WO2020117038A1 - Una composición para un vidrio verde delgado de control solar - Google Patents

Una composición para un vidrio verde delgado de control solar Download PDF

Info

Publication number
WO2020117038A1
WO2020117038A1 PCT/MX2019/000137 MX2019000137W WO2020117038A1 WO 2020117038 A1 WO2020117038 A1 WO 2020117038A1 MX 2019000137 W MX2019000137 W MX 2019000137W WO 2020117038 A1 WO2020117038 A1 WO 2020117038A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
total
transmittance
thickness
Prior art date
Application number
PCT/MX2019/000137
Other languages
English (en)
French (fr)
Inventor
José Guadalupe CID AGUILAR
David R. Haskins
Michael ULIZIO
Dewitt W. Lampman
Original Assignee
Vidrio Plano De Mexico, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vidrio Plano De Mexico, S.A. De C.V. filed Critical Vidrio Plano De Mexico, S.A. De C.V.
Priority to MX2021005989A priority Critical patent/MX2021005989A/es
Priority to CA3122295A priority patent/CA3122295A1/en
Priority to BR112021010840-8A priority patent/BR112021010840A2/pt
Priority to EP19893937.3A priority patent/EP3892595A4/en
Priority to CN201980080337.9A priority patent/CN113165956A/zh
Publication of WO2020117038A1 publication Critical patent/WO2020117038A1/es
Priority to CONC2021/0006961A priority patent/CO2021006961A2/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • This invention describes a glass composition for making thin green solar control glass, mainly for use in the automotive industry for hybrid-symmetrical windshields or hybrid-asymmetric windshields, side lights and rear windows, for laminated or tempered glass, having a base composition of silica-sodium-calcium, with a coloring portion in percentage by weight of: FesCh from 130 to 2.5%; ferrous (reduction) from 15 to 40%; FeO from 0.15 to 0.65% expressed as
  • FejQj FejQj
  • SO3 from about 0.05 to about 0.30%
  • TI02 from about 0.02 to about 1.0%
  • ⁇ 3 ⁇ 4 (3 ⁇ 4 from about 0.0002 to about 0.03%
  • CuO from about 0.0002 to about 0.015%.
  • the contro! Solar refers to the ability to modify the amount of transmitted or reflected solar radiation, in the spectral ranges of near ultraviolet (UV; 300 - 380 nm), visible (VIS; 380 - 780 nm) and infrared (IR; 780 - 2500 nm).
  • UV near ultraviolet
  • VIS visible
  • IR infrared
  • the transmission characteristics of! Glass of different wavelengths can be controlled by adding various absorbent coloring agents to the basic composition of the glass.
  • the glasses described in almost all patents that refer to a type of green glass for automotive purposes are based on three basic components: iron oxide, titanium oxide and chromium oxide.
  • Iron occurs in glass (silica-sodium-calcium) in two compounds that depend on the oxidation state of iron: if iron is found as Fe 2 ⁇ el Compound formed is Ferrous Oxide (FeO). If iron is found as Fe 3+ , ferric oxide will be found). Each ion confers different properties; and! ion
  • Ferrous has a strong and wide absorption band centered at 1050 nm, which translates to a decrease in infrared radiation. In addition, this band extends to the visible region, decreasing light transmission and imparting a bluish tint to e! glass.
  • the ferric ion has a strong absorption band located in the ultraviolet region, which obviously prevents its transmission through! glass and, in addition, it has two weak bands in the visible region located between 420 and 440 nm, which causes a slight decrease in the light transmission and a yellowish coloration in the glass.
  • the iron in the glass and the amount of ferrous oxide are expressed in the Fe2Q3 form. It is common in the industry to express the amount of ferrous or ferric oxide as a percentage of total iron. The balance between ferrous and ferric oxide has a direct effect on the color characteristics and transmittance of the glass,
  • titanium Oxide (TiCh) in Sodium-Sodium-Calcium Glasses It is well known that titanium oxide also acts as a colorant and when used in combination with FeaCL, it is possible to obtain a further reduction in transmission of ultraviolet radiation to a point where the desired visible transmission is achieved.
  • Ti 4+ tetravalent
  • the trivalent form could confer coloration; however, this effect is not observed in silica-caustic silica glass.
  • TiOa greatly increases the refractive index, increases light absorption in the ultraviolet region, and decreases viscosity and surface tension. From the data on the use of titanium dioxide in enamels, they observed that ei TiOa increases chemical durability and acts as a flux.
  • clear glass containing titanium dioxide can be found in all of your common glass-forming systems (borates, silicates, and phosphates).
  • the various glass-forming regions for systems containing titanium dioxide are not grouped together in one place, as the discussion is based more on the properties in the use of glasses containing titanium dioxide than just on their constitution.
  • Patent No. 4,792,536 to Pecoraro, et al claims an infrared absorbent clear glass having at least 0.45 wt% iron expressed as Fe2 ⁇ 3 ⁇ 4, forming a glass in a flat glass product.
  • the oxidation-reduction conditions are controlled at one stage of the production process and at later stages to produce glass that has at least 35% of the iron in the ferrous state expressed as FeO and that when transformed into a flat glass product of adequate thickness exhibits the combination of light transmittance of at least 65%.
  • 5,077,133 to Cheng claims a glass that has a final infrared transmittance of not more than 15%, composition that includes 0.5!% To 0.96% FeaCh, 0.15% to 0.33% FeO and 0.2% to 1, 4 % CeCh, where the weight percentage of FeO represents a percentage reduction in total iron, expressed as FesOj from 23% to 29%, so that the glass has an illuminating wavelength of C, from 498 to 525 nanometers ( nm) and nna purity of tone from 2% to 4%.
  • Copper has been used in glass compositions, not only in those of the soda-lime-silica type, but in some others, for example, such as those containing borosiite. Therefore, the color developed depends on the base glass, its concentration and its oxidation state.
  • Glass can also be made with a thickness of about 3.5mm to about 4mm. If there are higher concentrations of CuO within the float chamber, a reduction process could occur in the atmosphere, presenting a red coloration on the glass surface. This effect, related to the residence time and the speed of advance of the glass ribbon, can be intense and observable on the surface of! glass.
  • the copper in the oxide form imparts a coloration of a greenish blue tone, specifically turquoise, however, in the glass, the copper may be in its monovalent state, which does not impart any color. So, the greenish blue coloration depends not only on the amount of copper present, but also on the ionic balance between the cuprous and cupric states.
  • the maximum absorption of copper oxide is in a band centered at 780 nm and a peak Weak secondary is present at 450 nm, which disappears with an alio soda content (approximately 40% by weight) (CR, Bamford, Color Generation and Control in Glass, Glass Science and Technology, Elsevier Scientifie Publishing Company, P. 48-50 , Amsterdam, 1977).
  • Na2SC> 4 which is the major contributor of sulfur in glass, is converted to S € h, which controls the conversion of FeaCb to FeO.
  • S € h present in the final glass does not affect the glass's ability to transmit visible light.
  • the glasses of this patent have a solar transmittance of Te at most 65%, a transmittance of light Tv (illuminant A, field of view 2o) at least 60%, for a glass of 4 mm thick, as defined in JiS R3106 (1998).
  • US Patent No. 5,077,133 to Cheng, et al. it uses a combination of moderately reduced iron and cerium oxide.
  • the resulting glass exhibits an illuminating visible light transmittance "A" (TLA) greater than 70%, a total solar energy transmittance less than approximately 46%, and an ultraviolet radiation transmittance less than approximately 38%, with a glass thickness in the range of 3mm to 5mm, and a color purity of about 2% to about 4%, using a FesOa total iron composition of 0.51 to 0.96%, FeO of 0.15 to 0.33% and Ce02 of about 0.2 to about 1.4%.
  • TLA visible light transmittance
  • the glasses in US Patent No. 5,700,579 to Jeanvoine et al describe a FejOs total iron glass composition of 0.75 to 1.4%, FeO of 0.25 to 0.32%, a total light transmission factor under illuminant A ( TLA) of at least 70%, a total energy transmission (Ts) of less than approximately 46% and a transmission factor for ultraviolet radiation (TUV) of less than approximately 25%, with a thickness of between approximately 3 and 3.3 millimeters.
  • TLA total light transmission factor under illuminant A
  • Ts total energy transmission
  • TMV transmission factor for ultraviolet radiation
  • 5,776,845 to Boulos et al consists of more than 0.5 to 1.5% by weight of total iron oxide like FeiCh; where the weight ratio of Fe 2+ / Fe 3 ⁇ is less than 0.35; 0.10 to 2.00% by weight of a manganese compound like Mn ⁇ 3 ⁇ 4; and optionally any of: up to 1.00% by weight of titanium oxide as TIO2, up to 1.00% by weight of cerium oxide as CeOa; up to 1.00% by weight of vanadium oxide as V2O5; and up to 0.20% by weight of chromium oxide as O2O3; the glass composition having a thickness of 4.00 mm, 55 to 80% light transmittance using illuminant A with less than 46% ultraviolet transmittance measured in the range of 300 to 400 nanometers.
  • U.S. Patent No. 5,830,812 to Shelestak, et al. Describes a green colored glass using a standard soda-lime-silica glass base composition and additionally iron, cerium, chromium, and optionally titanium as absorbent materials and dyes of infrared and ultraviolet radiation.
  • the glass is green in color characterized by a dominant wavelength in the range of about 500 to 565 nanometers with an excitation purity of not more than about 5% and includes about 0.50 to 1.0% by weight of total iron, about 0.26 to 0.65% by weight of FeaOs, approximately 0.05 to 3% by weight from 0 to approximately 2% by weight of TKh and approximately 20 to 650
  • the glass compositions described in the present invention have an LTA of at least about 65%, preferably at least 70%, a Tsuv not greater than 38%, preferably not greater than 35%, a TSIR not greater than approximately 35%, preferably not greater than about 30%, and a TSET of not more than about 60%, preferably not more than about 45%.
  • Shelestak patent uses titanium oxide and mainly ceno as colorants, and when used in combination with FeaCh, further reduction of ultraviolet light transmission is possible to a point where the desired visibility transmission is achieved. It has a disadvantage with respect to its high cost, which makes the formulation very expensive and also tends to oxidize Iron to
  • US Patent No. 6,589,897 B 1 to Foguenne is related to a composition for a green glass comprising from 0.7 to 1.3% of the total iron expressed as Co, from 0.0050 to
  • V2O5 0.15% V2O5, 0.0015 to 0.0250% OJOJ, and a light transmission (illuminant A) for a glass thickness of 4 mm (TLA) between 40 and 70%, a selectivity (SE) of greater than or equal to 1.5 , an ultraviolet radiation transmission (Tuv) of less than 20%, and a dominant wavelength (lo) for a glass thickness of 5 mm of more than 490 nm.
  • US Patent No. 6,753,280 B2 from Seto et al relates to a glass that uses 0.00 to 2% LhO, as a colorant, from 0.4 to 2% of total iron expressed as FejCh (T-FeaCh) where FeO expressed as FeaOi is 15 to 60% of T-FeaOj.
  • Glass has a visible light transmittance using illuminant "A" (TLA) of not less than 70%, and total solar transmittance (TTS) of not more than 60%, the glass having a thickness between 2.1mm and 6mm .
  • TLA visible light transmittance using illuminant "A"
  • TTS total solar transmittance
  • US Patent No. 7,632,767B2 to Nagashima et al uses a composition that includes SiOa from 65 to 75%, B 2 G 3 from 0 to 5%, AI 2 O 3 from 0 to 5%, MgO from 0 to 2 %, CaO of!
  • the glass described in the North American patent. No. 7,682,999 B2 from Teyssedre has a total iron composition expressed as FesCfe of 0.7 to 1.6%; CeOj from 0.1 to 1.2% and TiOz from 0 to 1.5%, with a redox factor of 0.23 or less, this glass has an iuz transmission (TL A ) of 65% or more, an energy transmission (TE) of 46% or less for a thickness of 3 to 5 mm.
  • Aguiiar et al uses a composition of 0.5 to 1.30% of! total iron expressed as FezOa; 0.12 to 0.450% FeO expressed as FejOa; from about 0.04 to 1.8% selected from TiCh or FeTiCh; approximately 0.2 to 2% of Ce ⁇ 3 ⁇ 4; about 0.0004 to 0.015% CuO; and approximately 0.01 to 0.1% C, where the glass composition having an illuminating "A" light transmission (TLA) greater than 70%, a total solar energy transmittance (Ts ISO 13837) of less than or equal to 60% , a solar ultraviolet transmittance (Tuv ISOG959 vi 990) of less than 15%, a dominant wavelength of 485 nm to 570 nm and an excitation purity of less than 11, with a thickness of 3 to 5 mm.
  • TLA illuminating "A" light transmission
  • Ts ISO 13837 total solar energy transmittance
  • Tuv ISOG959 vi 990 a solar ultraviolet transmittance
  • a glass laminate comprising: an outer glass sheet, which may be a chemically reinforced thin glass sheet or may be a non-chemically reinforced glass sheet; an internal glass sheet which may be a chemically reinforced glass sheet or a thin chemically reinforced glass sheet; and an intermediate polymer layer formed between the outer glass sheet and the inner glass sheet, and may have a thickness of less than 1.6 mm.
  • the inner glass sheet comprises 60-70 mol% S10 2 ; 6-14 mol. % AI2Ü3; 0-15 mol. % B2O3; 0-15 mol. % L1 2 0; 0-20 mol. % Na 2 0:
  • the internal glass sheet comprises: 64-68 mol. % Si0 2 ; 8-12 mol. % Al? Oj; 0-3 mol.
  • Physical properties of chemically reinforced glass can have a surface compressive stress between 250 and approximately 900 MPa, and / or a central stress greater than 40 MPa but less than 100 MPa and can vary in thickness from 0.5 to 1.0 mm.
  • the modulus of elasticity can vary from about 60 GPa to 85 GPa.
  • the modulus of elasticity of the glass sheet (s) and the polymer intermediate layer can affect both the mechanical properties (eg deflection and strength) and acoustic performance (eg transmission loss) of the laminate resulting glass.
  • the invention mentioned by Cleary explains the main characteristics necessary to produce an automotive glazing with improved resistance and reduced weight, through the use of chemically reinforced glass and a polymer intermediate layer, but it does not address the optical properties required to meet the safety standard. transmittance and solar performance parameters required in the automotive industry.
  • a soda-lime-silica glass composition and a coloring portion, by weight comprising: 1.30 to 2.50% of the total iron! expressed as FezCL; 15 to 40% Fe 2+ (ferrous) and 0.15 to 0.65% FeO, expressed as FejCri: from about 0.05 to about 0.30% SCh; from about 0.02 to about 1.0% TKh; from about 0.0002 to about 0.03% of (3 ⁇ 4 ( 3 ⁇ 4; and from about 0.0002 to about 0.015% of CuO, where the glass composition has an illuminating “A” light transmission (TLA) greater than 70%, a direct solar transmittance (Tos) of less than 51%, a total UV light transmittance! (Tuv) of less than 40% and a total solar transmittance (Trs) of less than 63%; a dominant wavelength of 490 nm to 600; and excitation purity less than 7, for thicknesses of approximately 0.7 to 3.0 nun.
  • TLA illuminating “A” light transmission
  • Tos direct solar transmitt
  • the main objective of the present invention is to offer a range of solar control compositions, for monolithic glass in thicknesses of approximately 0.7 to 3.0 mm, with an equivalent solar performance.
  • This glass composition maintains solar performance with a thinner glass that allows weight reduction in vehicles.
  • they can be symmetrical-hybrid or asymmetric-hybrid laminates with a total thickness of approximately 2.3 to 5.0 mm, which can be built with clear commercial soda-eal-silica glasses, low iron glasses or some other base composition, such as borosilicate or alkaline aluminosilicate, including ion exchange glasses and not ion exchanged glasses, and an intermediate layer of a conventional or acoustic polyvinyl butirai (PVB) polymer.
  • PVB polyvinyl butirai
  • FIG. 1 shows the schematic diagram of a laminated glazing configuration
  • FIG. 2 shows another schematic diagram of a triple laminated slow glass configuration
  • FIG. 3 is a graph showing the behavior of iron oxide if the thickness is reduced, for example, to maintain the TLA greater than 70% with a thickness of 0.5 mm, a value close to 2% of FesCh is required, considering that the Ferrous is approximately 26.5%.
  • FIG. 4 is a graph showing the behavior of iron oxide if the thickness is reduced, for example, to keep the TDS below 51%, with a thickness of 0.5 mm a value close to! 2% of FeiCb considering that the ferrous is approximately 26.5%.
  • a typical composition of soda-lime-silica glass manufactured by the float glass process for the automotive industry is characterized by the following formulation based on the percentage by weight with respect to the total weight of the glass, these percentages were obtained using analysis of x-ray fluorescence.
  • the green glass composition of the present invention is based on the composition described above, to which the following coloring compounds have been added: L3G at 2.50% of the total iron expressed as FejCfi; 15 to 40% Fe 2+ (ferrous) and 0.15 to 0.65% FeO, expressed as FesCh; from about 0.05 to about 0.30% of 8 ⁇ 3 ⁇ 4; from about 0.02 to about 1.0% TiCh; from about 0.0002 to about 0.03% of € 3 ⁇ 4 (3 ⁇ 4; and from about 0.0002 to about 0.015% of CuO,
  • Green glass has an "A" illuminating light transmission (TLA) greater than 70%, a direct solar transmittance (Tos) of less than 51%, and a total UV light transmission (Tuv) of less than 40%, and a total solar transmittance (T ? s) of less than 63%, where the glass has a thickness of approximately 0.7 to 3.0 mm,
  • solar control glass is a term applied to glass that allows visible light from the sun to pass through air-conditioning systems (windows and windshields) and at the same time absorb or reflect much of it. from the heat of the sun to the sun. Exterior.
  • air-conditioning systems windshields and windshields
  • the visible light transmission must meet the federal standard of more than 70%
  • minimum values of solar and ultraviolet transmission are sought, so that this glass composition maintains the interior of the vehicle or houses more comfortable than it would be if conventional glass were used Therefore, less energy consumption is required in air conditioning systems, resulting in less pollution and lower costs.
  • the present invention defines the correct mixture of iron oxide (FejGj) - Redox (Ferrous) to give a greenish coloration and reduce ultraviolet (Tuv) and solar (Ts) transmission, titanium oxide (TiCh) to contribute to the blocking of ultraviolet radiation and copper oxide (CuO) as coloring agents to adjust the yellowish tint that the addition of titanium oxide can confer,
  • FejGj iron oxide
  • Redox Ferous
  • TiCh titanium oxide
  • CuO copper oxide
  • the calculation of the transmission of ultraviolet radiation involves only the participation of UV solar radiation, so it is evaluated in the range of 300 to 400 nm wavelength using 5 nm intervals and the air mass is equal a 1, 5 ISO 13837 convention A standard.
  • Physical properties such as light transmission correspond to calculated variables based on internationally accepted standards. So light transmission is evaluated using illuminant "A" (TLA) and the standard 2 degree observer also known as 1931 [C.LE, Publication, 15.2, ASTM E-308 (1990)].
  • TLA illuminant
  • the wavelength range used for this purpose is 380 to 780 nm, integrating values in numerical form with 10 nm intervals.
  • the range is made up of the radiation in the solar spectrum, which has a range of 800 to 2500 nm, with intervals of 50 nm, using the values of ISO / DJS 13837.
  • Direct solar transmittance represents the heat that the glass transmits directly, evaluating it from 300 nm to 2500 nm with intervals of 5, 10 and 50 nm, the numerical form of calculation uses as standard values recognized by ISO 13837 standard ( air mass 1.5 300 to 2500 nm trapezoidal intervals).
  • Total solar energy transmission was evaluated in the range of 300 to 2500 nm considering a wind speed of 4 m / s (parked), according to ISO / DIS 13837.
  • the specifications for the determination of color have been derived from the values of tristimulus (X, Y, Z), which have been adopted by the International Commission on Illumination (CIE), as a direct result of experiments with many observers. These specifications could be determined by calculating the trichromatic coefficients X, Y, Z of the tristimulus values that correspond to the colors red, green and blue, respectively. The three color values were plotted on the chromaticity diagram and compared with the coordinates of the illuminant "D65" considered as the lighting standard. The comparison provides the information to determine the color excitation purity and its dominant wavelength.
  • CIE International Commission on Illumination
  • the dominant wavelength defines the wavelength of the color and its value is in the visible range, 380 to 780 nm, whereas for excitation purity, the lower the value, the closer it tends to be a neutral color.
  • the color variables L *, a * and b * of the CiELAB 1976 color system are also calculated using the triesi-stimulus values.
  • soda-lime-silica compositions for monolithic and laminated sheets according to the present invention having the corresponding physical properties of visible light (TLA), UV light (Tuv), infrared (TIR), direct sunlight ( Cough) and total solar transmittance (TTS).
  • composition of the following glasses was calculated by ray fluorescence
  • Examples 1 through 27 describe compositions of thin green solar control glass with an actual thickness of about 1.2 to about 4 mm, which maintain solar performance, as thinner glass, and can be used to reduce weight in vehicles.
  • FIG. 1 shows a laminated glazing configuration according to the examples in Tables 2 and 4; and Figure 2 shows a laminated glazing configuration according to the examples in Table 3.
  • the laminated glazing is formed by three layers (10).
  • An outer layer (12) is a thin green solar control glass according to the present invention, with a thickness of about 0.7 to 3.0 mm.
  • An Intermediate layer of a polymer (13) is a conventional or acoustic polyvinylbutyral, PVB, with a thickness of 0.76 mm.
  • an inner layer (14) can be constructed from a commercial clear ion-exchange and non-ion-exchange glass, from ion-exchange and non-ion exchange borosilicate glass or from ion-exchange and non-ion exchange alkaline aluminosyl icate glass (Corning Gorilla ® Giass), with a thickness of approximately 0.5 mm to 2.0 mm.
  • a laminated triple glazing configuration is formed by five layers (20).
  • An outer layer (12) is a thin green glass with solar control, with a thickness of approximately 0.7 to 3.0 mm
  • the central layer (15) and the inner layer ( 14) can be constructed from a commercial clear glass Ion-exchanged and non-ion-exchanged, from an ion-exchanged and non-ion-exchanged borosilicate glass or from an ion-exchanged and non-ion exchanged glass of aluminum ! alkaline lycate (Corning Gorilla® Giass), with a thickness of approximately 0.5 mm to 2.0.
  • Table 2 shows the solar control performance of thin green glass compositions laminated with commercial clear glass, as shown in FIG. 1.
  • Examples 28 and 29 describe the current typical automotive laminated slow glass.
  • Examples 30 to 59 using Examples 20, 16, 1 1, 6, 5 and 3 to reduce the total thickness of the laminated glass, while maintaining solar performance. All laminated systems were simulated using Optics 6 software, developed by Lawrence Berkeley Laboratory and using a commercial acoustic polymer intermediate layer (polyvinylbutyral, PVB) with a thickness of 0.76 mm.
  • PVB polyvinylbutyral
  • Table 3 master solar control thin green glass compositions for triple layer laminated constructions, including one outer layer and two internal layers of commercial clear glass, as shown in F1G. 2.
  • Examples 60 to 65 use Examples 1 and 2 to reduce the total thickness of laminated glass constructions while maintaining solar performance.
  • All triple laminate systems were simulated using Optics 6 software, developed by Lawrence Berkeley Laboratory, using an intermediate layer (two) of a 0.76mm thick commercial acoustic polymer (PVB).
  • Table 4 shows laminated thin green control solar glass compositions with commercial Gorilla® Glass, as shown in FIG. 1.
  • Examples 66 to 72 use Examples 1 and 2 to reduce e! Full thickness of laminated glass construction while maintaining sotar performance. All laminated systems were simulated using Optics 6 software, developed by Lawrence Berkeley Laboratory, using a 0.76mm thick commercial acoustic polymer (PVB) intermediate layer.
  • PVB commercial acoustic polymer
  • the outer layer can be a commercial clear glass with ion and non-ion exchange, borosilicon glass with ion and non-ion exchange or alkaline aluminosilicate glass with ion and non-ion exchange (Corning Goriiia® glass) and the layer intema can be a thin green glass solar control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

La presente invención se refiere a una composición de vidrio y a un método para la producción comercial de un vidrio verde delgado con control solar principalmente para uso en la industria automotriz, como parabrisas híbridos simétricos o parabrisas híbridos asimétricos, luces laterales y ventanas traseras, que incluye una composición base de un vidrio de sosa-cal-sílice, y consiste esencialmente, en porcentaje en peso: de 1.30 a 2.50% del hierro total expresado como Fe2O3; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como Fe2O3; de aproximadamente 0.05 a aproximadamente 0.30% de SO3; de aproximadamente 0.02 a aproximadamente 1.0% de TiO2; de aproximadamente 0.0002 a aproximadamente 0.03% de Cr2O3; y de aproximadamente 0.0002 a aproximadamente 0.015% de CuO. El vidrio verde delgado de control solar teniendo una transmisión de luz iluminante "A" (TLA) mayor del 70%, una transmitancia solar directa (TDS) de menos del 51%, una transmitancia total de luz UV (TUV) de menos de 40% y una transmitancia solar total (TTS) de menos del 63%; una longitud de onda dominante (λ) de 490 nm a 600; y una pureza de escitación inferior a 7, para espesores de aproximadamente 0.7 a 3.0 mm.

Description

UNA COMPOSICION PARA UN VIDRIO VERDE DELGADO DE CONTROL
SOLAR
ANTECEDENTES DE LA INVENCIÓN
A. CAMPO DE LA INVENCIÓN,
Esta invención describe una composición de vidrio para fabricar un vidrio verde delgado de control solar, principalmente para su nso en la industria automotriz para parabrisas híbridos-simétricos o parabrisas híbridos-asimétricos, luces laterales y ventanas traseras, para vidrio laminado o templado, que tiene una composición base de sílico-sódico-cálcico, con una porción colorante en porcentaje en peso de: FesCh de 130 a 2.5%; ferroso (reducción) de 15 a 40%; FeO de 0,15 a 0.65% expresado como
FejQj; SO3 de aproximadamente 0.05 a aproximadamente 0.30%; TI02 de aproximadamente 0,02 a aproximadamente 1.0%, {¾(¾ de aproximadamente 0.0002 a aproximadamente 0.03%; y CuO de aproximadamente 0.0002 a aproximadamente 0.015%.
B. Descripción de la técnica relacionada
A la fecha se han desarrollado varias patentes para producir vidrios verdes para fines automotrices, con una transmisión de luz superior al 70% que cumple con los requisitos de la Norma Federal de Seguridad de Vehículos Motorizados de EE. UU. Este porcentaje de transmisión de luz es necesario para proporcionar al conductor una buena visibilidad de su entorno, cumpliendo así las normas de seguridad automotriz. Para la industria de la construcción, esta restricción no se aplica y se pueden obtener valores más bajos, así como espesores de aproximadamente 1.6 a 12 mm. Del mismo modo, es altamente deseable que el vidrio posea las propiedades de absorción necesarias para absorber la luz solar dañina infrarroja (IR) y ultravioleta (UV), así como para controlar la acumulación de calor en el interior de ios vehículos, lo que resultará en una reducción en el consumo de energía necesario para el equipo de aire acondicionado automotriz y para los propios vehículos y para proteger el interior del vehículo de la degradación causada por la radiación ultravioleta.
El contro! solar se refiere a la capacidad de modificar la cantidad de radiación solar transmitida o reflejada, en los rangos espectrales del ultravioleta cercano (UV; 300 - 380 nm), visible (VIS; 380 - 780 nm) e infrarrojo (IR; 780 - 2500 nm). Las características de transmisión de! vidrio de diferentes longitudes de onda pueden controlarse agregando varios agentes colorantes absorbentes a la composición básica del vidrio.
Los vidrios descritos en casi todas las patentes que se refieren a un tipo de vidrio verde para fines automotrices se basan en tres componentes básicos: óxido de hierro, óxido de titanio y óxido de cromo.
En consecuencia, para aplicaciones en vehículos, ha sido deseable usar colorantes para producir un vidrio que pueda filtrar una gran parte de la dañina radiación ultravioleta del sol, inferior al 39% (medido en la longitud de onda de 3G0- 400 nm y aire masa 2 o menos del 35% en el mismo rango de longitud de onda con masa de aire igual a L5), pero eso permite la mayor cantidad visible posible (de la radiación luminosa) ai 70% o más.
El hierro se presenta en el vidrio (sílico-sódico-cálcico) en dos compuestos que dependen del estado de oxidación del hierro: si el hierro se encuentra como Fe2\ el compuesto formado es óxido ferroso (FeO). Si se encuentra hierro como Fe3+ se encontrará óxido férrico ). Cada ion confiere propiedades diferentes; e! ion
Figure imgf000004_0005
ferroso tiene una banda de absorción amplia y fuerte centrada a 1050 nm, So que se traduce en una disminución de !a radiación infrarroja. Además, esta banda se extiende a la región visible disminuyendo la transmisión de luz e impartiendo una coloración azulada en e! vidrio. Por otro lado, el ion férrico tiene una fuerte banda de absorción ubicada en ia región ultravioleta, lo que obviamente impide su transmisión a través de! vidrio y, además, tiene dos bandas débiles en la región visible ubicadas entre 420 y 440 nm, lo que causa una ligera disminución en ia transmisión de luz y una coloración amarillenta en el vidrio.
Generalmente, el hierro en ei vidrio y la cantidad de óxido ferroso se expresan en la forma Fe2Q3. Es común en la industria expresar la cantidad de óxido ferroso o férrico como porcentaje del hierro total. El equilibrio entre el óxido ferroso y férrico tiene un efecto directo sobre las características del color y la transmitancia del vidrio,
Figure imgf000004_0001
Esto significa que cuanto mayor sea la cantidad de! ión presente
Figure imgf000004_0003
en el vidrio, mayor será la absorción de la radiación ultravioleta y la transmisión de luz; asi como e! tono amarillento; pero, si el contenido de iones ferrosos aumenta
Figure imgf000004_0004
como resultado de la reducción química de Fe^Cb, aumentará la absorción de la radiación infrarroja, pero la radiación ultravioleta disminuirá y la transmisión de luz.
Figure imgf000004_0002
La variación de la concentración de FeO en relación con Fejtri, da lugar a un cambio de color en el vidrio. El desplazamiento del color puede modificarse de amarillo a verde, azul hasta llegar al ámbar. El color cambia de la siguiente manera (según los resultados experimentales):
Figure imgf000005_0001
Para controlar el equilibrio entre el óxido ferroso y el óxido férrico necesarios para lograr un vidrio de control solar, es necesario establecer las condiciones de la carga y la atmósfera de fundición; para el primer caso, se ajusta ia concentración de agentes reductores como el carbono y agentes oxidantes, como el sulfato de sodio y el nitrato de sodio. En cuanto a las condiciones de fundición, es necesario ajustar la atmósfera con un contenido variable de oxígeno, dependiendo del rendimiento térmico y el tono de vidrio deseado. El óxido de titanio (TiCh) en vidrios de sífieo-sódico-cálcieo, Es bien sabido que el óxido de titanio también actúa como un colorante y cuando se usa en combinación con FeaCL, es posible obtener una reducción adicional de la transmisión de radiación ultravioleta a un punto donde se logra la transmisión visible deseada. La forma más estable de titanio en ios vidrios es tetravalente (Ti4+). La forma trivalente podría conferir coloración; sin embargo, este efecto no se observa en el vidrio de sílice- sódico-cáicico. En el documento de M. D. Beals "Efectos del dióxido de titanio en ei vidrio", The glass mdusíry, septiembre de 1963, págs.495 - 531, describe ei interés que se ha demostrado por el dióxido de titanio como componente de los vidrios. Los efectos producidos por ei uso de dióxido de titanio incluyeron ios comentarios de que el TiOa aumenta en gran medida el índice de refracción, aumenta la absorción de luz en la región ultravioleta y disminuye la viscosidad y la tensión superficial. A partir de los datos sobre el uso de dióxido de titanio en esmaltes, observaron que ei TiOa aumenta la durabilidad química y actúa como un fundente. En general, se pueden encontrar vidrios transparentes que contienen dióxido de titanio en todos Sos sistemas comunes de formación de vidrio (boratos, silicatos y fosfatos). Las diversas regiones de formación de vidrio para sistemas que contienen dióxido de titanio no se agrupan en un solo lugar, ya que la discusión se basa más en las propiedades en el uso de vidrios que contienen dióxido de titanio que solo en su constitución.
Existe literatura sobre composiciones de vidrio coloreado con características de absorción de radiación infrarroja y ultravioleta. W. A. WeyS en el libro Coloured Glasses, Society of Glass Technology, reimpreso en 1992, describe diversas teorías del color en los vidrios relacionadas con los puntos de vísta actuales de la estructura y constitución de! vidrio. El uso de cromo y sus compuestos para colorear vidrios son descritos en este libro. En la industria del vidrio, el cromo se agrega a las materias primas para obtener un color verde esmeralda, que es típico de€r \ El cromo puede estar presente como C para obtener un color ligeramente amarillo y como
Figure imgf000007_0001
a través dd cual se obtiene el verde esmeralda.
Figure imgf000007_0002
C. R. Bamford, en el libro“Colour Generación and Control in Glass, Glass Science and Technology. Elsevler Science Publishing Co., Amsíerdam, 1977, describe los principios, los métodos y las aplicaciones con respecto a la coloración del vidrio. En este libro, d autor considera que tres elementos gobiernan el color de la luz transmitida por un vidrio, a saber: el color de la luz incidente; la interacción dei vidrio con esa luz; y la interacción de la luz transmitida con el ojo del observador. Los procedimientos requieren los datos de transmisión espectral del vidrio con el espesor de vidrio relevante y el ángulo de visión relevante.
K. M. Fyies, en la publicación “Modera Automotive Glasses”, Glass Technology, vol. 37, febrero de 1996, págs.2-6, considera que el hierro es el colorante más importante en los vidrios automotrices modernos, ya que es el único componente de bajo costo disponible que absorbe la radiación ultravioleta dañina (hierro férrico) y también absorbe una gran proporción del infrarrojo (hierro ferroso).
Gordon F. Brewster, et ah, en la publicación " The color ofi ron containing glasses of varying composition", Journal of the Societv of Glass Technology, Nueva York, Estados Unidos, abril de 1950, pp 332- 406, está relacionado con los cambios de color causados por la variación sistemática de la composición en silicato que contiene hierro y vidrios libres de sílice evaluados en términos de color visual, transmisión espectral y aromaticidad.
Otras publicaciones también describen la importancia del equilibrio entre Sos óxidos ferrosos y férricos en vidrios como el descrito por N. E. Densem;“El equilibrio entre óxidos ferrosos y férricos en vidrios”; Journal of the Society of Glass Technology, Glasgow, Inglaterra, mayo de 1937, págs. 374 - 389 "J. C. Hostetter y H. S. Roberts,
"Nota sobre la disociación del óxido férrico disuelto en vidrio y su relación con el color de los vidrios que contienen hierro"; Journal of the American Ceramic Society, Estados Unidos, septiembre de 1921, págs. 927 - 938.
Con respecto a las patentes que se han desarrollado para obtener vidrio coloreado utilizando una composición base de vidrio de sódico-cálcico estándar, se han utilizado diferentes elementos metálicos para conferir las características deseadas al producto final, incluido un TLA> 70%, para ser utilizado en las industrias automotrices.
La patente Norteamericana No. 4,792,536 de Pecoraro, et al, reivindica un vidrio transparente absorbente de infrarrojos que tiene al menos 0.45 % en peso de hierro expresado como Fe2<¾, formando un vidrio en un producto de vidrio plano. Las condiciones de oxidación-reducción se controlan en una etapa del proceso de producción y en etapas posteriores para producir un vidrio que tiene al menos un 35% del hierro en el estado ferroso expresado como FeO y que cuando se transforma en un producto de vidrio plano de espesor adecuado exhibe la combinación de transmitancia luminosa de al menos 65%. La patente No. 5,077,133 de Cheng, reivindica un vidrio que tiene una transmitancia infrarroja final de no más del 15%, composición que incluye 0.5 !% a 0.96% de FeaCh, 0.15% a 0.33% de FeO y 0.2% a 1 ,4% de CeCh, en donde el porcentaje en peso de FeO representa una reducción porcentual del hierro total, expresado como FesOj de 23% a 29%, de modo que el vidrio tiene una longitud de onda iluminante de C, de 498 a 525 nanómetros (nm) y nna pureza de tono de 2% a 4%.
Para obtener este último, la patente norteamericana No. 5,1 12,778, también de Cheng, indica que la reacción redox se equilibra entre los óxidos férrico y ferroso, e! óxido de cerio y el carbón en un vidrio de sosa-caf-sílíce, cambia a un estado de mayor reducción cuando el contenido de hierro tota! se incrementa hasta un 0.05% a un 0.8%. La razón por la cual el valor ferroso aumenta en lugar de disminuir, una situación que se esperaba. En consecuencia, para cambiar el estado de reducción a fin de obtener e! mismo valor ferroso que se encuentra en la menor concentración del hierro tota!, debe disminuirse la cantidad de carbón agregado en el homo de fundición, que tiene un contenido total de hierro, una declaración que es contraria a la enseñanza de la técnica anterior, es decir, requerirá menos carbón para un alto contenido de hierro tota! en la formulación del vidrio de sosa-cal-sílice.
La principal desventaja de los vidrios descritos en ías patentes de Cheng es que, como ya se mencionó, necesariamente incluyen el CeC>2 como agente para controlar la reducción de la formulación, principalmente el FejOj. Otra desventaja dei uso de óxido de cerio como componente requerido es el alto costo como materia prima.
Es bien conocido que el cobre ha jugado un papel importante en la producción de vidrio, cerámica y pigmentos de colores. Por ejemplo, la coloración de la cerámica persa ha sido reconocida por so color conferido por d cobre. De especial interés para los artistas de cerámica son el azul turquesa y especialmente los colores azul oscuro egipcio y persa (Waldemar A, Weil; Glasses Glasses, Soeieíy of Giass Technology; Great Britain, P. 154-167, 1976).
El cobre se ha utilizado en composiciones de vidrio, no solo en las del tipo de sosa-cal-sílice, sino en algunas otras, por ejemplo, como las que contienen borosiíicato. Por lo tanto, el color desarrollado depende del vidrio base, de su concentración y de su estado de oxidación.
Se ha comprobado que para la producción industria! es factible agregar CuO, en concentraciones menores a 120 ppm para un espesor de vidrio de 4.0 rnm y menos de 100 ppm para un espesor de vidrio de 6.0 mm.
El vidrio también se puede fabricar con un espesor de aproximadamente 3.5 milímetros a aproximadamente 4 mm. Si existen mayores concentraciones de CuO dentro de la cámara de flotado, podría ocurrir un proceso de reducción en la atmósfera, presentando una coloración roja en la superficie del vidrio. Este efecto, relacionado con el tiempo de residencia y la velocidad de avance de la cinta de vidrio, puede ser intenso y observable en la superficie de! vidrio.
En el caso de un vidrio base del tipo sosa-cal-sílice, el cobre en forma de óxido imparte una coloración de un tono azul verdoso, específicamente turquesa, sin embargo, en el vidrio, el cobre puede estar en su estado monovalente, que no imparte ningún color. Entonces, la coloración azul verdosa depende no solo de la cantidad de cobre presente, sino también del equilibrio iónico entre los estados cuproso y cúprico. La máxima absorción de óxido de cobre está en una banda centrada a 780 nm y un pico secundario débil está presente a 450 nm, que desaparece con un alío contenido de soda (aproximadamente 40% en peso) (C.R, Bamford, Colour Generation and Control in Glass, Glass Science and Technology, Elsevier Scientifie Publishing Company, P. 48- 50, Amsterdam, 1977).
Otro ingrediente conocido que está presente en el vidrio sosa, cal, sílice es el trióxido sulfúrico (SOj). El sulfato de sodio (Na2S04) se agrega a la carga de materias primas de! vidrio como agente de refinación a alta temperatura, que se utiliza principalmente como un agente para la eliminación de burbujas, promueve el transporte de masa y ataca la sílice libre en la superficie del vidrio.
Durante la fabricación del vidrio, el Na2SC>4, que es el principal contribuyente de azufre en el vidrio, se convierte en S€h, que controla la conversión del FeaCb en FeO. Sin embargo, el S€h presente en el vidrio final no afecta la capacidad del vidrio para transmitir luz visible.
La cantidad de SOs disuelto en el vidrio disminuye si tiene:
1. Una cantidad menor (proporcionalmente) de sulfato de sodio.
2. Mayores propiedades de fusión.
3. Mayores tiempos de fusión,
4. Un ambiente de homo que tiene una mayor acción de oxidación.
5. Mayor reducción de hierro a óxido ferroso (mayor Fe2+: menor Fe3*) llegando a un mínimo del 70-75% del Fe21.
Por lo tanto, la cantidad y los efectos del S03 en la carga de vidrio deben equilibrarse de acuerdo con la cantidad de carbono presente en la carga de vidrio. Además, es de conocimiento común que el SO3 en la carga de vidrio debe estar dentro de ciertas cantidades críticas porque, cantidades menores de SOs en e! lote de vidrio afectarán las propiedades de refinación, es decir, la capacidad de eliminar burbujas en el homo de fundición.
La patente norteamericana No. 10,011 ,521 B2 de Naga! et al, describe un vidrio coloreado, usando R¾(¾ como colorante principa! que proporciona una luz transmitida azul o verde en la proporción de 0.001 a 5% calculada como hierro total FezCb. El uso principa! del SO3 debe ser como agente de refinación en la fundición del vidrio, en la proporción de azufre total de 0.005 a menos de 0.025% para un espesor de 4 mm. El uso de Sní¾ en este vidrio debe ser un agente intermedio para la reacción de oxidación- reducción de hierro y azufre, en la proporción de estaño total de 0.001 a 5%. Los vidrios de esta patente tienen una transmiíancia solar Te como máximo 65%, una transmitaneia de luz Tv (iluminante A, campo visual de 2º) al menos 60%, para un vidrio de 4 mm de espesor, como se define en JiS R3106 (1998).
La patente norteamericana No. 6,030,91 1 de Scheffler-Hudtet, eí al, otorgada el 29 de febrero de 2000, tiene una relación redox vidrio de 0.202 a 0,237% de FeO; expresado como FeaOr. una cantidad crítica de 0.15 a 0.18% de SO, que no afecta las propiedades de refinación y la capacidad del SO3 para eliminar burbujas, La patente Norteamericana No. 6,350,712 de Cabrera, otorgada el 26 de febrero de 2002, en la que se utilizan óxido de hierro, óxido de titanio y óxido de cromo como componentes principales. El compuesto de óxido de titanio está presente en una cantidad de 0.0 a 0.30 % en peso y óxido de cromo de aproximadamente 0.01 a 0.03 % en peso.
La patente norteamericana No 5,077,133 de Cheng, et al. utiliza una combinación de hierro moderadamente reducido y óxido de cerío. El vidrio resultante exhibe una transmitancia de luz visible "A" iluminante (TLA) mayor que 70%, una transmitancia total de energía solar menor de aproximadamente 46% y una transmitancia de radiación ultravioleta menor de aproximadamente 38%, con un espesor de vidrio en el rango de 3 mm a 5 mm, y una pureza de color de aproximadamente 2% a aproximadamente 4%, usando una composición de hierro total FesOa de 0,51 a 0,96%, FeO de 0,15 a 0,33% y Ce02 de aproximadamente 0.2 a aproximadamente 1.4%.
Los vidrios en la patente norteamericana No. 5,700,579 de Jeanvoine et al, describe una composición de vidrio de hierro total FejOs de 0,75 a 1.4%, FeO de 0.25 a 0.32%, un factor de transmisión de luz total bajo el iluminante A (TLA) de ai menos 70%, una transmisión de energía total (Ts) inferior a aproximadamente el 46% y un factor de transmisión para la radiación ultravioleta (TUV) inferior a aproximadamente el 25%, con un espesor de entre aproximadamente 3 y 3.3 milímetros. La adición de B2O3 de 0 a 5%, Ce 0.1% y TiCh 0.1% confieren a los vidrios otras propiedades, El vidrio propuesto en Sa patente norteamericana No. 5,776,845 de Boulos et al, consiste en más de 0.5 a 1.5% en peso de óxido de hierro total como FeiCh; en donde la relación en peso de Fe2+/Fe es inferior a 0,35; 0.10 a 2.00 % en peso de un compuesto de manganeso como Mní¾; y opcionalmente cualquiera de: hasta 1.00 % en peso de óxido de titanio como TÍO2, hasta 1 ,00 % en peso de óxido de cerio como CeOa; hasta 1.00 % en peso de óxido de vanadio como V2O5; y hasta 0,20 % en peso de óxido de cromo como O2O3; la composición de vidrio teniendo un espesor de 4.00 mm, 55 a 80% de transmitancia de luz usando el iluminante A con menos del 46% de transmitancia ultravioleta medida en el rango de 300 a 400 nanómetros. La patente norteamericana No. 5,830,812 de Shelestak, et al., describe un vidrio de color verde que usa una composición base de vidrio de sosa-cal-sílice estándar y adicionalmente hierro, cerro, cromo y, opcionalmente, titanio como materiales y colorantes absorbentes de radiación infrarroja y ultravioleta. De preferencia, el vidrio tiene un color verde caracterizado por una longitud de onda dominante en el rango de aproximadamente 500 a 565 nanómetros con una pureza de excitación no superior a aproximadamente 5% e incluye aproximadamente 0.50 a 1.0 % en peso de hierro total, aproximadamente 0.26 a 0.65% en peso de FeaOs, aproximadamente 0.05 a 3 % en peso de 0 a aproximadamente 2 % en peso de TKh y aproximadamente 20 a 650
Figure imgf000014_0002
ppm de La relación redox para el vidrio se mantiene entre aproximadamente
Figure imgf000014_0001
0.20 a 0.55 y preferiblemente entre OJIO y 0.30. Las composiciones de vidrio descritas en la presente invención tienen un LTA de al metros aproximadamente 65%, preferiblemente al menos 70%, unTsuv no mayor que 38%, preferiblemente no mayor que 35%, un TSIR no mayor que aproximadamente 35%, preferiblemente no mayor que aproximadamente 30%, y una TSET no mayor que aproximadamente 60%, preferiblemente no mayor que aproximadamente 45%.
La patente de Shelestak utiliza el óxido de titanio y principalmente ceno, como colorantes, y cuando se usan en combinación con el FeaCh, es posible obtener una reducción adicional de la transmisión de luz ultravioleta hasta un punto donde se logra la transmisión de visibilidad buscada. Tiene una desventaja con respecto a su alto costo, lo que hace que la formulación sea muy costosa y además tiende a oxidar el Hierro a
FeaOa. Además, si bien el uso de CeOs en cantidades de 0.05 a 3.0% proporciona absorción de radiación ultravioleta, tiene la desventaja de que tiende a cambiar el color verde más deseable, a un tono amarillento inaceptable.
La patente norteamericana No. 6,589,897 B 1 de Foguenne, está relacionada con una composición para un vidrio verde que comprende de 0.7 a 1.3% del hierro total expresado como de Co, de 0.0050 a
Figure imgf000015_0001
0.15% de V2O5, 0.0015 a 0.0250% de OJOJ, y una transmisión de luz (iluminante A) para un espesor de vidrio de 4 mm (TLA) de entre 40 y 70%, una selectividad (SE) de mayor o igual a 1.5, una transmisión de radiación ultravioleta (Tuv) de menos de 20%, y una longitud de onda dominante (lo) para un espesor de vidrio de 5 mm de más de 490 nm.
La patente norteamericana No. 6,753,280 B2 de Seto et al, se relaciona con un vidrio que utiliza LhO de 0.00 i a 2%, como colorante, de 0.4 a 2% de hierro total expresado como FejCh (T-FeaCh) en donde FeO expresado como FeaOi es 15 a 60% de T-FeaOj. El vidrio tiene una transmitancia de luz visible usando el iluminante "A" (TLA) de no menos del 70%, y la transmitancia solar total (TTS) de no más del 60%, el vidrio teniendo un espesor entre 2.1 mm y 6 mm.
La Patente norteamericana No. 7.632.767B2 de Nagashima et al, utiliza una composición que incluye SiOa del 65 al 75%, B2G3 del 0 al 5%, AI2O3 del 0 ai 5%, MgO del 0 al 2%, CaO de! 10 al 15%, SrO del 0 a 10%, BaO de 0 a 10%, LhO de 0 a 5%, Na;;G de 10 a 15%, K2O de 0 a 5%, Ti<½ de 0 a 0.5 y ios siguientes componentes, hierro total expresado como FesQa de 0.4 a 1.0%, CeOa de 0 a 2.0%, en donde una relación de masa de FeO expresada como FejCh a T-FeaOs (FeO / T-Feaüs) es del 20 al 44%, En donde la transmisión de luz visible“A” del iluminante visible (TLA) es de al menos 80% y una transmiíancia total de energía solar (TG) de 62% o menos para una forma de lámina con un espesor de al menos 1.3 mm pero inferior a 2.5 mm, y para una forma de lámina con un espesor de entre 2.5 mm y 6 mm, en donde la transmisión de luz visible (TLA) iluminante“A” es de al menos 70%, una transmitancia total de energía solar (TG) de 55% o menos y una transmitancia ultravioleta (Tuv) de 15% o menos. En el caso del vidrio laminado, dicho vidrio laminado tiene una transmisión de luz visible (TLA) iluminante“A” de al menos 70%, y una transmitancia total de energía solar (TG) de 45%.
El vidrio descrito en la patente norteamericana. No. 7,682,999 B2 de Teyssedre, tiene una composición de hierro total expresada como FesCfe de 0.7 a 1,6%; CeOj de 0.1 a 1.2% y TiOz de 0 a 1.5%, con un factor redox de 0,23 o menos, este vidrio tiene una transmisión de iuz (TLA) de 65% o más, una transmisión de energía (TE) de 46% o menos para un espesor de 3 a 5 mm.
Los vidrios descritos en la patente norteamericana No. 9,573,841 B! de Cid-
Aguiiar et al, usa una composición de 0.5 a 1.30% de! hierro total expresado como FezOa; de 0.12 a 0.450% de FeO expresado como FejOa; de aproximadamente 0.04 a 1.8% seleccionado de TiCh o FeTiCh; aproximadamente 0.2 a 2% de Ceí¾; aproximadamente 0.0004 a 0.015% CuO; y aproximadamente 0.01 a 0.1% C, en donde la composición de vidrio que tiene una transmisión de luz iluminante "A" (TLA) mayor del 70%, una transmitancia de energía solar total (Ts ISO 13837) de menos o igual al 60%, una transmitancia ultravioleta solar (Tuv ISOG959 vi 990) de menos del 15%, una longitud de onda dominante de 485 nm a 570 nm y una pureza de excitación de menos de 11, con un espesor de 3 a 5 mm.
Hoy los fabricantes de automóviles intentan fabricar automóviles más eficientes para cumplir con ios nuevos estándares de emisión de gases.
Una forma de reducir e! peso total de un vehículo es reducir el espesor del parabrisas utilizando láminas de vidrio más delgadas; sin embargo, una gran reducción en el espesor puede no solo generar preocupación por la seguridad, sino también reducir su contribución a la rigidez torsional del vehículo, que es aproximadamente el 10 por ciento de la rigidez torsional total con el espesor actual del parabrisas. P. K. Maliick, en el libro Advanced materials in automotive engineering, Chapter 2.7, (Woodhead Publishing Limited, 2012).
Este problema se puede resolver utilizando vidrios con mejor fuerza y resistencia, tales como vidrios de boros! beato, vidrios de aiuminosílicato alcalino o vidrios químicamente reforzado en un sistema de acristalamiento híbrido,
Otra preocupación que surge es el alto nivel de mido debido a la reducción del espesor de estos parabrisas. Una forma de resolverlo es mediante el uso de polivinüo de butiral acústico (PVB), logrando una reducción de ruido superior para el acristalamiento. Cleary, T., Huten, T., Strong, D., y Walawender, C„ "Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications, SAE Int J. Passeng. Cars - Mech. Syst.
Como se menciona en e! artículo de Leonhard, T.» Cieariy, T. Moore, M., Seyier, S. et al,“Novel Lightweight Lamínate Concept with Uiírathin Chemícally Strengthened Glass for Automotive Windshields,” SAE Int. I. Passeng. Cars - Mech Syst., en donde se propone un cambio de espesor de 5.0 mm a 4,5 mm para un parabrisas, en este caso uíitizando una construcción asimétrica con una capa de 2.1 mm y otra de 1.6 mm, el beneficio principal es el porcentaje total de reducción de peso del 11.8%, esto significa 17.5 kg menos en comparación con un parabrisas simétrico de dos capas de vidrio de 2,1 mm y un PVB de 0.76 mm para un área cubierta promedio de 1 ,4 m2; utilizando una densidad de vidrio de 2.5 gr/em3.
La patente norteamericana No. 9,616,641 B2 de Cfeary et al., describe un laminado de vidrio que comprende: una lámina de vidrio externa, que puede ser una lámina de vidrio delgada reforzada químicamente o puede ser una lámina de vidrio no reforzada químicamente; una lámina de vidrio intema que puede ser una lámina de vidrio reforzada químicamente o una delgada lámina de vidrio reforzada químicamente; y una capa intermedia de polímero formada entre la lámina de vidrio extema y la lámina de vidrio intema, y puede tener un espesor de menos de 1,6 mm. En la estructura de vidrio laminado, la lámina de vidrio intema comprende 60-70 mol % S102; 6-14 mol. % AI2Ü3; 0-15 mol. % B2O3; 0-15 mol. % L120; 0-20 mol. % Na20:
0-10 mol. % K2O; 0-8 mol.% MgO; 0-10 mol.% CaO; 0-5 mol % ZrÜ2; 0-1 mol. % Snü2; 0-1 mol.% Ce02; menos de 50 ppm As20¾, y menos de 50 ppm Sb2Q?,; en donde 12 mol %£(LbO+NaaCH-KaO)£20 mol. % y 0 mol. %<(MgCHCaO)<10 mol. %. 22. En la estructura de vidrio laminado, la lamina de vidrio intema comprende: 64-68 mol. % Si02; 8-12 mol. % Al?Oj; 0-3 mol
Figure imgf000018_0002
Figure imgf000018_0001
Las
Figure imgf000019_0001
propiedades físicas del vidrio químicamente reforzado pueden tener un esfuerzo de compresión superficial entre 250 y aproximadamente 900 MPa, y/o una tensión central mayor de 40 MPa pero menor de 100 MPa y pueden variar en espesor de 0.5 a 1.0 mm.
El módulo de elasticidad puede variar de aproximadamente 60 GPa a 85 GPa.
El módulo de elasticidad de !a(s) lámina(s) de vidrio y la capa intermedia de polímero puede afectar tanto las propiedades mecánicas (por ejemplo, deflexión y resistencia) como el rendimiento acústico (por ejemplo, pérdida de transmisión) del laminado de vidrio resultante.
La invención mencionada por Cleary explica las características principales necesarias para producir un acristalamíento automotriz con resistencia mejorada y peso reducido, mediante el uso de vidrio químicamente reforzado y una capa intermedia de polímero, pero no aborda las propiedades ópticas requeridas para cumplir con el estándar de seguridad de transmitancia y parámetros de rendimiento solar requeridos en la industria automotriz.
OBJETIVOS DE LA INVENCIÓN
De acuerdo con la presente invención, se proporciona una composición de vidrio de sosa-cal-sílice y una porción colorante, en peso, que comprende: del 1.30 ai 2.50% del hierro tota! expresado como FezCL; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como FejCri: de aproximadamente 0.05 a aproximadamente 0.30% de SCh; de aproximadamente 0,02 a aproximadamente 1.0% de TKh; de aproximadamente 0.0002 a aproximadamente 0.03% de (¾(¾; y de aproximadamente 0.0002 a aproximadamente 0.015% de CuO, en donde la composición de vidrio tiene una transmisión de luz (TLA) iluminante“A” mayor dei 70%, una transmitancia solar directa (Tos) de menos del 51%, una transmitancia de luz UV tota! ( Tuv) de menos del 40% y una transmitancia solar total (Trs) de menos del 63%; una longitud de onda dominante de 490 nm a 600; y pureza de excitación inferior a 7, para espesores de aproximadamente 0.7 a 3.0 nun.
El objetivo principal de la presente invención es ofrecer una gama de composiciones de control solar, para vidrio monolítico en espesores de aproximadamente 0.7 a 3.0 mm, con un rendimiento solar equivalente. Esta composición de vidrio mantiene el rendimiento solar con un vidrio más delgado que permite la reducción de peso en vehículos.
Es otro objetivo en la presente invención ofrecer un vidrio delgado de control solar para lograr un sistema de acristalam lento laminado liviano, En la mayoría de los casos, pueden ser sistemas laminados simétricos-hlbrldos o asimétricos-híbridos con un espesor total de aproximadamente 2.3 a 5.0 mm, el cual puede construirse con vidrios comerciales claros de sosa-eal-sílice, vidrios de bajo contenido de hierro o alguna otra composición base, tales como borosilicato o aluminosilicato alcalino, incluidos los vidrios por intercambio iónico y no los intercambiados con iones, y una capa intermedia de un polímero de polivinil butirai convencional o acústico (PVB).
Otro objetivo importante es que este vidrio debe cumplir con las regulaciones de los Estados Unidos, Federal Motor Vehicle Safety Standard (Norma Federal de Seguridad de Vehículos Motorizados) que requiere una transmisión de luz superior al
70%.
BREVE DESCRIPCIÓN DE LAS FIGURAS FIG. 1 muestra el diagrama esquemático de una configuración de acristalamiento laminado,
FIG, 2 muestra otro diagrama esquemático de una configuración de acristalam lento laminado triple,
FIG. 3 es una gráfica que muestra el comportamiento del óxido de hierro sí se reduce el espesor, por ejemplo, para mantener el TLA superior al 70% con un espesor de 0.5 mm, se requiere un valor cercano al 2% de FesCh, considerando que el ferroso es aproximadamente 26.5%.
FIG. 4 es una gráfica que muestra el comportamiento del óxido de hierro si se reduce ei espesor, por ejemplo, para mantener ei TDS por debajo del 51%, con un espesor de 0,5 mm se requiere un valor cercano a! 2% de FeiCb considerando que el ferroso es aproximadamente 26.5 %.
DESCRIPCIÓN DETALLADA DE LA INVENCION.
Una composición típica dd vidrio de sosa-cal-sílice fabricada por el proceso de vidrio flotado para la industria automotriz, se caracteriza por la siguiente formulación basada en el porcentaje en peso con respecto ai peso total del vidrio, estos porcentajes se obtuvieron usando análisis de fluorescencia de rayos x.
Figure imgf000021_0001
La composición de vidrio verde de la presente invención se basa en Sa composición descrita anteriormente, a la que se han agregado los siguientes compuestos colorantes: L3G a 2,50% del hierro total expresado como FejCfi; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como FesCh; de aproximadamente 0.05 a aproximadamente 0.30% de 8í¾; de aproximadamente 0.02 a aproximadamente 1.0% de TiCh; de aproximadamente 0.0002 a aproximadamente 0.03% de€¾(¾; y de aproximadamente 0.0002 a aproximadamente 0.015% de CuO,
El vidrio verde tiene una transmisión de luz iluminante "A” (TLA) mayor del 70%, una transmitancia solar directa (Tos) de menos del 51% y una transm ¡tanda total de luz UV (Tuv) de menos del 40% y una transmitancia solar total (T?s) de menos del 63%, en donde el vidrio tiene un espesor de aproximadamente 0.7 a 3.0 mm,
En los últimos años, la tendencia en la industria automotriz ha sido reducir d espesor del vidrio sin sacrificar el rendimiento térmico de los productos, así, por ejemplo, podemos encontrar en el mercado automotriz productos de control solar templado con transmisión de luz superior a! 70% requerido por la norma federal ANSI Z 26.1 en espesores que van desde 4.85 a 3,2 mm, lo que significa que la composición se ajusta a cada espesor para lograr un rendimiento térmico específico o un control solar equivalente,
Como es conocido, el vidrio de control solar es un término que se aplica al vidrio que permite que la luí visible proveniente del sol pase a través de los sistemas de aeristalamiento (ventanas y parabrisas) y, al mismo tiempo, absorba o refleja gran parte del calor del sol hadad sol. exterior. En el caso de los sistemas de aeristalamiento para la visión dd conductor, como las puertas delanteras y e! parabrisas del automóvil, la transmisión de luz visible debe cumplir con el estándar federal de más del 70%, Por otro lado, se buscan valores mínimos de transmisión solar y ultravioleta, de modo que esta composición de vidrio mantenga el interior del vehículo o las casas más cómodas de lo que sería si se usara vidrio convencional Por lo tanto, se requiere un menor consumo de energía en los sistemas de aire acondicionado, lo que resulta en una menor contaminación y reducción de costos.
Para lograr las características descritas, la presente invención define la mezcla correcta de óxido de hierro (FejGj) - Redox (Ferroso) para dar ía coloración verdosa y reducir la transmisión ultravioleta (Tuv) y solar (Ts), óxido de titanio (TiCh) para contribuir al bloqueo de la radiación ultravioleta y ei óxido de cobre (CuO) como agentes colorantes para ajustar el tinte amarillento que puede conferir la adición de óxido de titanio, Sin embargo, altas concentraciones de CuO impactan negativamente la transmisión visible,
El cálculo de la transmisión de radiación ultravioleta (Tuv) involucra solo la participación de la radiación solar UV, de modo que se evalúa en el rango de 300 a 400 nm de longitud de onda usando intervalos de 5 nm y la masa de aire es igual a 1 ,5 ISO 13837 convención A estándar.
Las propiedades físicas como la transmisión de luz corresponden a variables calculadas basadas en estándares ínternacionalmente aceptados. De modo que la transmisión de luz se evalúa utilizando el iluminante "A" (TLA) y el observador estándar de 2 grados también conocido como 1931 [C.LE, Publicación, 15.2, ASTM E-308 (1990)]. El rango de longitud de onda utilizado para este propósito es de 380 a 780 nm, integrando valores en forma numérica con intervalos de 10 nm.
En el cálculo de la transmisión infrarroja (TIR), el rango se compone de la radiación en el espectro solar, que tiene un rango de 800 a 2500 nm, con intervalos de 50 nm, utilizando ios valores de ISO/DJS 13837.
La transmitancía solar directa (Tos) representa el calor que el vidrio transmite en forma directa, evaluándolo de 300 nm a 2500 nm con intervalos de 5, 10 y 50 nm, la forma numérica de cálculo utiliza como valores estándar reconocidos por ISO 13837 estándar (masa de aire 1.5 300 a 2500 nm intervalos trapezoidales).
La transmisión total de energía solar (TYs) se evaluó en el rango de 300 a 2500 nm considerando una velocidad del viento de 4 m/s (estacionado), de acuerdo con ISO/DIS 13837.
Las especificaciones para la determinación del color, como la longitud de onda dominante y la pureza de excitación, se han derivado de los valores del tristimulus (X, Y, Z), que han sido adoptados por la Comisión Internacional de Iluminación (CIE), como resultado directo de experimentos con muchos observadores. Estas especificaciones podrían determinarse mediante el cálculo de los coeficientes tricromáticos X, Y, Z de los valores de tristimulus que corresponden a los colores rojo, verde y azul, respectivamente. Los tres valores cromáticos se trazaron en el diagrama de cromaticidad y se compararon con las coordenadas del iluminante "D65" considerado como estándar de iluminación. La comparación proporciona la información para determinar la pureza de excitación del color y su la longitud de onda dominante. La longitud de onda dominante define la longitud de onda dei color y su valor se encuentra en el rango visible, de 380 a 780 nm, mientras qué para la pureza de la excitación, cuanto menor es el valor, el más cercano tiende a ser un color neutro. Se puede obtener una comprensión más profunda de los temas del “Handbook of Colorimetry” publicado por el“Massachusetís Instltute of Technology”, de Arthur C. Hardy, publicado en 1936,
Las variables de color L*, a* y b* del sistema de color CiELAB 1976, también se calculan a través de los valores de triesiímulo.
Los siguientes son ejemplos de composiciones de sosa-cal-sílice para láminas monolíticas y laminadas de acuerdo con la presente invención que tienen las propiedades físicas correspondientes de luz visible (TLA), luz UV (Tuv), infrarrojo (TIR), solar directo (Tos) y transmitancia solar total (TTS).
La composición de los siguientes vidrios se calculó por fluorescencia de rayos
X.
La Tabla 1. Los ejemplos del 1 al 27, describen composiciones de vidrio verde delgado de control solar con un espesor real de aproximadamente 1.2 a aproximadamente 4 mm, que mantienen el rendimiento solar, como vidrio más delgado, y pueden usarse para reducir el peso en vehículos.
TABLA I
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0002
TABLA 1 - Continuación
Figure imgf000028_0001
Figure imgf000029_0001
Haciendo ahora referencia a las Figuras I y 2, Sa FIG, 1 muestra una configuración de acristalamiento laminado de acuerdo con los ejemplos de las Tablas 2 y 4; y la Figura 2, muestra una configuración de acristalamiento laminado de acuerdo con los ejemplos de la Tabla 3.
En una primera modalidad de la presente invención (figura 1 ), el acristalamiento laminado está formado por tres capas (10). Una capa exterior (12) es un vidrio verde delgado de control solar de acuerdo con la presente invención, con un espesor de aproximadamente 0.7 a 3,0 mm. Una capa Intermedia de un polímero (13) es un polivimlbutiral convencional o acústico, PVB, con un espesor de 0.76 mm. Y una capa interna (14) puede construirse a partir de un vidrio transparente comercial con intercambio iónico y no iónico, a partir de un vidrio de borosilicato con intercambio iónico y no iónico o de un vidrio de aluminosil icato alcalino con intercambio iónico y no iónico (Corning Gorilla® Giass), con un espesor de aproximadamente 0,5 mm a 2.0 mm.
En una segunda modalidad, (figura 2), una configuración de triple acristalamiento laminado está formada por cinco capas (20), Una capa exterior (12) es un vidrio verde delgado con control solar, con un espesor de aproximadamente 0.7 a 3.0 mm, Dos capas intermedias de polímero ( 13) en las que la capa intermedia de un polímero (13) es un polivinilbutiral convencional o acústico, PVB, con un espesor de 0.76 mm, La capa central (15) y la capa interna (14) pueden construirse a partir de un vidrio transparente comercial Intercambiado con iones y no intercambiado con iones, a partir de un vidrio de borosilieato intercambiado con iones y no intercambiado con iones o de un vidrio con iones intercambiados y no con iones intercambiados vidrio de alumines! licato alcalino (Corning Gorilla® Giass), con un espesor de aproximadamente 0.5 mm a 2.0.
La Tabla 2 muestra el rendimiento del control solar de composiciones de vidrio verde delgado laminadas con vidrio transparente comercial, como se muestra en la FIG. 1. Ejemplos 28 y 29 describen el acristaiam lento laminado automotriz típico actual. Ejemplos 30 a 59 usando los ejemplos 20, 16, 1 1, 6, 5 y 3 para reducir el espesor total del vidrio laminado, mientras se mantiene el rendimiento solar. Todos los sistemas laminados se simularon mediante el software Optics 6, desarrollado por Lawrence Berkeley Laboratory y utilizando una capa intermedia polímero acústico comercial (polivinilbutiral, PVB) de un espesor de 0.76 mm.
TABLA 2
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
TABLA 2 - Continuación
Figure imgf000032_0002
Figure imgf000033_0001
La Tabla 3 maestra composiciones de vidrio verde delgado de control solar para construcciones laminadas de triple capa, incluyendo un capa extema y dos capas internas de vidrio transparente comercial, como se muestra en la F1G. 2. Los ejemplos 60 a 65 utilizan los ejemplos 1 y 2 para reducir el espesor total de las construcciones de vidrio laminado mientras se mantiene el rendimiento solar. Todos los sistemas laminados triples se simularon a través del software Optics 6, desarrollado por Lawrence Berkeley Laboratory, utilizando una capa intermedia (dos) de un polímero acústico comercial (PVB) de 0.76 mm de espesor.
TABLA 3
Figure imgf000034_0001
La Tabla 4 muestra composiciones de vidrio verde delgado de control solar laminadas con Gorilla® Glass comercial, como se muestra en la FIG. 1. Ejemplos 66 a 72 utilizan los ejemplos 1 y 2 para reducir e! espesor total de la construcción de vidrio laminado mientras se mantiene el rendimiento sotar. Todos los sistemas laminados se simularon mediante el software Optics 6, desarrollado por Lawrence Berkeley Laboratory, utilizando una capa intermedia de polímero acústico comercial (PVB) de 0.76 mm de espesor.
Figure imgf000035_0001
No obstante que se han descrito dos modalidades laminadas de acuerdo con la presente invención, éstas no están limitadas a la que se muestra en las Figuras 1 y 2, El orden de las capas puede usar Invertido. Esto significa que la capa extema puede ser un vidrio transparente comercial con Intercambio iónico y no iónico, un vidrio de borosilieaío con intercambio iónico y no iónico o un vidrio de aluminosilicato alcalino con intercambio iónico y no iónico (vidrio Corning Goriiia®) y la capa intema puede ser un control solar delgado de vidrio verde.
De lo anterior, se ha descrito una composición de vidrio verde y será aparente para los expertos en el ramo que se puedan realizar otros posibles avances o mejoras, las cuales pueden estar consideradas dentro del campo determinado por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1 Una composición de vidrio para un vidrio de control solar verde delgado, que omprende: un vidrio base de sosa-cal-sílice y un colorante, en donde dicho colorante omprende: 1.30 a 2.50% del hierro total expresado como !½(¾: de 15 a 40% de Fe2+ ferroso) y de 0.15 a 0.65% de FeO, expresado como Fe^Os; de aproximadamente 0.05 aproximadamente 0.30% de S<¾; de aproximadamente 0.02 a aproximadamente 1.0% e TiCh; de aproximadamente 0.0002 a aproximadamente 0.03% de O2O3; y de proximadamente 0.0002 a aproximadamente 0.015% de CuO, el vidrio teniendo una ansmisión de lúa iluminante "A" (TLA) mayor del 70%, una transmitancia solar directaTos) de menos del 51% y una transmitancia total de luz UV (Tuv) ) de menos del 40% una transmitancia solar total (TYs) de menos del 63%, en donde el vidrio tiene un spesor de aproximadamente 0.7 a 3,0 mm,
2. El vidrio de control solar de conformidad con la reivindicación 1, en donde longitud de onda dominante es de 490 sm a 600 nm.
3.· El vidrio de control solar de conformidad con la reivindicación 1, teniendo na pureza de excitación de menos de 7, para espesores de aproximadamente entre 0.7 3.0 mm.
4,- El vidrio de control solar de conformidad con la reivindicación 1, en dondea composición de vidrio base de sosa-cal-sílice comprende de 68 a 75% de S1O2, 0 a % de AI2O3, 5 a 15% de CaO, 0 a 10% de MgO, del 10 al 18% de Na20 y del 0 al 5% e K20.
5,~ Una lámina de vidrio formada a partir de una composición de vidrio de cuerdo a la reivindicación 1 que comprende: un vidrio base de sosa-cal-sílice y un olorante, en donde dicho colorante compre 0 a 2.50% del hierro total expresado como FeaOs; de 15 a 40% de de FeO, expresado oomo
Figure imgf000038_0001
FejCh; de aproximadamente 0.05 a aproximadamente 0.30% de SOs; de aproximadamente 0.02 a aproximadamente 1.0% de T1O2; de aproximadamente 0.0002 a aproximadamente 0.03% de <¾<¾; y de aproximadamente 0,0002 a aproximadamente 0.015% de CuQ, el vidrio teniendo una transmisión de luz Hum inante
"A" (TLA) mayor del 70%, una íransmitancia solar directa (Tos) de menos del 51% y una íransmitancia total de luz UV (Tuv) de menos del 40% y una íransmitancia solar total (TTS) de menos del 63%, en donde el vidrio tiene un espesor de aproximadamente 0.7 a 3.0 BIS!.
6.- La lámina de vidrio de conformidad con la reivindicación 5, en donde la longitud de onda dominante es de 490 nm a 600 nm.
7.- La lámina de vidrio como se define en la reivindicación 5, en donde la pureza de excitación es inferior a 7, para espesores de aproximadamente 0.7 a 3.0 mm.
8.- La lámina de vidrio como se define en la reivindicación 1, la cual es formada mediante un proceso de flotación.
9.~ Un vidrio laminado simétrico-híbrido o asimétrico-híbrido que tiene una capa interna, una capa extema y un polímero entre la capa intema y la capa externa, la capa intema, ia capa extema y el polímero siendo laminadas juntas, en donde al menos una capa incluye al menos una lámina de vidrio que comprende una composición de vidrio de un vidrio base de sosa-cai-silice y un colorante, en donde dicho colorante comprende: 1.30 a 2.50% del hierro total expresado como FeaCb; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como Fe¼; de aproximadamente 0.05 a aproximadamente 0.30% de SO3; de aproximadamente 0.02 a aproximadamente i .0% de TiOj.; de aproximadamente 0.0002 a aproximadamente 0.03% de Cr£h: y de aproximadamente 0.0002 a aproximadamente 0.0 i 5% de CuG, la composición de vidrio teniendo una transmisión de luz iluminante "A" (TLA) mayor del 70%, una transmitancia solar directa (Tos)
Figure imgf000039_0001
trenos 51%, una transmitancia total de luz UV ( Tuv) de menos dei 40% y una transmitancia solar total (TTS) de menos del 63%, en donde el vidrio tiene un espesor de aproximadamente 0.7 a 3.0 mm.
10.- El vidrio laminado como se define en la reivindicación 9, teniendo una transmisión de luz iluminante "A" (TLA) mayor de! 70%, una transmitancia solar directa (Tos) de menos del 50%, una transmitancia total de luz UV (Tuv) de menos del 5% y una transmitancia solar total (TTS) de menos del 60% para al menos un espesor total del vidrio laminado de aproximadamente 2.3 a 5.0 mm.
1 1 El vidrio laminado de conformidad con la reivindicación 9, en dondej la capa intema tiene un espesor que varía de aproximadamente 0.5 mm a 2.0, y la capa externa tiene un espesor que varía de aproximadamente 1.0 mm a aproximadamente 2.6 mm.
12.~ El vidrio laminado de la reivindicación 9, en donde la capa interna comprende un vidrio de aiuminosüicaío alcalino con intercambio iónico y no iónico (vidrio Goriila®),
13.- El vidrio laminado de la reivindicación 9, en donde la capa intema comprende un vidrio de borosilicato con intercambiado iónico y no iónico.
14.- La estructura de vidrio laminado de la reivindicación 9, en la que la capa intema comprende un vidrio de sosa-cal-sliice con Intercambio iónico y no intercambiado con iones.
15.- El vidrio laminado de ia reivindicación 9, comprendiendo:
una capa intema de un vidrio transparente comercial,
una capa intermedia de un polímero sobre la capa intema; y,
una capa extema de una composición de vidrio que comprende, un vidrio base de sosa-cal-sílice y un colorante, en donde dicho colorante comprende: 1,30 a 2.50% del hierro total expresado como FeaOj; de 15 a 40% de Fe2+ (ferroso) y de 0, 15 a 0.65% de FeO, expresado como FeaCb; de aproximadamente 0.05 a aproximadamente 0.30% de SO3; de aproximadamente 0,02 a aproximadamente í .0% de T1O2; de aproximadamente 0,0002 a aproximadamente 0.03% de {¾(¾; y de aproximadamente 0,0002 a aproximadamente 0.015% de CuO, la composición de vidrio teniendo una transmisión de luz iluminante“A" (TLA) mayor del 70%, una transmítancia solar directa (TDS) de menos del 51% y una transmítancia total de luz UV ( Tuv) de menos del 40% y una transmítancia solar total (Trs) de menos del 63%, en donde el vidrio laminado tiene un espesor de aproximadamente 2.3 a 5,0 mm.
16.- Eí vidrio laminado de la reivindicación 15, en donde la capa externa tiene un espesor de aproximadamente 0.7 mm a 3.0 mm.
17. El vidrio laminado de la reivindicación 15, en donde la capa intema tiene un espesor de entre aproximadamente 0.7 mm a 1.0 mm.
18. El vidrio laminado de la reivindicación 9, que comprende:
una capa intema de un vidrio claro comercial,
una primera capa intermedia de un polímero sobre la capa intema;
una capa centra! de un vidrio claro comercial; una segunda capa intermedia de polímero sobre la capa central; y, una capa externa de una composición de vidrio que comprende: un vidrio base de sosa-cal-sílice y un colorante, en donde dicho colorante comprende: 1.30 a 2.50% dd hierro tota! expresado como FejCh; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como FeaQs; de aproximadamente 0.05 a aproximadamente 0.30% de SCh; de aproximadamente 0.02 a aproximadamente 1.0% de TiCh; de aproximadamente 0.0002 a aproximadamente 0.03% de {¾(¾; y de aproximadamente 0.0002 a aproximadamente 0.015% de CuO, la composición de vidrio teniendo una transmisión de luz Iluminante "A" (TLA) mayor del 70%, una transmitaneia solar directa (T os) de menos del 51%, una transmitaneia total de luz UV ( Tuv) de menos del 40% y una transmitaneia solar total (TTS) de menos dd 63%, en donde el vidrio laminado tiene un espesor de aproximadamente 3.5 a 5.0 mm.
19.- El vidrio laminado de la reivindicación 18, en donde la capa intema y la capa central tienen un espesor que varía de aproximadamente 0.5 mm a 1.1 mm; y la capa exterior tiene un espesor de aproximadamente 0.7 a 1.5 mm.
20. El vidrio laminado de la reivindicación 9, comprendiendo:
una capa interna de vidrio Gorilla® Glass;
una primera capa intermedia de un polímero sobre la capa interna;
una capa central de Gorilla® Glass;
una segunda capa intermedia de un polímero sobre la capa central; y, una capa externa de una composición de vidrio que comprende, un vidrio base de sosa-cal-sílice y un colorante, en donde dicho colorante comprende: 1.30 a 2.50% dd hierro total expresado como FejOj; de 15 a 40% de Fe2+ (ferroso) y de 0.15 a 0.65% de FeO, expresado como FeaOs; de aproximadamente 0.05 a aproximadamente 0.30% de SO3; de aproximadamente 0.02 a aproximadamente 1.0% de Ti€h; de aproximadamente 0.0002 a aproximadamente 0.03% de CrjCb; y de aproximadamente 0.0002 a aproximadamente 0.015% de CuO, la composición de vidrio teniendo una transmisión de luz iluminante "A" (TLA) mayor dei 70%, una transmitancia solar directa (TDS) de menos de! 51%, una transmitancia total de luz UV { Tuv) de menos del 40% y una transmitancia solar total (Txs) de menos del 63%, en donde el vidrio laminado tiene un espesor de aproximadamente 3.5 a 5.0 mm.
21.- El vidrio laminado de la reivindicación 20, en donde la capa interna y la capa central tienen un espesor que varía de aproximadamente 0.5 mm a 1.1 mm; y la capa exterior tiene un espesor de aproximadamente 0.7 a 1.5 mm.
22.- E! vidrio laminado de la reivindicación 9, en donde la capa extema puede ser un vidrio transparente comercial con intercambio iónico y no iónico, un vidrio de borosilicato con intercambio iónico y no iónico o un vidrio de aluminosificato alcalino con intercambio iónico y no iónico (Corning Gorilla ® Glass) y la capa intema está fabricada con la composición de vidrio verde.
PCT/MX2019/000137 2018-12-06 2019-12-04 Una composición para un vidrio verde delgado de control solar WO2020117038A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021005989A MX2021005989A (es) 2018-12-06 2019-12-04 Una composicion para un vidrio verde delgado de control solar.
CA3122295A CA3122295A1 (en) 2018-12-06 2019-12-04 Solar control thin green glass composition
BR112021010840-8A BR112021010840A2 (pt) 2018-12-06 2019-12-04 Composição de vidro verde fino de controle solar
EP19893937.3A EP3892595A4 (en) 2018-12-06 2019-12-04 COMPOSITION FOR SOLAR CONTROL THIN GREEN GLASS
CN201980080337.9A CN113165956A (zh) 2018-12-06 2019-12-04 用于薄绿色阳光控制玻璃的组合物
CONC2021/0006961A CO2021006961A2 (es) 2018-12-06 2021-05-26 Una composición para un vidrio verde delgado de control solar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/212,338 US20200180997A1 (en) 2018-12-06 2018-12-06 Solar Control Thin Green Glass Composition
US16/212,338 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020117038A1 true WO2020117038A1 (es) 2020-06-11

Family

ID=70971645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2019/000137 WO2020117038A1 (es) 2018-12-06 2019-12-04 Una composición para un vidrio verde delgado de control solar

Country Status (9)

Country Link
US (1) US20200180997A1 (es)
EP (1) EP3892595A4 (es)
CN (1) CN113165956A (es)
BR (1) BR112021010840A2 (es)
CA (1) CA3122295A1 (es)
CL (1) CL2021001337A1 (es)
CO (1) CO2021006961A2 (es)
MX (1) MX2021005989A (es)
WO (1) WO2020117038A1 (es)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339541A (en) * 1980-03-04 1982-07-13 Bfg Glassgroup Manufacture of tinted glass
US4792536A (en) 1987-06-29 1988-12-20 Ppg Industries, Inc. Transparent infrared absorbing glass and method of making
US5077133A (en) 1990-06-21 1991-12-31 Libbey-Owens-Ford Co. Infrared and ultraviolet radiation absorbing green glass composition
US5112778A (en) 1990-01-30 1992-05-12 Libbey-Owens-Ford Co. Batch composition for making infrared and ultraviolet radiation absorbing green glass
US5700579A (en) 1993-09-17 1997-12-23 Saint-Gobain Vitrage Glass compositions intended for the production of panes
US5776845A (en) 1996-12-09 1998-07-07 Ford Motor Company High transmittance green glass with improved UV absorption
US5830812A (en) 1996-04-01 1998-11-03 Ppg Industries, Inc. Infrared and ultraviolet radiation absorbing green glass composition
US6030911A (en) 1994-07-22 2000-02-29 Vitro Flotado, S.A. De C.V. Green thermo-absorbent glass
US6350712B1 (en) 2000-01-26 2002-02-26 Vitro Corporativo, S.A. De C.V. Solar control glass composition
US6589897B1 (en) 1998-06-30 2003-07-08 Glaverbel Green soda glass
US6753280B2 (en) 2001-06-21 2004-06-22 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent green glass
US7632767B2 (en) 2005-03-22 2009-12-15 Nippon Sheet Glass Company, Limited Infrared absorbent green glass composition and laminated glass including the same
US7682999B2 (en) 2005-02-08 2010-03-23 Saint-Gobain Glass France Glass composition for production of glazing absorbing ultraviolet and infrared radiation
WO2011152698A2 (es) * 2010-06-01 2011-12-08 Vidrio Plano De Mexico, Sa De Cv Composicion de vidrio de control solar verde obscuro
US20120328843A1 (en) * 2011-06-24 2012-12-27 Cleary Thomas M Light-weight hybrid glass laminates
WO2015031594A2 (en) * 2013-08-29 2015-03-05 Corning Incorporated Thin glass laminate structures
US20150158275A1 (en) * 2013-12-10 2015-06-11 Corning Incorporated Non-yellowing glass laminate structure
US9573841B1 (en) 2015-10-06 2017-02-21 Vidrio Plano De Mexico, S.A. De C. V. UV absorbent green solar control glass composition
US9616641B2 (en) 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
US10011521B2 (en) 2014-04-23 2018-07-03 Asahi Glass Company, Limited Colored glass plate and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413893B1 (en) * 1996-07-02 2002-07-02 Ppg Industries Ohio, Inc. Green privacy glass
JP2004123495A (ja) * 2002-10-07 2004-04-22 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収着色ガラス板
GB2403731A (en) * 2003-07-11 2005-01-12 Pilkington Plc Solar control glazing
JP5400592B2 (ja) * 2009-11-30 2014-01-29 富士フイルム株式会社 合わせガラス用積層中間膜シートの製造方法
WO2014176059A1 (en) * 2013-04-22 2014-10-30 Corning Incorporated Laminated glass structures having high glass to polymer interlayer adhesion
CN103641309B (zh) * 2013-11-01 2018-10-16 何开生 吸收紫外线和红外线的玻璃组合物及其应用
JP6615651B2 (ja) * 2016-03-11 2019-12-04 日本板硝子株式会社 ウインドシールド

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339541A (en) * 1980-03-04 1982-07-13 Bfg Glassgroup Manufacture of tinted glass
US4792536A (en) 1987-06-29 1988-12-20 Ppg Industries, Inc. Transparent infrared absorbing glass and method of making
US5112778A (en) 1990-01-30 1992-05-12 Libbey-Owens-Ford Co. Batch composition for making infrared and ultraviolet radiation absorbing green glass
US5077133A (en) 1990-06-21 1991-12-31 Libbey-Owens-Ford Co. Infrared and ultraviolet radiation absorbing green glass composition
US5700579A (en) 1993-09-17 1997-12-23 Saint-Gobain Vitrage Glass compositions intended for the production of panes
US6030911A (en) 1994-07-22 2000-02-29 Vitro Flotado, S.A. De C.V. Green thermo-absorbent glass
US5830812A (en) 1996-04-01 1998-11-03 Ppg Industries, Inc. Infrared and ultraviolet radiation absorbing green glass composition
US5776845A (en) 1996-12-09 1998-07-07 Ford Motor Company High transmittance green glass with improved UV absorption
US6589897B1 (en) 1998-06-30 2003-07-08 Glaverbel Green soda glass
US6350712B1 (en) 2000-01-26 2002-02-26 Vitro Corporativo, S.A. De C.V. Solar control glass composition
US6753280B2 (en) 2001-06-21 2004-06-22 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent green glass
US7682999B2 (en) 2005-02-08 2010-03-23 Saint-Gobain Glass France Glass composition for production of glazing absorbing ultraviolet and infrared radiation
US7632767B2 (en) 2005-03-22 2009-12-15 Nippon Sheet Glass Company, Limited Infrared absorbent green glass composition and laminated glass including the same
WO2011152698A2 (es) * 2010-06-01 2011-12-08 Vidrio Plano De Mexico, Sa De Cv Composicion de vidrio de control solar verde obscuro
US20120328843A1 (en) * 2011-06-24 2012-12-27 Cleary Thomas M Light-weight hybrid glass laminates
US9616641B2 (en) 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
WO2015031594A2 (en) * 2013-08-29 2015-03-05 Corning Incorporated Thin glass laminate structures
US20150158275A1 (en) * 2013-12-10 2015-06-11 Corning Incorporated Non-yellowing glass laminate structure
US10011521B2 (en) 2014-04-23 2018-07-03 Asahi Glass Company, Limited Colored glass plate and method for manufacturing same
US9573841B1 (en) 2015-10-06 2017-02-21 Vidrio Plano De Mexico, S.A. De C. V. UV absorbent green solar control glass composition

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ARTHUR C. HARDY: "Handbook of Colorimetry", 1936, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
C. R. BAMFORD: "Glass Science and Technology", 1977, ELSEVIER SCIENTIFIC PUBLISHING COMPANY, article "Colour Generation and Control in Glass", pages: 48 - 50
CLEARY, T.HUTEN, T.STRONG, D.WALAWENDER, C.: "Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications", SAE INT. J. PASSENG. CARS - MECH. SYST.
GORDON F. BREWSTER ET AL.: "The color of iron containing glasses of varying composition", JOURNAL OF THE SOCIETY OF GLASS TECHNOLOGY, April 1950 (1950-04-01), pages 332 - 406
J. C. HOSTETTERH. S. ROBERTS: "Note on the dissociation of Ferric Oxide dissolved in glass and its relation to the color of iron-bearing glasses", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, September 1921 (1921-09-01), pages 927 - 938
K. M. FYLES: "Modern Automotive Glasses", GLASS TECHNOLOGY, vol. 37, February 1996 (1996-02-01), pages 2 - 6, XP055655685
LEONHARD, T.CLEARLY, T.MOORE, M.SEYLER, S. ET AL.: "Novel Lightweight Laminate Concept with Ultrathin Chemically Strengthened Glass for Automotive Windshields", SAE INT. J. PASSENG. CARS - MECH SYST.
M. D. BEALS: "Effects of Titanium Dioxide in Glass", THE GLASS INDUSTRY, September 1963 (1963-09-01), pages 495 - 531
N. E. DENSEM: "The equilibrium between ferrous and ferric oxides in glasses", JOURNAL OF THE SOCIETY OF GLASS TECHNOLOGY, May 1937 (1937-05-01), pages 374 - 389
P. K. MALLICK: "Advanced materials in automotive engineering", 2012, WOODHEAD PUBLISHING LIMITED
See also references of EP3892595A4
WALDEMAR A. WEIL: "Colored Glasses", 1976, SOCIETY OF GLASS TECHNOLOGY, pages: 154 - 167

Also Published As

Publication number Publication date
CN113165956A (zh) 2021-07-23
CA3122295A1 (en) 2020-06-11
CO2021006961A2 (es) 2021-06-10
CL2021001337A1 (es) 2022-01-07
MX2021005989A (es) 2021-09-08
BR112021010840A2 (pt) 2021-08-24
EP3892595A4 (en) 2022-08-24
EP3892595A1 (en) 2021-10-13
US20200180997A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
ES2749394T3 (es) Composición de vidrio incoloro
JP3127201B2 (ja) 濃い灰色のソーダライムガラス
US7435696B2 (en) Glass composition with high visible light transmission and low ultraviolet light transmission
CZ566590A3 (en) Greenish colored soda-lime-silicate glass
CA2801244C (en) Dark green solar control glass composition
PT768284E (pt) Conjunto de vidracas montadas sobre um veiculo automovel
BRPI0607956B1 (pt) composição de vidro destinada à fabricação de vidraças, folha de vidro, e, vidraça
PT770042E (pt) Folhas de vidro destinadas a fabricacao de vidracas
WO2011152257A1 (ja) 低日射透過率ガラス
CA3000806C (en) An uv absorbent green solar control glass composition
BR0215205B1 (pt) composiÇço de vidro azul de tipo sÍlico-sodo-cÁlcico, folha de vidro formada por flutuaÇço em um banho de metal em fusço, e, vidraÇa, notadamente automotiva.
US7732360B2 (en) Colorless glass composition
WO2020117038A1 (es) Una composición para un vidrio verde delgado de control solar
JPH05270855A (ja) 中性灰色系色調の熱線吸収ガラス
WO2001055040A1 (es) Composicion de vidrio para control solar
WO2020046096A1 (es) Vidrio gris neutro de baja transmisión de luz
JPH1045424A (ja) 紫外線吸収着色ガラス
JPH06227839A (ja) 中性灰色系色調ガラス
JPH09286631A (ja) 紫外線吸収ブロンズ色系ガラス
BR112018007029B1 (pt) Composição de vidro de controle solar verde absorvente de uv
JPH09301736A (ja) 紫外線吸収グレ−色系ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3122295

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021010840

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019893937

Country of ref document: EP

Effective date: 20210706

ENP Entry into the national phase

Ref document number: 112021010840

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210604