WO2020116769A1 - 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품 - Google Patents

레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품 Download PDF

Info

Publication number
WO2020116769A1
WO2020116769A1 PCT/KR2019/013659 KR2019013659W WO2020116769A1 WO 2020116769 A1 WO2020116769 A1 WO 2020116769A1 KR 2019013659 W KR2019013659 W KR 2019013659W WO 2020116769 A1 WO2020116769 A1 WO 2020116769A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser direct
resin composition
weight
metal compound
metal
Prior art date
Application number
PCT/KR2019/013659
Other languages
English (en)
French (fr)
Inventor
권도현
이재욱
민병환
Original Assignee
주식회사 동성코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동성코퍼레이션 filed Critical 주식회사 동성코퍼레이션
Publication of WO2020116769A1 publication Critical patent/WO2020116769A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a laser direct structured resin composition, a method for manufacturing the same, and an injection molded product manufactured therefrom, more specifically, a laser direct structured resin composition capable of realizing excellent mechanical properties without deteriorating plating properties such as plating adhesion. It relates to a manufacturing method and an injection molded product manufactured therefrom.
  • the laser direct structuring process is a process performed before the plating step, and refers to a process of modifying the plating target region to have properties suitable for plating by irradiating a laser to the plating target region on the surface of a molded product.
  • the laser direct structuring process should include a laser direct structuring additive capable of forming a metal nucleus by a laser, which decomposes upon receiving a laser to produce a metal nucleus, and the area irradiated with the laser has a roughened surface. Due to the metal core and surface roughness, the laser-modified region is suitable for plating without using an adhesive or the like.
  • Patent Document 1 Korean Registered Patent No. 10-1297630
  • the present invention is to provide a laser direct structured resin composition capable of realizing excellent mechanical properties without deterioration of plating properties such as plating adhesion, a manufacturing method thereof, and an injection molded product manufactured therefrom The purpose.
  • the present invention comprises 80 to 99.9% by weight of a resin component and 0.1 to 20% by weight of a laser direct forming (LDS) additive, wherein the laser direct forming (LDS) additive is surface-modified with aminosilane. It provides a laser direct structured resin composition characterized in that the metal compound.
  • the present invention comprises the steps of i) hydroxylating the surface of the metal compound; ii) modifying the surface of the hydroxylated metal compound with aminosilane to prepare a laser direct molding (LDS) additive; And iii) mixing 0.1 to 20% by weight of the prepared laser direct molding (LDS) additive and 80 to 99.9% by weight of the resin component, followed by extruding with an extruder.
  • the present invention provides an injection molded article made of the laser direct structured resin composition of the present invention.
  • 1 is a TGA graph showing that 1% by weight of aminosilane is attached to the surface of a metal compound.
  • FIG. 2 is an exemplary view showing a process in which hydroxyl groups are introduced on the surface of a metal compound.
  • FIG 3 is an exemplary view showing a process in which an aminosilane group is introduced on the surface of a hydroxylated metal compound.
  • FIG. 5 is a TEM photograph of the surface of the hydroxylated metal compound magnified 250,000 times.
  • FIG. 6 is a TEM photograph showing the relationship between a number of metal compounds after modifying the surface of the hydroxylated metal compound with aminosilane.
  • FIG. 7 is a TEM photograph showing the surface of one metal compound after the surface of the hydroxylated metal compound is modified with aminosilane.
  • the present inventors included a metal compound surface-modified with aminosilane when manufacturing the laser direct structured resin composition, the metal compounds in the resin were very uniformly distributed, confirming that mechanical properties were greatly improved, and based on this, the present invention was completed.
  • the laser direct structured resin composition of the present invention comprises 80 to 99.9% by weight of a resin component and 0.1 to 20% by weight of a laser direct forming (LDS) additive, wherein the laser direct forming (LDS) additive is a metal compound surface-modified with aminosilane. It is characterized in that, in this case, there is an effect of excellent mechanical properties without deterioration of the plating properties such as plating adhesion.
  • LDS laser direct forming
  • the resin component is, for example, 80 to 99.9% by weight, 85 to 99% by weight, preferably 90 to 97% by weight, more preferably 90 to 95% by weight, even more preferably 100% by weight of the laser direct structured resin composition It can be 91 to 93% by weight, there is an excellent effect in the mechanical properties within this range.
  • the resin component is less than the above range, the problem of deterioration in durability and the problem that the laser direct-forming additive is excessively dispersed in the resin may cause smearing or peeling of the pattern after plating, and when it is above the range, the laser direct-forming additive Because it is insufficient to disperse in the resin component may cause a problem that the plating pattern is not formed.
  • the resin component may be, for example, one or more selected from the group consisting of polyarylene sulfide resin, polyamide resin, polyester resin, polycarbonate resin, polyarylene ether resin and liquid crystal polymer (LCP), in which case durability and It has excellent mechanical properties.
  • the polyarylene sulfide resin is not particularly limited in the case of a polyarylene sulfide resin commonly used in the technical field to which the present invention belongs, but may be, for example, polyphenylene sulfide (PPS), and in this case, excellent mechanical properties There is.
  • PPS polyphenylene sulfide
  • the polyarylene sulfide resin may have, for example, a melt index (316° C., 5 kg) of 30 to 150 g/min, 50 to 130 g/min, 80 to 120 g/min, or 90 to 110 g/min. , Within this range, mechanical properties such as tensile strength and flexural strength are excellent.
  • Melt index in this substrate is measured in accordance with ASTM D1238 at 316 °C, 5 kg load conditions.
  • the polyamide resin is not particularly limited in the case of a polyamide resin commonly used in the technical field to which the present invention belongs, but may be, for example, polyphthalamide (PPA), and in this case, has excellent effects in moldability and mechanical properties. .
  • PPA polyphthalamide
  • the polyamide resin may have, for example, a number average molecular weight of 10,000 to 200,000 g/mol, preferably 20,000 to 150,000 g/mol, and has excellent effects in heat resistance and processability within this range.
  • the number average molecular weight and the weight average molecular weight are prepared by dissolving a resin in tetrahydrofuran (THF) at a concentration of 1 mg/ml, filtering it with a 0.45 ⁇ m syringe filter, and gel chromatography (GPC). Measure using.
  • THF tetrahydrofuran
  • the polyamide resin may have, for example, an intrinsic viscosity of 0.6 to 1.2 dl/g, preferably 0.8 to 1.0 dl/g, and has excellent moldability and mechanical properties within this range.
  • Intrinsic viscosity in this description is measured in chloroform at 25°C.
  • the polyester resin is made of, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT) and polycyclohexylene terephthalate (PCT). It may be one or more selected from the group, and in this case, there is an effect of excellent heat resistance and mechanical properties.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PTT polytrimethylene terephthalate
  • PCT polycyclohexylene terephthalate
  • the polyester resin has, for example, an intrinsic viscosity of 0.6 to 2.0 dl/g, preferably 0.8 to 1.4 dl/g, and has excellent effects in heat resistance and mechanical properties within this range.
  • the polyester resin may have a weight average molecular weight of 5,000 to 30,000 g/mol, preferably 5,000 to 20,000 g/mol, and have excellent mechanical properties within this range.
  • the polycarbonate resin is not particularly limited in the case of a polycarbonate resin commonly used in the technical field to which the present invention belongs, but may be, for example, an aromatic polycarbonate and/or an aliphatic polycarbonate, in which case impact resistance, plating adhesion and surface It has an excellent effect such as hardness.
  • the polycarbonate resin may have, for example, a number average molecular weight of 3,000 to 100,000 g/mol, 10,000 to 75,000 g/mol, preferably 20,000 to 50,000 g/mol, and has excellent mechanical properties within this range.
  • the polyarylene ether resin is, for example, poly(2,6-dimethyl-1,4-phenylene ether), poly(2,6-diethyl-1,4-phenylene ether), poly(2-methyl- 6-ethyl-1,4-phenylene ether), poly(2-methyl-6-propyl-1,4-phenylene ether), poly(2,6-dipropyl-1,4-phenylene ether), Poly(2-ethyl-6-propyl-1,4-phenylene ether), poly(2,6-dimethoxy-1,4-phenylene ether), poly(2,6-di(chloromethyl)-1 ,4-phenylene ether), poly(2,6-ji(bromomethyl)-1,4-phenylene ether), poly(2,6-diphenyl-1,4-phenylene ether), poly( 2,6-dichloro-1,4-phenylene ether), poly(2,6-dibenzyl-1,4-phenylene ether),
  • the polyarylene ether resin may have, for example, an intrinsic viscosity of 0.1 to 0.6 dl/g, preferably 0.3 to 0.5 dl/g, and has an excellent effect of balance of workability and physical properties within this range.
  • the liquid crystal polymer is not particularly limited as long as it is a material commonly used in the art.
  • the laser direct forming additive is, for example, 0.1 to 20% by weight, 1 to 15% by weight, preferably 3 to 10% by weight, more preferably 5 to 10% by weight, based on 100% by weight of the total laser direct structured resin composition, More preferably, it may be 7 to 9% by weight, as well as excellent laser reactivity and plating properties within this range, and the additives are very uniformly distributed in the resin, so that the plating properties are maintained while maintaining mechanical properties equal to or higher than the prior art. There is an effect to be improved.
  • the laser direct molding (LDS) additive may be, for example, a metal compound surface-modified with aminosilane, and in this case, the metal compound in the resin is very uniformly distributed to improve mechanical properties.
  • the aminosilane may be a compound represented by the following Chemical Formula 1 as a preferred example, and in this case, the metal compound in the resin is very uniformly distributed, thereby improving mechanical properties such as tensile strength and flexural strength.
  • R 1 to R 5 are independently hydrogen or an alkyl group having 1 to 5 carbon atoms, and R'is an alkylene group having 2 to 10 carbon atoms.
  • the R 1 to R 3 may be, for example, independently hydrogen or an alkyl group having 1 to 3 carbon atoms
  • the R 4 to R 5 may be independently hydrogen as an example
  • the R′ is, for example, 2 to 4 carbon atoms. It may be an alkylene group, and in this case, the metal compound in the resin is very uniformly distributed, thereby improving mechanical properties.
  • the aminosilane may be aminopropyl triethoxysilane (APTES) as a specific example, and in this case, the metal compound in the resin is very uniformly distributed to improve mechanical properties such as tensile strength and flexural strength. It has the effect.
  • APTES aminopropyl triethoxysilane
  • the laser direct forming (LDS) additive is, for example, a metal compound 95 to 99.9% by weight, preferably 96 to 99% by weight, more preferably 96 to 98% by weight; And 0.1 to 5 wt%, preferably 1 to 4 wt%, more preferably 2 to 4 wt%, as an example of aminosilane bound to the surface of the metal compound; and laser irradiation within this range
  • LDS laser direct forming
  • the metal compound may be, for example, a metal oxide, a metal salt, or a mixture thereof, and in this case, there is an excellent effect of plating adhesion with the surface of the resin irradiated with the laser.
  • the metal oxide may be preferably a metal compound represented by the following Chemical Formula 2, and in this case, it is easy to modify the surface with aminosilane, so that the metal compound in the resin is uniformly distributed, thereby having excellent mechanical properties.
  • the X is a metal having a valence of 2, and the Y is a metal having a valence of 3.
  • the metal of the valence 2 may be, for example, one or more selected from the group consisting of magnesium, copper, cobalt, zinc, tin, iron, manganese, and nickel, and in this case, it has an excellent effect in laser reactivity and mechanical properties.
  • the metal of the valence 3 may be, for example, one or more selected from the group consisting of manganese, nickel, copper, cobalt, tin, titanium, iron, aluminum, and chromium. In this case, laser reactivity and mechanical properties are excellent.
  • the metal oxide examples include magnesium aluminum oxide (MgAl 2 O 4 ), zinc aluminum oxide (ZnAl 2 O 4 ), iron aluminum oxide (FeAl 2 O 4 ), copper iron oxide (CuFe 2 O 4 ), copper chromium oxide (CuCr 2 O 4 ), manganese iron oxide (MnFe 2 O 4 ), nickel iron oxide (NiFe 2 O 4 ), titanium iron oxide (TiFe 2 O 4 ), iron chromium oxide (FeCr 2 O 4 ) and magnesium chromium oxide It may be at least one selected from the group consisting of (MgCr 2 O 4 ), in this case, there is an effect of excellent laser reactivity and mechanical properties.
  • the metal salt is not particularly limited as long as it is referred to as a metal salt in the technical field to which the present invention pertains, but may be, for example, a copper salt, and the copper salt is copper phosphate, copper sulfate, Copper hydroxide phosphate (copper hydroxide phosphate) and may be one or more selected from the group consisting of cuprous thiocyanate, in this case, the laser reactivity, physical properties balance and mechanical properties are excellent effects.
  • the metal compound may have, for example, an average particle diameter of 0.05 to 20 ⁇ m, 0.1 to 15 ⁇ m, and preferably 0.5 to 10 ⁇ m, and within this range, when the laser is irradiated, the laser direct-molding additive is uniformly formed in the resin to mechanical properties. This decrease is small, and there is an effect that the plating properties are improved.
  • the average particle diameter means a number average diameter, and means that D50, which is a particle diameter at a point where the distribution ratio is 50%, is measured.
  • the average particle diameter is measured based on a laser diffraction scattering method.
  • the metal compound may be, for example, a surface-hydroxylated metal compound, in which case the surface of the metal compound is activated to facilitate surface modification with aminosilane, and the surface-modified metal compound is uniformly distributed in the resin to mechanical properties. This has the effect of improving.
  • the metal may be, for example, one or more selected from the group consisting of magnesium, copper, cobalt, zinc, tin, iron, manganese, and nickel, titanium, aluminum, and chromium, and in this case, there is an excellent effect in laser reactivity and mechanical properties.
  • the laser direct structured resin composition may include, for example, 20 to 40 parts by weight, preferably 25 to 35 parts by weight, based on a total of 100 parts by weight of the resin component and the laser direct molding (LDS) additive. Within the range, there are excellent effects such as plating properties, mechanical strength, impact resistance, and heat resistance.
  • LDS laser direct molding
  • the reinforcing material may be, for example, at least one selected from the group consisting of glass fiber, talc, wollastonite, whisker, silica, mica, and basalt fiber, and in this case, has excellent effects in fluidity and mechanical properties.
  • the glass fiber may have a chop length of 2 to 5 mm, a diameter of 5 to 20 ⁇ m, or a length of chop 3 to 5 mm, a diameter of 7 to 15 ⁇ m, and appearance characteristics within this range. And mechanical properties.
  • the glass fiber may be a chopped glass fiber surface-treated with silane or olefin as a preferred example, and in this case, it maintains a very strong bonding force between polymers to form a laser direct structured resin composition of the present invention. It has an effect of improving stiffness and the like.
  • the glass fiber may be, for example, cylindrical, cocoon type, or flat type, and in this case, there is an excellent effect of appearance characteristics and mechanical properties.
  • the laser direct structured resin composition is, for example, a heat stabilizer, a process stabilizer, an antioxidant, a light stabilizer, a plasticizer, a UV absorber, a lubricant, an impact modifier, a colorant, an antioxidant, an antistatic agent, a flow-improving agent and a release agent.
  • Other additives may be further included, and in this case, there is an effect of realizing the function of each additive without deteriorating the base physical properties inherent to the composition of the present disclosure.
  • the other additives may include, for example, greater than 0 to 5 parts by weight, 0.1 to 3 parts by weight, preferably 0.5 to 2 parts by weight, based on a total of 100 parts by weight of the resin component and the laser direct molding (LDS) additive, , Within this range, there is an effect of realizing the function of the additive without lowering the base properties inherent in the composition.
  • LDS laser direct molding
  • the thermal stabilizer is not particularly limited when it is a thermal stabilizer commonly used in the technical field to which the present invention belongs, but for example, triphenyl phosphite, tris-(2,6-dimethylphenyl)phosphite, tris-(mixed mono- And organic phosphites such as di-nonylphenyl)phosphite; Organic phosphonates such as dimethylbenzene phosphonate; And organic phosphate, such as trimethyl phosphate; may be one or more selected from the group consisting of.
  • the process stabilizer is not particularly limited when it is a process stabilizer commonly used in the technical field to which the present invention pertains.
  • the antioxidant is not particularly limited when it is an antioxidant commonly used in the technical field to which the present invention belongs, but for example, tris (nonyl phenyl) phosphite, tris (2,4-di-thi (t)-butylphenyl) phos.
  • Organic phosphites such as pite, bis(2,4-di-thi-butylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, and the like; Alkylated monophenols or polyphenols; Alkylation reaction products of polyphenols with dienes such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane; Butylated reaction products of para-cresol or dicyclopentadiene; Alkylated hydroquinones; Hydroxylated thiodiphenyl ether; Alkylidene-bisphenol; Benzyl compounds; Esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols; Esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propi
  • the light stabilizer is not particularly limited when it is a light stabilizer commonly used in the technical field to which the present invention belongs, but for example 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy- 5-tert-octylphenyl)-benzotriazole and 2-hydroxy-4-n-octocy benzophenone.
  • the plasticizer is not particularly limited when it is a plasticizer commonly used in the technical field to which the present invention belongs, but for example, phthalic acid ester, dioctyl-4,5-epoxy-hexahydrophthalate, tris-(octoxycarbonylethyl) iso It may be one or more selected from the group consisting of cyanurate, tristearin and epoxidized soybean oil.
  • the UV absorber is not particularly limited when it is a UV absorber commonly used in the art.
  • the lubricant is not particularly limited when it is a lubricant commonly used in the technical field to which the present invention belongs, but for example, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), straight chain alkylbenzenesulfonate (LAS), Mono alkyl phosphate (MAP), ethylene bis stearamide, acyl isethionate (SCI), alkyl glyceryl ether sulfonate (AGES), acyl glutamate, acyl taurate ( acyl taurate, fatty acid metal salt, ethoxylated fatty alcohol, ethoxylated fatty acid, ethoxylated alkyl phenik, alkanolamide ( Fatty acid alkanolamide (alkanolamide), ethoxylated fatty acid alkanolamide, fatty amine oxide, fatty amido amine oxide, Glyceryl fatty acid ester, sorbitan,
  • the lubricant may be, for example, 0.1 to 1 part by weight, preferably 0.3 to 0.5 part by weight, based on a total of 100 parts by weight of the resin component and the laser direct molding (LDS) additive, and within this range, the composition of the present substrate It has the effect of improving wettability and excellent mechanical properties.
  • LDS laser direct molding
  • the impact modifier is not particularly limited when it is an impact modifier commonly used in the art.
  • the coloring agent, the present invention is the case of conventional coloring agents used in the art that not particularly limited, one example TiO 2, ZnO, BaSO 4, MgSiO 4, be at least one selected from the group consisting of ZnS and Sb 2 O 3 have.
  • the antioxidant may include, for example, a phenol-based antioxidant, a phosphorus-based antioxidant, or a mixture thereof, and in this case, it prevents oxidation by heat during the extrusion process and has excellent mechanical properties of the present invention.
  • the phenolic antioxidant may be, for example, 0.1 to 1 part by weight, preferably 0.2 to 0.5 part by weight, based on a total of 100 parts by weight of the resin component and the laser direct molding (LDS) additive, and an extrusion process within this range It has an effect of improving the mechanical properties of the present invention by preventing oxidation by heat.
  • LDS laser direct molding
  • the phosphorus antioxidant may be, for example, 0.1 to 1 part by weight, or 0.2 to 0.5 part by weight, based on a total of 100 parts by weight of the resin component and the laser direct molding (LDS) additive, preferably the phenolic antioxidant and It is used interchangeably, and in this case, it has an effect of preventing oxidation by heat during the extrusion process, thereby improving the mechanical properties of the present invention.
  • LDS laser direct molding
  • the antistatic agent is not particularly limited when it is an antistatic agent commonly used in the technical field to which the present invention belongs, but for example, one type selected from the group consisting of glycerol monostearate, sodium stearyl sulfonate, and sodium dodecylbenzenesulfonate. It may be abnormal.
  • the flow improving agent is not particularly limited when it is a flow improving agent commonly used in the art.
  • the release agent is not particularly limited in the case of a release agent commonly used in the technical field to which the present invention belongs, but for example, a group consisting of metal stearate, stearyl stearate, pentaerythritol tetrastearate, beeswax, montan wax and paraffin wax It may be one or more selected from.
  • the manufacturing method of the laser direct structured resin composition includes, for example, i) hydroxylating the surface of a metal compound; ii) modifying the surface of the hydroxylated metal compound with aminosilane to prepare a laser direct molding (LDS) additive; And iii) mixing the prepared laser direct-molding (LDS) additive with 0.1 to 20% by weight and 80 to 99.9% by weight of the resin component, followed by extruding with an extruder.
  • LDS laser direct molding
  • the metal surface-modified with aminosilane Since the compound is very uniformly distributed in the resin, there is an effect of improving mechanical properties without deteriorating plating properties.
  • the step i) is a step of hydroxylating the surface of the metal compound by heating the metal compound in a basic aqueous solution for 2 to 7 hours, or 3 to 6 hours at 60 to 100°C, or 70 to 90°C, for example.
  • the surface of the metal compound is activated to facilitate surface modification afterwards, and the surface-modified metal compound is distributed very uniformly in the resin, thereby improving mechanical properties.
  • the basic aqueous solution may be, for example, an aqueous solution containing one or more selected from the group consisting of sodium hydroxide, calcium hydroxide and potassium hydroxide, in which case a hydroxyl group (OH group) is introduced on the surface of the metal compound to subsequently modify the surface. Not only is it easy, but the surface-modified metal compound is distributed very uniformly in the resin, thereby improving mechanical properties.
  • a hydroxyl group OH group
  • the step i) may include, for example, adjusting the pH to 6 to 8, or 6.5 to 7.5 after the heating step, in which case the sol of the aminosilane reacted in step ii) by adjusting the pH to neutral. There is an effect that does not affect the gel reaction.
  • the pH can be measured using a general pH measuring device at room temperature (20-25°C) unless otherwise specified, and specifically, it can be measured using a Thermo Scientific Orion Star A Series.
  • the pH may be adjusted by filtering with distilled water, for example, in which case hydroxide ions are removed.
  • the step i) may include, for example, a step of drying at 50 to 100°C, preferably 70 to 90°C, after the pH adjustment step, and a surface-activated metal compound is obtained within this range to facilitate surface modification afterwards. It has an effect.
  • the step ii) may include, for example, introducing an aminosilane into a mixture of ethanol and water to proceed with a hydrolysis reaction, and in this case, there is an effect of improving dispersibility of the aminosilane.
  • the mixed solution may have a weight ratio of ethanol and water, for example, 5:5 to 9:1, preferably 6:4 to 8:2, and have an effect of improving dispersibility of aminosilane within this range.
  • the hydrolysis reaction may be, for example, a reaction of stirring the mixed solution and the aminosilane at 40 to 80°C, or 50 to 70°C for 10 to 60 minutes, or 15 to 45 minutes, and within this range, the aminosilane It has an effect of improving dispersibility.
  • the step ii) may be, for example, a reaction including an acid catalyst
  • the acid catalyst may be, for example, one or more selected from the group consisting of oxalic acid, acetic acid and hydrochloric acid, in which case the surface modification of the metal compound is facilitated. There is.
  • the step of reacting with the acid catalyst may be, for example, a step of reacting at 50 to 100°C, or 60 to 90°C for 7 to 14 hours, or 8 to 13 hours, and within this range, the surface modification of the metal compound It has the effect of facilitating.
  • the step ii) may include, for example, drying at 50 to 100° C., or 60 to 90° C. after the hydrolysis reaction, and within this range, the dispersibility of aminosilane is improved to improve the surface modification of the metal compound. It has the effect of facilitating.
  • the step iii) may further include 20 to 40 parts by weight of the reinforcing material and more than 0 to 5 parts by weight of the additive in addition to 0.1 to 20% by weight of the prepared laser direct-forming additive and 80 to 99.9% by weight of the resin component, for example A metal compound surface-modified with an aminosilane is uniformly distributed in a resin without deteriorating plating properties such as plating adhesion, thereby improving mechanical properties.
  • the step iii) may be, for example, a step of extruding at 200 to 320°C, 230 to 310°C, preferably 250 to 300°C, and within this range, the injection surface becomes uniform, thereby improving the reliability of plating. .
  • the manufacturing method of the laser direct structured resin composition includes all of the contents of the laser direct structured resin composition described above as technical features.
  • the injection molded article of the present substrate may be, for example, an injection molded article made of the laser direct structured resin composition of the present substrate, and in this case, it has an excellent effect on mechanical properties such as tensile strength and flexural strength without deteriorating plating properties such as plating adhesion. .
  • the injection molded article may have, for example, a tensile strength of 120 Mpa or more, 120 to 300 Mpa, preferably 125 to 200 Mpa, and has excellent mechanical properties within this range.
  • the injection molded article may have, for example, a flexural strength of 140 Mpa or more, 160 to 300 Mpa, preferably 165 to 250 Mpa, and has excellent mechanical properties within this range.
  • the plating method of the injection-molded article of the present invention includes, for example, forming a conductive path in the injection-molded article of the present substrate using a laser; And plating a metal layer on the conduction path. In this case, there is an effect of excellent plating properties and mechanical properties.
  • the laser may be programmed to move along a desired pattern path as an example, and in this case, there is an effect of forming a conductive path having a constant shape and thickness of the pattern.
  • the laser may be, for example, one or more selected from the group consisting of fiber laser, UV laser, excimer laser, and laser electromagnetic radiation.
  • the metal atom is activated and the surface of the activated region is rough, so that plating is easy.
  • the plating is not particularly limited as long as it is an electroless plating process, but may be, for example, a process of plating one or more metal layers selected from the group consisting of copper, gold, nickel, silver, zinc and tin, in which case laser reactivity and plating properties This has an excellent effect.
  • the metal layer may have a thickness of 10 ⁇ m or more, 10 to 30 ⁇ m, and preferably 15 to 25 ⁇ m, and within this range, laser reactivity, plating properties, and mechanical properties are excellent, and accurate plating adhesion measurement is easy.
  • the thickness of the metal layer is measured based on IEDX-150T mp30 manufactured by ISP XRF.
  • the metal layer may have, for example, a circuit adhesion strength of 5B or more, and in this case, the plating adhesion is very excellent, and laser reactivity and mechanical properties are also excellent.
  • circuit adhesion strength in this description is measured according to ASTM D3359.
  • Copper compound Copper chrome oxide with an average particle diameter of 1.5 ⁇ m (Black 1G from The Shepherd Color)
  • PPS polyphenylene sulfide resin (QA200P from Solvay) having a melt index (316°C, 5.0 kg) of 100 g/min
  • Reinforcing material Glass fiber with Nominal diameter 10.0 ⁇ m and Chop Length 4.0 mm (910-10P from Owenscorning)
  • Phosphoric antioxidant Tris(2,4-di-tert-butylphenyl)phosphite (SONGNOX 1680 from Songwon Industry)
  • Phenolic antioxidant Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (SONGNOX 1076 from Songwon Industry)
  • the copper compound was cooled to room temperature, filtered several times with a large amount of distilled water to make a pH of 7 (neutral), and then dried in an oven at 80°C to obtain a copper compound having a surface hydroxylated thereon.
  • Aminosilane APTES is added to 3% by weight of 300 mL of a mixture of ethanol and water at 7:3. After the addition, the mixture was stirred at 50° C. for 30 minutes to undergo a hydrolysis reaction.
  • the mixture was filtered with a large amount of distilled water and dried in an oven at 80° C. to obtain a copper compound surface-modified with aminosilane.
  • the temperature of the extruder was set to 270 °C, 285 °C, 290 °C according to the Feeding Zone, Mixing Zone, Die Zone, the total discharge amount was 50 kg / hr, the screw speed was 200 rpm.
  • the melted and extruded composition was immediately cooled in water in a water bath, and then pelletized using a pelletizer. After that, it was dried using a dehumidifying dryer at 110°C.
  • the dried pellets were injected with the temperature of the injection molding machine set at 50°C in the dropping zone, 300°C in the conveying section, and 300°C in the nozzle, and the tensile specimen was 165 mm long and 19 mm wide according to Type 1 of ASTM D638.
  • the specimen was made of a specimen with a thickness of 3.2 mm, and the flexural specimen was made with a specimen of ASTM D790 with a length of 127 mm, a width of 12.7 mm, and a thickness of 3.2 mm.
  • the specimen for measuring metal circuit adhesion strength was 100 mm long, 100 mm wide, and 2 thick. It was manufactured as a square plate specimen of mm.
  • Example 2 It was carried out in the same manner as in Example 1 except that 91% by weight of a polyphenylene sulfide resin (PPS) and 9% by weight of a copper compound modified with aminosilane were used.
  • PPS polyphenylene sulfide resin
  • injection molded products (Examples 1 to 2) made of the laser direct structured resin composition of the present invention have excellent mechanical properties such as tensile strength and flexural strength, and are plated through excellent circuit adhesion strength. It was also confirmed that the properties were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품에 관한 것으로, 보다 상세하게는 수지 성분 80 내지 99.9 중량% 및 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량%를 포함하되, 상기 레이저직접성형(LDS) 첨가제는 아미노실란으로 표면 개질된 금속화합물인 것을 특징으로 하여 도금 밀착력 등의 도금 특성의 저하 없이 우수한 기계적 물성을 구현할 수 있는 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품에 관한 것이다. [대표도] 도 7

Description

레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
본 발명은 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품에 관한 것으로, 보다 상세하게는 도금 밀착력 등의 도금 특성의 저하 없이 우수한 기계적 물성을 구현할 수 있는 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품에 관한 것이다.
현재 레이저직접구조화(Laser Direct Structuring; LDS) 공정을 통해 전기 부품 등을 제조하는 것이 많이 주목받고 있다. 상기 레이저직접구조화 공정은 도금 단계 이전에 수행되는 공정으로서 성형품 표면의 도금 대상 영역에 레이저를 조사함으로써 상기 도금 대상 영역을 개질하여 도금에 적합한 성질을 갖도록 하는 공정을 의미한다.
상기 레이저직접구조화 공정은 레이저에 의하여 금속 핵을 형성할 수 있는 레이저직접구조화 첨가제를 포함하여야 하는데, 이는 레이저를 받으면 분해되면서 금속 핵을 생성하고, 레이저가 조사된 영역은 거칠어진 표면을 갖게 된다. 이러한 금속 핵과 표면 거칠기로 인하여 레이저로 개질된 영역은 접착제 등을 사용하지 않고도 도금에 적합하게 된다.
최근에는 제품의 경량화, 박막화 추세에 따라 우수한 기계적 물성을 갖는 레이저직접구조화 수지 조성물이 요구되고 있으나, 종래의 레이저직접구조화 수지 조성물은 기계적 물성 저하가 심한 문제가 있다.
따라서, 도금 밀착력 등의 도금 특성의 저하가 없으면서도 우수한 기계적 물성을 구현할 수 있는 레이저직접구조화 수지 조성물의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 등록특허 제10-1297630호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 도금 밀착력 등의 도금 특성의 저하 없이 우수한 기계적 물성을 구현할 수 있는 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 수지 성분 80 내지 99.9 중량% 및 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량%를 포함하되, 상기 레이저직접성형(LDS) 첨가제는 아미노실란으로 표면 개질된 금속화합물인 것을 특징으로 하는 레이저직접구조화 수지 조성물을 제공한다.
또한, 본 발명은 i) 금속화합물의 표면을 히드록실화시키는 단계; ii) 히드록실화된 금속화합물 표면을 아미노실란으로 개질하여 레이저직접성형(LDS) 첨가제를 제조하는 단계; 및 iii) 제조된 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량% 및 수지 성분 80 내지 99.9 중량%를 혼합한 후 압출기로 압출하는 단계;를 포함하는 레이저직접구조화 수지 조성물의 제조방법을 제공한다.
또한, 본 발명은 본 기재의 레이저직접구조화 수지 조성물로 제조된 사출성형품을 제공한다.
본 발명에 따르면 도금 밀착력 등의 도금 특성의 저하 없이 우수한 기계적 물성이 구현되어 신뢰성이 뛰어난 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품을 제공하는 효과가 있다.
도 1은 금속화합물 표면에 아미노실란이 1 중량% 부착되어 있는 것을 나타내는 TGA 그래프이다.
도 2는 금속화합물의 표면에 히드록실기가 도입되는 과정을 나타낸 예시도이다.
도 3은 히드록실화된 금속화합물의 표면에 아미노실란기가 도입되는 과정을 나타낸 예시도이다.
도 4는 히드록실화된 금속화합물 표면을 50,000 배 확대 촬영한 TEM 사진이다.
도 5는 히드록실화된 금속화합물 표면을 250,000 배 확대 촬영한 TEM 사진이다.
도 6은 히드록실화된 금속화합물의 표면을 아미노실란으로 개질한 후 다수의 금속화합물들의 사이를 나타낸 TEM 사진이다.
도 7은 히드록실화된 금속화합물의 표면을 아미노실란으로 개질한 후하나의 금속화합물의 겉 부분을 나타낸 TEM 사진이다.
이하 본 기재의 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품을 상세하게 설명한다.
본 발명자들은 레이저직접구조화 수지 조성물 제조 시 아미노실란으로 표면 개질된 금속화합물을 포함하는 경우 수지 내 금속화합물이 매우 균일하게 분포되어 기계적 물성이 크게 향상되는 것을 확인하고 이를 토대로 본 발명을 완성하게 되었다.
본 발명의 레이저직접구조화 수지 조성물은 수지 성분 80 내지 99.9 중량% 및 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량%를 포함하되, 상기 레이저직접성형(LDS) 첨가제는 아미노실란으로 표면 개질된 금속화합물인 것을 특징으로 하며, 이 경우 도금 밀착력 등의 도금 특성의 저하 없이 기계적 물성이 우수한 효과가 있다.
수지 성분
상기 수지 성분은 일례로 레이저직접구조화 수지 조성물 총 100 중량%에 대하여 80 내지 99.9 중량%, 85 내지 99 중량%, 바람직하게는 90 내지 97 중량%, 보다 바람직하게는 90 내지 95 중량%, 더욱 바람직하게는 91 내지 93 중량%일 수 있고, 이 범위 내에서 기계적 물성이 우수한 효과가 있다.
상기 수지 성분이 상기 범위 미만일 경우 내구성이 저하되는 문제 및 레이저직접성형 첨가제가 수지 내에 과도하게 분산되어 도금 이후 패턴의 번짐 또는 박리 현상이 나타나는 문제가 발생할 수 있고, 상기 범위 초과일 경우 레이저직접성형 첨가제가 부족하여 수지 성분 내 분산되지 않아 도금패턴이 형성되지 않는 문제가 발생할 수 있다.
상기 수지 성분은 일례로 폴리아릴렌설파이드 수지, 폴리아미드 수지, 폴리에스테르 수지, 폴리카보네이트 수지, 폴리아릴렌에테르 수지 및 액정 고분자(LCP)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 내구성 및 기계적 물성이 우수한 효과가 있다.
상기 폴리아릴렌설파이드 수지는 본 발명이 속한 기술분야에서 통상적으로 사용되는 폴리아릴렌설파이드 수지인 경우 특별히 제한되지 않으나, 일례로 폴리페닐렌설파이드(PPS)일 수 있고, 이 경우 기계적 물성이 우수한 효과가 있다.
상기 폴리아릴렌설파이드 수지는 일례로 용융지수(316 ℃, 5 kg)가 30 내지 150 g/min, 50 내지 130 g/min, 80 내지 120 g/min, 또는 90 내지 110 g/min일 수 있고, 이 범위 내에서 인장강도, 굴곡강도 등의 기계적 물성이 우수한 효과가 있다.
본 기재에서 용융지수는 ASTM D1238에 의거하여 316 ℃, 5 kg 하중 조건에서 측정한다.
상기 폴리아미드 수지는 본 발명이 속한 기술분야에서 통상적으로 사용되는 폴리아미드 수지인 경우 특별히 제한되지 않으나, 일례로 폴리프탈아미드(PPA)일 수 있고, 이 경우 성형성 및 기계적 물성이 우수한 효과가 있다.
상기 폴리아미드 수지는 일례로 수평균분자량이 10,000 내지 200,000 g/mol, 바람직하게는 20,000 내지 150,000 g/mol일 수 있고, 이 범위 내에서 내열성 및 가공성이 우수한 효과가 있다.
본 기재에서 수평균분자량 및 중량평균분자량은 수지를 테트라하이드로퓨란(THF)에 1 mg/ml 농도로 녹여 제조한 뒤, 이를 0.45 ㎛ 시린지 필터(syringe filer)로 여과하고, 겔 크로마토그래피(GPC)를 사용하여 측정한다.
상기 폴리아미드 수지는 일례로 고유점도가 0.6 내지 1.2 dl/g, 바람직하게는 0.8 내지 1.0 dl/g일 수 있고, 이 범위 내에서 성형성 및 기계적 물성이 우수한 효과가 있다.
본 기재에서 고유점도는 25 ℃의 클로로포름에서 측정한다.
상기 폴리에스테르 수지는 일례로 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌나프탈레이트(PEN), 폴리트리메틸렌테레프탈레이트(PTT) 및 폴리시클로헥실렌테레프탈레이트(PCT)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 내열성 및 기계적 물성이 우수한 효과가 있다.
상기 폴리에스테르 수지는 일례로 고유점도가 0.6 내지 2.0 dl/g, 바람직하게는 0.8 내지 1.4 dl/g일 수 있고 이 범위 내에서 내열성 및 기계적 물성이 우수한 효과가 있다.
상기 폴리에스테르 수지는 일례로 중량평균분자량이 5,000 내지 30,000 g/mol, 바람직하게는 5,000 내지 20,000 g/mol일 수 있고, 이 범위 내에서 기계적 물성이 우수한 효과가 있다.
상기 폴리카보네이트 수지는 본 발명이 속한 기술분야에서 통상적으로 사용되는 폴리카보네이트 수지인 경우 특별히 제한되지 않으나, 일례로 방향족 폴리카보네이트 및/또는 지방족 폴리카보네이트일 수 있고, 이 경우 내충격성, 도금 밀착성 및 표면 경도 등이 우수한 효과가 있다.
상기 폴리카보네이트 수지는 일례로 수평균분자량이 3,000 내지 100,000 g/mol, 10,000 내지 75,000 g/mol, 바람직하게는 20,000 내지 50,000 g/mol일 수 있고, 이 범위 내에서 기계적 물성이 우수한 효과가 있다.
상기 폴리아릴렌에테르 수지는 일례로 폴리(2,6-디메틸-1,4-페닐렌에테르), 폴리(2,6-디에틸-1,4-페닐렌에테르), 폴리(2-메틸-6-에틸-1,4-페닐렌에테르), 폴리(2-메틸-6-프로필-1,4-페닐렌에테르), 폴리(2,6-디프로필-1,4-페닐렌에테르), 폴리(2-에틸-6-프로필-1,4-페닐렌에테르), 폴리(2,6-디메톡시-1,4-페닐렌에테르), 폴리(2,6-디(클로로메틸)-1,4-페닐렌에테르), 폴리(2,6-지(브로모메틸)-1,4-페닐렌에테르), 폴리(2,6-디페닐-1,4-페닐렌에테르), 폴리(2,6-디클로로-1,4-페닐렌에테르), 폴리(2,6-디벤질-1,4-페닐렌에테르), 폴리(2,5-디메틸-1,4-페닐렌에테르), 2,6-디메틸페놀과 2,3,6-트리메틸페놀의 공중합체, 2,6-디메틸페놀과 o-크레졸의 공중합체 및 2,3,6-트리메틸페놀과 o-크레졸의 공중합체로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 가공성 및 물성 밸런스가 우수한 효과가 있다.
상기 폴리아릴렌에테르 수지는 일례로 고유점도가 0.1 내지 0.6 dl/g, 바람직하게는 0.3 내지 0.5 dl/g일 수 있고, 이 범위 내에서 가공성 및 물성 밸런스가 우수한 효과가 있다.
상기 액정 고분자는 본 발명이 속한 기술분야에서 통상적으로 사용되는 물질이면 특별히 제한되지 않는다.
레이저직접성형(LDS) 첨가제
상기 레이저직접성형 첨가제는 일례로 레이저직접구조화 수지 조성물 총 100 중량%에 대하여 0.1 내지 20 중량%, 1 내지 15 중량%, 바람직하게는 3 내지 10 중량%, 보다 바람직하게는 5 내지 10 중량%, 더욱 바람직하게는 7 내지 9 중량%일 수 있고, 이 범위 내에서 레이저 반응성 및 도금 특성이 우수할 뿐만 아니라 상기 첨가제가 수지 내 매우 균일하게 분포되어 기계적 물성이 종래 대비 동등 이상을 유지하면서 도금 특성이 향상되는 효과가 있다.
상기 레이저직접성형(LDS) 첨가제는 일례로 아미노실란으로 표면 개질된 금속화합물일 수 있고, 이 경우 수지 내 금속화합물이 매우 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 아미노실란은 바람직한 일례로 하기 화학식 1로 표시되는 화합물일 수 있고, 이 경우 수지 내 금속화합물이 매우 균일하게 분포되어 인장강도 및 굴곡강도 등과 같은 기계적 물성이 크게 향상되는 효과가 있다.
[화학식 1]
Figure PCTKR2019013659-appb-I000001
(상기 R1 내지 R5는 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기이고, R'는 탄소수 2 내지 10의 알킬렌기이다.)
상기 R1 내지 R3은 일례로 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기일 수 있고, 상기 R4 내지 R5는 일례로 독립적으로 수소일 수 있으며, 상기 R'는 일례로 탄소수 2 내지 4의 알킬렌기일 수 있고, 이 경우 수지 내 금속화합물이 매우 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 아미노실란은 구체적인 일례로 아미노프로필트리에톡시실란((3-Aminopropyl)triethoxysilane, APTES)일 수 있고, 이 경우 수지 내 금속화합물이 매우 균일하게 분포되어 인장강도, 굴곡강도 등의 기계적 물성이 향상되는 효과가 있다.
상기 레이저직접성형(LDS) 첨가제는 일례로 금속화합물 95 내지 99.9 중량%, 바람직하게는 96 내지 99 중량%, 보다 바람직하게는 96 내지 98 중량%; 및 상기 금속화합물 표면에 결합된 아미노실란 일례로 0.1 내지 5 중량% %, 바람직하게는 1 내지 4 중량%, 보다 바람직하게는 2 내지 4 중량%;를 포함할 수 있고, 이 범위 내에서 레이저 조사 시 레이저 빔에 노출된 영역의 금속화합물의 금속 원자는 활성화되고 활성화된 영역의 표면이 거칠어져 도금이 용이할 뿐만 아니라 상기 금속화합물이 수지 내 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 금속화합물은 일례로 금속 산화물, 금속 염 또는 이들의 혼합일 수 있고, 이 경우 레이저가 조사되는 수지의 표면과의 도금 접착력이 우수한 효과가 있다.
상기 금속 산화물은 바람직하게 하기 화학식 2로 표시되는 금속화합물일 수 있고, 이 경우 아미노실란으로 표면 개질이 용이하여 수지 내 상기 금속화합물이 균일하게 분포되어 기계적 물성이 우수한 효과가 있다.
[화학식 2]
XY2O4
(상기 X는 원자가 2의 금속이고, 상기 Y는 원자가 3의 금속이다.)
상기 원자가 2의 금속은 일례로 마그네슘, 구리, 코발트, 아연, 주석, 철, 망간 및 니켈로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 레이저 반응성 및 기계적 물성이 우수한 효과가 있다.
상기 원자가 3의 금속은 일례로 망간, 니켈, 구리, 코발트, 주석, 티타늄, 철, 알루미늄 및 크롬으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 레이저 반응성 및 기계적 물성이 우수한 효과가 있다.
상기 금속 산화물은 구체적인 일례로 마그네슘 알루미늄 산화물(MgAl2O4), 아연 알루미늄 산화물(ZnAl2O4), 철 알루미늄 산화물(FeAl2O4), 구리 철 산화물(CuFe2O4), 구리 크롬 산화물(CuCr2O4), 망간 철 산화물(MnFe2O4), 니켈 철 산화물(NiFe2O4), 티타늄 철 산화물(TiFe2O4), 철 크롬 산화물(FeCr2O4) 및 마그네슘 크롬 산화물(MgCr2O4)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 레이저 반응성 및 기계적 물성이 우수한 효과가 있다.
상기 금속 염은 본 발명이 속한 기술분야에서 금속 염으로 지칭되는 것이면 특별히 제한되지 않으나, 일례로 구리 염일 수 있고, 상기 구리 염은 바람직한 일례로 인산 구리(copper phosphate), 황산 구리(copper sulfate), 구리 히드록시드 포스페이트(copper hydroxide phosphate) 및 티오시안산제1구리로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 경우 레이저 반응성, 물성 밸런스 및 기계적 물성이 우수한 효과가 있다.
상기 금속화합물은 일례로 평균입경이 0.05 내지 20 ㎛, 0.1 내지 15 ㎛, 바람직하게는 0.5 내지 10 ㎛일 수 있고, 이 범위 내에서 레이저 조사 시 레이저직접성형 첨가제가 수지 내에 균일하게 형성되어 기계적 물성이 저하가 적고, 도금 특성이 향상되는 효과가 있다.
상기 평균입경이란 수평균 직경(Number Average Diameter)을 의미하며, 분포율이 50% 되는 지점의 입경인 D50을 측정한 것을 의미한다.
상기 평균입경은 레이저 회절 산란법에 의거하여 측정한다.
상기 금속화합물은 일례로 표면이 히드록실화된 금속화합물일 수 있고, 이 경우 금속화합물의 표면이 활성화되어 아미노실란으로 표면 개질하는 것이 용이해지고 표면 개질된 금속화합물은 수지 내 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 금속은 일례로 마그네슘, 구리, 코발트, 아연, 주석, 철, 망간 및 니켈, 티타늄, 알루미늄 및 크롬으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 레이저 반응성 및 기계적 물성이 우수한 효과가 있다.
레이저직접구조화 수지 조성물
상기 레이저직접구조화 수지 조성물은 일례로 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 보강재를 20 내지 40 중량부, 바람직하게는 25 내지 35 중량부 포함할 수 있고, 이 범위 내에서 도금 특성, 기계적 강도, 내충격성, 내열성 등이 우수한 효과가 있다.
상기 보강재는 일례로 유리섬유, 탈크, 규회석, 휘스커, 실리카, 마이카 및 현무암 섬유로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 유동성 및 기계적 물성이 우수한 효과가 있다.
상기 유리섬유는 일례로 촙 길이(chop length)가 2 내지 5 mm, 지름이 5 내지 20 ㎛, 또는 촙 길이가 3 내지 5 mm, 지름이 7 내지 15 ㎛일 수 있고, 이 범위 내에서 외관 특성 및 기계적 물성이 우수한 효과가 있다.
상기 유리섬유는 바람직한 일례로 실란(silane) 또는 올레핀(olefin)으로 표면 처리된 촙(chopped) 유리섬유일 수 있고, 이 경우 고분자 사이에서 매우 강한 결합력을 유지하여 본 기재의 레이저직접구조화 수지 조성물의 강성 등을 향상시키는 효과가 있다.
상기 유리섬유는 일례로 원통형, 코쿤(cocoon)형, 또는 플랫(flat) 타입일 수 있고, 이 경우 외관 특성 및 기계적 물성이 우수한 효과가 있다.
상기 레이저직접구조화 수지 조성물은 일례로 열안정제, 공정안정제, 항산화제, 광안정제, 가소제, UV흡수제, 활제, 충격보강제, 착색제, 산화방지제, 대전방지제, 유동개선제 및 이형제로 이루어진 군으로부터 선택된 1종 이상의 기타 첨가제를 더 포함할 수 있고, 이 경우 본 기재의 조성물 고유의 기저 물성을 저하시키지 않으면서 각 첨가제의 기능을 구현하는 효과가 있다.
상기 기타 첨가제는 일례로 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 0 초과 내지 5 중량부, 0.1 내지 3 중량부, 바람직하게는 0.5 내지 2 중량부로 포함할 수 있고, 이 범위 내에서 조성물 고유의 기저 물성을 저하시키지 않으면서 첨가제의 기능을 구현하는 효과가 있다.
상기 열안정제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 열안정제인 경우 특별히 제한되지 않으나, 일례로 트리페닐 포스파이트, 트리스-(2,6-디메틸페닐)포스파이트, 트리스-(혼합형 모노- 및 디-노닐페닐)포스파이트 등과 같은 유기 포스파이트; 디메틸벤젠 포스포네이트 등과 같은 유기 포스포네이트; 및 트리메틸 포스페이트 등과 같은 유기 포스페이트;로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 공정안정제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 공정안정제인 경우 특별히 제한되지 않는다.
상기 항산화제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 항산화제인 경우 특별히 제한되지 않으나, 일례로 트리스(노닐 페닐)포스파이트, 트리스(2,4-디-티(t)-부틸페닐)포스파이트, 비스(2,4-디-티-부틸페닐)펜타에리스리톨 디포스파이트, 디스테아릴 펜타에리스리톨 디포스파이트 등과 같은 유기 포스파이트; 알킬화 모노페놀 또는 폴리페놀; 테트라키스[메틸렌(3,5-디-터트-부틸-4-히드록시히드로신나메이트)]메탄 등과 같은 디엔을 가진 폴리페놀의 알킬화 반응 생성물; 파라-크레졸 또는 디시클로펜타디엔의 부틸화 반응 생성물; 알킬화 히드로퀴논; 히드록실화 티오디페닐 에테르; 알킬리덴-비스페놀; 벤질 화합물; 모노히드릭 또는 폴리히드릭 알코올을 가진 베타-(3,5-디-터트-부틸-4-히드록시페닐)-프로피온산의 에스테르; 모노히드릭 또는 폴리히드릭 알코올을 가진 베타-(5-터트-부틸-4-히드록시-3-메틸페닐)-프로피온산의 에스테르; 디스테아릴티오프로피오네이트, 디라우릴티오프로피오네이트, 디트리데실티오디프로피오네이트, 옥타데실-3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트, 펜타에리스리틸-테트라키스[3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트 등과 같은 티오알킬 또는 티오아릴 화합물의 에스테르; 및 베타-(3,5-디-터트-부틸-4-히드록시페닐)-프로피온산 등의 아미드;로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 광안정제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 광안정제인 경우 특별히 제한되지 않으나, 일례로 2-(2-히드록시-5-메틸페닐)벤조트리아졸, 2-(2-히드록시-5-터트-옥틸페닐)-벤조트리아졸 및 2-히드록시-4-n-옥토시 벤조페논로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 가소제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 가소제인 경우 특별히 제한되지 않으나, 일례로 프탈산 에스테르, 디옥틸-4,5-에폭시-헥사히드로프탈레이트, 트리스-(옥톡시카르보닐에틸) 이소시아누레이트, 트리스테아린 및 에폭시화 대두유로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 UV 흡수제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 UV 흡수제인 경우 특별히 제한되지 않는다.
상기 활제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 활제인 경우 특별히 제한되지 않으나, 일례로 소듐 라우릴 설페이트(SLS), 소듐 라우릴 에테르 설페이트(SLES), 직쇄알킬벤젠설폰산염(LAS), 모노 알킬 포스페이트(MAP), 에틸렌 비스 스테아로아미드(ethylene bis stearamide), 아실 이세티오네이트(acyl isethionate, SCI), 알킬 글리세릴 에테르 설포네이트(AGES), 아실 글루타메이트(acyl glutamate), 아실 타우레이트(acyl taurate), 지방산 금속염(fatty acid metal salt), 에톡시레이트 패티 알코올(ethoxylated fatty alcohol), 에톡시레이트 패티 에시드(ethoxylated fatty acid), 에톡시레이트 알킬 페놀(ethoxylated alkyl phenik), 알카놀아미드(패티 에시드 알카놀아미드)(alkanolamide(fatty acid alkanolamide), 에톡시레이트 패티 에시드 알카놀아미드(ethoxylated fatty acid alkanolamide), 패티 아민 옥사이드(fatty amine oxide), 패티 아미도 아민 옥사이드(fatty amido amine oxide), 글리세릴 패티 에시드 에스테르(glyceryl fatty acid ester), 솔비탄(sorbitan), 에톡시레이트 솔비탄 에스테르(ethoxylated sorbitan ester), 알킬 폴리 글리코사이드(alkyl poly glycoside), 에틸렌/프로필렌 옥사이드 블록 코폴리머(ethylene/propylene oxide copolymer) 및 에톡시레이트-프록폭실레이트 패티 알코올(ethoxylated-propoxylated fatty alcohol)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 본 기재의 조성물의 젖음성을 향상시키는 효과가 있다.
상기 활제는 일례로 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 0.1 내지 1 중량부, 바람직하게는 0.3 내지 0.5 중량부일 수 있고, 이 범위 내에서 본 기재의 조성물의 젖음성을 향상시킴과 동시에 기계적 물성이 우수한 효과가 있다.
상기 충격보강제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 충격보강제인 경우 특별히 제한되지 않는다.
상기 착색제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 착색제인 경우 특별히 제한되지 않으나, 일례로 TiO2, ZnO, BaSO4, MgSiO4, ZnS 및 Sb2O3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 산화방지제는 일례로 페놀계 산화방지제, 인계 산화방지제, 또는 이들의 혼합물을 포함할 수 있고, 이 경우 압출 공정 시 열에 의한 산화를 방지하며 본 발명의 기계적 물성이 우수한 효과가 있다.
상기 페놀계 산화방지제는 일례로 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 0.1 내지 1 중량부, 바람직하게는 0.2 내지 0.5 중량부일 수 있고, 이 범위 내에서 압출 공정 시 열에 의한 산화를 방지하여 본 발명의 기계적 물성을 향상시키는 효과가 있다.
상기 인계 산화방지제는 일례로 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 0.1 내지 1 중량부, 또는 0.2 내지 0.5 중량부일 수 있고, 바람직하게는 상기 페놀계 산화방지제와 혼용 사용하는 것이며, 이 경우 압출 공정 시 열에 의한 산화를 방지하여 본 발명의 기계적 물성을 향상시키는 효과가 있다.
상기 대전방지제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 대전방지제인 경우 특별히 제한되지 않으나, 일례로 글리세롤 모노스테아레이트, 나트륨 스테아릴설포네이트 및 나트륨 도데실벤젠설포네이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 유동개선제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 유동개선제인 경우 특별히 제한되지 않는다.
상기 이형제는 본 발명이 속한 기술분야에서 통상적으로 사용하는 이형제인 경우 특별히 제한되지 않으나, 일례로 금속 스테아레이트, 스테아릴 스테아레이트, 펜타에리트리톨 테트라스테아레이트, 밀납, 몬탄 왁스 및 파라핀 왁스로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
이하에서는 본 발명의 레이저직접구조화 수지 조성물의 제조방법 및 레이저직접구조화 수지 조성물로 제조된 사출성형품에 관하여 설명하기로 한다. 본 발명의 레이저직접구조화 수지 조성물의 제조방법 및 사출성형품을 설명함에 있어서 상술한 레이저직접구조화 수지 조성물의 내용을 모두 포함한다.
레이저직접구조화 수지 조성물의 제조방법
상기 레이저직접구조화 수지 조성물의 제조방법은 일례로 i) 금속화합물의 표면을 히드록실화시키는 단계; ii) 히드록실화된 금속화합물 표면을 아미노실란으로 개질하여 레이저직접성형(LDS) 첨가제를 제조하는 단계; 및 iii) 제조된 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량% 및 수지 성분 80 내지 99.9 중량%를 혼합한 후 압출기로 압출하는 단계;를 포함할 수 있고, 이 경우 아미노실란으로 표면 개질된 금속화합물이 수지 내 매우 균일하게 분포되어 도금 특성의 저하 없이 기계적 물성이 향상되는 효과가 있다.
상기 i) 단계는 일례로 염기성 수용액에 금속화합물을 투입 후 60 내지 100 ℃, 또는 70 내지 90 ℃에서 2 내지 7 시간, 또는 3 내지 6 시간 동안 가열하여 금속화합물의 표면을 히드록실화시키는 단계일 수 있고, 이 경우 금속화합물의 표면이 활성화되어 이후 표면 개질이 용이해질 뿐만 아니라 표면 개질된 금속화합물이 수지 내 매우 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 염기성 수용액은 일례로 수산화나트륨, 수산화칼슘 및 수산화칼륨으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 수용액일 수 있고, 이 경우 금속화합물의 표면에 히드록실기(OH기)가 도입되어 이후 표면 개질이 용이해질 뿐만 아니라 표면 개질된 금속화합물이 수지 내 매우 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 i) 단계는 일례로 상기 가열 단계 이후 pH를 6 내지 8, 또는 6.5 내지 7.5로 조절하는 단계를 포함할 수 있고, 이 경우 pH를 중성으로 조절하여 ii) 단계에서 반응하는 아미노실란의 졸-겔 반응에 영향을 주지 않는 효과가 있다.
본 기재에서 pH는 별도의 기재가 없는 한 상온(20~25 ℃) 하에서 일반적인 pH 측정장치를 이용하여 측정할 수 있고, 구체적으로는 Thermo Scientific Orion Star A Series를 사용하여 측정할 수 있다.
상기 pH 조절은 일례로 증류수로 여과하여 조절하는 것일 수 있으며, 이 경우 수산화이온이 제거되는 효과가 있다.
상기 i) 단계는 일례로 pH 조절 단계 후 50 내지 100 ℃, 바람직하게는 70 내지 90 ℃에서 건조하는 단계를 포함할 수 있고, 이 범위 내에서 표면 활성화된 금속화합물을 얻어져 이후 표면 개질이 용이해지는 효과가 있다.
상기 ii) 단계는 일례로 에탄올과 물의 혼합액에 아미노실란을 투입하여 가수분해 반응을 진행하는 단계를 포함할 수 있고, 이 경우 아미노실란의 분산성이 향상되는 효과가 있다.
상기 혼합액은 에탄올과 물의 중량비가 일례로 5:5 내지 9:1, 바람직하게는 6:4 내지 8:2일 수 있고, 이 범위 내에서 아미노실란의 분산성이 향상되는 효과가 있다.
상기 가수분해 반응은 일례로 40 내지 80 ℃, 또는 50 내지 70 ℃에서 10 내지 60 분, 또는 15 내지 45 분 동안 상기 혼합액과 상기 아미노실란을 교반하는 반응일 수 있고, 이 범위 내에서 아미노실란의 분산성이 향상되는 효과가 있다.
상기 ii) 단계는 일례로 산촉매를 포함하여 반응하는 단계일 수 있고, 상기 산촉매는 일례로 옥살산, 아세트산 및 염산으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 경우 금속화합물의 표면 개질이 용이해지는 효과가 있다.
상기 산촉매를 포함하여 반응하는 단계는 일례로 50 내지 100 ℃, 또는 60 내지 90 ℃에서 7 내지 14 시간, 또는 8 내지 13 시간 동안 반응하는 단계일 수 있고, 이 범위 내에서 금속화합물의 표면 개질이 용이해지는 효과가 있다.
상기 ii) 단계는 일례로 상기 가수분해 반응 후 50 내지 100 ℃, 또는 60 내지 90 ℃에서 건조하는 단계를 포함할 수 있고, 이 범위 내에서 아미노실란의 분산성이 향상되어 금속화합물의 표면 개질이 용이해지는 효과가 있다.
상기 iii) 단계는 일례로 상기 제조된 레이저직접성형 첨가제 0.1 내지 20 중량% 및 수지 성분 80 내지 99.9 중량% 이외에 보강재 20 내지 40 중량부 및 첨가제 0 초과 내지 5 중량부를 더 포함할 수 있고, 이 경우 도금 밀착력 등의 도금 특성의 저하 없이 아미노실란으로 표면 개질된 금속화합물이 수지 내 매우 균일하게 분포되어 기계적 물성이 향상되는 효과가 있다.
상기 iii) 단계는 일례로 200 내지 320 ℃, 230 내지 310 ℃, 바람직하게는 250 내지 300 ℃에서 압출하는 단계일 수 있고, 이 범위 내에서 사출 표면이 균일해져 도금의 신뢰성이 향상되는 효과가 있다.
상기 레이저직접구조화 수지 조성물의 제조방법은 상술한 레이저직접구조화 수지 조성물에 관한 내용을 모두 기술적 특징으로서 포함한다.
사출성형품
본 기재의 사출성형품은 일례로 본 기재의 레이저직접구조화 수지 조성물로 제조된 사출성형품일 수 있고, 이 경우 도금 밀착력 등의 도금 특성의 저하 없이 인장강도, 굴곡강도 등의 기계적 물성이 우수한 효과가 있다.
상기 사출성형품은 일례로 인장강도가 120 Mpa 이상, 120 내지 300 Mpa, 바람직하게는 125 내지 200 Mpa일 수 있고, 이 범위 내에서 기계적 물성이 우수한 효과가 있다.
상기 사출성형품은 일례로 굴곡강도가 140 Mpa 이상, 160 내지 300 Mpa, 바람직하게는 165 내지 250 Mpa일 수 있고, 이 범위 내에서 기계적 물성이 우수한 효과가 있다.
사출성형품의 도금방법
본 기재의 사출성형품의 도금방법은 일례로 레이저를 사용하여 본 기재의 사출성형품에 전도 경로(conductive path)를 형성하는 단계; 및 상기 전도 경로에 금속층을 도금하는 단계;를 포함할 수 있고, 이 경우 도금 특성 및 기계적 물성이 우수한 효과가 있다.
상기 레이저는 일례로 원하는 패턴 경로를 따라 움직일 수 있도록 프로그램화되어 있을 수 있고, 이 경우 패턴의 형상 및 굵기가 일정한 전도 경로를 형성하는 효과가 있다.
상기 레이저는 일례로 Fiber 레이저, UV 레이저, 엑시머 레이저 및 레이저 전자기방사로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 금속 원자가 활성화되고 활성화된 영역의 표면이 거칠어져 도금이 용이해지는 효과가 있다.
상기 도금은 무전해 도금 공정이면 특별히 제한되지 않으나, 일례로 구리, 금, 니켈, 은, 아연 및 주석으로 이루어진 군으로부터 선택된 1종 이상의 금속층을 도금하는 공정일 수 있으며, 이 경우 레이저 반응성 및 도금 특성이 우수한 효과가 있다.
상기 금속층은 일례로 두께가 10 ㎛ 이상, 10 내지 30 ㎛, 바람직하게는 15 내지 25 ㎛일 수 있고, 이 범위 내에서 레이저 반응성, 도금 특성 및 기계적 물성이 우수하고 정확한 도금 밀착력 측정이 용이하다.
본 기재에서 금속층의 두께는 ISP XRF 사의 IEDX-150T mp30에 의거하여 측정한다.
상기 금속층은 일례로 회로접착강도가 5B 이상일 수 있고, 이 경우 도금 밀착력이 매우 우수하고, 레이저 반응성 및 기계적 물성 또한 우수한 효과가 있다.
본 기재에서 회로접착강도는 ASTM D3359에 의거하여 측정한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
하기 실시예 및 비교예에서 사용된 재료는 다음과 같다. 여기에서 특별히 정의하지 않는 이상 %는 중량%를 의미한다.
* 구리화합물: 평균입경이 1.5 ㎛인 구리 크롬 산화물(copper chrome oxide)(The Shepherd Color 사의 Black 1G)
* 에탄올: Daejung Chemical Co, Korea 94.5%
* 옥살산: Daejung Chemical Co, Korea 98.5%
* APTES: (3-Aminopropyl)triethoxysilane(98% Alfa Aesar)
* MPTES: (3-Mercaptopropyl)trimethoxysilane(95% Alfa Aesar)
* TMPS: Trimethoxyphenylsilane(97% Sigma Aldrich)
* PPS: 용융지수(316 ℃, 5.0 kg)가 100 g/min인 폴리페닐렌설파이드수지(Solvay 사의 QA200P)
* 보강재: Nominal diameter 10.0 ㎛, Chop Length 4.0 mm인 유리섬유(Owenscorning 사의 910-10P)
* 인계 산화방지제: Tris(2,4-di-tert-butylphenyl)phosphite(송원산업의 SONGNOX 1680)
* 페놀계 산화방지제: Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate(송원산업의 SONGNOX 1076)
* 활제: Ethylene Bis Stearamide (Sunkoo 사의 SUNLUBE EBS)
[실시예]
실시예 1
금속화합물의 표면을 히드록실화시키는 단계
온도계, 환류냉각기, 가열교반기가 갖추어진 1리터 4구 둥근 바닥 플라스크에 수산화나트륨(NaOH) 5M 수용액 300 g 및 구리화합물 10 g을 투입하고 온도를 80 ℃까지 승온한 후 4 시간 동안 교반하여 가열하였다.
반응이 끝난 구리화합물을 상온까지 냉각하고, 다량의 증류수로 여러 번 여과하여 pH 7(중성)으로 만든 후 80 ℃의 오븐에서 건조하여 표면이 히드록실화된 구리화합물을 수득하였다.
히드록실화된 금속화합물 표면을 아미노실란으로 개질하는 단계
에탄올과 물이 7:3으로 혼합된 혼합액 300 mL에 아미노실란인 APTES를 3 중량% 첨가한 후 50 ℃에서 30 분 동안 교반하며 가수분해 반응을 진행하였다.
이후 상기 혼합액에 표면이 히드록실화된 구리화합물 10 g을 투입하였다. 이 때 산촉매로 옥살산 1 g을 투입한 후 80 ℃에서 8 시간 동안 교반하며 반응을 진행하였다.
상기 반응 후 다량의 증류수로 여과 후 80 ℃ 오븐에서 건조하여 아미노실란으로 표면 개질된 구리화합물을 수득하였다.
레이저직접구조화 수지 조성물을 제조하는 단계
폴리페닐렌설파이드 수지(PPS) 93 중량%와 아미노실란으로 표면 개질된 구리화합물 7 중량% 및 상기 PPS와 아미노실란으로 표면 개질된 구리화합물의 총 함량을 100중량부로 기준하여, 페놀계 산화방지제 0.3 중량부, 인계 산화방지제 0.3 중량부, 활제 0.4 중량부를 믹서에 투입하여 충분히 혼합한 후, 메인피더(K-Tron single screw, K2-ML-D5-S60, Screw Dia=40mm)를 통해서 2축 압출기로 투입하였고, 보강재 35 중량부는 사이드피더(K-Tron twin screw, K-MV-KT20, Screw Dia=10mm)를 통해서 2축 압출기(Co-rotating intermesh extruder, Screw Dia=42 mm, L/D ratio=40, SM Platek)에 투입하였다. 이 때 압출기의 온도는 Feeding Zone, Mixing Zone, Die Zone에 따라 270 ℃, 285 ℃, 290 ℃로 설정하였고, 전체 토출량은 50 kg/hr, 스크류 속도는 200 rpm으로 하였다.
용융되어 압출된 상기 조성물을 워터배쓰 내의 물에 즉시 냉각한 후, 펠렛 타이저를 이용하여 펠렛으로 제작하였다. 이후 110 ℃의 제습건조기를 사용하여 건조하였다.
건조된 펠렛은 사출성형기의 온도를 낙하구 50 ℃, 이송구간 270 ℃ 믹싱구간 300 ℃, 노즐 310 ℃로 설정하여 투입하고 인장시편은 ASTM D638의 Type 1에 의거하여 길이 165 mm, 넓이 19 mm, 두께 3.2 mm의 시편으로 제작하였고, 굴곡시편은 ASTM D790 길이 127 mm, 넓이 12.7 mm, 두께 3.2 mm의 시편으로 제작하였고, 금속 회로접착강도 측정을 위한 시편은 길이 100 mm, 넓이 100 mm, 두께 2 mm의 정사각형 평판시편으로 제작하였다.
실시예 2
폴리페닐렌설파이드 수지(PPS) 91 중량%와 아미노실란으로 표면 개질된 구리화합물 9 중량% 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 1
표면 개질되지 않은 구리화합물을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 2
실란으로 표면 개질된 구리화합물 7 중량% 대신 표면 개질되지 않은 구리 화합물 7 중량% 및 APTES 1 중량%를 첨가, 실시예 1의 히드록실화된 금속화합물 표면을 아미노실란으로 개질하는 단계를 배제, 및 폴리페닐렌설파이드 수지(PPS)를 93 중량% 대신 92 중량% 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 3
APTES 대신 MPTES를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 4
APTES 대신 TMPS를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
[시험예]
상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 사출성형품의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1에 나타내었다.
*인장강도(Mpa): ASTM D638에 의거하여 5 mm/min의 속도로 측정하였다.
*굴곡강도(Mpa): ASTM D790에 의거하여 5 mm/min의 속도로 측정하였다.
*회로접착강도(B): ASTM D3359에 의거하여 측정하였다.
구분 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3 비교예 4
PPS(중량부) 93 91 93 92 93 93
표면 개질되지 않은 금속화합물(중량부) 0 0 7 7 0 0
APTES로 표면 개질된 금속화합물(중량부) 7 9 0 0 0 0
MPTES로 표면 개질된 금속화합물(중량부) 0 0 0 0 7 0
TMPS로 표면 개질된 금속화합물(중량부) 0 0 0 0 0 7
APTES(중량부) 0 0 0 1 0 0
보강재(중량부) 35 35 35 35 35 35
인계 산화방지제(중량부) 0.3 0.3 0.3 0.3 0.3 0.3
페놀계 산화방지제(중량부) 0.3 0.3 0.3 0.3 0.3 0.3
활제(중량부) 0.4 0.4 0.4 0.4 0.4 0.4
인장강도(Mpa) 134.1 129.7 118.6 118.3 102.6 114.3
굴곡강도(Mpa) 173.2 168.5 163.1 161.8 138.6 154.7
회로접착강도(B) 5B 5B 4B 4B 4B 4B
상기 표 1에 나타낸 바와 같이, 본 발명의 레이저직접구조화 수지 조성물로 제조된 사출성형품(실시예 1 내지 2)은 인장강도, 굴곡강도 등의 기계적 물성이 우수하며, 회로접착강도가 우수한 것을 통해 도금 특성 또한 우수한 것을 확인할 수 있었다.
반면, 표면 개질되지 않은 금속화합물을 포함하는 조성물로 제조된 경우(비교예 1, 2)에는 인장강도, 굴곡강도 및 회로접착강도가 저하된 것을 확인할 수 있었다.
아울러, 아미노실란으로 표면을 개질하지 않고 APTES를 별도 첨가한 비교예 2의 경우 실시예 대비 인장강도, 굴곡강도 및 회로접착강도가 모두 저하된 것을 확인할 수 있었다.
또한, 아미노실란을 제외한 실란으로 표면 개질된 금속화합물을 포함하는 조성물로 제조된 경우(비교예 3, 4), 실시예 대비 인장강도, 굴곡강도 및 회로접착강도가 크게 저하된 것을 확인할 수 있었다.
하기 도 1에 나타낸 바와 같이, TGA 그래프를 통해 금속화합물의 표면에 아미노실란이 1 중량% 부착(weight loss 1%)된 것을 확인할 수 있었다.
또한, 하기 도 2에 나타낸 바와 같이, 염기성 수용액을 통해 금속화합물의 표면에 히드록실기(OH기)가 도입되는 과정을 확인할 수 있었으며, 하기 도 4, 5에 나타낸 바와 같이, TEM 사진을 통해 히드록실기가 도입된 금속화합물의 표면이 히드록실화된 것을 확인할 수 있었다.
또한, 하기 도 3에 나타낸 바와 같이, 히드록실기로 활성화된 금속화합물의 표면에 아미노실란기가 도입되는 과정을 확인할 수 있었으며, 하기 도 6, 7에 나타낸 바와 같이, TEM 사진을 통해 히드록실화된 금속화합물의 표면이 아미노실란으로 개질된 것을 확인할 수 있었다.

Claims (16)

  1. 수지 성분 80 내지 99.9 중량% 및 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량%를 포함하되,
    상기 레이저직접성형(LDS) 첨가제는 아미노실란으로 표면 개질된 금속화합물인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  2. 제 1항에 있어서,
    상기 수지 성분은 폴리아릴렌설파이드 수지, 폴리아미드 수지, 폴리에스테르 수지, 폴리카보네이트 수지, 폴리아릴렌에테르 수지 및 액정 고분자(LCP)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  3. 제 1항에 있어서,
    상기 아미노실란은 하기 화학식 1
    [화학식 1]
    Figure PCTKR2019013659-appb-I000002
    (상기 R1 내지 R5는 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기이고, R'는 탄소수 2 내지 10의 알킬렌기이다.)로 표시되는 화합물인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  4. 제 1항에 있어서,
    상기 레이저직접성형(LDS) 첨가제는 금속화합물 95 내지 99.9 중량% 및 상기 금속화합물 표면에 결합된 아미노실란 0.1 내지 5 중량%를 포함하는 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  5. 제 1항에 있어서,
    상기 금속화합물은 금속 산화물, 금속 염 또는 이들의 혼합인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  6. 제 1항에 있어서,
    상기 금속화합물은 평균입경이 0.05 내지 20 ㎛인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  7. 제 1항에 있어서,
    상기 금속화합물은 표면이 히드록실화된 금속화합물인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  8. 제 1항에 있어서,
    상기 금속은 마그네슘, 구리, 코발트, 아연, 주석, 철, 망간 및 니켈, 티타늄, 알루미늄 및 크롬으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  9. 제 5항에 있어서,
    상기 금속 산화물은 하기 화학식 2
    [화학식 2]
    XY2O4
    (상기 X는 원자가 2의 금속이고, 상기 Y는 원자가 3의 금속이다.)로 표시되는 금속화합물인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  10. 제 9항에 있어서,
    상기 원자가 2의 금속은 마그네슘, 구리, 코발트, 아연, 주석, 철, 망간 및 니켈로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  11. 제 9항에 있어서,
    상기 원자가 3의 금속은 망간, 니켈, 구리, 코발트, 주석, 티타늄, 철, 알루미늄 및 크롬으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  12. 제 1항에 있어서,
    상기 레이저직접구조화 수지 조성물은, 상기 수지 성분 및 레이저직접성형(LDS) 첨가제를 합한 총 100 중량부를 기준으로 보강재를 20 내지 40 중량부 포함하는 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  13. 제 12항에 있어서,
    상기 보강재는 유리섬유, 탈크, 규회석, 휘스커, 실리카, 마이카 및 현무암 섬유로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  14. 제 1항에 있어서,
    상기 레이저직접구조화 수지 조성물은 열안정제, 공정안정제, 항산화제, 광안정제, 가소제, UV흡수제, 활제, 충격보강제, 착색제, 산화방지제, 대전방지제, 유동개선제 및 이형제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 더 포함하는 것을 특징으로 하는
    레이저직접구조화 수지 조성물.
  15. i) 금속화합물의 표면을 히드록실화시키는 단계;
    ii) 히드록실화된 금속화합물 표면을 아미노실란으로 개질하여 레이저직접성형(LDS) 첨가제를 제조하는 단계; 및
    iii) 제조된 레이저직접성형(LDS) 첨가제 0.1 내지 20 중량% 및 수지 성분 80 내지 99.9 중량%를 혼합한 후 압출기로 압출하는 단계;를 포함하는 것을 특징으로 하는
    레이저직접구조화 수지 조성물의 제조방법.
  16. 제 1항 내지 제 14항 중 어느 한 항에 따른 레이저직접구조화 수지 조성물로 제조된 사출성형품.
PCT/KR2019/013659 2018-12-07 2019-10-17 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품 WO2020116769A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0157222 2018-12-07
KR1020180157222A KR20200070501A (ko) 2018-12-07 2018-12-07 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품

Publications (1)

Publication Number Publication Date
WO2020116769A1 true WO2020116769A1 (ko) 2020-06-11

Family

ID=70973736

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2019/013659 WO2020116769A1 (ko) 2018-12-07 2019-10-17 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
PCT/KR2019/014107 WO2020116779A1 (ko) 2018-12-07 2019-10-25 플렉서블 면발광 조명 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014107 WO2020116779A1 (ko) 2018-12-07 2019-10-25 플렉서블 면발광 조명 장치

Country Status (2)

Country Link
KR (1) KR20200070501A (ko)
WO (2) WO2020116769A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019219A1 (en) 2020-12-22 2022-06-29 SHPP Global Technologies B.V. Polyphenylene sulfide compositions for laser direct structuring processes and the shaped articles therefore

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
JP2023515976A (ja) 2020-02-26 2023-04-17 ティコナ・エルエルシー 回路構造体
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
CN113325531B (zh) * 2021-05-24 2022-09-09 国网内蒙古东部电力有限公司呼伦贝尔供电公司 光纤电缆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091029A (ko) * 2011-10-31 2014-07-18 티코나 엘엘씨 레이저 직접 구조체 기판의 형성에 사용하기 위한 열가소성 조성물
KR20160016957A (ko) * 2013-06-04 2016-02-15 사빅 글로벌 테크놀러지스 비.브이. 레이저 직접 구조화 기능을 갖는 열 전도성 폴리머 조성물
KR20180121682A (ko) * 2015-02-20 2018-11-07 사빅 글로벌 테크놀러지스 비.브이. 레이저 마킹 기능을 가진 밝은 색상의 열전도성 폴리머 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297630B1 (ko) 2011-05-03 2013-08-19 주식회사 디지아이 레이저 직접 구조화용 조성물 및 이를 이용한 레이저 직접 구조화 방법
US8858025B2 (en) * 2012-03-07 2014-10-14 Lg Innotek Co., Ltd. Lighting device
KR102435848B1 (ko) * 2015-03-31 2022-08-24 서울반도체 주식회사 자동차용 조명 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091029A (ko) * 2011-10-31 2014-07-18 티코나 엘엘씨 레이저 직접 구조체 기판의 형성에 사용하기 위한 열가소성 조성물
KR20160016957A (ko) * 2013-06-04 2016-02-15 사빅 글로벌 테크놀러지스 비.브이. 레이저 직접 구조화 기능을 갖는 열 전도성 폴리머 조성물
KR20180121682A (ko) * 2015-02-20 2018-11-07 사빅 글로벌 테크놀러지스 비.브이. 레이저 마킹 기능을 가진 밝은 색상의 열전도성 폴리머 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, K. ET AL.: "Highly dispersible laser activate particles via surface modification for laser direct structuring and electroless plating application", JOURNAL OF COMPOSITE MATERIALS, vol. 53, no. 10, 3 September 2018 (2018-09-03), pages 1377 - 1386 *
KIM, K. ET AL.: "Laser direct structuring and electroless plating applicable super-engineering plastic PPS based thermal conductive composite with particle surface modification", RSC ADV., vol. 8, 12 March 2018 (2018-03-12), pages 9933 - 9940, XP055715510 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019219A1 (en) 2020-12-22 2022-06-29 SHPP Global Technologies B.V. Polyphenylene sulfide compositions for laser direct structuring processes and the shaped articles therefore
WO2022137163A1 (en) 2020-12-22 2022-06-30 Shpp Global Technologies B.V. Polyphenylene sulfide compositions for laser direct structuring processes and the shaped articles therefore

Also Published As

Publication number Publication date
KR20200070501A (ko) 2020-06-18
WO2020116779A1 (ko) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2020116769A1 (ko) 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2020130365A1 (ko) 폴리페닐렌 설파이드 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
CN110325578B (zh) 具有可激光活化的金属化合物的激光可镀覆热塑性组合物和由其成形的制品
EP1753821B1 (en) Halogen-free flame retardant polyamide composition with improved electrical properties
KR101957284B1 (ko) 폴리아미드 조성물, 이의 제조 방법 및 물품
TW201504343A (zh) 阻燃性聚醯胺成型組成物
WO2017155221A1 (ko) 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
KR100771181B1 (ko) 폴리페닐렌 설파이드계 수지 조성물 및 플라스틱 성형품
WO2018124734A1 (ko) 열전도성 수지 조성물 및 이를 포함하는 복합체
WO2019231160A1 (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
WO2010067926A1 (ko) 새로운 인계 화합물, 그 제조방법 및 이를 이용한 난연성 열가소성 수지 조성물
JP7341998B2 (ja) 熱可塑性ポリアミド組成物ならびにその製造方法およびその用途
JP6045909B2 (ja) 回路遮断器用ポリエステル系樹脂組成物
WO2020145500A1 (ko) 내열성과 전자파 차폐능이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2021095914A1 (ko) 안테나 기구, 이의 제조방법 및 이를 포함하는 샤크 안테나
WO2022124513A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023080476A1 (ko) 금속 포스피네이트계 난연제를 포함하는 난연제 조성물 및 난연성 합성 수지 조성물
WO2016089090A1 (ko) 폴리카보네이트 수지 조성물 및 이의 제조방법
WO2020060085A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 금속 도금성형품
WO2024048976A1 (ko) 폴리(아릴렌 에테르) 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021241870A1 (ko) 레이저 직접 구조화 공정용 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2023068481A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2024058384A1 (ko) 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021086019A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891846

Country of ref document: EP

Kind code of ref document: A1