WO2020114349A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2020114349A1
WO2020114349A1 PCT/CN2019/122392 CN2019122392W WO2020114349A1 WO 2020114349 A1 WO2020114349 A1 WO 2020114349A1 CN 2019122392 W CN2019122392 W CN 2019122392W WO 2020114349 A1 WO2020114349 A1 WO 2020114349A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
opening
area
elastic modulus
islands
Prior art date
Application number
PCT/CN2019/122392
Other languages
English (en)
French (fr)
Inventor
曹方旭
王品凡
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/041,176 priority Critical patent/US11539010B2/en
Publication of WO2020114349A1 publication Critical patent/WO2020114349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure belongs to the field of display technology, and particularly relates to a display substrate and a display device.
  • the stretchable display device generally includes a display substrate (Substrate) including a stretchable substrate having an opening, and a plurality of display elements are provided on a portion of the substrate other than the opening.
  • a display substrate Substrate
  • the degree of deformation ie, the amount of deformation
  • the display substrate may be different, resulting in different distances between adjacent display elements on each part of the substrate, which The display effect of the display panel will be reduced. Therefore, it is desirable to provide a display substrate and a display device that still have a good display effect when stretched or compressed.
  • An aspect of the present disclosure provides a display substrate including a substrate, the substrate including at least a display area, the display area including a plurality of opening areas, each of the plurality of opening areas includes a respective A plurality of islands separated by a plurality of openings and connected by a plurality of bridges, wherein at least two of the plurality of opening regions have different elastic moduli.
  • the plurality of opening regions have different elastic moduli.
  • the plurality of opening regions include first and second opening regions alternately arranged, the first opening region has a first elastic modulus, and the second opening region It has a second elastic modulus, and the first elastic modulus is not equal to the second elastic modulus.
  • each of the openings is rectangular, each of the bridges is rectangular, and each of the islands is rectangular.
  • the islands in the two adjacent opening regions, the islands have the same size, and the bridges between the adjacent islands have different lengths.
  • the islands in the adjacent two opening regions, the islands have different sizes, and the bridges between the adjacent islands have different lengths.
  • the substrate is in the opening area with the same elastic modulus: the islands have the same size, and the bridges between adjacent islands have the same length.
  • the area of the opening of the opening region with a larger elastic modulus is smaller than that of the opening region with a smaller elastic modulus State the area of the opening.
  • each of the islands is defined by four openings in the plurality of openings and four bridges in the plurality of bridges, and the four bridges are respectively located in the four openings
  • One end of the hole is located at each of the four corners of the island.
  • the width of each bridge is equal to the width of the opening at the one end of the bridge and is smaller than the width of the island adjacent to the bridge, and the length of each bridge is at least The width of a trace.
  • the substrate further includes non-display areas located on both sides of the display area, and each of the non-display areas includes a transition area adjacent to the display area.
  • the elastic modulus is greater than the elastic modulus of the display area and smaller than the elastic modulus of the non-display area except for the transition area.
  • the elastic modulus of the transition area gradually increases in a direction from the display area to the other area of the non-display area.
  • the transition zone includes a plurality of auxiliary islands each separated by a plurality of auxiliary holes and connected by a plurality of auxiliary bridges, the distance between two adjacent auxiliary islands is different from the two phases The distance between adjacent islands.
  • each auxiliary island is the same as the shape of each island.
  • the two outermost opening regions on the opposite sides of the plurality of opening regions are the second opening regions, and the second elastic modulus is smaller than the first A modulus of elasticity.
  • the second elastic modulus is 70% to 99% of the first elastic modulus.
  • the display substrate further includes an auxiliary film disposed above the transition area, and the thickness of the auxiliary film is in a direction from the display area to the other area of the non-display area Increment.
  • the auxiliary film is formed using at least one of silicon nitride material, silicon oxide material, polyimide material, or titanium metal material.
  • a display device including:
  • Light-emitting devices which are respectively arranged above at least a part of the plurality of islands;
  • Traces which are respectively disposed above at least a part of the plurality of bridges for connecting to the light emitting device.
  • FIG. 1A and 1B are schematic structural diagrams of a display substrate according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of an island in FIG. 1A, the openings surrounding the island, and the bridges;
  • FIG. 3 is a schematic diagram of opening regions and deformations of substrates having different elastic moduli according to embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of an opening area with a single elastic modulus and its deformation
  • FIG. 5 is a diagram of a test result of a display substrate having islands, bridges, and openings with different parameters according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an opening area with different elastic moduli and its deformation according to Embodiment 3 of the present disclosure
  • FIG. 7 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of an auxiliary island, various auxiliary holes surrounding the auxiliary island, and various auxiliary bridges in the display substrate shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • the inventor of the present inventive concept found that in the case where the openings in the respective portions of the display area of the substrate of the display substrate have the same shape and size, in the process of the display substrate or the substrate of the display substrate being stretched, The transmission of force will produce an uneven distribution at each opening, resulting in different degrees of deformation at different openings, resulting in uneven deformation.
  • the deformation amount of each opening is large, so the spacing between each light emitting device provided between each opening will be large.
  • the deformation amount of each opening is small, so the spacing between the light emitting devices provided between the openings is smaller than that in the central portion.
  • the inventor of the present inventive concept found through research that the elastic modulus of the substrate after opening is about that without opening 1/100 of the substrate, the reason for the difference between the pixels of the opening area of the display area is that the deformation amount of the different opening area is different, that is, the deformation amount of the central portion of the display area is greater than the deformation amount of the edge portion. The reason is that the central part of the display area has accumulated deformation, thereby causing the pixel pitch of the central part to be larger than the pixel pitch of the edge part.
  • Polyimide Polyimide
  • the technical idea of the present disclosure is that, according to the structural relationship between the island, the bridge and the opening, and the deformation of the entire substrate is mainly borne by the deformation of the bridge, or the layout of the opening affects the deformation The principle of the island bridge relationship.
  • different openings in different regions different island bridge structures are obtained in different regions, so that the overall structure of the substrate has different elastic modulus in different regions, thereby alleviating stress concentration.
  • Embodiments of the present disclosure provide a display substrate, which can effectively solve the problem of display differences (or a reduction in display effect) caused by uneven deformation of openings in the display area.
  • the display substrate includes a substrate 100 that includes at least a display area 1 that includes a plurality of opening areas 10 and the plurality of opening areas Each of the 10 includes a plurality of islands 11 that are each separated by a plurality of openings 12 and connected by a plurality of bridges 13, wherein at least two of the plurality of opening regions 10 have different Modulus of elasticity (for example, Young's modulus).
  • Young's modulus Modulus of elasticity
  • the substrate 100 When partitioning the display area 1, the substrate 100 is either in a certain direction along the pixel arrangement of the display area 1 (for example, in the horizontal direction (for example, the row direction of pixels) or in the vertical direction (for example, the column direction of pixels))
  • the direction, or both in the lateral and longitudinal directions) can be divided into different opening regions 10, and each opening region 10 of the substrate 100 has a different elastic modulus. That is to say, it is possible to realize the division in one direction or two directions, and adjust the elastic modulus of different divisions, so as to realize the tensile stress buffering according to the direction of the force.
  • this embodiment takes the manner of partitioning along the horizontal direction (for example, the horizontal direction in FIG. 1A) as an example.
  • the display area 1 of the substrate 100 is divided into a plurality of opening areas 10, which are arranged along the lateral direction, and each opening area 10 extends along the longitudinal direction.
  • different regions of the substrate 100 are provided with different openings to achieve alternating distribution of elastic modulus, thereby reducing the difference in deformation of the substrate 100 in different regions after being stretched.
  • the openings of the opening region 10 may have different sizes, and the area of each opening of the opening region 10 with the larger elastic modulus is smaller than that with the smaller elastic modulus. The area of each opening in the opening area 10.
  • different portions of the display area 1 have different openings, so that different island bridge structures can be obtained in different portions, so that the overall structure of the substrate 100 has different elastic modulus in different areas, thereby reducing The difference in the spacing between the individual pixels is small to avoid a reduction in the display effect.
  • the peripheral structure of the display area 1 may change (for example, the peripheral structure in the up-down direction in FIG. 1A is different from the peripheral structure in the left-right direction), the tensile deformation or the compression deformation is in two directions perpendicular to each other (for example, FIG. 3 or the horizontal direction X and the vertical direction Y) shown in FIG. 4 have different situations.
  • the substrate 100 may further include two non-display areas 2 on opposite sides of the display area 1.
  • the display region 1 of the substrate 100 is divided into a plurality of opening regions 10, and different opening regions 10 have different elastic moduli.
  • each opening area 10 is only formed with a plurality of openings 12, and the arrangement direction of the openings 12 in different opening areas 10 may be the same.
  • the plurality of opening regions 10 of the substrate 100 may include alternately arranged first opening regions and second opening regions, the first opening regions have a first elastic modulus E1, and the second openings
  • the zone has a second elastic modulus E2 (see FIG. 3), and the first elastic modulus E1 is not equal to the second elastic modulus E2. That is to say, on both sides of the area with a small elastic modulus is the area with a large elastic modulus, and on both sides of the area with a large elastic modulus is the area with a small elastic modulus.
  • the effect of better uniformizing the deformation amount of different areas of the display area 1 for example, the opening area 10).
  • the structure of the island 11, the opening 12, and the bridge 13 may have different shapes.
  • the shape of the opening 12 in FIG. 1A is a rectangle
  • the shape of the opening 12 in FIG. 1B is a cross.
  • the dotted ellipse in the lower part of FIG. 1A shows an enlarged view of three islands 11 and associated openings 12 and bridges 13, and
  • FIG. 2 shows each island 11 in FIG. 1A and associated openings 12 and bridges.
  • the structure of 13, each of the openings 12 takes a rectangle as an example.
  • the openings 12 are inserted vertically in the row and column directions of the display area 1, and each opening 12 contacts the corresponding two adjacent islands 11 in its length direction, and each opening 12 The end of the bridge 13 is connected to an island 11.
  • each opening 12 is equal to the width b2 of the bridge 13, and the length c1 of the opening 12 is equal to the difference between the distance between two adjacent openings 12 in the width direction and the width of the two bridges 13.
  • each of the openings 12 may be rectangular
  • each of the bridges 13 may be rectangular
  • each of the islands 11 may be rectangular.
  • each of the islands 11 may be defined by four of the plurality of openings 12 and four of the plurality of bridges 13, and the four bridges 13 are located at the One end of the four openings 12 is located at the four corners of the island 11 respectively.
  • the structure of the island 11, the opening 12, and the bridge 13 in FIG. 2 are all examples of rectangular structures.
  • a single island 11 may have the same length a1 and width a2, and the size of the island 11 may be determined by the size of pixels (eg, light emitting devices) provided above it. In consideration of the needs of actual wiring, the size of each island 11 is generally larger than the size of pixels located on the island 11.
  • the length b1 of each bridge 13 can be determined according to the width and the number of the traces of the light emitting devices provided above the island. In the case where the width of each trace is given, the length b1 of the bridge 13 is greater if the number of traces is greater , The less the number of lines, the smaller the bridge width.
  • each bridge 13 connects the islands 11 adjacent to the bridge 13.
  • different openings 12 have different sizes of deformation, and the tensile properties of the substrate 100 and the display substrate can be changed by changing the sizes of the island 11 and the bridge 13.
  • the size of the island 11 and the bridge 13 can be regarded as determined to some extent by the size of the opening 12.
  • each opening 12 has a small width c2 (that is, a small spacing between adjacent islands 11) and a small length c1 (to a certain extent, the size of the island 11 is small)
  • the width c2 of each opening 12 is large (that is, the distance between adjacent islands 11 is large)
  • the length c1 is large (in a way, that is, the size of the island 11 is large)
  • the former can have a larger Distribution density and greater elastic modulus of the island.
  • the “length” in the present disclosure may refer to the size of the corresponding components in FIGS. 2 and 8 in the horizontal direction (ie, the row direction of the pixels), and the width may refer to those in FIGS. 2 and 8.
  • the size of the corresponding component in the vertical direction ie, the column direction of the pixels.
  • the size of the opening 12 and the bridge 13 or the auxiliary hole 22 and the auxiliary bridge 23
  • the bottom of FIG. 2 The opening 12 and the bridge 13 (or the auxiliary hole 22 and the auxiliary bridge 23 at the bottom of FIG. 8) are described as an example, but the four openings 12 and the four bridges 13 (or four in FIG. 8) in FIG. 2
  • the auxiliary holes 22 and the four auxiliary bridges 23) have the same size, respectively.
  • each island 11 in each opening area 10, the size of each island 11 may be determined by the relative position between two adjacent openings 12. Specifically, the length a1 of each island 11 is determined by, for example, the relative position between two adjacent openings 12 arranged in the horizontal direction, and the width a2 of each island 11 can be determined by, for example, two adjacent rows arranged in the vertical direction The relative position between the two openings 12 is determined. The length a1 and the width a2 of each island 11 may be equal, that is, each island 11 may be square in the plan view shown in FIG. 2.
  • each bridge 13 can be determined by the relative position between two adjacent openings 12 arranged perpendicular to each other, and the width b2 of each bridge 13 can be determined by the width c2 of the opening 12. Therefore, without changing the size of the opening 12, by changing the location of the opening 12 to change the size of the island 11 and the length of the bridge 13 b1, you can get the appropriate island 11 and bridge 13 matching structure, and obtain Satisfies the required elastic modulus. Of course, it is also possible to obtain an appropriate matching structure of the island 11 and the bridge 13 by adjusting the size and position of the opening 12 at the same time, and obtain the elastic modulus that meets the requirements.
  • the plurality of opening regions 10 may include alternately arranged first opening regions and second opening regions, the first opening regions have a first elastic modulus, and the second opening regions have a second elasticity Modulus, and the first elastic modulus may not be equal to the second elastic modulus.
  • the display area 1 of the substrate 100 may be partitioned in the lateral direction X to limit the deformation of the substrate 100 in the longitudinal direction Y.
  • E1 and E2 may also represent that the opening regions 10 having two different elastic moduli E1 and E2 are alternately arranged.
  • the manner in which the opening regions 10 are alternately arranged may be such that the elastic modulus at the two end regions is different, for example, the E1-E2-E1-E2 method, or the E2-E1-E2-E1 method; it may also be The elastic modulus in the regions at both ends is the same, for example, the E1-E2-E1-E2-E1 method, or the E2-E1-E2-E1-E2 method.
  • This embodiment takes the arrangement of E2-E1-E2-E1-E2 as an example, as shown in FIG. 3.
  • each island 11 may have the same size (of course, islands 11 may be different sizes), and bridges 13 between adjacent islands 11 may have different widths b2.
  • each island 11 may have the same size, and the bridge 13 between adjacent islands 11 may have the same width b2; or in FIG. 3
  • the islands 11 may have the same size, and the bridges 13 between adjacent islands 11 may have the same width b2. Since each island 11 has the same size, the pattern of the portion of the island 11 and the bridge 13 remaining at the junction of the substrate 100 in the different regions is more matched, which can effectively avoid the problem of stress concentration at the junction.
  • openings 12 of multiple sizes or openings 12 of a single size are provided in a local area of the substrate 100, depending on the shape of the openings, a phenomenon of expansion or contraction may occur after the substrate 100 is stressed.
  • the phenomenon that the substrate 100 expands in the longitudinal direction Y in this case, the opening 12 provided in the substrate 100 may have a rectangular structure (or rectangular shape as shown in FIG. 1A ). shape).
  • the opening 12 provided in the substrate 100 may have, for example, a cross-shaped structure (or cross-shaped shape) as shown in FIG. 1B.
  • the elastic modulus in the E1 region is greater than the elastic modulus in the E2 region, that is, E1>E2 .
  • the deformation of the E2 region with a small elastic modulus of the substrate 100 is relatively large, but it is not entirely assumed by this E2 region.
  • the elastic modulus on both sides of the E2 region is large.
  • the E1 region will also assume a part of the deformation amount, so the overall deformation amount of the substrate 100 is small.
  • the appropriate elastic modulus difference allows the deformation amount to be distributed in each E1 area and each E2 area, and alternately changes between the adjacent E1 area and E2 area, thereby effectively reducing the deformation of the display substrate after stretching difference.
  • FIG. 3 shows that the maximum deformation after the display substrate is stretched appears in each E2 region with a small elastic modulus, and the maximum deformation is D1.
  • FIG. 4 shows that the display area 1 of the substrate 100 of the display substrate is provided with a single opening 12, in which case the entire display area 1 corresponding to the substrate 100 has an elastic modulus E2.
  • the simulation result of FIG. 4 shows that the degree of expansion in the center portion of the display area 1 is greater than that in the edge portion, and the maximum deformation amount is D2.
  • the test results on the samples also show that D2>D1.
  • FIGS. 3 and 4 it can be seen that the design of multiple opening regions 10 with different elastic moduli can reduce the maximum deformation of the substrate 100.
  • the width b2 of the bridge 13 is equal to the width c2 of the opening 12, the width a2 of the island 11 is greater than the length b1 of the bridge 13, and the length b1 of the bridge 13 is at least the width of one trace, for example, the length b1 of the bridge 13 can be Between 1-10 ⁇ m.
  • the multiple traces can be arranged side by side on the bridge 13 on a plane, and the bridge width is at least the sum of the widths of the multiple traces.
  • a plurality of traces may be stacked and arranged above the bridge 13, in which case the bridge width may be slightly larger than the width of one trace.
  • the design of the different opening areas 10 of the display area 1 achieves the alternating distribution of the elastic modulus through the different opening 12 designs.
  • the regions with small elastic modulus preferentially deform, so that each region with small elastic modulus undergoes large deformation, while the regions with large elastic modulus on both sides of the pair Deformation will play a certain inhibitory role. Therefore, through the design of the alternating distribution of the elastic modulus, the overall expansion of the substrate 100 can be distributed to each area with a different elastic modulus, thereby obtaining the display area 1 (or the substrate 100 or the display substrate) The effect of reducing the difference in deformation after being stretched.
  • This design of alternating distribution of elastic modulus is also suitable for the case where the entire substrate is stretched or compressed to disperse the amount of shrinkage into regions with different elastic modulus.
  • the display substrate can be formed by removing the portion corresponding to the opening 12 in the entire layer structure of the substrate 100. Specifically, first, the entire layer structure for the substrate 100 is placed on the glass, and the pattern is defined by yellow light exposure to the entire layer structure for the substrate 100 in the patterning process, and developed and etched in Openings 12 are formed in the entire layer structure, so as to form a continuously connected substrate 100 with hollows.
  • the display substrate of this embodiment through the structure of the opening, a distribution of elastic modulus that alternates periodically can be provided, and the difference in the amount of deformation between different opening regions can be reduced.
  • the problem of stress concentration in the single elastic modulus opening area of the display area of the display substrate after being stretched or compressed can be solved to ensure that the spacing between pixels is evenly distributed. Therefore, the problem that the display effect caused by the difference in the pitch of the light-emitting devices due to the uneven stretching deformation or compression deformation of the display substrate is reduced is solved.
  • the display substrate in other embodiments of the present disclosure also uses pixel compensation on the basis of the compensation of the opening structure.
  • a pre-compensation is applied before stretching the substrate 100 to reduce the difference in pitch between pixels on the substrate 100 after being stretched, thereby solving the display caused by different pixel pitches The problem of reduced effectiveness.
  • the distance between adjacent islands 11 may be different before the display area 1 is stretched, and the deformation of each opening 12 after the display area 1 is stretched It is also different, so the distance between pixels can be made to be the same after the display area 1 is stretched by appropriate design.
  • each island 11 in the opening area 10 (ie, the E1 area and the E2 area) where the elastic modulus of the display area 1 of the substrate 100 is different: each island 11 may have a different size (Of course, each island 11 may also have the same size), the bridges 13 between adjacent islands 11 may have different widths b2.
  • each island 11 in the opening area 10 (ie, the E1 area and the E2 area) where the elastic modulus of the display area 1 of the substrate 100 is different: each island 11 may have the same size, and the bridge between adjacent islands 11 13 may have the same width b2.
  • FIG. 6 shows the pixel 14 to be formed instead of the island 11, where F1 and F2 represent the distance between two adjacent pixels 14 before being stressed, and F1′ and F2′ represent the distance between two adjacent pixels 14 after being stressed.
  • the elastic modulus of the E1 region is greater than the elastic modulus of the E2 region (ie, E1>E2), and have different elastic moduli
  • the size of the opening 12 in the opening area 10 is set to be different, specifically, the width (c21) of the opening 12 in the E1 area is larger than the width (c22) of the opening 12 in the E2 area.
  • the opening 12 in the E1 area makes the distance between the adjacent pixels 14 to be F1
  • the opening 12 in the E2 area makes the distance between the adjacent pixels 14 to be F2, and F1>F2.
  • the E2 region with small elastic modulus is preferentially deformed and the deformation is relatively large, and the E1 region with large elastic modulus is small in deformation.
  • the original distance F1 between the adjacent pixels 14 becomes the distance F1'
  • the original distance F2 between the adjacent pixels 14 becomes the distance F2'
  • E1>E2 so E1
  • the pixel position can be provided with a pre-compensation, so that the pixel pitch in the E1 area is larger than the pixel pitch in the E2 area.
  • the pitch of the islands 11 designed for a large area is larger than the pitch of the islands 11 in the area with a smaller elastic modulus. Therefore, when the substrate 100 is stretched, the distance between the islands 11 in the region with a large elastic modulus changes little, and the island 11 in the region with a small elastic modulus has a large change in pitch, so that the preset compensation amount is offset .
  • the pitch of the islands 11 of different elastic modulus regions is the same or similar after the substrate 100 is stretched, thereby reducing the difference in pixel pitch.
  • the pixel compensation of the display substrate in this embodiment is based on the principle that the distance between the pixels before the display substrate is stretched is different, and the distance between the pixels after stretching tends to be the same.
  • the distance difference between adjacent islands and the difference in elastic modulus of different regions determined by the size of the openings in different regions are used to compensate for the difference in opening deformation after the display substrate is stretched, so that the display substrate is After stretching, the size and width of the openings tend to be uniform, and the distance between the pixels is uniformized.
  • the alternate distribution of the elastic modulus of each opening area of the display substrate in the embodiments shown in FIGS. 1A to 6 can be achieved by changing the size of the island, changing the size of the opening, and so on.
  • Alternating distribution of elastic modulus, different openings have different deformation variables, which can effectively reduce the deformation difference between the central part and the edge part of the display area, and solve the display effect caused by uneven deformation after the display substrate is stretched Problem, thereby improving the display effect after the display substrate is stretched.
  • the inventor of the present invention also found in actual experiments that at the boundary between the display area 1 and the non-display area, since the non-display area usually does not include openings, the elastic modulus of the display area and the location of the display area The elastic modulus of the non-display areas on both sides is different and the difference is too large. As a result, there is a stress concentration phenomenon at the boundary between the display area 1 and the non-display area of the substrate 100 during the stretching process, and breakage is likely to occur.
  • another embodiment of the present disclosure provides a display substrate. Compared with the embodiments shown in FIGS. 1A to 6, the display substrate of this embodiment can effectively solve the problem that the display area 1 and the non-display area are easily broken.
  • the substrate 100 of the display substrate of this embodiment includes a display area 1 and non-display areas 2 respectively located on both sides of the display area 1.
  • the display area 1 and each non-display area 2 have different deformation abilities, and the elastic modulus of these two areas is quite different, which leads to the problem that the structure at their junction is prone to stress concentration and cause fracture.
  • the elastic modulus of each non-display area 2 adjacent to the display area 1 is adjusted, and each non-display area 2 is set as a transition area 20 near the display area 1 (also possible Understood as a dummy area), the elastic modulus of the transition area 20 (that is, the portion of the substrate 100 in the transition area 20) is greater than the elastic modulus of the display area 1 and less than that of each non-display area 2 except the transition area
  • the elastic modulus of the region (hereinafter referred to as non-apertured region 25).
  • the non-display regions 2 on both sides of the substrate 100 respectively include a non-aperture region 25 and a transition region 20 between the display region 1 and each non-aperture region 25.
  • the elastic modulus of the transition zone 20 gradually increases in the direction from the display zone 1 to the non-aperture zone 25, whereby the stress at the boundary can be dispersed throughout the transition zone 20.
  • the display area 1, the transition area 20 of each non-display area 2, and the non-aperture area 25 have different elastic moduli.
  • the structure of the display substrate from the non-aperture area 25 of the non-display area 2 to the display area 1 decreases uniformly, thereby solving the problem of stress concentration at the boundary between the display area 1 and the non-display area 2 of the display substrate.
  • an opening area 10 is provided similar to the display area 1, as shown in FIG. 7, each non-display area Auxiliary holes 22 are provided in the transition zone 20 of zone 2 to adjust the elastic modulus of the transition zone 20 of the substrate 100.
  • a plurality of auxiliary holes 22 may be provided in each transition zone 20.
  • the multiple auxiliary holes 22 make the corresponding
  • the transition area 20 includes a plurality of auxiliary islands 21 separated by respective auxiliary holes 22 and connected by respective auxiliary bridges 23, and the interval between adjacent auxiliary islands 21 may be different from that of the adjacent islands 11 in the display area 1 The spacing between.
  • each auxiliary island 21 may be similar to each island 11, that is, each auxiliary island 21 may have the same graphic shape as each island 11, but the sizes are not necessarily equal, to simplify the structural design of the display substrate.
  • the area size of each auxiliary island 21 and each island 11 is not limited, as long as the elastic modulus of the portion of the substrate 100 in the transition region 20 is greater than the elastic modulus of the display region 1 but less than each non-display The modulus of elasticity of the area 2 is not the aperture area 25.
  • the size of the opening 12 of the display area 1 and the auxiliary hole 22 of the transition area 20 are set to be different, so as to obtain a proper combination of the auxiliary island 21 and the auxiliary bridge 23 by adjusting the size of the auxiliary hole 22 Structure to obtain the elastic modulus that can meet the requirements.
  • the size of each auxiliary island 21 of each transition zone 20 may be equal to the size of each island 11 of the opening region 10 adjacent to the transition zone 20, and each of each transition zone 20
  • the width B2 of the auxiliary bridge 23 may be greater than the width b2 of each bridge 13 of the opening area 10 adjacent to the transition area 20.
  • the elastic modulus of the transition area 20 is greater than that of the display area 1, but less than each The elastic modulus of the non-apertured area 25 of the display area 2 is shown.
  • each transition area 20 can be changed by changing the size of each auxiliary island 21 and the size of each island 11 of the opening area 10 adjacent to the transition area 20 in the display area 1 by changing each The length B1 of one auxiliary bridge 23 realizes the adjustment of the elastic modulus of the substrate 100 in this region.
  • the wider each auxiliary bridge 23 ie, the larger B1, the larger the structural elastic modulus and the smaller the deformation.
  • the length B1 of each auxiliary bridge 23 provided in each transition zone 20 may gradually increase in the direction from the display zone 1 to the non-aperture zone 25, so that the elastic modulus of each transition zone 20 is in the display zone 1 The direction to each non-aperture area 25 gradually increases.
  • the gradual distribution of the elastic modulus of the transition zone 20 is achieved by the gradual change in the length B1 of the auxiliary bridge 23, thereby achieving the effect of dispersing the stress concentrated at the junction of the display zone 1 and the non-display zone 2 into the transition zone 20.
  • the length B1 of the auxiliary bridge 23 of FIG. 8 may be greater than the length b1 of the bridge 13 of FIG. 2 (ie, B1>b1).
  • a film layer may also be provided on the transition area 20 of the display substrate.
  • an auxiliary film may be provided above each transition region 20 of the substrate 100. The thickness of the auxiliary film is from the display region 1 to the non-display region 2 increases in the direction of the non-aperture area 25.
  • each auxiliary hole 22 in each transition area 20 and the size of each opening 12 in the opening area 10 of the display area 1 adjacent to the transition area 20 may be the same or different, and An auxiliary film 24 that further adjusts the elastic modulus can be added to change the overall thickness of each transition zone 20.
  • the auxiliary film 24 realizes the gradual change of the elastic modulus by the gradually changing film thickness. Specifically, the auxiliary film 24 is gradually thinned in the direction from the adjacent non-aperture area 25 to the display area 1, so the elastic modulus of the transition area 20 is directed to the display area at the corresponding non-aperture area 25 The direction of 1 gradually decreases.
  • the display substrate includes transition regions 20 with gradual changes in elastic modulus, that is, in the display substrate, for the case where the deformation of the display region 1 is large and the deformation of each non-display region 2 is small, by setting on each transition region 20
  • the auxiliary film 24 uses the gradual thickness of the auxiliary film 24 to adjust the elastic modulus of the transition zone 20 to be greater than the elastic modulus of the display zone 1 but smaller than the elastic modulus of the non-aperture zone 25 of the corresponding non-display zone 2, It is beneficial to realize the stress dispersion from the display area 1 to the non-display area 2.
  • the auxiliary film 24 may be formed using at least one of a silicon nitride material, a silicon oxide material, a polyimide material, or a titanium metal material.
  • the auxiliary film 24 is made of the above materials, the process is simple, and the yield is high.
  • the preparation of the light emitting device above the display substrate usually requires the formation of other film layers, it is also possible to retain and adjust the portion of the film layer on each transition region 20 while preparing the film layer in the light emitting device To form the auxiliary film 24, that is, the auxiliary film 24 and part of the film layer in the light emitting device can be made by the same process, thereby simplifying the manufacturing process and saving the manufacturing cost.
  • the auxiliary film is provided on each transition area and the structure of the auxiliary film (that is, the thickness of the auxiliary film is gradually increased in the direction from the display area to the non-aperture area) to display
  • the substrate is partially reinforced to adjust the elastic modulus at the boundary between the display area and the non-display area, effectively solving the problem of stress concentration at the boundary between the display area and the non-display area.
  • the above-described embodiments of the present disclosure can achieve at least the following beneficial effects.
  • the display substrate can effectively solve the problem of stress concentration at the junction of the bridge holes in different areas of the display area, thereby solving the problem of reduced display effect caused by the difference in the spacing between pixels caused by uneven stretching deformation, thereby improving the stretch of the display substrate Or compressed display effect.
  • the elastic modulus of the transition area decreases uniformly from the non-aperture area of the non-display area to the display area. In this way, the problem of stress concentration at the boundary between the display area and the non-display area of the display substrate is solved, and the display effect and the tensile resistance of the display substrate are further ensured.
  • Another embodiment of the present disclosure provides a display device including the display substrate provided in any one of the embodiments shown in FIG. 1 to FIG. 9 above, at least some islands of the display substrate are provided with a light emitting device above the island, the display Above at least some bridges of the substrate are provided with wiring for connecting the light emitting devices.
  • the display device can be prepared by the following steps. First, the entire layer structure for the substrate 100 is placed on glass, and a thin film transistor (TFT) device is prepared on the entire layer structure. Next, in the patterning process, a yellow light exposure method is used to define a pattern for the entire layer structure used for the substrate 100, and a plurality of openings 12 are formed in the entire layer structure by development and etching to form an island with a bridge. The substrate 100 is continuously connected and has a hollow. Then, a pixel defining layer is formed, and the organic light emitting material is vapor-deposited and packaged. Finally, the substrate 100 is separated from the glass to obtain a stretchable display device.
  • TFT thin film transistor
  • the light emitting device may be an organic light emitting diode (OLED) pixel or a quantum dot light emitting diode (QLED) device.
  • the display device may be: desktop computer, tablet computer, notebook computer, mobile phone, PDA, GPS, car display, projection display, video camera, digital camera, electronic watch, calculator, electronic instrument, instrument, liquid crystal panel, electronic paper, TV Any product or component with display function, such as mobile phones, monitors, digital photo frames, navigators, etc., can be applied to many fields such as public display and unreal display.
  • the display device on the one hand, has a small display difference caused by deformation in the display area, and on the other hand, it is not easy to break between the display area and the non-display area, so it has good physical performance and display performance, thereby effectively improving the display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板和一种显示装置。该显示基板包括衬底(100),所述衬底(100)至少包括显示区(1),所述显示区(1)包括多个开孔区(10),所述多个开孔区(10)中的每一个包括各自以多个开孔(12)分隔开且以多个桥(13)连接的多个岛(11),其中,所述多个开孔区中(10)的至少两个开孔区(10)具有不同的弹性模量。

Description

显示基板和显示装置
相关申请的交叉引用
本申请要求于2018年12月3日提交的中国专利申请No.201811465167.X的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种显示基板和一种显示装置。
背景技术
随着技术的发展,出现了对可拉伸(Stretchable)显示装置的研究。可拉伸显示装置一般包括显示基板(Substrate),该显示基板包括具有开孔的可拉伸衬底,并且该衬底的除了所述开孔以外的部分上设置有多个显示元件。在被拉伸或压缩时,所述显示基板的各个部分所产生的形变的程度(即,形变量)可能不同,从而导致衬底的各个部分上的相邻显示元件之间的距离不同,这将降低显示面板的显示效果。因此,期望提供在被拉伸或压缩时仍具有良好显示效果的一种显示基板和一种显示装置。
发明内容
本公开的一方面提供了一种显示基板,包括衬底,所述衬底至少包括显示区,所述显示区包括多个开孔区,所述多个开孔区中的每一个包括各自以多个开孔分隔开且以多个桥连接的多个岛,其中,所述多个开孔区中的至少两个开孔区具有不同的弹性模量。
在一个实施例中,所述多个开孔区具有不同的弹性模量。
在一个实施例中,所述多个开孔区包括交替设置的第一开孔 区和第二开孔区,所述第一开孔区具有第一弹性模量,所述第二开孔区具有第二弹性模量,并且所述第一弹性模量不等于所述第二弹性模量。
在一个实施例中,每一个所述开孔为矩形,每一个所述桥为矩形,并且每一个所述岛为矩形。
在一个实施例中,在所述相邻两个开孔区中,所述岛具有相同的尺寸,并且相邻所述岛之间的所述桥具有不同的长度。
在一个实施例中,在所述相邻两个开孔区中,所述岛具有不同的尺寸,并且相邻所述岛之间的所述桥具有不同的长度。
在一个实施例中,所述衬底在弹性模量相同的所述开孔区中:所述岛具有相同的尺寸,相邻所述岛之间的所述桥具有相同的长度。
在一个实施例中,在所述相邻两个开孔区中,弹性模量较大的所述开孔区的所述开孔的面积小于弹性模量较小的所述开孔区的所述开孔的面积。
在一个实施例中,每一个所述岛由所述多个开孔中的四个开孔和所述多个桥中的四个桥限定,并且所述四个桥分别位于所述四个开孔的一端并且分别位于所述岛的四个拐角处。
在一个实施例中,每一个所述桥的宽度等于该桥位于其一端的所述开孔的宽度并且小于与该桥相邻的所述岛的宽度,并且每一个所述桥的长度至少为一条走线的宽度。
在一个实施例中,所述衬底还包括分别位于所述显示区的两侧的非显示区,每一个所述非显示区包括与所述显示区相邻的过渡区,所述过渡区的弹性模量大于所述显示区的弹性模量而小于所述非显示区的除了所述过渡区以外的其他区域的弹性模量。
在一个实施例中,所述过渡区的弹性模量在由所述显示区指向所述非显示区的所述其他区域的方向上逐渐增大。
在一个实施例中,所述过渡区包括各自以多个辅助孔分隔开且以多个辅助桥连接的多个辅助岛,两个相邻所述辅助岛之间的间距不同于两个相邻所述岛之间的间距。
在一个实施例中,每一个所述辅助岛的形状和每一个所述岛的形状相同。
在一个实施例中,分别位于所述多个开孔区的相对两侧的最外侧的两个开孔区都是所述第二开孔区,并且所述第二弹性模量小于所述第一弹性模量。
在一个实施例中,所述第二弹性模量是所述第一弹性模量的70%至99%。
在一个实施例中,所述显示基板还包括设置在所述过渡区的上方的辅助膜,所述辅助膜的厚度在由所述显示区指向所述非显示区的所述其他区域的方向上递增。
在一个实施例中,所述辅助膜采用氮化硅材料、氧化硅材料、聚酰亚胺材料或钛金属材料中的至少一种形成。
本公开的另一方面提供了一种显示装置,包括:
根据本公开的上述实施例中的任一个所述的显示基板;
发光器件,它们分别设置在所述多个岛中的至少一部分上方;
以及
走线,它们分别设置在所述多个桥中的至少一部分上方以用于连接至所述发光器件。
附图说明
图1A和图1B为根据本公开的一些实施例的显示基板的结构示意图;
图2为图1A中的一个岛、围绕该岛的各个开孔和各个桥的结构示意图;
图3为根据本公开的实施例的衬底的具有不同弹性模量的开孔区及其形变的示意图;
图4为具有单一弹性模量的开孔区及其形变的示意图;
图5为根据本公开实施例的具有不同参数的岛、桥以及开孔的显示基板的受力测试结果的图;
图6为根据本公开实施例3的具有不同弹性模量的开孔区及 其形变的示意图;
图7为根据本公开实施例的显示基板的结构示意图;
图8为图7所示的显示基板中的一个辅助岛、围绕该辅助岛的各个辅助孔和各个辅助桥的结构示意图;以及
图9为根据本公开实施例的显示基板的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和示例性实施方式对本公开的显示基板和显示装置作进一步详细描述。
本发明构思的发明人发现,在显示基板的衬底的显示区的各个部分中的开孔具有相同形状和尺寸的情况下,在显示基板或显示基板的衬底被拉伸的过程中,由于力的传导在各个开孔处会产生不均匀分布,导致在不同开孔处的形变程度不同,导致形变不均匀。在显示区的中心部分,各个开孔的形变量较大,因此设置在各个开孔之间的各个发光器件之间的间距会较大。在显示区的边缘部分,各个开孔的形变量较小,因此设置在各个开孔之间的发光器件之间的间距相比中心部分的小。实验显示,形变最大点的形变量可以达到形变最小点的形变量的2倍左右,该不均匀形变现象导致分别与各个发光器件相对应的各个像素之间的间距不同,结果造成显示效果的降低。
此外,在显示基板的衬底包括聚酰亚胺材料(Polyimide,简称PI)的情况下,本发明构思的发明人通过研究发现,开孔后的衬底的弹性模量约为不开孔的衬底的1/100,造成显示区的开孔区的像素之间间距不同的原因是不同开孔区的形变量不同,即,显示区的中心部分的形变量大于边缘部分的形变量。究其原因是,显示区的中心部分出现累积形变,由此造成中心部分的像素间距大于边缘部分的像素间距。
因此,如何减小在显示基板或显示基板的衬底被拉伸的过程中各个像素之间的间距的差异,以保证显示效果成为目前亟待解 决的技术问题。
至少针对上述技术问题,本公开的技术构思在于,根据岛、桥与开孔的结构关系,以及衬底整体的形变主要由桥的形变来承担的原理,或者说由开孔的布局来影响形变的岛桥关系原理。通过在不同区域中形成不同的开孔的方式,从而在不同区域获得不同的岛桥结构,使得衬底的整体结构在不同区域的弹性模量不同,从而缓解应力集中。
本公开的实施例提供一种显示基板,该显示基板能有效解决显示区因开孔形变不均匀而引起的显示差异(或显示效果下降)的问题。
如图1A和图2所示,根据本实施例的显示基板包括衬底100,衬底100至少包括显示区1,所述显示区1包括多个开孔区10,所述多个开孔区10中的每一个包括各自以多个开孔12分隔开且以多个桥13连接的多个岛11,其中,所述多个开孔区10中的至少两个开孔区10具有不同的弹性模量(例如,杨氏模量)。通过将衬底100的显示区1划分为不同的区域(例如,开孔区10),并对不同的区域分别调整弹性模量,从而减小显示区1的中心部分的累积形变,消除显示区的中心部分和边缘部分的形变差异。结果,提高了所示显示基板例如在被拉伸或压缩时的显示效果。
在对显示区1进行分区时,衬底100在显示区1沿像素排列的某一方向(例如在横向(例如,像素的行方向)或在纵向(例如,像素的列方向)中的任一方向,或在横向和纵向两个方向同时)可以划分为不同的开孔区10,衬底100的各个开孔区10具有不同的弹性模量。也就是说,可以实现单一方向或双方向的分区,调整不同分区的弹性模量,从而有针对性的根据受力方向实现拉伸应力缓冲。根据显示基板的应用场景,本实施例以沿着横向(例如,图1A中的水平方向)进行分区的方式作为示例。换言之,如图1A所示,衬底100的显示区1被划分为多个开孔区10,所示多个开孔区10沿着横向排列,每一个开孔区10沿着纵向延伸。
在一个示例中,衬底100的不同区域通过开设不同的开孔方 式,实现弹性模量的交替分布,从而减少衬底100被拉伸后在不同区域的形变差异。弹性模量不同的开孔区10中,开孔区10的各个开孔可以具有不同的尺寸,且弹性模量较大的开孔区10的每一个开孔的面积小于弹性模量较小的开孔区10的每一个开孔的面积。
本实施例的显示基板,显示区1的不同部分具有不同的开孔,这样可实现在不同部分获得不同的岛桥结构,使得衬底100的整体结构在不同区域的弹性模量不同,从而减小各个像素之间的间距差异,避免显示效果的降低。
通常情况下,由于显示区1的周边结构可能变化(例如,图1A中上下方向的周边结构不同于左右方向的周边结构),拉伸形变或压缩形变在互相垂直的两个方向上(例如图3或图4所示的横向X和纵向Y)具有不同的情况。如图1A所示,衬底100还可以包括位于显示区1的相对两侧的两个非显示区2。如上所述,衬底100的显示区1被划分为多个开孔区10,不同的开孔区10具有不同的弹性模量。
图1A中,每一个开孔区10只形成有多个开孔12,不同开孔区10中的各个开孔12的排列方向可以相同。衬底100的所述多个开孔区10可以包括交替设置的第一开孔区和第二开孔区,所述第一开孔区具有第一弹性模量E1,所述第二开孔区具有第二弹性模量E2(参加图3),第一弹性模量E1不等于第二弹性模量E2。也就是说,弹性模量较小的区域的两侧为弹性模量较大的区域,而弹性模量较大的区域的两侧为弹性模量较小的区域,这样交替的设置方式,能较好地使显示区1的不同区域(例如,开孔区10)的形变量均匀化的效果。
例如,岛11、开孔12和桥13的结构可以有不同的形状。例如,图1A中开孔12的形状为矩形,图1B中开孔12的形状为十字形。图1A的下部的虚线椭圆内示出了三个岛11和相关联的开孔12和桥13的放大图,图2示出了图1A中的每一个岛11和相关联的开孔12和桥13的结构,其中的每一个开孔12以长方形作 为示例。在一个示例中,开孔12在显示区1的行方向和列方向以垂直方式穿插开设,每一开孔12在其长度方向接触对应相邻的两个岛11、且在每一个开孔12的末部形成与一岛11连接的桥13。每一个开孔12的宽度c2等于桥13的宽度b2,开孔12的长度c1等于其宽度方向上相邻两开孔12之间的距离与两桥13宽度之差。例如,如图1A和图2所示,每一个所述开孔12可以为矩形,每一个所述桥13可以为矩形,并且每一个所述岛11可以为矩形。此外,每一个所述岛11可以由所述多个开孔12中的四个开孔12和所述多个桥13中的四个桥13限定,并且所述四个桥13分别位于所述四个开孔12的一端并且分别位于所述岛11的四个拐角处。在上述岛11、桥13、开孔12的设置和结构下,衬底100可以经由岛11、桥13形成一个连接不断的、具有镂空区(即,开孔12)的衬底。
图2中的岛11、开孔12和桥13的结构均以矩形结构为例。单个的岛11可以具有相同的长度a1和宽度a2,岛11的尺寸可以由其上方设置的像素(例如发光器件)的尺寸决定。考虑到实际布线的需要,每一个岛11的尺寸通常大于位于该岛11上的像素的尺寸。每一个桥13的长度b1可根据岛上方设置的发光器件的走线的宽度和条数多少决定,在每一条走线的宽度给定的情况下,走线条数多则桥13的长度b1大,走线条数少则桥宽小。每一个桥13的宽度b2与开孔12的宽度c2相同(即,b2=c2),每一个桥13将与该桥13相邻的各个岛11连接起来。在相同的拉伸力的情况下,不同的开孔12的尺寸的形变量不同,通过改变岛11和桥13的尺寸可以改变衬底100和显示基板的拉伸性能。从另一方面看,由于岛11和桥13为衬底100设置开孔12之后的保留部分,因此岛11和桥13的尺寸在某种程度上可视为决定于开孔12的尺寸。因此,可以通过调节开孔12的尺寸并且在保证岛11的尺寸不变的前提下,实现不同区域具有不同弹性模量的构造。在显示区1面积相同的情况下,每一个开孔12的宽度c2小(即相邻岛11之间的间距小)、长度c1小(在某种程度上即岛11的尺 寸小)的区域,与每一个开孔12的宽度c2大(即相邻岛11之间的间距大)、长度c1大(在某种程度上即岛11的尺寸大)的区域相比,前者可以具有更大的岛的分布密度和更大的弹性模量。应当说明的是,本公开中的“长度”可以指的是图2和图8中相应组件在水平方向(即,像素的行方向上)的尺寸,宽度”可以指的是图2和图8中相应组件在竖直方向(即,像素的列方向上)的尺寸。还要注意的是,对于开孔12和桥13(或辅助孔22和辅助桥23)的尺寸,虽然以图2最下方的开孔12和桥13(或图8最下方的辅助孔22和辅助桥23)为例进行描述,但是图2中的四个开孔12和四个桥13(或图8中的四个辅助孔22和四个辅助桥23)分别具有相同的尺寸。
此外,参考图1A、图1B和图2,在每一个开孔区10中,每一个岛11的尺寸可由相邻两个开孔12之间的相对位置决定。具体的是:每一个岛11的长度a1由例如水平方向上排列的相邻两个开孔12之间的相对位置决定,每一个岛11的宽度a2可由例如竖直方向上排列的相邻两个开孔12之间的相对位置决定。每一个岛11的长度a1和宽度a2可以相等,即,每一个岛11在图2所示的平面图中可以是正方形。每一个桥13的长度b1可由相互垂直排列的相邻两个开孔12之间的相对位置决定,每一个桥13的宽度b2可由开孔12的宽度c2决定。因此,在不改变开孔12的尺寸的情况下,通过改变开孔12的设置位置来改变岛11的尺寸和桥13的长度b1,即可以获得适当的岛11和桥13配合结构,并获得满足要求的弹性模量。当然,也可以通过同时调节开孔12的尺寸和位置,获得适当的岛11和桥13配合结构,并获得满足要求的弹性模量。
所述多个开孔区10可以包括交替设置的第一开孔区和第二开孔区,所述第一开孔区具有第一弹性模量,所述第二开孔区具有第二弹性模量,并且所述第一弹性模量可以不等于所述第二弹性模量。在此情况下,针对衬底100的左右两侧分别设置有非显示区2的情况可以在横向X上对衬底100的显示区1进行分区, 以限制衬底100在纵向Y上的形变。在图3中,E1、E2还可以表示分别具有两种不同的弹性模量E1和E2的开孔区10交替排列。例如,各个开孔区10交替排列的方式可以为使得处于两端区域的弹性模量不相同,例如为E1-E2-E1-E2方式,或者为E2-E1-E2-E1方式;也可以为使得处于两端区域的弹性模量相同,例如为E1-E2-E1-E2-E1方式,或者为E2-E1-E2-E1-E2方式。本实施例以排列为E2-E1-E2-E1-E2方式作为示例,如图3所示。
在一种实施方式中,在衬底100的具有不同弹性模量E1和E2的相邻两个开孔区10(例如,图3所示的相邻的E1区域和E2区域)中:各个岛11可以具有相同的尺寸(当然岛11也可以为不同的尺寸),相邻岛11之间的桥13可以具有不同的宽度b2。在弹性模量相同的开孔区10中,例如在图3的E1区域中,各个岛11可以具有相同的尺寸,相邻岛11之间的桥13可以具有相同的宽度b2;或者在图3的E2区域中:岛11可以具有相同的尺寸,相邻岛11之间的桥13可以具有相同的宽度b2。由于各个岛11具有相同的尺寸,因此该衬底100在不同区域的交界处保留的岛11和桥13的部分的图形更匹配,能有效避免形成交界处的应力集中问题。
在衬底100的局部区域设置多种尺寸的开孔12或单一种尺寸的开孔12时,根据开孔的形状不同,在衬底100受力之后会出现外扩或者内缩的现象。例如,如图3和图4所示为衬底100在纵向Y上外扩的现象,在此情况下,在衬底100上设置的开孔12可以具有图1A所示的矩形结构(或矩形形状)。另一方面,在衬底100在纵向Y上内缩的情况下,在衬底100上设置的开孔12可以具有例如图1B所示的十字形结构(或十字形形状)。
在相同的拉伸的条件下,在图3所示的具有多个不同弹性模量的开孔区10的显示基板中,E1区域的弹性模量大于E2区域的弹性模量,即E1>E2。在相同的受力情况下,衬底100的弹性模量小的E2区域的形变量比较大,但是并非完全由这个E2区域来承担所有的形变量,位于E2区域两侧的弹性模量大的E1区域也将 承担一部分的形变量,因此衬底100的整体形变量较小。可见,适当的弹性模量差异,使得形变量可以分布在各个E1区域和各个E2区域,并在相邻的E1区域和E2区域之间交替变化,从而能有效减小显示基板拉伸后的形变差异。为了避免应力集中,弹性模量E1与E2之间的差异不能过大,例如,E2可以大于等于E1的70%并且小于等于E1的99%,即,E2=(70%~99%)E1。
图3示出了在显示基板受到拉伸后的最大形变出现在弹性模量较小的各个E2区域中,且最大形变量为D1。图4示出了显示基板的衬底100的显示区1设置有单一开孔12,在此情况下相当于衬底100的整个显示区1具有弹性模量E2。图4的模拟结果示出了在显示区1的中心部分的外扩程度比边缘部分的外扩程度大,最大形变量为D2。对样品的测试结果也表明,D2>D1。相比图3和图4,可见采用具有不同弹性模量的多个开孔区10设计能使衬底100的最大形变量减小。
在一个示例中,桥13的宽度b2等于开孔12的宽度c2,岛11的宽度a2大于桥13的长度b1,桥13的长度b1至少为一条走线的宽度,例如桥13的长度b1可以在1-10μm之间。当走线为多条时,可将多条走线在一个平面上并列排布在桥13上方,此时桥宽至少为多条走线宽度之和。可替换地,也可以将多条走线层叠排布在桥13的上方,此时桥宽可以略大于一条走线的宽度即可。
参考图5所示的岛-桥二维模拟结构的测试结果,岛11的宽度与桥13的长度之比范围为5至20时,在不同的岛11、桥13以及开孔12的参数下,测得在相同拉伸力作用下显示基板样品的整体的形变量,以及为使显示基板样品发生相同的整体形变量(例如3%)所施加的拉伸力的情况下计算得到的弹性模量。测试结果显示:在相同受力情况下,岛11的宽度与桥13的长度之比较小时具有较小的整体形变量;而随着岛11的宽度与桥13的长度之比增大,在相同受力情况下的整体形变量逐渐增大。根据图5的测试结果,可为显示区1在不同区域的岛-桥结构的弹性模量配置提供参考。应当说明的是,图5中的长度和宽度的单位都是微米 (μm)。
可见,本公开实施例所提供的显示区1的不同开孔区10的设计,通过不同的开孔12设计实现了弹性模量的交替分布。在显示区1被拉伸的过程中,弹性模量小的区域优先发生形变,使得每个弹性模量小的区域均发生较大的形变,而位于其两侧的弹性模量大的区域对形变会起到一定的抑制作用。因此通过这种弹性模量交替分布的设计,可以实现将衬底100的整体的外扩量分散到每个弹性模量不同的区域中,从而获得显示区1(或衬底100或显示基板)被拉伸后的形变差异减小的效果。这种弹性模量交替分布的设计也适用于衬底整体在被拉伸或压缩后使内缩量分散到每个弹性模量不同的区域中的情况。
该显示基板可通过去除用于衬底100的整层结构中对应着需开设开孔12的部分而形成。具体的是,首先将用于衬底100的整层结构置于玻璃上,在构图工艺中通过对用于衬底100的整层结构用黄光曝光方式定义图形,并通过显影、蚀刻方式在所述整层结构中形成开孔12,从而形成连接不断的、具有镂空的衬底100。
本实施例的显示基板,通过开孔的结构可以提供一个周期交替变化的弹性模量的分布,可以减小不同的开孔区之间的形变量的差异。通过这种方式,可以解决显示基板的显示区在被拉伸或压缩之后在单一弹性模量开孔区应力集中的问题,保证像素之间的间距均匀分布。从而解决显示基板因拉伸形变或压缩形变不均匀导致发光器件间距不同所产生的显示效果降低的问题。
上述实施例通过开孔结构来对形变不均匀进行了补偿,使得显示区的不同部分的形变量相同或实质上相同。在上述实施例的基础上,本公开的另一些实施例中的显示基板在开孔结构补偿的基础上,还采用了像素补偿。通过设置像素之间的不同间距,在对衬底100进行拉伸之前施加一个预补偿,以缩小被拉伸之后衬底100上的像素之间的间距差异,从而解决像素间距不同而造成的显示效果降低的问题。
若每一个E1区域和每一个E2区域中开孔宽度不相同,在显 示区1被拉伸之前相邻岛11之间的距离可能不相同,显示区1被拉伸之后各个开孔12的形变也不同,因此可以通过适当的设计来使像素之间的距离在显示区1被拉伸之后趋于相同。在实际应用中,针对该种情况进行像素补偿时,需要考虑开孔区的弹性模量与各像素的初始间距二者一起产生的形变结果。
在一种实施方式中,如图6所示,在衬底100的显示区1的弹性模量不同的开孔区10(即,E1区域和E2区域)中:各个岛11可以具有不同的尺寸(当然各个岛11也可以具有相同的尺寸),相邻岛11之间的桥13可以具有不同的宽度b2。可替换地,在衬底100的显示区1的弹性模量不同的开孔区10(即,E1区域和E2区域)中:各个岛11可以具有相同的尺寸,相邻岛11之间的桥13可以具有相同的宽度b2。这里应该理解的是,由于岛11上方的像素的面积往往小于岛11的面积,为能更直观的示出像素补偿的效果,图6示出了待形成的像素14而不是岛11,其中的F1、F2代表两相邻像素14之间受力之前的距离,F1’、F2’代表两相邻像素14之间受力之后的距离。
在图6所示的具有不同弹性模量的多个开孔区10的显示基板中,若E1区域的弹性模量大于E2区域的弹性模量(即E1>E2),并且,具有不同弹性模量的开孔区10中的开孔12的尺寸设置为不同,具体为E1区域的开孔12的宽度(c21)大于E2区域的开孔12的宽度(c22)。E1区域的开孔12使得相邻像素14之间的距离为F1,E2区域的开孔12使得相邻像素14之间的距离为F2,有F1>F2。在显示区1被拉伸过程中由于弹性模量小的E2区域优先形变且形变量比较大,弹性模量大的E1区域形变量较小。在显示区1的拉伸结束后,相邻像素14之间的原距离F1形变为距离F1',相邻像素14之间的原距离F2形变为距离为F2',由于E1>E2,因此E1区域的形变量小于E2区域的形变量,即△F1<△F2,结合F1>F2,最终可以使得F1'=F2'。
因此可见,可以通过在弹性模量小的区域,设计像素(例如发光器件)位置时对像素位置提供一个预补偿,使得E1区域的像 素间距大于E2区域的像素间距,也就是在弹性模量较大区域设计的岛11的间距大于弹性模量较小区域的岛11的间距。从而利用衬底100在被拉伸时弹性模量较大区域的岛11的间距变化较小、弹性模量较小区域的岛11的间距变化较大的现象,使得被设置的预补偿量抵消。结果,使得不同弹性模量区域的岛11的间距在衬底100被拉伸后相同或相近,进而减小像素间距的差异。
可见,在具有不同弹性模量的多个开孔区10的显示基板的衬底100的显示区1中,根据各个开孔12的尺寸,并且利用弹性模量不同使得开孔12的形变不同的现象,在结构补偿的基础上实现像素补偿,能有效减小显示基板被拉伸后的形变差异,更好的避免像素间距的差异,使得显示基板被拉伸后的显示效果得到改善。
综上,本实施例中显示基板的像素补偿是基于显示基板被拉伸之前像素之间的距离不同、而拉伸之后像素之间的距离趋于相同的原理进行补偿的。通过不同区域中的开孔的尺寸所决定的相邻岛之间的距离差异以及不同区域的弹性模量差异,利用这种差异补偿显示基板被拉伸后开孔形变的不同,使显示基板被拉伸后开孔尺寸宽度趋于一致,也就实现了像素之间距离的均匀化。
图1A至图6所示的实施例中的显示基板的各个开孔区的弹性模量的交替分布可以通过改变岛的尺寸、改变开孔的尺寸等来实现。弹性模量的交替分布,不同的开孔尺寸的形变量不同,这能有效减小显示区的中心部分和边缘部分的形变差异,解决显示基板被拉伸后形变不均匀导致的显示效果降低的问题,从而提高了显示基板被拉伸后的显示效果。
此外,本发明构思的发明人在实际实验中还发现,在显示区1与非显示区的交界处,由于非显示区通常不包括开孔,导致显示区的弹性模量与位于该显示区的两侧的非显示区的弹性模量不同且差异过大。结果,使得衬底100的显示区1与非显示区的交界处在拉伸的过程中存在应力集中现象,容易发生断裂。为解决上述问题,本公开的另一个实施例提供了一种显示基板。相对于图1A至图6所示的实施例,本实施例的显示基板还能有效解决显示 区1和非显示区之间容易造成断裂的问题。
参考图7,本实施例的显示基板的衬底100包括显示区1和分别位于显示区1的两侧的非显示区2。显示区1和每一个非显示区2的形变能力不同,这两个区域的弹性模量差异较大,导致了它们交界处的结构容易存在应力集中现象而造成断裂的问题。由此,在该实施例中,调节每一个非显示区2与显示区1相邻部分的弹性模量,将每一个非显示区2在靠近显示区1的部分设置为过渡区20(也可理解为dummy区),过渡区20(即衬底100在过渡区20中的部分)的弹性模量大于显示区1的弹性模量而小于每一个非显示区2的除了该过渡区以外的其他区域(以下称为非开孔区25)的弹性模量。
在一个示例中,衬底100两侧的非显示区2分别包括非开孔区25和位于显示区1与每一个非开孔区25之间的过渡区20。过渡区20的弹性模量在由显示区1指向非开孔区25的方向上逐渐增大,由此可以将交界处的应力分散到整个过渡区20中。本实施例的显示基板中,显示区1、每一个非显示区2的过渡区20和非开孔区25具有不同的弹性模量。
在本实施例的显示基板中,通过改变显示区1与每一个非显示区2交界处的结构,使得该显示基板从非显示区2的非开孔区25到显示区1的结构(即,过渡区20)的弹性模量均匀递减,从而解决了显示基板在显示区1与非显示区2的交界处的应力集中问题。
作为本公开的另一个实施例,为解决显示区1和非显示区2交界处容易造成断裂的问题,与显示区1设置开孔区10类似,如图7所示,可以在每一个非显示区2的过渡区20中设置辅助孔22,以实现对衬底100的过渡区20的弹性模量的调整。
在一种实施方式中,在图7所示的实施例的基础上,如图8所示,可以在每一个过渡区20中设置多个辅助孔22,所述多个辅助孔22使得对应的过渡区20包括以各个辅助孔22分隔开、且以各个辅助桥23连接的多个辅助岛21,并且相邻的辅助岛21之间 的间距可以不同于显示区1中相邻岛11之间的间距。
在一个示例中,每一个辅助岛21可以和每一个岛11相似,即每一个辅助岛21可以和每一个岛11的图形形状相同,但尺寸不一定相等,以简化显示基板的结构设计。而对于每一个辅助岛21与每一个岛11的面积大小并不做限定,只需满足衬底100在过渡区20的部分的弹性模量大于显示区1的弹性模量而小于每一个非显示区2非开孔区25的弹性模量即可。
在本实施例中,将显示区1的开孔12和过渡区20的辅助孔22的尺寸设置为有所区别,从而通过调节辅助孔22的尺寸获得适当的辅助岛21和辅助桥23的结合结构来获得能满足要求的弹性模量。参考图2和图8,每一个过渡区20的每一个辅助岛21的尺寸可以等于与该过渡区20相邻的开孔区10的每一个岛11的尺寸,每一个过渡区20的每一个辅助桥23的宽度B2可以大于与该过渡区20相邻的开孔区10的每一个桥13的宽度b2,过渡区20的弹性模量大于显示区1的弹性模量,但小于每一个非显示区2的非开孔区25的弹性模量。
具体地,每一个过渡区20可以在保证每一个辅助岛21的尺寸与显示区1中与该过渡区20相邻的开孔区10的每一个岛11的尺寸相同的条件下,通过改变每一个辅助桥23的长度B1,实现衬底100在该区域的弹性模量的调整,每一个辅助桥23越宽(即,B1越大),结构弹性模量越大,形变越小。设置在每一个过渡区20中的各个辅助桥23的长度B1可以沿着从显示区1到非开孔区25的方向逐渐增大,以使得每一个过渡区20的弹性模量在显示区1到每一个非开孔区25的方向上逐渐增大。通过辅助桥23的长度B1渐变来实现过渡区20弹性模量的渐变分布,从而实现将集中在显示区1与非显示区2交界处的应力分散到过渡区20内的效果。例如,图8的辅助桥23的长度B1可以大于图2的桥13的长度b1(即,B1>b1)。此外,辅助孔22的宽度C2可以等于辅助桥23的宽度B2(即,C2=B2),辅助孔22的长度C1可以等于开孔12的长度c1(即,C1=c1)。
在本公开的另一实施例中,为解决显示区1和非显示区2的交界处容易造成断裂的问题,还可以在显示基板的过渡区20上设置膜层来实现。本实施例的显示基板,可以在图8所示的实施例的基础上,在衬底100的每一个过渡区20的上方设置有辅助膜,辅助膜的厚度在由显示区1指向非显示区2的非开孔区25的方向上递增。
如图9所示,每一个过渡区20上的每一个辅助孔22尺寸和显示区1的与过渡区20相邻的开孔区10中每一个开孔12的尺寸可以相同或不相同,并且可以增加进一步调节弹性模量的辅助膜24来改变每一个过渡区20的整体厚度。该辅助膜24通过逐渐变化的膜厚实现弹性模量的逐渐变化。具体为:辅助膜24在由相邻的非开孔区25指向显示区1的方向上,膜层逐渐减薄,因此该过渡区20的弹性模量在相应的非开孔区25指向显示区1的方向上逐渐减小。
该显示基板包括弹性模量渐变的过渡区20,即,在该显示基板中,针对显示区1的形变大、每一个非显示区2的形变小的情况,通过在每一个过渡区20上设置辅助膜24,利用辅助膜24的渐变厚度来调节过渡区20的弹性模量变为大于显示区1的弹性模量,但小于相应的非显示区2的非开孔区25的弹性模量,有利于实现显示区1到非显示区2的应力分散。
例如,辅助膜24可以采用氮化硅材料、氧化硅材料、聚酰亚胺材料或钛金属材料中的至少一种形成。采用上述材料制成辅助膜24,工艺简单,良率高。当然,由于在显示基板上方制备发光器件的过程中,通常需要形成其他的膜层,因此也可以在制备发光器件中的膜层的同时保留并调整部分膜层在每一个过渡区20上的部分的厚度以形成辅助膜24,即辅助膜24与发光器件中部分膜层可以由同一道工序制成,从而简化制造工艺和节约制造成本。
本实施例的显示基板,通过在每一个过渡区上设置辅助膜并设置辅助膜的结构(即,使辅助膜的厚度在从显示区到非开孔区的方向上逐渐增大)来对显示基板的局部进行增强处理,从而调整显 示区与非显示区交界处的弹性模量,有效解决了显示基板在显示区与非显示区的交界处的应力集中问题。
本公开的上述实施例至少能够取得以下有益效果。该显示基板能有效解决在显示区不同区域的桥孔的交界处的应力集中问题,从而解决因拉伸形变不均匀导致像素之间的间距差异而引起的显示效果降低,从而提高显示基板被拉伸或压缩后的显示效果。此外,通过改变显示区与非显示区之间过渡区的结构,使得过渡区的弹性模量从非显示区的非开孔区到显示区均匀递减。这样,解决了显示基板在显示区与非显示区的交界处的应力集中问题,进一步保证显示基板显示效果和抗拉伸性能。
本公开的另一实施例提供了一种显示装置,包括上述图1至图9所示的实施例中任一个所提供的显示基板,该显示基板的至少一些岛上方设置有发光器件,该显示基板的至少一些桥上方设置有用于连接发光器件的走线。
可以通过以下步骤来制备该显示装置。首先,将用于衬底100的整层结构置于玻璃上,在该整层结构上制备薄膜晶体管(TFT)器件。接着,在构图工艺中通过对用于衬底100的整层结构用黄光曝光方式定义图形,通过显影、蚀刻方式在该整层结构中形成多个开孔12,从而形成具有岛、桥的连接不断的、具有镂空的衬底100。然后,形成像素限定层,进行有机发光材料蒸镀与封装。最后将衬底100与玻璃分离得到可拉伸的显示装置。
在该显示装置中,其中的发光器件可以为有机发光二极管(OLED)像素,或者量子点发光二极管(QLED)器件。该显示装置可以为:台式电脑、平板电脑、笔记本电脑、手机、PDA、GPS、车载显示、投影显示、摄像机、数码相机、电子手表、计算器、电子仪器、仪表、液晶面板、电子纸、电视机、显示器、数码相框、导航仪等任何具有显示功能的产品或部件,可应用于公共显示和虚幻显示等多个领域。
该显示装置,一方面显示区因形变引起的显示差异小,另一方面显示区和非显示区之间不容易断裂,因此具有良好的物理性 能和显示性能,从而能有效提升显示效果。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离如所附的权利要求所限定的本公开的保护范围的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (19)

  1. 一种显示基板,包括衬底,所述衬底至少包括显示区,所述显示区包括多个开孔区,所述多个开孔区中的每一个包括各自以多个开孔分隔开且以多个桥连接的多个岛,其中,所述多个开孔区中的至少两个开孔区具有不同的弹性模量。
  2. 根据权利要求1所述的显示基板,其中,所述多个开孔区具有不同的弹性模量。
  3. 根据权利要求2所述的显示基板,其中,所述多个开孔区包括交替设置的第一开孔区和第二开孔区,所述第一开孔区具有第一弹性模量,所述第二开孔区具有第二弹性模量,并且所述第一弹性模量不等于所述第二弹性模量。
  4. 根据权利要求1-3任一项所述的显示基板,其中,每一个所述开孔为矩形,每一个所述桥为矩形,并且每一个所述岛为矩形。
  5. 根据权利要求4所述的显示基板,其中,在所述相邻两个开孔区中,所述岛具有相同的尺寸,并且相邻所述岛之间的所述桥具有不同的长度。
  6. 根据权利要求4所述的显示基板,其中,在所述相邻两个开孔区中,所述岛具有不同的尺寸,并且相邻所述岛之间的所述桥具有不同的长度。
  7. 根据权利要求4所述的显示基板,其中,所述衬底在弹性模量相同的所述开孔区中:所述岛具有相同的尺寸,相邻所述岛之间的所述桥具有相同的长度。
  8. 根据权利要求4所述的显示基板,其中,在所述相邻两个开孔区中,弹性模量较大的所述开孔区的所述开孔的面积小于弹性模量较小的所述开孔区的所述开孔的面积。
  9. 根据权利要求1-8任一项所述的显示基板,其中,每一个所述岛由所述多个开孔中的四个开孔和所述多个桥中的四个桥限定,并且所述四个桥分别位于所述四个开孔的一端并且分别位于所述岛的四个拐角处。
  10. 根据权利要求9所述的显示基板,其中,每一个所述桥的宽度等于该桥位于其一端的所述开孔的宽度并且小于与该桥相邻的所述岛的宽度,并且每一个所述桥的长度至少为一条走线的宽度。
  11. 根据权利要求1-10任一项所述的显示基板,其中,所述衬底还包括分别位于所述显示区的两侧的非显示区,每一个所述非显示区包括与所述显示区相邻的过渡区,所述过渡区的弹性模量大于所述显示区的弹性模量而小于所述非显示区的除了所述过渡区以外的其他区域的弹性模量。
  12. 根据权利要求11所述的显示基板,其中,所述过渡区的弹性模量在由所述显示区指向所述非显示区的所述其他区域的方向上逐渐增大。
  13. 根据权利要求11或12所述的显示基板,其中,所述过渡区包括各自以多个辅助孔分隔开且以多个辅助桥连接的多个辅助岛,两个相邻所述辅助岛之间的间距不同于两个相邻所述岛之间的间距。
  14. 根据权利要求13所述的显示基板,其中,每一个所述辅助岛的形状和每一个所述岛的形状相同。
  15. 根据权利要求3所述的显示基板,其中,分别位于所述多个开孔区的相对两侧的最外侧的两个开孔区都是所述第二开孔区,并且所述第二弹性模量小于所述第一弹性模量。
  16. 根据权利要求15所述的显示基板,其中,所述第二弹性模量是所述第一弹性模量的70%至99%。
  17. 根据权利要求13-16任一项所述的显示基板,还包括设置在所述过渡区的上方的辅助膜,所述辅助膜的厚度在由所述显示区指向所述非显示区的所述其他区域的方向上递增。
  18. 根据权利要求17所述的显示基板,其中,所述辅助膜采用氮化硅材料、氧化硅材料、聚酰亚胺材料或钛金属材料中的至少一种形成。
  19. 一种显示装置,包括:
    根据权利要求1-18任一项所述的显示基板;
    发光器件,它们分别设置在所述多个岛中的至少一部分上方;以及
    走线,它们分别设置在所述多个桥中的至少一部分上方以用于连接至所述发光器件。
PCT/CN2019/122392 2018-12-03 2019-12-02 显示基板和显示装置 WO2020114349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,176 US11539010B2 (en) 2018-12-03 2019-12-02 Display substrate and display device in which difference in deformation between central and peripheral portions of display region is eliminated during stretch or compression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811465167.XA CN109599402B (zh) 2018-12-03 2018-12-03 显示基板和显示装置
CN201811465167.X 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020114349A1 true WO2020114349A1 (zh) 2020-06-11

Family

ID=65960559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122392 WO2020114349A1 (zh) 2018-12-03 2019-12-02 显示基板和显示装置

Country Status (3)

Country Link
US (1) US11539010B2 (zh)
CN (1) CN109599402B (zh)
WO (1) WO2020114349A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599402B (zh) * 2018-12-03 2021-02-09 京东方科技集团股份有限公司 显示基板和显示装置
CN110085128B (zh) * 2019-05-24 2022-05-17 京东方科技集团股份有限公司 显示面板及显示设备
CN110189637B (zh) * 2019-06-27 2022-01-28 京东方科技集团股份有限公司 显示装置、可拉伸显示面板及其制造方法
CN110299078A (zh) * 2019-07-04 2019-10-01 京东方科技集团股份有限公司 显示基板、显示面板
CN110428740B (zh) 2019-08-07 2021-04-30 京东方科技集团股份有限公司 一种像素单元、显示面板及显示设备
CN110599908B (zh) * 2019-09-20 2021-06-29 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置
CN110634937B (zh) * 2019-10-31 2022-04-26 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN110767090B (zh) * 2019-10-31 2021-12-21 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111179754B (zh) * 2020-01-02 2022-01-11 京东方科技集团股份有限公司 一种显示基板、显示装置和亮度补偿方法
CN111489645B (zh) * 2020-04-23 2022-06-24 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置
CN111584606B (zh) * 2020-05-29 2023-04-28 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
US11610948B2 (en) * 2020-07-07 2023-03-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED with butterfly-shaped spacer
CN111653205B (zh) * 2020-07-15 2021-12-28 上海天马微电子有限公司 可拉伸显示面板和显示装置
CN111710245B (zh) * 2020-07-17 2022-05-20 京东方科技集团股份有限公司 柔性显示面板及其制备方法、显示装置、显示模组
CN114120815A (zh) * 2020-08-27 2022-03-01 深圳柔宇显示技术有限公司 可拉伸显示屏及其制作方法、电子设备
CN112863339B (zh) * 2021-01-12 2022-08-23 武汉华星光电半导体显示技术有限公司 可拉伸显示面板及显示装置
CN112863341B (zh) * 2021-01-12 2022-05-17 武汉华星光电半导体显示技术有限公司 可拉伸显示面板及显示装置
CN112863342B (zh) * 2021-01-12 2022-07-12 武汉华星光电半导体显示技术有限公司 可拉伸显示模组及可拉伸显示设备
CN113219737B (zh) * 2021-04-20 2022-06-07 绵阳惠科光电科技有限公司 一种显示面板和显示装置
CN113178471A (zh) * 2021-04-26 2021-07-27 京东方科技集团股份有限公司 一种显示基板和显示装置
CN113450653B (zh) * 2021-06-30 2023-03-24 武汉天马微电子有限公司 可拉伸显示面板及其控制方法、显示装置
CN113689787B (zh) * 2021-08-02 2023-02-07 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113593418B (zh) * 2021-08-11 2022-11-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、移动终端
CN114078384B (zh) * 2021-11-03 2023-06-27 武汉华星光电半导体显示技术有限公司 显示面板及移动终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140144480A1 (en) * 2012-11-29 2014-05-29 Gwangju Institute Of Science And Technology Stretchable substrate, stretchable photovoltaic apparatus, and stretchable device
CN105514115A (zh) * 2014-10-08 2016-04-20 三星显示有限公司 可拉伸膜及其制造方法和包括可拉伸膜的显示装置
CN107221549A (zh) * 2016-03-22 2017-09-29 三星显示有限公司 显示设备
US20180052493A1 (en) * 2016-08-18 2018-02-22 Samsung Display Co., Ltd. Display panel
CN109599402A (zh) * 2018-12-03 2019-04-09 京东方科技集团股份有限公司 显示基板和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008459A2 (en) 2009-06-29 2011-01-20 Infinite Corridor Technology, Llc Structured material substrates for flexible, stretchable electronics
KR20150021000A (ko) * 2013-08-19 2015-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102432345B1 (ko) 2015-04-30 2022-08-12 삼성디스플레이 주식회사 신축성 표시 장치
CN107340915B (zh) * 2017-06-30 2020-07-07 武汉天马微电子有限公司 一种显示基板、显示面板和显示装置
CN107195252A (zh) * 2017-07-13 2017-09-22 武汉天马微电子有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN108878486A (zh) * 2018-06-26 2018-11-23 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
JP6821775B2 (ja) * 2018-12-27 2021-01-27 エルジー ディスプレイ カンパニー リミテッド ストレッチャブル表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140144480A1 (en) * 2012-11-29 2014-05-29 Gwangju Institute Of Science And Technology Stretchable substrate, stretchable photovoltaic apparatus, and stretchable device
CN105514115A (zh) * 2014-10-08 2016-04-20 三星显示有限公司 可拉伸膜及其制造方法和包括可拉伸膜的显示装置
CN107221549A (zh) * 2016-03-22 2017-09-29 三星显示有限公司 显示设备
US20180052493A1 (en) * 2016-08-18 2018-02-22 Samsung Display Co., Ltd. Display panel
CN109599402A (zh) * 2018-12-03 2019-04-09 京东方科技集团股份有限公司 显示基板和显示装置

Also Published As

Publication number Publication date
CN109599402A (zh) 2019-04-09
US20210013434A1 (en) 2021-01-14
CN109599402B (zh) 2021-02-09
US11539010B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2020114349A1 (zh) 显示基板和显示装置
WO2021147896A1 (zh) 支撑板及折叠显示器
WO2019153948A1 (zh) 显示基板和显示装置
WO2019153951A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
WO2020098645A9 (zh) 掩膜板及其制造方法
US20170153479A1 (en) COA Type Liquid Crystal Display Panel And Method For Manufacturing The Same
WO2020007200A1 (zh) 基板和显示装置
US11380628B2 (en) Mother substrate for display substrates, manufacture method thereof, display substrate and display device
WO2016119373A1 (zh) 阵列基板、触控面板及阵列基板的制作方法
US11699706B2 (en) Display device
WO2020248701A1 (zh) 阵列基板、显示面板及显示装置
WO2017156861A1 (zh) 显示基板及显示装置
WO2016050012A1 (zh) 阵列基板、掩膜板和显示装置
WO2021196898A1 (zh) 显示基板、覆晶薄膜、显示装置及其制造方法
WO2018120691A1 (zh) 阵列基板及其制造方法、显示装置
US9851607B2 (en) Pixel structure comprising a pixel electrode having block-shaped portion and branch-shaped portion formed over a passivation layer having branch-shaped portion and block-shaped portion
WO2021213430A1 (zh) 显示基板及其制造方法、显示装置
TWI706189B (zh) 掩模板及顯示面板的製造方法
US11545646B2 (en) Metal mask having groove within peripheral region thereof, display panel and display device
CN109830517B (zh) 显示基板、显示面板、显示装置及显示基板的制备方法
JP2006293343A (ja) 液晶表示装置及び表示装置
WO2022027932A1 (en) Display panel and display apparatus
WO2022151528A1 (zh) 可拉伸显示模组
CN114236930B (zh) 阵列基板以及显示装置
TWI643009B (zh) 畫素結構以及包含此畫素結構的顯示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894334

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19894334

Country of ref document: EP

Kind code of ref document: A1