄型真空隔热片1。由于在真空的情况下,热传导和热对流的效率非常差,因此,第一片状结构11和第二片状结构12之间具有很好的热阻隔能力,也就是说,薄型真空隔热片1能够有效的隔绝Z轴方向的热能。在本具体实施例中,薄型真空隔热片1的排列方式如图1b及图3c所示,自下至上的排列方式为第一片状结构11、第一片状结构11的第一表面111、焊料16及支撑结构14、第二片状结构12的第二表面122、第二片状结构12,而后续的实施例皆以此排列方式进行描述。
请参考图3c、图4、图5a及图5b。图4系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。图5a系绘示根据本发明的一具体实施例的包含导管17的薄型真空隔热片1的简易结构示意图。图5b系绘示根据图5a中线段B-B的剖视图。其中,在第一片状结构11以及第二片状结构12之间形成间隙空间15时,进一步地,制作一导管17连通间隙空间(S41),并且 藉由导管17抽出间隙空间15的空气后,阻断导管17以形成薄型真空隔热片1(S61)。于实务中,导管17的材质为与第一片状结构11及第二片状结构12相同的金属。导管17设置于第一片状结构11以及第二片状结构12之间,而导管17的第一端171位于间隙空间15中,相对于第一端171的第二端172位于外界环境。当第一片状结构11以及第二片状结构12经由焊接形成密封空间后,从导管17的第二端172将间隙空间15中的空气抽出,待间隙空间15被抽至真空后,可使用焊接或熔接的方法密封导管17的第二端172以避免外界的空气再次通过导管17进入间隙空间15。更进一步地,可先压扁导管17的第二端172,接着再截断至适当的长度。因此,藉由导管17将间隙空间15抽至真空以达成第一片状结构11以及第二片状结构12之间的阻热效果。
请参考图3c及图6。图6绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。其中,在焊接第一片状结构11以及第二片状结构12之前,焊料16环绕布置于第一片状结构11的第一表面111周围(S42);于焊接时,加热焊料16至焊料熔点后冷却以气密焊接第一片状结构11以及第二片状结构12(S51)。于实务中,焊料16可为一焊锡材料,而焊料16环绕与复合材料胶体布置于第一片状结构11的第一表面111上。接着将第二片状结构12设置于第一片状结构11上并且加热至焊料熔点,此时,焊料16会熔解进而附着于第一片状结构11的第一表面111以及第二片状结构12的第二表面122。当焊料16冷却后,焊料16即焊接第一片状结构11以及第二片状结构12形成间隙空间15中的空气和外界空气无法互相连通的密封空间。
请再次参考图3c与图5b。于一具体实施例中,首先,环绕布置焊料16于第一片状结构11的第一表面111上,接着再设置导管17于焊料16上,最后,设置第二片状结构12于第一片状结构11的第一表面111之上后再加热焊料16进行焊接。于另一具体实施例中,先设置导管17于第一片状结构11,之后再铺设焊料16于第一片状结构11的第一表面111上,此时,部份焊料16会布置于导管17上。之后,设置第二片状结构12于第一片状结构11的第一表面111之上后再加热焊料16进行焊接。于另一具体实施例中,环绕布置焊料16于第一片状结构11的第一表面111上,接着,设置第二片状结构12于第一片状结构11上后再插入导管17,此时,导管17位于焊料中。于实务中,无论导管17在布置焊料16之前或之后置于第一片状结构11,当焊料16加热焊接第一片状结构11及第二片状结构12后,皆能完全将导管焊接于第一片状结构11及第二片状结构12之间。因此,待导管17将间隙空间15内的空气抽至真空并将导管截断或熔接后,仍能使第一片状结构11及第二片状结构12之间成为气密空间。
请参考图7a、图7b、图7c及图8。图7a系绘示根据本发明的一具体实施例的 薄型真空隔热片1的简易结构示意图。图7b系绘示根据图7a中线段C-C的外环形阻焊层1111及内环形阻焊层1112的剖视图。图7c系绘示根据图7a中线段C-C的剖视图。图8系绘示根据本发明的一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。在一具体实施例中,第一片状结构11的第一表面111具有外环形阻焊层1111和内环形阻焊层1112,且外环形阻焊层1111绕于内环形阻焊层1112的外侧。支撑结构布置于第一表面111的内环形阻焊层1112的内侧(S21),而焊料16环绕布置于第一表面111的外环形阻焊层1111与内环形阻焊层1112之间(S43)。于实务中,由于焊料16经由加热焊接后,无法精确地控制布置的范围而可能造成缺料或溢料,可能造成空隙或缺口而无法形成封密空间,进而无法达到真空状态影响阻热效果。因此,藉由外环形阻焊层1111与内环形阻焊层1112可以精确控制焊料16的布置位置以生产出良率较好的薄型真空隔热片1。此外,由于玻璃纤维复合材料的特性,在一般压力下支撑结构14形成后不受焊接的温度影响而软化,因此,当焊料16进行加热以焊接第一片状结构11以及第二片状结构后,支撑结构14仍能够支撑第一片状结构11以及第二片状结构,以避免薄型真空隔热片1之间隙空间被抽取至真空后,第一片状结构11及第二片状结构的向内变形而塌陷。
在一具体实施例中,支撑结构14的导热系数低于焊料16冷却后的导热系数,且支撑结构14的硬度高于焊料16冷却后的硬度。于实务中,由于间隙空间15在真空的情况下,间隙空间15的气体压力小于外界的大气压力,第一片状结构11以及第二片状结构12会受到外界压力的挤压而向间隙空间15的方向变形,因此,复合材料胶体经加压加热所形成的支撑结构14,其两端可维持第一片状结构11与和二片状结构12于之间的距离而不造成变形塌陷。由于支撑结构14的两端分别皆会接触到第一片状结构11及第二片状结构12,因此,当支撑结构14的导热系数低于焊料16的导热系数时,可以降低第一片状结构11与第二片状结构12之间的支撑结构14的热传导效应以确保阻热的效果。而当间隙空间15在真空的情况下时,越远离焊料16的地方,其受外界的压力也会越大,因此支撑结构14的硬度高于焊料16冷却后的硬度以避免第一片状结构11与第二片状结构12变形。由于支撑结构14中每一支撑柱支撑于第一片状结构11及第二片状结构12的体积较小,相较于焊料16需承受较大的压力,因此,支撑结构14的硬度须高于焊料16冷却后的硬度以维持支撑的功能。
在一具体实施例中,在焊接第一片状结构11以及第二片状结构12之前,焊料16环绕布置于第二片状结构12的第二表面122周围,而在第二片状结构12及第一片状结构11之间形成间隙空间15的步骤中,进一步地,将第二片状结构12的第二表面122设置于第一片状结构11的第一表面111上,以使第二片状结构12及第一片 状结构11之间藉由支撑结构14形成间隙空间15。于实务中,由于焊接时,焊料16将第一片状结构11及第二片状结构12互相焊接,因此,焊料16除了可环绕布置于第一片状结构11的第一表面上111之外,在本具体实施例中,焊料16亦可布置在第二片状结构12的第二表面122上。而本具体实施例的相关单元的功能与前述相对应的单元大致相同,于此不再赘述。本具体实施例的方式可同时进行固化支撑结构14与布置焊料16,可缩短薄型真空隔热片1的制作时间。
由于现今的手机或平板电脑的体积与厚度皆追求轻薄,因此,手机或平板电脑的内部元件的体积皆受到限制之外,也需要一定的散热与隔热功能。在一具体实施例中,其中薄型真空隔热片1的厚度小于1mm,间隙空间的高度小于0.5mm。
请参考图9。图9系绘示根据本发明的另一具体实施例的一种制作具有支撑结构的薄型真空隔热片的方法的步骤流程图。在另一具体实施例中,本发明亦提供了一种制作具有支撑结构的薄型真空隔热片的方法,其包含以下步骤:混合纤维材料与树脂以成为复合材料胶体(S1’);布置复合材料胶体于第一片状结构的第一表面(S2’);加压并加热第一片状结构以使复合材料胶体于第一表面上固化形成支撑结构(S3’);在真空环境中将第二片结构设置第一片状结构的第一表面上,以使第二片状结构以及第一片状结构之间形成间隙空间(S4’);以及气密焊接第一片状结构以及第二片状结构以形成薄型真空隔热片(S5’)。在实务中,由于在真空环境中将第二片结构设置第一片状结构的第一表面上,因此,第一片状结构、第二片状结构及支撑结构形成之间隙空间亦为真空状态,并且当气密焊接后形成薄型真空隔热片时,其密封空间也为真空的空间而达到阻热的效果。本具体实施例的相关单元的功能以及于制作步骤S1至S3与前述相对应的单元及步骤大致相同,于此不再赘述。
综上所述,本发明提供了一种制作具有支撑结构的薄型真空隔热片的方法,能够有效地隔绝两隔热片之间的热传导及热对流,并且,藉由两隔热片之间的支撑结构使得两隔热片不会因气压而产生变形塌陷,以有效地进行真空隔热的功能。
藉由以上较佳具体实施例的详述,系希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。

Claims (10)

  1. 一种制作具有支撑结构的薄型真空隔热片的方法,其特征在于包含有如下步骤:
    混合一纤维材料与一树脂以成为一复合材料胶体;
    布置该复合材料胶体于一第一片状结构的一第一表面;
    加压并加热该第一片状结构以使该复合材料胶体于该第一表面上固化形成一支撑结构;
    将一第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成一间隙空间;
    焊接该第一片状结构以及该第二片状结构;以及
    抽出该间隙空间的空气并且密封该间隙空间周围以形成一薄型真空隔热片。
  2. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤,进一步包含:
    将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间藉由该支撑结构形成该间隙空间,并制作一导管连通该间隙空间;
    且抽出该间隙空间的空气并且密封该间隙空间以形成该薄型真空隔热片的步骤,进一步包含:
    藉由该导管抽出该间隙空间的空气,接着阻断并密封该导管以形成该薄型真空隔热片。
  3. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤之前,进一步包含有一步骤:
    环绕布置一焊料于该第一表面的周围;
    且焊接该第一片状结构以及该第二片状结构的步骤进一步包含:
    加热该焊料至该焊料的熔点后冷却该焊料,以气密焊接该第一片状结构以及该第二片状结构。
  4. 如权利要求3所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:该第一片状结构的该第一表面具有一外环形阻焊层和一内环形阻焊层,该外环形阻焊层环绕于该内环形阻焊层的外侧;
    其中,于布置该复合材料胶体于该第一片状结构的该第一表面的步骤中,该复合材料胶体系布置于该第一表面的该内环形阻焊层的内侧;以及
    于环绕布置该焊料于该第一表面的周围的步骤,进一步包含环绕布置该焊料于该第一表面的该外环形阻焊层与该内环形阻焊层之间。
  5. 如权利要求3所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:加热该焊料至该焊料的熔点后冷却该焊料,以气密焊接该第一片状结构以及该第二片状结构的步骤中,该支撑结构的导热系数低于该焊料冷却后的导热系数,且该支撑结构的硬度高于该焊料冷却后的硬度。
  6. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤之前,进一步包含有一步骤:
    环绕布置一焊料于该第二片状结构的一第二表面的周围;
    且将该第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成该间隙空间的步骤中,进一步包含:
    将该第二片状结构的该第二表面设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间藉由该支撑结构形成该间隙空间。
    且焊接该第一片状结构以及该第二片状结构的步骤进一步包含:
    加热该焊料并冷却以焊接该第一片状结构以及该第二片状结构。
  7. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:布置该复合材料胶体于该第一片状结构的该第一表面的步骤中,进一步包含利用钢板印刷或是点胶的方式布置该复合材料胶体于该第一片状结构的该第一表面。
  8. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:混合该纤维材料与该树脂成为该复合材料胶体的步骤中,该纤维材料为玻璃纤维材料。
  9. 如权利要求1所述的制作具有支撑结构的薄型真空隔热片的方法,其特征在于:该薄型真空隔热片的厚度小于1mm,该间隙空间的高度小于0.5mm。
  10. 一种制作具有支撑结构的薄型真空隔热片的方法,其特征在于包含有如下步骤:
    混合一纤维材料与一树脂以成为一复合材料胶体;
    布置该复合材料胶体于一第一片状结构的一第一表面;
    加压并加热该第一片状结构以使该复合材料胶体于该第一表面上固化形成一支撑结构;
    在一真空环境中将一第二片状结构设置于该第一片状结构的该第一表面上,以使该第二片状结构以及该第一片状结构之间形成一间隙空间;以及
    加热该焊料并冷却以气密焊接该第一片状结构以及该第二片状结构以形成一薄型真空隔热片。
PCT/CN2019/130281 2018-12-19 2019-12-31 一种制作具有支撑结构的薄型真空隔热片的方法 WO2020125808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811551939.1 2018-12-19
CN201811551939.1A CN111336346A (zh) 2018-12-19 2018-12-19 一种制作具有支撑结构的薄型真空隔热片的方法

Publications (1)

Publication Number Publication Date
WO2020125808A1 true WO2020125808A1 (zh) 2020-06-25

Family

ID=71100227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130281 WO2020125808A1 (zh) 2018-12-19 2019-12-31 一种制作具有支撑结构的薄型真空隔热片的方法

Country Status (2)

Country Link
CN (1) CN111336346A (zh)
WO (1) WO2020125808A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738479B (zh) * 2020-08-28 2021-09-01 大陸商廣州力及熱管理科技有限公司 具有一固化複合材料結構之片狀金屬元件及其製造方法
CN114076534A (zh) * 2020-08-14 2022-02-22 广州力及热管理科技有限公司 一种大功率均温板结构的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029878A (ja) * 2001-07-12 2003-01-31 Matsushita Refrig Co Ltd ノート型パソコン
CN104243634A (zh) * 2013-06-13 2014-12-24 苏州沛德导热材料有限公司 一种手机后壳
TWM561392U (zh) * 2018-03-15 2018-06-01 華碩電腦股份有限公司 真空斷熱片
CN108207097A (zh) * 2018-02-09 2018-06-26 中兴通讯股份有限公司 一种隔热装置和电子产品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146993A (ja) * 1983-02-10 1984-08-23 松下電器産業株式会社 断熱構造体の製造方法
US4726974A (en) * 1986-10-08 1988-02-23 Union Carbide Corporation Vacuum insulation panel
JP4907480B2 (ja) * 2007-09-20 2012-03-28 シャープ株式会社 真空断熱材
WO2013153813A1 (ja) * 2012-04-11 2013-10-17 パナソニック株式会社 真空断熱材、並びに、これを備える冷凍冷蔵庫および住宅壁
CN202660158U (zh) * 2012-05-28 2013-01-09 徐林波 用金属薄板真空封装的板材及其制品
EP3150897B8 (en) * 2014-05-30 2018-10-31 AGC Inc. Vacuum heat-insulating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029878A (ja) * 2001-07-12 2003-01-31 Matsushita Refrig Co Ltd ノート型パソコン
CN104243634A (zh) * 2013-06-13 2014-12-24 苏州沛德导热材料有限公司 一种手机后壳
CN108207097A (zh) * 2018-02-09 2018-06-26 中兴通讯股份有限公司 一种隔热装置和电子产品
TWM561392U (zh) * 2018-03-15 2018-06-01 華碩電腦股份有限公司 真空斷熱片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076534A (zh) * 2020-08-14 2022-02-22 广州力及热管理科技有限公司 一种大功率均温板结构的制造方法
TWI738479B (zh) * 2020-08-28 2021-09-01 大陸商廣州力及熱管理科技有限公司 具有一固化複合材料結構之片狀金屬元件及其製造方法

Also Published As

Publication number Publication date
CN111336346A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US9472777B2 (en) Packaging method and display device
WO2020125808A1 (zh) 一种制作具有支撑结构的薄型真空隔热片的方法
JP6296687B2 (ja) 電子部品、電子モジュールおよびこれらの製造方法。
JP6214337B2 (ja) 電子部品、電子機器および電子部品の製造方法。
TW201248110A (en) Electronic device
JP2012209133A (ja) 気密容器、画像表示装置及びこれらの製造方法
WO2021017748A1 (zh) 电子设备及电子设备的组装方法
US20180135922A1 (en) Heat dissipation structural member having good comprehensive performance and preparation process thereof
JP2015035493A (ja) 実装装置
JP5608545B2 (ja) 熱圧着ヘッド、実装装置及び実装方法
US20130092353A1 (en) Vapor chamber structure and method of manufacturing same
CN112103252B (zh) 一种基于金属微流道的制冷型ltcc微系统及其制备方法
JP7059237B2 (ja) 電子部品、電子モジュールおよびこれらの製造方法
TW202126948A (zh) 一種製作具有支撐結構之薄型真空隔熱片之方法
JP4380442B2 (ja) 半導体装置の製造方法
CN110864193B (zh) 薄型真空隔热片的制作方法
KR102621345B1 (ko) 카메라의 이미지 센서용 기판 구조체
JP2011077075A (ja) 発熱性電子素子内蔵のモジュール基板及びその製造方法
CN108598283B (zh) 显示面板母板、显示面板和显示终端
JP2001201727A (ja) 熱圧着装置および熱圧着方法
TWM573670U (zh) Glass laser packaging equipment
TWI786469B (zh) 薄型熱管理組件
WO2014075251A1 (zh) 一种印刷电路板、一种部件及一种电路组件
US20230067112A1 (en) Vapor chamber structure
CN113498298A (zh) 超薄型真空阻热元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900027

Country of ref document: EP

Kind code of ref document: A1