WO2020125019A1 - 一种基于柔性导轨的机器人焊接装置及焊接方法 - Google Patents

一种基于柔性导轨的机器人焊接装置及焊接方法 Download PDF

Info

Publication number
WO2020125019A1
WO2020125019A1 PCT/CN2019/098980 CN2019098980W WO2020125019A1 WO 2020125019 A1 WO2020125019 A1 WO 2020125019A1 CN 2019098980 W CN2019098980 W CN 2019098980W WO 2020125019 A1 WO2020125019 A1 WO 2020125019A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
robot
guide rail
control box
flexible
Prior art date
Application number
PCT/CN2019/098980
Other languages
English (en)
French (fr)
Inventor
陈振明
陈韬
栾公峰
于吉圣
周军红
余佳亮
邱明辉
费新华
李大壮
高如国
唐宁
陈康
Original Assignee
中建钢构有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建钢构有限公司 filed Critical 中建钢构有限公司
Priority to US17/416,673 priority Critical patent/US20220072666A1/en
Publication of WO2020125019A1 publication Critical patent/WO2020125019A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0217Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being fixed to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0247Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/027Carriages for supporting the welding or cutting element for making circular cuts or welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0276Carriages for supporting the welding or cutting element for working on or in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0282Carriages forming part of a welding unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1087Arc welding using remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the invention patent relates to a robot welding device and an automatic welding method based on a flexible guide rail in a building steel structure, which is mainly based on the mini type robot applied to the automatic welding of arc members, and the welding machine can be monitored through a remote control system control. It belongs to the field of steel structure manufacturing.
  • the object of the present invention is to provide a robot welding device and welding method based on flexibility to guide rails, using a mini arc welding robot, using its own automatic detection, identification of grooves, generating welding parameters, and special flexible tracks to achieve arc Automatic welding of shaped components, and remote control of welding equipment through the computer to achieve the adjustment of welding parameters.
  • a robot welding device based on a flexible guide rail, including a control box: pre-store various welding processes, and generate welding parameters according to the actual welding position and groove shape; wire feed mechanism: Welding wire to the welding torch; flexible guide rail: using its own flexibility and adsorbed on the welding member; welding robot: including a robot body and a welding gun, the robot body is movably arranged on the flexible guide rail and can move along the flexible guide rail, the welding gun is provided on the robot The body is controlled by the robot body to weld the welding components; the teach pendant is connected to the welding robot and the control box signal respectively, according to the instructions of the control box to control the walking path and working position of the welding robot, adjust the welding gun swing and welding operation; remote control End: Connect to the control box signal, remotely monitor and set the welding parameters generated or collected by the control box, and connect the welding robot's data collector signal to the welding parameters collected by the data collector during the welding process Remote monitoring; welding power supply: provide power supply.
  • the wire feeding mechanism is connected to a gas cylinder that provides shielding gas for the welding wire.
  • the wire feeding mechanism includes a wire feeding frame, which is provided with a wire wheel, a wire tightening device, and an adjusting knob, which can continuously feed the welding wire and regulate the feeding of the welding wire.
  • the flexible guide rail is provided with a plurality of magnetic adsorption devices, which are located on the same side of the flexible guide rail.
  • Any magnetic adsorption device includes a connecting plate, upper and lower magnetic adsorption blocks, and the outer side of the connecting plate is fixed on the flexible guide rail On the inner side, upper and lower magnetic adsorption blocks are provided, and the flexible guide rail is adsorbed on the welding member through the upper and lower magnetic adsorption blocks of each magnetic adsorption device.
  • the upper and lower magnetic adsorption blocks are provided with fixed knobs, and the upper and lower magnetic adsorption blocks are fixed on the side of the flexible track by the fixed knobs.
  • the welding robot includes a supporting structure, a welding torch clamping device, and a rail trolley.
  • the supporting structure is operated by the welding torch clamping device to operate the horizontal and vertical movement of the welding gun.
  • the supporting structure is then implemented by the rail trolley to achieve flexibility Moving on the track.
  • the welding gun clamping device includes a lateral adjustment structure and a vertical adjustment structure and a swing device provided on the vertical adjustment structure, the vertical adjustment structure is provided on an output end of the lateral adjustment structure, and the welding gun is provided on the swing device To achieve horizontal and vertical movement and angle adjustment of the welding gun.
  • the rail trolley includes a trolley body, and a support structure is supported on the trolley body. The trolley body is provided with a driving wheel and a transmission wheel.
  • the transmission wheel is provided on the trolley body through a roller connecting rod, and the driving wheel and the transmission
  • the wheels are respectively arranged on the inner and outer sides of the flexible track, the driving wheel is in rolling cooperation with the inner side of the flexible track, the driving wheel is in rolling cooperation with the outer side of the flexible track, the driving wheel is driven to roll along the inner side of the flexible track, and the driving wheel is driven along Roll on the outside of the flexible track.
  • Another technical solution of the present application is a robot welding method based on a flexible guide rail, the implementation of the method is based on the above welding device, and the main steps include
  • Step 1 Fix the welding gun holding device of the detachable welding robot to the supporting structure, and then install the supporting structure and the rail trolley together;
  • Step 2 Connect the welding robot to the teaching pendant, connect the teaching pendant to the control box, connect the control box, wire feed mechanism, welding robot to the welding power supply, and connect the welding wire of the wire feeding mechanism to the welding torch of the welding robot. Can be used normally;
  • Step 3 Fix the flexible rail to the side of the welding member by the magnetic adsorption device, and adjust the knob to fix the magnetic adsorption device to the side of the welding member, so that the extension direction of the flexible rail matches the shape of the welding member;
  • Step 4 Install the rail trolley on the flexible track, so that the welding robot can slide on the flexible track normally; fix the welding gun to the welding gun clamping device, adjust the welding gun to reach the welding angle;
  • Step 5 According to the actual groove shape of the welded component, the corresponding groove form and welding position are retrieved from the control box. Before the groove detection, the flow of shielding gas, the extension length of the welding wire and the angle of the welding gun are adjusted;
  • Step 6 Start the detection of the shape of the groove; press the start button on the teach pendant to start sensing, and detect the angle of the groove, the plate thickness of the welded member, the root gap, the difference in plate thickness and the welding length; the end of the sensing After that, the welding torch moves to the welding starting point and stands by for welding;
  • Step 7 After the sensing is completed, according to the groove detection data, the control box displays the automatically generated welding parameters, and the welding parameters are monitored through the remote control terminal.
  • the welding is performed through the control box itself or the remote control terminal.
  • the parameters are set; the entire welding process is carried out in accordance with the layer passes and welding parameters set in the control box;
  • Step 8 During the welding process, the data collector equipped with the welding robot is connected to the remote computer to remotely monitor and adjust the welding parameters during the welding process;
  • Step 9 After the welding is completed, exit the program, disassemble the flexible track and the welding robot, and complete the welding of the welding component.
  • Realized intelligent automatic welding of various welding positions (bevel welding, fillet welding) in various welding positions (horizontal welding, horizontal welding, vertical welding) of arc-shaped (box-shaped, H-shaped) members, which can be welded
  • the remote intelligent monitoring technology controls the welding process remotely, realizes the monitoring and remote control of the welding parameters, solves the technical problem that current arc members can only be welded manually, and realizes the intelligent welding of arc members with small cross sections.
  • Welding robot is small and portable, easy to carry, easy to install, easy to operate; can realize automatic teaching and automatic generation of welding parameters; wide range of application, high intelligence, high efficiency and high quality in the entire welding process; with straight track, flexible track can achieve flat
  • the automatic welding of straight and curved members is convenient for popularization and application.
  • FIG. 1 is a structural diagram of a welding method of a mini arc welding robot in an embodiment of the present invention
  • FIG. 2 is a partial schematic view of a mini arc welding robot welding device based on flexible guide rails according to an embodiment of the present invention
  • FIG. 3 is another schematic diagram of another part of a mini arc welding robot welding device based on a flexible guide rail according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a wire feeding mechanism according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of a flexible guide rail according to an embodiment of the present invention.
  • FIG. 6 is a partial schematic view of a flexible guide rail according to an embodiment of the present invention.
  • FIG. 7 is an assembly diagram of a supporting structure and a welding gun clamping device in an embodiment of the present invention.
  • FIG. 8 is an assembly diagram of a support structure and a rail trolley in an embodiment of the present invention.
  • Robot welding device based on flexible guide rails including
  • Control box Various welding processes are stored in advance, and welding parameters are generated according to the actual welding position and groove shape.
  • Wire feed mechanism used to feed the welding wire of the semi-automatic gas shielded welding to the welding torch, specifically including the wire feeder, the wire feeder is provided with a wire wheel 701, a wire tightening device 702, and an adjustment knob 703, in addition is provided for welding wire Protection gas cylinder 10.
  • Flexible guide rail use its own flexibility and adsorb on the welding component, in particular, it can match with the arc-shaped welding component according to its own flexibility characteristics.
  • the flexible guide rail is provided with a number of magnetic adsorption devices 9, the specific number of which is increased by the actual flexible guide rail length Minus, several magnetic adsorption devices are located on the same side of the flexible guide rail 8.
  • Any magnetic adsorption device includes a connecting plate 901, upper and lower magnetic adsorption blocks 902, 903, the outer side of the connecting plate 901 is fixed on the flexible guide rail 8, and the upper and lower magnetic adsorption blocks are provided on the inner side
  • the flexible guide rail is attracted to the welding member through the upper and lower magnetic suction blocks of each magnetic suction device.
  • a fixed knob 904 is provided for the upper and lower magnetic adsorption blocks for positioning the magnetic adsorption blocks.
  • Welding robot including the robot body 3 and the welding gun 4, the robot body 3 is movably arranged on the flexible rail 8 and can move along the flexible rail 8, the welding gun 4 is arranged on the robot body 3, and the robot body 3 controls the welding components
  • the welding robot includes a support structure 301, a welding torch clamping device, and a rail trolley.
  • the support structure 301 operates the horizontal and vertical movement of the welding torch by the welding torch clamping device, and then moves on the flexible rail by the rail trolley.
  • the welding gun clamping device specifically includes a lateral adjustment structure 302 and a vertical adjustment structure 303, wherein the vertical adjustment structure 303 is provided at the output end of the lateral adjustment structure 302, and the welding gun 4 is provided on the swinging device 12 of the vertical adjustment structure 303.
  • the direction adjustment structure 303 and the lateral adjustment structure 302 are a vertically telescopic cylinder and a laterally telescopic cylinder, so as to realize the horizontal and vertical movement of the welding gun, and the swing device 12 is used to adjust the working angle of the welding gun.
  • the rail trolley specifically includes a trolley body 306 on which a support structure 301 is supported.
  • the trolley body 306 is provided with a driving wheel 307 and a transmission wheel 308, and the transmission wheel 308 is provided on the trolley body through a roller connecting rod 309 306, and the driving wheel 307 and the transmission wheel 308 are respectively arranged on the inner and outer sides of the flexible track, the driving wheel 307 is in rolling cooperation with the inner side of the flexible track 8, the driving wheel 308 is in rolling cooperation with the outer side of the flexible track 8, and the driving wheel 307 is connected
  • the driving wheel 307 is driven to roll along the inner side of the flexible track, and at the same time drives the transmission wheel 308 to roll along the outer side of the flexible track.
  • Teach pendant connect with the welding robot and the control box 2 respectively, control the walking path and working position of the welding robot according to the instructions of the control box 2, adjust the welding gun swing and control the welding operation;
  • Remote control terminal connect with the control box signal, remotely monitor the welding parameters generated or collected by the control box and set the welding parameters remotely, connect the signal with the data collector of the welding robot, and connect the data collector during the welding process The collected welding parameters are monitored remotely.
  • Welding power supply provide power supply, using inverter arc welding rectifier, which is more efficient, stable and energy-saving than ordinary thyristor arc welding rectifier.
  • a robot welding method based on a flexible guide rail is completed by the welding device of Embodiment 1, and the steps include
  • Step 1 Fix the welding gun holding device of the detachable welding robot to the supporting structure, and then install the supporting structure and the rail trolley together;
  • Step 2 Connect the welding robot to the teaching pendant, connect the teaching pendant to the control box, connect the control box, wire feed mechanism, welding robot to the welding power supply, connect the welding wire of the wire feeding mechanism to the welding gun of the welding robot, and let all the parts Can be used normally;
  • Step 3 Fix the flexible rail to the side of the welding member by the magnetic adsorption device, and adjust the knob to fix the magnetic adsorption device to the side of the welding member, so that the extension direction of the flexible rail matches the shape of the welding member;
  • Step 4 Install the rail trolley on the flexible track, so that the welding robot can slide on the flexible track normally; fix the welding gun to the welding gun clamping device, adjust the welding gun to reach the welding angle;
  • Step 5 According to the actual groove shape of the welded component, the corresponding groove form and welding position are retrieved from the control box, and one of the robot operation forms of automatic, semi-automatic and manual operation is selected; before the groove detection, Adjust the flow of shielding gas, the extension length of the welding wire and the angle of the welding gun;
  • Step 6 Perform corresponding operations according to different groove detection modes to start the detection of the shape of the groove; press the start button on the teach pendant to start sensing.
  • Step 7 After the sensing is completed, based on the groove detection data, the automatically generated welding parameters will be displayed in the demo box of the control box, and the welding parameters will be monitored through the remote control terminal.
  • the control box itself or The remote control terminal sets the welding parameters; the entire welding process is performed according to the number of passes and welding parameters set in the control box;
  • Step 8 During the welding process, the data collector equipped with the welding robot is connected to the remote computer to remotely monitor and adjust the welding parameters during the welding process;
  • Step 9 After the welding is completed, exit the program, disassemble the flexible track and the welding robot, and disconnect the welding power source from the control box, welding robot, wire feed mechanism, etc. to complete the welding of the welding component.
  • the present invention also includes other embodiments. Any technical solution formed by equivalent transformation or equivalent replacement should fall within the protection scope of the claims of the present invention.

Abstract

一种基于柔性导轨(8)的机器人焊接装置,包括控制箱(2):预存各种焊接工艺,并生成焊接参数;送丝机构(7):向焊枪(4)输送焊丝;柔性导轨(8):利用自身的柔性并吸附在焊接构件上;焊接机器人:包括机器人本体(3)和焊枪(4),机器人本体(3)活动设置在柔性导轨(8)上而能够沿着柔性导轨(8)移动,焊枪(4)设置在机器人本体(3)上由机器人本体(3)控制对焊接构件进行焊接;示教器(6):分别与焊接机器人和控制箱(2)信号连接,根据控制箱(2)的指示控制焊接机器人的行走路径与作业位置,调整焊枪(4)摆动和焊接作业;远程控制端(11):信号连接控制箱(2),对焊接参数进行远程监控和设置,信号连接焊接机器人的数据采集器,对焊接过程中的焊接参数进行远程监控和设置;焊接电源(1)。该装置实现了平直、弧形构件的自动焊接。

Description

一种基于柔性导轨的机器人焊接装置及焊接方法 技术领域
本发明专利涉及建筑钢结构中的一种基于柔性导轨的机器人焊接装置及自动焊接方法,主要是基于mini型机器人应用于弧形构件的的自动焊接,且可通过远程控制系统对焊机实现监测控制。属于钢结构制造领域。
背景技术
焊接技术作为制造业极其重要的一环,直接影响产品的质量、使用性以及生产的成本和效率。随着现代工业的发展,高效化、智能化、数字化将是一直的发展方向,在汽车、电子电器等行业机器人已在广泛应用,但在建筑钢结构制造行业,虽然高效自动焊接设备已在逐渐的应用,但焊接机器人的应用尚在探索阶段,焊接机器人在钢结构行业的应用也必将是以后的发展趋势。
目前,在钢结构制造中,高效气保焊、埋弧焊设备焊接时需借助直轨道完成焊接,对于弧形构件的制作仍需采用人工进行焊接,生产效率不高,且焊缝外观成型对焊工操作水平要求较高,操作难度大。
发明内容
本发明的目的是提供一种基于柔性到导轨的机器人焊接装置及焊接方法,采用mini型弧焊机器人,利用自身的自动检测、识别坡口、生成焊接参数的功能,配合专门的柔性轨道实现弧形构件的自动焊接,且可通过计算机对焊接设备进行远程控制,实现焊接参数的调控。
本发明解决上述问题所采用的技术方案为:一种基于柔性导轨的机器人焊接装置,包括控制箱:预存各种焊接工艺,并根据实际焊接的位置、坡口形状生成焊接参数;送丝机构:向焊枪输送焊丝;柔性导轨:利用自身的柔性并吸附在焊接构件上;焊接机器人:包括机器人本体和焊枪,所述机器人本体活动设置在柔性导轨上而能够沿着柔性导轨移动,焊枪设置在机器人本体上由机器人本体控制对焊接构件进行焊接;示教器:分别与焊接机器人和控制箱信号连接,根据控制箱的指示控制焊接机器人的行走路径与作业位置,调整焊枪摆动和焊接作业;远程控制端:与控制箱信号连接,对控制箱生成或采集的焊接参数进行远程监控和对焊接参数进行远程设置,与焊接机器人的数据采集器 信号连接,对焊接过程中数据采集器采集到的焊接参数进行远程监控;焊接电源:提供电源。
优选地,所述送丝机构连接为焊丝提供保护气体的气瓶。
具体地,所述送丝机构包括送丝架,送丝架上设置有焊丝轮、紧丝装置以及调节旋钮,可持续输送焊丝,并对焊丝的输送进行调控。
具体地,所述柔性导轨上设置有若干磁吸附装置,所述若干磁吸附装置位于柔性导轨的同侧,任一磁吸附装置包括连接板、上下磁吸附块,连接板的外侧固定在柔性导轨上,内侧设置上下磁吸附块,柔性导轨通过每个磁吸附装置的上下磁吸附块吸附在焊接构件上。
优选地,上下磁吸附块上设置有固定旋钮,通过固定旋钮使上下磁吸附块在柔性轨道侧面固定。
具体地,所述焊接机器人包括支撑结构、焊枪夹持装置、轨道台车,所述支撑结构通过焊枪夹持装置操作焊枪的横向、竖向移动,所述支撑结构再通过轨道台车实现在柔性轨道上移动。
进一步地,所述焊枪夹持装置包括横向调节结构和竖向调节结构以及设置在竖向调节结构上的摆动装置,所述竖向调节结构设置在横向调节结构的输出端,焊枪设置在摆动装置上,从而实现焊枪的横向和竖向移动以及角度调节。所述轨道台车包括台车本体,支撑结构支承在该台车本体上,台车本体上设置有驱动轮、传动轮,传动轮通过滚轮连杆设置在台车本体上,且驱动轮和传动轮分别相对布置在柔性轨道的内外两侧,驱动轮与柔性轨道的内侧滚动配合,传动轮与柔性轨道的外侧滚动配合,驱动轮受驱动沿着柔性轨道的内侧面滚动,同时带动传动轮沿着柔性轨道的外侧面滚动。
本申请的另一技术方案为一种基于柔性导轨的机器人焊接方法,该方法的实施是基于上述焊接装置实现的,主要步骤包括
步骤一:将可拆卸的焊接机器人的焊枪夹持装置固定到支撑结构上,再将支撑结构与轨道台车安装在一起;
步骤二:将焊接机器人与示教器连接,将示教器与控制箱连接,控制箱、送丝机构、焊接机器人接通焊接电源,送丝机构的焊丝连接到焊接机器人的焊枪,让所有部件能够正常使用;
步骤三:将柔性轨道通过磁吸附装置固定到焊接构件侧面,调节旋钮使磁吸附装置在焊接构件侧面固定,使柔性轨道的延伸方向与焊接构件造型匹配;
步骤四:将轨道台车装到柔性轨道上,使焊接机器人能够在柔性轨道上正常滑移;将焊枪固定到焊枪夹持装置上,调整焊枪使达到焊接角度;
步骤五:根据焊接构件的实际坡口形状,在控制箱中调取对应的坡口形式及焊接位置,在坡口探测之前,调整好保护气体的流量、焊丝的伸出长度及焊枪角度;
步骤六:开始坡口形状的探测;按下示教器上的开始按钮,传感开始,对坡口角度、焊接构件的板厚、根部间隙、板厚差及焊接长度进行探测;传感结束后,焊枪向焊接开始点移动、待机准备焊接;
步骤七:传感完成后,根据坡口探测数据,控制箱显示自动生成的焊接参数,通过远程控制端对焊接参数进行监测,当需要修改焊接参数时,通过控制箱本身或远程控制端对焊接参数进行设置;整个焊接过程按照控制箱设置的层道次及焊接参数进行焊接;
步骤八:焊接过程中,通过焊接机器人配备的数据采集器与远程计算机进行数据连接,对焊接过程中的焊接参数进行远程监测和调控;
步骤九:焊接完成后,退出程序,拆卸柔性轨道及焊接机器人,完成本次焊接构件的焊接。
本发明的特点在于:
1)利用(mini型)弧焊机器人,结合磁吸附式柔性轨道,实现(弧形)焊接构件焊缝坡口的自动检测、自动焊接;2)本技术方法克服了常规机器人无法实现焊缝两端约300mm长焊接盲区的问题,在焊缝端头可正常摆动,完成通长焊缝的焊接;3)结合焊接智能管理系统,通过数据采集、输送、处理,实现对焊接过程的远程控制,对焊接参数进行监控和远程调控;形成一种基于柔性导轨的、可实现远程智能监控的弧焊机器人自动焊接技术。
与现有技术相比,本发明的优点在于:
实现了弧形(箱型、H型)构件多种焊接位置(平焊、横焊、立焊)各类焊缝(坡口焊缝、角焊缝)形式的智能化自动焊接,可通过焊接远程智能监控技术对焊接过程进行远程控制,实现焊接参数的监控和远程控制,解决目前弧形构件只能人工焊接的技术问题,实现小截面弧形构件的智能化焊接。
焊接机器人小巧便携、易搬运、易安装,易操作;可实现自动示教、自动生成焊接参数;适用范围广,整个焊接过程高智能、高效率、高品质;配合直轨道、柔性轨道可实现平直、弧形构件的自动焊接,便于推广应用。
附图说明
图1为本发明实施例中mini型弧焊机器人焊接方法的结构图;
图2为本发明实施例的基于柔性导轨的mini型弧焊机器人焊接装置的部分示意图;
图3为本发明实施例的基于柔性导轨的mini型弧焊机器人焊接装置的另一部分示意图;
图4为本发明实施例的送丝机构的示意图;
图5为本发明实施例的柔性导轨的示意图;
图6为本发明实施例的柔性导轨的局部示意图;
图7为本发明实施例中支撑结构与焊枪夹持装置的装配图;
图8为本发明实施例中支撑结构与轨道台车的装配图;
图中标记:
1 焊接电源;
2 控制箱;
3 机器人本体;
4 焊枪;
5 线缆;
6 示教器;
7 送丝机构;
8 柔性轨道;
9 磁吸附装置;
10 气瓶;
11 远程控制端。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
基于柔性导轨的机器人焊接装置,包括
(1)控制箱:预存各种焊接工艺,并根据实际焊接的位置、坡口形状等生成焊接参数。
(2)送丝机构:用于向焊枪输送半自动气体保护焊的焊丝,具体包括送丝架,送丝架上设置有焊丝轮701、紧丝装置702以及调节旋钮703,另外配置有为焊丝提供保护气体的气瓶10。
(3)柔性导轨:利用自身的柔性并吸附在焊接构件上,尤其能够根据自身柔性特点与弧形焊接构件匹配,柔性导轨上设置有若干磁吸附装置9,具体数量以实际柔性导轨长度做增减,若干磁吸附装置位于柔性导轨8的同侧,任一磁吸附装置包括连接板901、上下磁吸附块902、903,连接板901的外侧固定在柔性导轨8上,内侧设置上下磁吸附块,柔性导轨通过每个磁吸附装置的上下磁吸附块吸附在焊接构件上。同时为上下磁吸附块设置固定旋钮904,用于使磁吸附块定位。
(4)焊接机器人:包括机器人本体3和焊枪4,机器人本体3活动设置在柔性导轨8上而能够沿着柔性导轨8移动,焊枪4设置在机器人本体3上由机器人本体3控制对焊接构件进行焊接,焊接机器人包括支撑结构301、焊枪夹持装置、轨道台车,支撑结构301通过焊枪夹持装置操作焊枪的横向、竖向移动述支撑结构再通过轨道台车实现在 柔性轨道上移动。
焊枪夹持装置具体包括横向调节结构302和竖向调节结构303,其中竖向调节结构303设置在横向调节结构302的输出端,焊枪4设置在的竖向调节结构303的摆动装置12上,竖向调节结构303和横向调节结构302是可以竖向伸缩的气缸和横向伸缩的气缸,从而实现焊枪的横向和竖向移动,摆动装置12用于调节焊枪的作业角度。
轨道台车具体包括台车本体306,支撑结构301支承在该台车本体306上,台车本体306上设置有驱动轮307、传动轮308,传动轮308通过滚轮连杆309设置在台车本体306上,且驱动轮307和传动轮308分别相对布置在柔性轨道的内外两侧,驱动轮307与柔性轨道8的内侧滚动配合,传动轮308与柔性轨道8的外侧滚动配合,驱动轮307连接伺服电机304的电源输入端305,驱动轮307受驱动沿着柔性轨道的内侧面滚动,同时带动传动轮308沿着柔性轨道的外侧面滚动。
(5)示教器:分别与焊接机器人和控制箱2信号连接,根据控制箱2的指示控制焊接机器人的行走路径与作业位置,调整焊枪摆动和对焊接作业的控制;
(6)远程控制端:与控制箱信号连接,对控制箱生成或采集的焊接参数进行远程监控和对焊接参数进行远程设置,与焊接机器人的数据采集器信号连接,对焊接过程中数据采集器采集到的焊接参数进行远程监控。
(7)焊接电源:提供电源,采用逆变弧焊整流器,比普通的晶闸管弧焊整流器更高效、稳定、节能。
实施例2
一种基于柔性导轨的机器人焊接方法,通过实施例1的焊接装置完成,步骤包括
步骤一:将可拆卸的焊接机器人的焊枪夹持装置固定到支撑结构上,再将支撑结构与轨道台车安装在一起;
步骤二:将焊接机器人与示教器连接,将示教器与控制箱连接,控制箱、送丝机构、焊接机器人接通焊接电源,送丝机构的焊丝连接到焊接机器人的焊枪,让所有部件能够正常使用;
步骤三:将柔性轨道通过磁吸附装置固定到焊接构件侧面,调节旋钮使磁吸附装置在焊接构件侧面固定,使柔性轨道的延伸方向与焊接构件造型匹配;
步骤四:将轨道台车装到柔性轨道上,使焊接机器人能够在柔性轨道上正常滑移;将焊枪固定到焊枪夹持装置上,调整焊枪使达到焊接角度;
步骤五:根据焊接构件的实际坡口形状,在控制箱中调取对应的坡口形式及焊接位置,选择全自动、半自动和手动操作中的某一种机器人操作形式;在坡口探测之前,调整好保护气体的流量、焊丝的伸出长度及焊枪角度;
步骤六:根据不同的坡口探测模式进行对应的操作,开始坡口形状的探测;按下示 教器上的开始按钮,传感开始,对坡口角度、焊接构件的板厚、根部间隙、板厚差及焊接长度进行探测;传感结束后,焊枪向焊接开始点移动、待机准备焊接;
步骤七:传感完成后,根据坡口探测数据,控制箱的演示器中会显示自动生成的焊接参数,通过远程控制端对焊接参数进行监测,当需要修改焊接参数时,通过控制箱本身或远程控制端对焊接参数进行设置;整个焊接过程按照控制箱设置的层道次及焊接参数进行焊接;
步骤八:焊接过程中,通过焊接机器人配备的数据采集器与远程计算机进行数据连接,对焊接过程中的焊接参数进行远程监测和调控;
步骤九:焊接完成后,退出程序,拆卸柔性轨道及焊接机器人,并将焊接电源与控制箱、焊接机器人、送丝机构等断开,完成本次焊接构件的焊接。
除上述实施例外,本发明还包括有其他实施方式,凡采用等同变换或者等效替换方式形成的技术方案,均应落入本发明权利要求的保护范围之内。

Claims (9)

  1. 一种基于柔性导轨的机器人焊接装置,其特征在于:包括
    控制箱:预存各种焊接工艺,并根据实际焊接的位置、坡口形状生成焊接参数;
    送丝机构:向焊枪输送焊丝;
    柔性导轨:利用自身的柔性并吸附在焊接构件上;
    焊接机器人:包括机器人本体和焊枪,所述机器人本体活动设置在柔性导轨上而能够沿着柔性导轨移动,焊枪设置在机器人本体上由机器人本体控制对焊接构件进行焊接;
    示教器:分别与焊接机器人和控制箱信号连接,根据控制箱的指示控制焊接机器人的行走路径与作业位置,调整焊枪摆动和焊接作业;
    远程控制端:与控制箱信号连接,对控制箱生成或采集的焊接参数进行远程监控和对焊接参数进行远程设置,与焊接机器人的数据采集器信号连接,对焊接过程中数据采集器采集到的焊接参数进行远程监控;
    焊接电源:提供电源。
  2. 根据权利要求1所述的基于柔性导轨的机器人焊接装置,其特征在于:所述送丝机构配置有为焊丝提供保护气体的气瓶。
  3. 根据权利要求1所述的基于柔性导轨的机器人焊接装置,其特征在于:所述送丝机构包括送丝架,送丝架上设置有焊丝轮、紧丝装置以及调节旋钮。
  4. 根据权利要求1所述的基于柔性导轨的机器人焊接装置,其特征在于:所述柔性导轨上设置有若干磁吸附装置,所述若干磁吸附装置位于柔性导轨的同侧,任一磁吸附装置包括连接板、上下磁吸附块,连接板的外侧固定在柔性导轨上,内侧设置上下磁吸附块,柔性导轨通过每个磁吸附装置的上下磁吸附块吸附在焊接构件上。
  5. 根据权利要求4所述的基于柔性导轨的机器人焊接装置,其特征在于:上下磁吸附块上设置有固定旋钮。
  6. 根据权利要求1所述的基于柔性导轨的机器人焊接装置,其特征在于:所述焊接机器人包括支撑结构、焊枪夹持装置、轨道台车,所述支撑结构通过焊枪夹持装置操作焊枪的横向、竖向移动,所述支撑结构再通过轨道台车实现在柔性轨道上移动。
  7. 根据权利要求6所述的基于柔性导轨的机器人焊接装置,其特征在于:所述焊枪夹持装置包括横向调节结构和竖向调节结构以及设置在竖向调节结构上的摆动装置,所述竖向调节结构设置在横向调节结构的输出端,焊枪设置在摆动装置上,从而实现焊枪的横向和竖向移动以及角度调节。
  8. 根据权利要求6所述的基于柔性导轨的机器人焊接装置,其特征在于:所述轨道台车包括台车本体,支撑结构支承在该台车本体上,台车本体上设置有驱动轮、传动 轮,传动轮通过滚轮连杆设置在台车本体上,且驱动轮和传动轮分别相对布置在柔性轨道的内外两侧,驱动轮与柔性轨道的内侧滚动配合,传动轮与柔性轨道的外侧滚动配合,驱动轮受驱动沿着柔性轨道的内侧面滚动,同时带动传动轮沿着柔性轨道的外侧面滚动。
  9. 一种基于权利要求1-8中任一权项所述机器人焊接装置的焊接方法,其特征在于:步骤包括
    步骤一:将可拆卸的焊接机器人的焊枪夹持装置固定到支撑结构上,再将支撑结构与轨道台车安装在一起;
    步骤二:将焊接机器人与示教器连接,将示教器与控制箱连接,控制箱、送丝机构、焊接机器人接通焊接电源,送丝机构的焊丝连接到焊接机器人的焊枪,让所有部件能够正常使用;
    步骤三:将柔性轨道通过磁吸附装置固定到焊接构件侧面,调节旋钮使磁吸附装置在焊接构件侧面固定,使柔性轨道的延伸方向与焊接构件造型匹配;
    步骤四:将轨道台车装到柔性轨道上,使焊接机器人能够在柔性轨道上正常滑移;将焊枪固定到焊枪夹持装置上,调整焊枪使达到焊接角度;
    步骤五:根据焊接构件的实际坡口形状,在控制箱中调取对应的坡口形式及焊接位置,在坡口探测之前,调整好保护气体的流量、焊丝的伸出长度及焊枪角度;
    步骤六:开始坡口形状的探测;按下示教器上的开始按钮,传感开始,对坡口角度、焊接构件的板厚、根部间隙、板厚差及焊接长度进行探测;传感结束后,焊枪向焊接开始点移动、待机准备焊接;
    步骤七:传感完成后,根据坡口探测数据,控制箱显示自动生成的焊接参数,通过远程控制端对焊接参数进行监测,当需要修改焊接参数时,通过控制箱本身或远程控制端对焊接参数进行设置;整个焊接过程按照控制箱设置的层道次及焊接参数进行焊接;
    步骤八:焊接过程中,通过焊接机器人配备的数据采集器与远程计算机进行数据连接,对焊接过程中的焊接参数进行远程监测和调控;
    步骤九:焊接完成后,退出程序,拆卸柔性轨道及焊接机器人,完成本次焊接构件的焊接。
PCT/CN2019/098980 2018-12-20 2019-08-02 一种基于柔性导轨的机器人焊接装置及焊接方法 WO2020125019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/416,673 US20220072666A1 (en) 2018-12-20 2019-08-02 Robotic welding device employing flexible guide rail, and welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811562597.3 2018-12-20
CN201811562597.3A CN109702295A (zh) 2018-12-20 2018-12-20 一种基于柔性导轨的机器人焊接装置及焊接方法

Publications (1)

Publication Number Publication Date
WO2020125019A1 true WO2020125019A1 (zh) 2020-06-25

Family

ID=66256089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098980 WO2020125019A1 (zh) 2018-12-20 2019-08-02 一种基于柔性导轨的机器人焊接装置及焊接方法

Country Status (3)

Country Link
US (1) US20220072666A1 (zh)
CN (1) CN109702295A (zh)
WO (1) WO2020125019A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805501A (zh) * 2020-07-02 2020-10-23 宁夏理工学院 柔性可变径永磁吸附麦轮式爬筒机器人系统
CN112091936A (zh) * 2020-09-25 2020-12-18 深圳市博铭维智能科技有限公司 一种便携式导轨机器人
CN112453824A (zh) * 2020-11-18 2021-03-09 杨媛媛 一种钛合金压气机叶片焊接修复方法
CN112828423A (zh) * 2021-01-27 2021-05-25 东方电气集团科学技术研究院有限公司 一种基于5g的智能焊接实时传感及质量监测系统
CN114669923A (zh) * 2022-05-06 2022-06-28 山西至正实业有限公司 一种在相对密封空间内焊接姿态检测及调整的方法
CN116604241A (zh) * 2023-06-06 2023-08-18 深圳雅鑫建筑钢结构工程有限公司 一种能够自动连续工作的焊接机器人及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001371A (ja) * 2020-06-19 2022-01-06 株式会社神戸製鋼所 可搬型溶接ロボットの制御方法、溶接制御装置、可搬型溶接ロボット及び溶接システム
CN113649676A (zh) * 2021-08-26 2021-11-16 江南造船(集团)有限责任公司 一种便携式软轨道摇摆埋弧焊装置及焊接方法
CN114131158A (zh) * 2021-12-21 2022-03-04 一重集团大连核电石化有限公司 一种轻便型柔性轨道tig焊接小车
CN114226932B (zh) * 2022-01-18 2022-12-13 温州泰昌铁塔制造有限公司 一种用于铁塔制造的埋弧焊工艺
CN114289825A (zh) * 2022-02-18 2022-04-08 广船国际有限公司 一种焊接装置及焊接方法
CN115178830A (zh) * 2022-06-24 2022-10-14 广船国际有限公司 一种舷侧外板搭载的装焊方法
TWI813403B (zh) * 2022-07-28 2023-08-21 華懋科技股份有限公司 作動系統及其方法
TWI813404B (zh) * 2022-07-28 2023-08-21 華懋科技股份有限公司 銲接操作系統及其方法
CN115781177B (zh) * 2022-12-28 2023-08-08 四川嘉陵江新政航电开发有限公司 一种活塞杆在线修复装置及方法
CN116465899B (zh) * 2023-04-25 2024-03-19 北京云航智信新能源科技有限公司 一种大型结构件焊缝表面缺陷自动检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003754A (ko) * 2011-07-01 2013-01-09 (주)청송산업기계 플렉시블 가이드 레일을 이용한 용접 캐리지
CN103624430A (zh) * 2013-11-22 2014-03-12 上海市机械施工集团有限公司 全位置自动焊接装置及焊接方法
CN104741735A (zh) * 2015-04-20 2015-07-01 海安县联源机械制造有限公司 一种带有柔性轨道的筒体内环缝自动焊机
CN205989108U (zh) * 2016-09-12 2017-03-01 阳江东华激光智能科技有限公司 一种刀柄机器人焊接系统
CN106624523A (zh) * 2017-02-28 2017-05-10 成都南方电子仪表有限公司 一种柔性导轨焊接机器人
CN108480895A (zh) * 2018-06-11 2018-09-04 纽科伦(新乡)起重机有限公司 一种弧板周向焊接装备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041260B (zh) * 2016-06-21 2019-01-22 天津大学 一种轻量化的轨道式五轴焊接机器人
CN206156243U (zh) * 2016-08-31 2017-05-10 中冶节能环保有限责任公司 一种多工位可移动轨道台车装置
CN206464743U (zh) * 2017-02-28 2017-09-05 成都南方电子仪表有限公司 一种柔性导轨焊接机器人
CN107322143B (zh) * 2017-08-30 2023-03-17 张毅 长距离数字化熔化气保双丝焊接机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003754A (ko) * 2011-07-01 2013-01-09 (주)청송산업기계 플렉시블 가이드 레일을 이용한 용접 캐리지
CN103624430A (zh) * 2013-11-22 2014-03-12 上海市机械施工集团有限公司 全位置自动焊接装置及焊接方法
CN104741735A (zh) * 2015-04-20 2015-07-01 海安县联源机械制造有限公司 一种带有柔性轨道的筒体内环缝自动焊机
CN205989108U (zh) * 2016-09-12 2017-03-01 阳江东华激光智能科技有限公司 一种刀柄机器人焊接系统
CN106624523A (zh) * 2017-02-28 2017-05-10 成都南方电子仪表有限公司 一种柔性导轨焊接机器人
CN108480895A (zh) * 2018-06-11 2018-09-04 纽科伦(新乡)起重机有限公司 一种弧板周向焊接装备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805501A (zh) * 2020-07-02 2020-10-23 宁夏理工学院 柔性可变径永磁吸附麦轮式爬筒机器人系统
CN112091936A (zh) * 2020-09-25 2020-12-18 深圳市博铭维智能科技有限公司 一种便携式导轨机器人
CN112091936B (zh) * 2020-09-25 2024-01-16 深圳市博铭维智能科技有限公司 一种便携式导轨机器人
CN112453824A (zh) * 2020-11-18 2021-03-09 杨媛媛 一种钛合金压气机叶片焊接修复方法
CN112453824B (zh) * 2020-11-18 2022-09-06 杨媛媛 一种钛合金压气机叶片焊接修复方法
CN112828423A (zh) * 2021-01-27 2021-05-25 东方电气集团科学技术研究院有限公司 一种基于5g的智能焊接实时传感及质量监测系统
CN114669923A (zh) * 2022-05-06 2022-06-28 山西至正实业有限公司 一种在相对密封空间内焊接姿态检测及调整的方法
CN114669923B (zh) * 2022-05-06 2023-09-22 山西至正实业有限公司 一种在相对密封空间内焊接姿态检测及调整的方法
CN116604241A (zh) * 2023-06-06 2023-08-18 深圳雅鑫建筑钢结构工程有限公司 一种能够自动连续工作的焊接机器人及控制方法
CN116604241B (zh) * 2023-06-06 2024-02-23 深圳雅鑫建筑钢结构工程有限公司 一种能够自动连续工作的焊接机器人及控制方法

Also Published As

Publication number Publication date
US20220072666A1 (en) 2022-03-10
CN109702295A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020125019A1 (zh) 一种基于柔性导轨的机器人焊接装置及焊接方法
CN108637431B (zh) 管道全位置自动焊接机
CN105033419B (zh) 基于熔池图像焊缝跟踪的移动式焊接机器人装置
WO2017079995A1 (zh) 一种机器人焊接系统及其焊接方法
CN102672315B (zh) 一种自主移动式双面双弧焊接机器人系统
CN102672311B (zh) 一种气电立焊自主移动式机器人系统
CN102689083B (zh) 用于大厚板mig/mag多层多道焊接的机器人系统
CN102689100B (zh) 一种用于等离子mig复合焊接的自主移动式机器人系统
CN202622192U (zh) 一种用于等离子mig复合焊接的自主移动式机器人系统
US20170001268A1 (en) Welding system
CN202752728U (zh) 一种气电立焊自主移动式机器人系统
CN104959702B (zh) 一种电解铝单缝隙焊铝母线的多功能焊机及其焊接工艺
CN104959714A (zh) 用于行车单梁的四头龙门焊机及控制方法
CN107498152A (zh) 一种分级定位的大面积钣金工装结构自动焊接装置
CN102489839B (zh) 单枪双丝高速全自动气保焊接机器人
CN113909639A (zh) 一种基于视觉检测的焊缝偏斜自动补偿埋弧焊小车及方法
CN204321382U (zh) 一种门式自动埋弧焊机
CN115026378A (zh) 装有移动定位控制装置的焊接机器人
CN214721334U (zh) 一种箱梁多层多道视觉成像自动化焊接系统
CN204711384U (zh) 用于行车单梁的四头龙门焊机
CN106270931A (zh) 一种钢构智能高效多丝埋弧焊接生产线
CN205629634U (zh) 一种自动化mig焊接装置
CN207289128U (zh) 新型管道全位置自动焊接设备
CN202684288U (zh) 一种用于大厚板mig/mag多层多道焊接的自主移动式机器人系统
CN213257624U (zh) 一种单轴自动焊接系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19901257

Country of ref document: EP

Kind code of ref document: A1