WO2021147896A1 - 支撑板及折叠显示器 - Google Patents

支撑板及折叠显示器 Download PDF

Info

Publication number
WO2021147896A1
WO2021147896A1 PCT/CN2021/072866 CN2021072866W WO2021147896A1 WO 2021147896 A1 WO2021147896 A1 WO 2021147896A1 CN 2021072866 W CN2021072866 W CN 2021072866W WO 2021147896 A1 WO2021147896 A1 WO 2021147896A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
support plate
along
hole
plane
Prior art date
Application number
PCT/CN2021/072866
Other languages
English (en)
French (fr)
Inventor
王浩然
曹方旭
董栗明
蔡宝鸣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2021544702A priority Critical patent/JP2023510055A/ja
Priority to KR1020217024181A priority patent/KR20220129998A/ko
Priority to EP21733701.3A priority patent/EP4095837A4/en
Priority to US17/419,222 priority patent/US20220147107A1/en
Publication of WO2021147896A1 publication Critical patent/WO2021147896A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1641Details related to the display arrangement, including those related to the mounting of the display in the housing the display being formed by a plurality of foldable display components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a support plate and a folding display.
  • the foldable display in the flexible display has the advantages of convenient portability and small size, so it has become a current research and development hotspot of the display.
  • a support plate which includes a support plate body and a plurality of through holes.
  • the support plate body has at least one patterned area; the plurality of through holes are provided in the at least one patterned area, and pass through the support plate body along the thickness direction of the support plate body; each through hole is
  • the projection shape on the first plane perpendicular to the thickness direction of the support plate body is a bar shape.
  • each through hole of the plurality of through holes extends in a first direction on the first plane.
  • the projection shape of at least one of the plurality of through holes on the first plane is a rectangle.
  • the projection shape of at least one of the plurality of through holes on the first plane is a rounded rectangle.
  • the projection shape of at least one of the plurality of through holes on the first plane is a closed shape composed of two straight line parts and two curved parts;
  • the first direction extends, and each end of one straight portion is aligned with one end of the other straight portion in a second direction, and the second direction is perpendicular to the first direction on the first plane;
  • each Each of the curved portions is connected to the mutually aligned ends of the two linear portions.
  • each curved portion is a semicircle.
  • the plurality of through holes are arranged in multiple rows of through holes along the second direction, and any two adjacent rows of through holes are arranged at intervals; each row of through holes includes at least one through hole arranged along the first direction. Hole; the second direction is perpendicular to the first direction on the first plane.
  • each column of through holes includes a plurality of through holes arranged along the first direction; in any two adjacent rows of through holes of the plurality of through holes, the through holes in one of the columns except for the most Except for the two through holes at both ends, any one of the through holes overlaps with the projections of two adjacent through holes in the other column of through holes on a second plane perpendicular to the second direction; Each of the through holes overlaps the projection of one through hole or two adjacent through holes in another column of through holes on a second plane perpendicular to the second direction.
  • the projection of a part between any two through holes in one of the through holes on the second plane is located on the second plane.
  • One through hole in the other through holes is on the second plane. The middle of the projection.
  • the maximum value A max of the lengths of the plurality of through holes along the first direction, any one of the through holes in one column of the through holes and any one of the through holes in the adjacent column of through holes The minimum value C min of the first distance in the second direction and the bending radius R of the support plate body in the at least one patterned area along a bending line parallel to the first direction satisfy Relationship:
  • the length of each through hole along the first direction is the maximum length of the through hole along the first direction
  • the maximum value A max is the maximum value among multiple maximum lengths
  • the first distance between the through hole and any one of the through holes in the adjacent column along the second direction is the smallest first distance between the two through holes in the second direction
  • the minimum value C min is multiple minimums.
  • the minimum value in the first distance; the maximum value A max , the minimum value C min and the bending radius R have the same unit.
  • the first distance between any one through hole in a row of through holes and any one through hole in an adjacent column of through holes along the second direction is equal.
  • each of the plurality of through holes has the same projected shape on the first plane and has the same area.
  • the maximum length of each through hole along the first direction ranges from 1 to 50 mm, and the thickness t of the support plate body ranges from 0.01 to 0.5 mm.
  • a foldable display which includes a flexible display panel and the support plate of any of the above embodiments.
  • the flexible display panel has a bent display part; the support plate is arranged on a side of the flexible display panel opposite to the light-emitting side; the bent display part of the flexible display panel is positioned on the first plane.
  • the projection overlaps with the orthographic projection of each of the at least one patterned area on the first plane.
  • the at least one patterned area is one, and the orthographic projection of the bent display portion of the flexible display panel on the first plane is located in the patterned area.
  • each through hole of the plurality of through holes extends along the first direction on the first plane, and the bent display portion of the flexible display panel extends along a direction parallel to the first direction.
  • the bend line bends.
  • Fig. 1 is a schematic structural diagram of a folding display according to some embodiments
  • Figure 2 is a schematic structural diagram of another foldable display according to some embodiments.
  • FIG. 3 is a cross-sectional view of the flexible display panel in FIG. 1 along the direction A1-A1' according to some embodiments;
  • FIG. 4 is another cross-sectional view of the flexible display panel in FIG. 1 along the A1-A1' direction according to some embodiments;
  • Fig. 5 is a cross-sectional view of the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 6A is another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 6B is still another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 6C is a cross-sectional view along the direction C1-C1' after bending the support plate based on Fig. 6B according to some embodiments;
  • Fig. 7A is still another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 7B is still another cross-sectional view based on the support plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 8 is still another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 9 is still another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • FIG. 10 is a schematic diagram of the structure of the support plate after bending according to some embodiments.
  • Fig. 11 is a partial enlarged schematic diagram of P in Fig. 5;
  • Fig. 12 is a cloud diagram of stress distribution in the bending area of the support member of Fig. 5 after bending;
  • Fig. 13 is a partial enlarged schematic diagram of P'in Fig. 8;
  • FIG. 14 is a schematic structural diagram of yet another foldable display according to some embodiments.
  • FIG. 15 is a schematic structural diagram of yet another foldable display according to some embodiments.
  • Fig. 16 is still another cross-sectional view based on the support plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 17 is still another cross-sectional view based on the support plate in Fig. 1 along the direction B1-B1' according to some embodiments;
  • Fig. 18 is still another cross-sectional view based on the supporting plate in Fig. 1 along the direction B1-B1' according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the term "same layer” refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask plate through a patterning process.
  • the patterning process may include exposure, development, and etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights or have different thicknesses.
  • connection may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • terms such as “connected” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity.
  • the exemplary embodiments of the present disclosure should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • Some embodiments of the present disclosure provide a foldable display, which can be used as any product or component with a display function, such as a television, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, or a navigator. There are no special restrictions on the use of the foldable display.
  • the foldable display is a liquid crystal display (Liquid Crystal Display, LCD for short).
  • the foldable display is an electroluminescent display or other type of display.
  • the electroluminescent display is an Organic Light-Emitting Diode Display, Quantum Dot Light Emitting Diodes, or Micro-LED Display.
  • the foldable display includes a flexible display panel 2 and a support plate 1 provided on a side of the flexible display panel 2 opposite to the light emitting side.
  • the flexible display panel 2 and the support plate 1 are fixed together by glue, that is, as shown in FIG. 1, an adhesive layer 201 is also provided between the flexible display panel 2 and the support plate 1.
  • the material of the adhesive layer 201 is thermosetting resin or light curable resin.
  • the flexible display panel 2 and the support plate 1 are fixed together by a fixing member; for example, a buckle.
  • the flexible display panel 2 and the support plate 1 can also be fixed together by other structures, and the embodiment of the present disclosure does not impose special restrictions on the fixing method of the flexible display panel 2 and the support plate 1.
  • another structure such as a backlight assembly, is also provided between the flexible display panel 2 and the support 1, which is not limited in the embodiment of the present disclosure.
  • the foldable display further includes a frame 3, a cover 4, and other electronic accessories.
  • the folding display may also include more or fewer components, and the relative positions between these components may be changed.
  • the longitudinal section of the frame 3 is U-shaped, the flexible display panel 2, the support plate 1 and other electronic accessories are all arranged in the frame 3, and the cover plate 4 is arranged on the side of the flexible display panel 2 away from the support plate 1.
  • the foldable display is a liquid crystal display
  • the foldable display further includes a backlight assembly configured to provide a light source to the flexible display panel 2.
  • the backlight assembly is arranged between the flexible display panel 2 and the support plate 1.
  • the embodiment of the present disclosure does not limit the structure of the flexible display panel 2.
  • the flexible display panel 2 when the foldable display is an electroluminescence display, the flexible display panel 2 is an electroluminescence display panel; when the foldable display is a liquid crystal display, the flexible display panel 2 is a liquid crystal display panel.
  • the structure of the flexible display panel 2 will be exemplarily introduced below by taking the flexible display panel 2 as a liquid crystal display panel and an electroluminescent display panel as examples.
  • the following exemplary introduction cannot be understood as a limitation on the structure of the flexible display panel 2 provided by the embodiment of the present disclosure, and the structure of the flexible display panel 2 of the embodiment of the present disclosure may have other changes.
  • the foldable display is an electroluminescence display
  • the flexible display panel 2 is an electroluminescence display panel.
  • the electroluminescent display panel includes a display substrate 21 and an encapsulation layer 22 for encapsulating the display substrate 21.
  • the encapsulation layer 22 is an encapsulation film.
  • the packaging layer 22 is a packaging substrate.
  • the electroluminescent display panel has a plurality of sub-pixel regions.
  • the display substrate 21 includes a first substrate 210, and a plurality of light emitting devices and a plurality of pixel driving circuits provided on the first substrate 210.
  • each pixel driving circuit corresponds to a light-emitting device, and the two are arranged in a sub-pixel area.
  • Each pixel driving circuit includes a plurality of thin film transistors 211.
  • Each thin film transistor 211 includes an active layer, a source electrode, a drain electrode, a gate electrode, and a gate insulating layer, and the source electrode and the drain electrode are respectively in contact with the active layer.
  • Each light-emitting device includes an anode 212, a light-emitting functional layer 213, and a cathode 214.
  • the anode 212 of each light emitting device is electrically connected to the drain of the thin film transistor 211 as a driving transistor among the plurality of thin film transistors 211 of the corresponding pixel driving circuit.
  • the light-emitting function layer 213 only includes the light-emitting layer.
  • the light-emitting functional layer 213 also includes an electron transport layer (election transporting layer, ETL), an electron injection layer (election injection layer, EIL), and a hole transporting layer (hole transporting layer, abbreviated as EIL). HTL) and one or more layers in the hole injection layer (HIL).
  • the display substrate 21 further includes a pixel defining layer 215.
  • the pixel defining layer 215 includes a plurality of opening regions, and one light emitting device is disposed in one opening region.
  • the display substrate 21 further includes a flat layer 216 disposed between the pixel driving circuit and the anode 212 of the light emitting device corresponding to the pixel driving circuit.
  • the electroluminescent display panel is a top-emitting display panel.
  • the anode 212 of the light emitting device close to the first substrate 210 is opaque, and the cathode 214 far from the first substrate 210 is transparent or semi-transparent. transparent.
  • the electroluminescent display panel is a bottom-emitting display panel.
  • the anode 212 of the light emitting device close to the first substrate 210 is transparent or translucent, and the cathode 214 far from the first substrate 210 is transparent or semi-transparent. Was opaque.
  • the electroluminescent display panel is a double-sided light-emitting display panel.
  • the anode 212 near the first substrate 210 and the cathode 214 far from the first substrate 210 of the light-emitting device are both transparent or translucent.
  • the foldable display is a liquid crystal display
  • the flexible display panel 2 is a liquid crystal display panel.
  • the liquid crystal display panel includes an array substrate 23 and an aligner substrate 24 arranged opposite to each other, and a liquid crystal layer 25 arranged between the array substrate 23 and the aligner substrate 24.
  • the array substrate 23 includes a second substrate 230, and a thin film transistor 211 and a pixel electrode 231 disposed on the second substrate 230, and the pixel electrode 231 is electrically connected to the drain of the thin film transistor 211.
  • the array substrate 23 has a plurality of sub-pixel regions. Generally, the thin film transistor 211 and the corresponding pixel electrode 231 are arranged in a sub-pixel area.
  • the array substrate 23 further includes a common electrode 232 disposed on the second substrate 230.
  • the pixel electrode 231 and the common electrode 232 are arranged on the same layer.
  • the pixel electrode 231 and the common electrode 232 are both comb-tooth structures including a plurality of strip-shaped sub-electrodes.
  • the pixel electrode 231 and the common electrode 232 are arranged on different layers.
  • a first insulating layer 233 is arranged between the pixel electrode 231 and the common electrode 232.
  • a second insulating layer 234 is further provided between the common electrode 232 and the thin film transistor 211.
  • the box substrate 24 includes a color filter layer 241 disposed on the third substrate 240.
  • the box substrate 24 may also be referred to as a color filter substrate (color filter substrate). , Referred to as CF).
  • the color filter layer 241 includes at least a red photoresist unit, a green photoresist unit, and a blue photoresist unit.
  • the red photoresist unit, the green photoresist unit, and the blue photoresist unit are respectively associated with the sub-pixel regions on the array substrate 23.
  • the box substrate 24 further includes a black matrix pattern 242 disposed on the third substrate 240, and the black matrix pattern 242 is configured to space the red photoresist unit, the green photoresist unit, and the blue photoresist unit.
  • the liquid crystal display panel further includes an upper polarizer 26 arranged on the side of the aligner substrate 24 away from the liquid crystal layer 25 and a lower polarizer 27 arranged on the side of the array substrate 23 away from the liquid crystal layer 25.
  • the supporting plate 1 includes a supporting plate body 11 and a plurality of through holes 10.
  • the support plate body 11 has at least one patterned area 03, a plurality of through holes 10 are provided in the at least one patterned area 03, and penetrate the support plate body 11 along the thickness direction of the support plate body 11.
  • the support plate body 11 has a patterned area 03; a plurality of through holes 10 are provided in the patterned area 03.
  • the support plate body 11 has a plurality of patterned regions 03, a plurality of through holes 10 are provided in the plurality of patterned regions 03, and the plurality of patterned regions 03 are The number of through holes is not exactly equal.
  • “not completely equal” means that the number of through holes in the partially patterned area is equal, and the number of through holes in the partially patterned area is not equal; or, the number of through holes in each patterned area is not equal.
  • the embodiment of the present disclosure does not limit the number of patterned areas 03 of the support plate body 11, nor does it limit the number of through holes in each patterned area 03, which can be performed according to the bending needs of the support plate. set up.
  • a patterned area is provided at a position where the degree of bending of the support plate is relatively large, and the number of through holes is set in the patterned area according to the amount of bending stress that needs to be released during bending.
  • the support plate body 11 has two patterned areas 03, a plurality of through holes 10 are provided in the two patterned areas 03, and the number of through holes in each patterned area 03 is equal .
  • the support plate body 11 has three patterned areas 03, and a plurality of through holes are provided in the three patterned areas 03.
  • the support plate shown in FIG. 6B is bent into a water drop shape as shown in FIG. 6C.
  • the three patterned areas 03 are respectively located at three positions with a greater degree of bend. Among them, the pattern at the position with the greatest degree of bend The number of through holes in the chemical area is larger.
  • the projected shape of each through hole 10 on the first plane perpendicular to the thickness direction of the support plate body 11 is a bar shape.
  • the plurality of strip-shaped through holes 10 will deform as the support plate 1 is bent, thereby releasing the bending stress and effectively alleviating the progress of the support plate 1.
  • the problem of stress concentration during bending significantly improves the bending ability of the support plate 1; when the support plate is bent and then unfolded, the plurality of strip-shaped through holes will return to the original state, thereby improving the support plate 1.
  • the ability to restore flatness after bending enables the support plate 1 to obtain a good bending and unfolding effect.
  • the folding ability of the folding display can be further improved, the flatness of the folding display after being folded and unfolded, and the ability to return to flatness after bending.
  • the projection shape of the plurality of through holes 10 on the first plane perpendicular to the thickness direction of the support plate body 11 can also be other shapes, for example, circles, ellipses and other regular or irregular shapes.
  • the embodiments of the present disclosure The example is not limited to this, as long as the through hole can satisfy the requirement of releasing the bending stress when the support plate 1 is bent.
  • the material of the support plate 1 is a material with certain toughness and rigidity, such as metal, glass, ceramic, or organic material.
  • the toughness of the material ensures the recovery ability of the supporting plate 1 after bending and the flatness of the supporting plate 1 after unfolding, and the rigidity of the material ensures the supporting performance of the supporting plate 1.
  • the material of the support plate 1 is metal.
  • Metal has a relatively high Young's modulus, excellent processing properties, high material rigidity and toughness, which can match the various needs of folding displays.
  • each through hole 10 extends along the first direction X on the first plane. That is, the extending directions of the plurality of through holes 10 are parallel, and the size of each through hole 10 in the first direction X is greater than its size in the second direction Y.
  • the supporting plate body 11 is rectangular, and the extending direction of the two opposite sides of the supporting plate body 11 is parallel to the first direction X.
  • the second direction Y is perpendicular to the first direction X on the first plane.
  • each through hole 10 is deformed in the second direction Y, and the degree of deformation is the largest, which can release the bending stress to the greatest extent.
  • the bending line 12 is a virtual line.
  • the projection shape of each through hole 10 of the plurality of through holes 10 on the first plane is a rectangle.
  • the projection shape of each through hole 10 of the plurality of through holes 10 on the first plane is a rounded rectangle.
  • the rounded rectangle means that the four inner corners of the rectangle are all rounded.
  • the rounded rectangle may also have rounded corners in part of the rectangle.
  • FIG. 7B illustrates an example in which the four inner corners of the rectangle are rounded.
  • the projection shape of each through hole 10 on the first plane is rectangular, and the bending stress is concentrated at the intersection of the two right-angled sides.
  • the projection shape of each through hole 10 on the first plane is a rounded rectangle, and the bending stress is concentrated at the intersection of the arc of the rounded rectangle and the adjacent two sides.
  • the through hole 10 with a rounded rectangular projection shape on the first plane has a greater ability to release bending stress than the through hole 10 with a rectangular projection shape on the first plane, so that the support plate 1 is bending It is less prone to breakage.
  • each through hole 10 in the plurality of through holes 10 on the first plane is a closed shape composed of two straight line parts and two curved parts.
  • the two straight line parts both extend along the first direction X, and each end of one straight line part is aligned with one end of the other straight line part in the second direction Y; each curved part is aligned with the two straight line parts. Connect the ends that are aligned with each other.
  • each curved portion is a semicircle. That is, as shown in FIGS. 5 and 6, the projected shape of each through hole 10 on the first plane is a closed shape composed of two straight portions and two semicircles. In this way, when the support plate 1 is bent, the bending stress is distributed to each semicircle, which can disperse the bending stress to a greater extent, improve the bending ability of the support plate 1, and avoid the occurrence of the support plate 1 when it is bent. Fracture phenomenon.
  • the plurality of through holes 10 are completely the same.
  • “exactly the same” means that the projected shape of each through hole 10 on the first plane is exactly the same, and the area of the projected shape is equal, that is, the size of the projected shape of each through hole 10 on the first plane is equal.
  • each through hole 10 on the first plane is a closed shape composed of two straight parts and two semicircles, and the area of the closed shape is completely equal. That is, in the projected shape of each through hole 10 on the first plane, the length and spacing of the two straight portions are the same, and the radii of the two semicircles are the same.
  • each through hole 10 on the first plane is a rounded rectangle, and the projected area of the rounded rectangle is equal, that is, each through hole 10 is on the first plane.
  • the length and width of each right-angle side of the projected shape of is equal.
  • the plurality of through holes 10 are not completely the same.
  • “not exactly the same” means that some are the same and some are not the same; or all are not the same.
  • the projection shapes of the plurality of through holes 10 on the first plane are not completely the same.
  • the projection shape of part of the through hole 10 on the first plane is rectangular
  • the projection shape of part of the through hole 10 on the first plane is a rounded rectangle
  • the projection shape of part of the through hole 10 on the first plane is composed of two A closed shape composed of a straight line part and two semicircles.
  • the projection shape of each through hole 10 in the plurality of through holes 10 on the first plane is different.
  • the projected shape of each through hole 10 on the first plane is exactly the same, but the area of the projected shape is not completely equal, that is, the projected shape of each through hole 10 on the first plane
  • the dimensions of the projected shapes are not exactly the same.
  • the plurality of through holes 10 are arranged in a plurality of rows of through holes 10 along the second direction Y, and any two adjacent rows of through holes 10 are arranged at intervals.
  • FIGS. 5 to 8 illustrate an example in which each column of through holes 10 includes a plurality of through holes 10 arranged along the first direction X.
  • each column of through holes 10 or a part of the columns of through holes 10 in multiple columns of through holes 10 may also include only one through hole 10.
  • the embodiment of the present disclosure does not limit the number of the through holes 10 arranged along the first direction X in each column of the through holes 10.
  • any one of the through holes 10 is different from that in the other row.
  • the projections of two adjacent through holes 10 in the through holes 10 on the second plane perpendicular to the second direction Y overlap. For example, as shown in FIG. 6, the projection of the first through hole 101 and the second through hole 102 and the third through hole 103 in the adjacent column of through holes 10 on a second plane perpendicular to the second direction Y overlapping.
  • each of the two through holes 10 located at the two ends of the through holes 10 in one row is different from each other in the other row.
  • the projections of one through hole 10 or two adjacent through holes 10 in the through hole 10 on the second plane perpendicular to the second direction overlap.
  • the fourth through holes 104 in the middle column of through holes 10 and the second through holes 102 in the adjacent column of through holes 10 are on a second plane perpendicular to the second direction Y
  • the projections overlap.
  • the second through hole 102 and the first through hole 101 and the fourth through hole 104 in the adjacent column of through holes 10 are on a second plane perpendicular to the second direction Y.
  • the projections overlap.
  • any one of the through holes 10 located in one of the through holes 10 is identical to any one of the through holes 10 located in the other column of through holes 10
  • the projections of 10 on the second plane perpendicular to the second direction Y do not overlap.
  • the physical part between any two adjacent through holes 10 in each column of through holes 10 and the physical part between adjacent two through holes 10 in the adjacent column of through holes 10 are in the second direction Y It is continuous, for example, the part marked by the elliptical dashed circle 13 in FIG. 9. In this way, when the support plate 1 is bent along the bending line 12, the direction of the bending stress is parallel to the second direction Y, so that the physical part between two adjacent rows of through holes 10 receives greater stress, and the support plate 1 Easy to break.
  • the arrangement of multiple rows of through holes 10 shown in FIGS. 5 to 8, that is, a plurality of through holes 10 in two adjacent rows The holes 10 are arranged staggered along the second direction Y, so that the physical part between any two adjacent through holes 10 in each column of through holes 10 is directly opposite to one of the adjacent columns of through holes 10 in the second direction Y. Holes can avoid the above-mentioned problems and effectively improve the bending ability of the support plate 1.
  • the part between any two through holes 10 in one row of through holes 10 is in the first row.
  • the projection on the two planes is located in the middle of the projection of one through hole 10 on the second plane in another column of through holes 10.
  • the support plate 1 is modeled, and the stress distribution cloud diagram of the support plate 1 after bending is analyzed by software. According to the stress distribution cloud map, the maximum value A max of the lengths of the multiple through holes 10 along the first direction X can be obtained, and the second distance between every two adjacent through holes 10 in the same column of through holes 10 along the first direction X can be obtained.
  • the minimum value B min the minimum value C min in the first distance between any one of the through holes 10 in one column of the through holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 in the second direction Y, multiple The maximum value D max of the width of the through hole 10 in the second direction, the bending radius R of the support body 11 in the patterned area 03 along the bending line 12 parallel to the first direction X (as shown in FIG. 10 Shown) and the relationship between the thickness t of the support plate body 11.
  • each through hole 10 along the first direction X is the maximum length of the through hole 10 along the first direction X
  • the maximum value A max is the maximum value among the multiple maximum lengths.
  • the second distance between each two adjacent through holes 10 in the first direction X in the same column of through holes 10 is the minimum second distance between the two through holes 10 in the first direction X
  • the minimum value B min is the minimum second distance between the two through holes 10 in the first direction X.
  • the first distance between any one of the through holes 10 in one column of through holes 10 and any one of the through holes 10 in the adjacent column of through holes 10 along the second direction Y is the smallest of the two through holes 10 along the second direction.
  • the first interval, the minimum value C min is the minimum value among the multiple minimum first intervals.
  • the width of each through hole 10 along the second direction Y is the maximum width of the through hole 10 along the second direction Y, and the maximum value D max is the maximum value among the multiple maximum widths.
  • each through hole 10 on the first plane is exactly the same, the area is the same, and they are evenly arranged in the patterned area 03.
  • the maximum length A of each through hole 10 along the first direction X is the same, that is, A max is equal to A;
  • the minimum second distance B of every two through holes 10 along the first direction X is the same, that is, B max is equal to B;
  • the minimum first distance C between any one of the through holes 10 and any one of the through holes 10 in the adjacent column of through holes along the second direction Y is equal, that is, C max is equal to C; each through hole 10 is along the second direction
  • the maximum width D of Y is equal, that is, D max is equal to D.
  • FIG. 13 is a partial enlarged schematic diagram at P'in FIG. 8
  • the projected shape of each through hole 10 on the first plane is exactly the same, but the area is not exactly the same, that is, the size is different. Exactly the same.
  • the maximum length of each through hole 10 in the plurality of through holes 10 along the first direction X is not completely equal, that is, if there are multiple maximum lengths, the maximum value A max is the maximum value A′ among the multiple maximum lengths.
  • the minimum second distance between every two adjacent through holes 10 along the first direction X is not completely equal, that is, if there are multiple minimum second distances, then the minimum value B min is the smallest value B′ among the multiple smallest second intervals.
  • any one of the through holes 10 in one row of the through holes 10 and any one of the through holes 10 in the adjacent rows of through holes 10 is the smallest first along the second direction Y
  • the distances are not completely equal, that is, if there are multiple minimum first distances, the minimum value C min is the minimum value C′ among the multiple minimum first distances.
  • Each of the plurality of through holes 10 has the same maximum width along the second direction Y, that is, D max is equal to D′.
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the units of the maximum value A max , the minimum value C min and the bending radius R in the above formula are the same. For example, millimeters (mm) are used.
  • the maximum value A max and the minimum value C min of the plurality of through holes 10 that is, the design of the shape of the plurality of through holes 10 and the arrangement of the plurality of through holes 10 in the patterned area 03 can be
  • the support plate body 11 is matched with a smaller bending radius, and the bending ability of the support plate 1 is improved; when it is applied to a folding display, the folding effect of the folding display is improved.
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • the maximum value A max , the minimum value C min and the bending radius R satisfy the relationship:
  • each through hole 10 in the patterned area 03, the distance between each through hole 10, and the thickness of the support plate 1 are designed according to different bending radii R, so as to ensure that the bending radius R is aligned.
  • the maximum stress that the support plate 1 receives is less than the stress of the material of the support plate 1, that is, to ensure that the support plate 1 is not bent along the bending line 12 with the bending radius R. It will break, and after the support plate 1 is bent at different degrees of bending and then unfolded, all have a strong ability to restore flatness after bending.
  • the actual length of the two through holes 10 at the two ends or one of the through holes 10 at one end of the through holes 10 in at least one column along the first direction X is less than A max Next, the end of the through hole 10 at one end of the row of through holes 10 is not closed. In other words, the through hole 10 makes the supporting plate body 11 form a gap at the end along the first direction X.
  • a plurality of through holes 10 are arranged in the patterned area 03 along the second direction Y into five rows of through holes 10.
  • the ends of the two through holes 10 at the two ends of each column of through holes 10 at one end of the column of through holes 10 are both Not closed.
  • a plurality of through holes 10 are arranged in the patterned area 03 along the second direction Y into five rows of through holes 10.
  • One of the through holes 10 at one end of the first row of through holes 10 has an end located at one end of the through holes 10 in the row of through holes 10 is not closed.
  • the two through holes 10 at the two ends of the through holes 10 in the third row and the through holes 10 in the fifth row have ends located at one end of the through holes 10 in the row.
  • the two through holes 10 at the two ends of each column of through holes 10 are both closed through holes.
  • a plurality of through holes 10 are arranged in the patterned area 03 along the second direction Y into five rows of through holes 10.
  • the two through holes 10 at the two ends of each column of through holes 10 are all closed through holes, and the projected shape of each through hole 10 on the first plane is exactly the same, and the area of the projected shape is exactly the same.
  • the plurality of through holes 10 are arranged in the second direction Y in the patterned area 03 into five rows of through holes 10.
  • the two through holes 10 at the two ends of each column of through holes 10 are all closed through holes, and except for the two through holes 10 at the two ends of each column of through holes 10, the other through holes 10 are on the first plane.
  • the projected shapes are exactly the same, and the areas of the projected shapes are exactly the same.
  • the projection shapes of the two through holes 10 at the two ends of each column of through holes 10 on the first plane are completely the same, and the areas of the projection shapes are completely the same.
  • the plurality of through holes 10 are arranged in the patterned area 03 along the second direction Y into five rows of through holes 10.
  • the two through holes 10 at the two ends of each column of through holes 10 are both closed through holes.
  • the projection shape of each through hole 10 in the first plane of the plurality of through holes 10 is completely the same, and the area of the projection shape is not completely the same.
  • the maximum length of each through hole 10 along the first direction X ranges from 1 mm to 50 mm, and the thickness t of the support plate 1 ranges from 0.01 mm to 0.5 mm.
  • the maximum length of each through hole 10 along the first direction X may be 1 mm, 2 mm, 5 mm, 8 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 50 mm, or the like.
  • the thickness t of the support plate 1 can be 0.01 mm, 0.05 mm, 0.1 mm, 0.2 mm, 0.5 mm, or the like.
  • Each embodiment takes the projection shape of the plurality of through holes 10 on the first plane and the arrangement in the patterned area 03 shown in FIG. 5 as an example, that is, the shape of each through hole 10 on the first plane
  • the projection shapes are the same, and the areas are the same, and the second pitch in the first direction X and the first pitch in the second direction Y of every two through holes 10 are the same.
  • the maximum length A of each through hole 10 along the first direction X is 4 mm
  • the minimum second distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • the minimum first distance C between any one through hole 10 in the holes 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.2 mm
  • the maximum distance between each through hole 10 along the second direction Y is 0.2 mm.
  • the width D is 0.2 mm
  • the thickness t of the support plate 1 is 0.2 mm.
  • the maximum length A of each through hole 10 along the first direction X is 6 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes The minimum first distance C between any one through hole 10 in 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum width of each through hole 10 along the second direction Y D is 0.3 mm
  • the thickness t of the support plate 1 is 0.15 mm.
  • the maximum length A of each through hole 10 along the first direction X is 9 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes The minimum first distance C between any one through hole 10 in 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum width of each through hole 10 along the second direction Y D is 0.1 mm
  • the thickness t of the support plate 1 is 0.1 mm.
  • the maximum length A of each through hole 10 along the first direction X is 4 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • one row of through holes 10 The minimum first distance C between any one through hole 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.2 mm
  • the maximum width D of each through hole 10 along the second direction Y The thickness t of the support plate 1 is 0.2 mm.
  • the calculated ⁇ is 25 and ⁇ is less than 30; among them, ⁇ only pays attention to the calculated value, not the unit of measurement.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 5 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 6 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • one row of through holes The minimum first distance C between any one through hole 10 in 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.2 mm
  • the maximum width of each through hole 10 along the second direction Y D is 0.2 mm
  • the thickness t of the support plate 1 is 0.2 mm
  • 12.3457
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 3 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 6 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes The minimum first distance C between any one through hole 10 in 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum width of each through hole 10 along the second direction Y D is 0.1 mm
  • the thickness t of the support plate 1 is 0.1 mm
  • is calculated to be 3.08642, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 1.5 mm. The test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 4 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes The minimum first distance C between any one through hole 10 in 10 and any one through hole 10 in the adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum width of each through hole 10 along the second direction Y D is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 10.4167, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 1.5 mm. The test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 4.5 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.15 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 12.3457
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 3 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 2 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.1 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 25, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 5 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 10 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.1 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 0.2
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 5 mm. The test result was that the test passed, no fracture occurred, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 5 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.4 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.1 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.2 mm
  • the thickness t of the support plate 1 is 0.2 mm
  • is calculated to be 5.33
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 1.5 mm. The test result was that the test passed,
  • the maximum length A of each through hole 10 along the first direction X is 10 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.2 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.4 mm
  • the thickness t of the support plate 1 is 0.2 mm
  • is calculated to be 2.67
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 3 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 6 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.1 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.1 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.1 mm
  • the thickness t of the support plate 1 is 0.1 mm
  • is calculated to be 3.09
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 1.5 mm. The test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 6 mm
  • the minimum distance B between every two adjacent through holes 10 in the same row of through holes 10 along the first direction X is 0.2 mm
  • one row of through holes 10 The minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.2 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.5 mm
  • the thickness t of the support plate 1 is 0.2 mm
  • is calculated to be 18.52
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 2 mm, and the test result was that the test passed, no fracture occurred, and it had a good ability to restore flatness.
  • the maximum length A of each through hole 10 along the first direction X is 8 mm
  • the minimum distance B between every two adjacent through holes 10 in the same column of through holes 10 along the first direction X is 0.1 mm
  • the minimum first distance C between any one of the through holes 10 in the holes 10 and any one of the through holes 10 in the adjacent column of the through holes 10 along the second direction Y is 0.1 mm
  • the maximum distance C of each through hole 10 along the second direction Y The width D is 0.1 mm
  • the thickness t of the support plate 1 is 0.4 mm
  • is calculated to be 0.39
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 5 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • Each embodiment takes the projection shape of the plurality of through holes 10 on the first plane and the arrangement in the patterned area 03 shown in FIG. 8 as an example, that is, the shape of each through hole 10 on the first plane
  • the projection shapes are the same, but the areas are not exactly the same.
  • the maximum value A max of the lengths of the plurality of through holes 10 in the first direction X is 5 mm
  • the minimum value of the second distance between every two adjacent through holes 10 in the same column of through holes 10 in the first direction X B min is 0.2 mm
  • the minimum value C min of the first distance between any one through hole 10 in a row of through holes 10 and any one through hole 10 in an adjacent row of through holes 10 along the second direction Y is 0.2 mm
  • the maximum value D max of the widths of the plurality of through holes in the second direction is 0.2 mm
  • the thickness t of the support plate 1 is 0.2 mm.
  • the calculated ⁇ is 10.666667, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 6 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum value A max of the lengths of the plurality of through holes 10 along the first direction X is 5 mm
  • the second distance between every two adjacent through holes 10 in the same column of through holes 10 along the first direction X is the smallest
  • the value B min is 0.2 mm
  • the minimum value C min in the first distance between any one of the through holes 10 in a row of through holes 10 and any one of the through holes 10 in the adjacent column of through holes 10 along the second direction Y is 0.2 mm
  • the maximum value D max of the widths of the plurality of through holes in the second direction is 0.2 mm
  • the thickness t of the support plate 1 is 0.2 mm
  • is calculated to be 21.333333, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 3 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum value A max of the lengths of the plurality of through holes 10 along the first direction X is 5 mm
  • the second distance between every two adjacent through holes 10 in the same column of through holes 10 along the first direction X is the smallest
  • the value B min is 0.1 mm
  • the minimum value C min in the first distance between any one through hole 10 in a row of through holes 10 and any one through hole 10 in an adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum value D max of the widths of the plurality of through holes along the second direction is 0.1 mm
  • the thickness t of the support plate 1 is 0.1 mm
  • is calculated to be 5.333333, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 1.5 mm. The test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the maximum value A max of the lengths of the plurality of through holes 10 along the first direction X is 5 mm
  • the second distance between every two adjacent through holes 10 in the same column of through holes 10 along the first direction X is the smallest
  • the value B min is 0.1 mm
  • the minimum value C min in the first distance between any one through hole 10 in a row of through holes 10 and any one through hole 10 in an adjacent column of through holes 10 along the second direction Y is 0.1 mm
  • the maximum value D max of the widths of the plurality of through holes in the second direction is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 4, and ⁇ is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 2 mm, and the test result was that the test passed, no fracture occurred, and it had a good ability to restore flatness.
  • the maximum value A max of the lengths of the plurality of through holes 10 along the first direction X is 4.5 mm, and each two adjacent through holes 10 in the same column of through holes 10 in the second distance along the first direction X
  • the minimum value B min is 0.2 mm
  • the minimum value C min in the first distance between any one through hole 10 in a row of through holes 10 and any one through hole 10 in an adjacent column of through holes 10 along the second direction Y is 0.15 mm
  • the maximum value D max of the widths of the plurality of through holes along the second direction is 0.2 mm
  • the thickness t of the support plate 1 is 0.15 mm
  • is calculated to be 12.3457
  • is less than 30.
  • the support plate 1 was subjected to 200,000 bending tests with a bending radius R of 3 mm, and the test result was that the test passed, there was no fracture phenomenon, and it had a good ability to restore flatness.
  • the foldable display includes the flexible display panel 2 in any one of the above embodiments and the support plate 1 described in any one of the above embodiments.
  • the flexible display panel 2 has a bent display portion 01, and by bending the bent display portion 01, a folded state of the foldable display can be realized.
  • the flexible display panel 2 has a bent display portion 01.
  • the flexible display panel 2 has two or more bent display parts 01.
  • the embodiment of the present disclosure does not limit the number of the bending display portions 01 of the flexible display panel 2, and can be set as required.
  • FIG. 14 takes the flexible display panel 2 having a bent display portion 01 as an example for illustration.
  • a support plate 1 is provided on the side of the flexible display panel 2 opposite to the light-emitting side.
  • the support plate 1 is configured to support the flexible display panel 2; After unfolding, the bent display portion 01 will appear uneven, and the support plate 1 can improve the flatness of the folded display after unfolding and the ability to restore flatness after bending.
  • the orthographic projection of the bent display portion 01 of the flexible display panel 2 on the first plane overlaps the orthographic projection of the patterned area 03 of the support plate 1 on the first plane. That is to say, in a state where the flexible display panel 2 is unfolded, in a direction perpendicular to the thickness of the support plate 1, the bent display portion 01 of the flexible display panel 2 faces a portion of at least one patterned area 03 on the support plate 1.
  • Through hole 10 the bent display portion 01 of the flexible display panel 2 on the first plane overlaps the orthographic projection of the patterned area 03 of the support plate 1 on the first plane. That is to say, in a state where the flexible display panel 2 is unfolded, in a direction perpendicular to the thickness of the support plate 1, the bent display portion 01 of the flexible display panel 2 faces a portion of at least one patterned area 03 on the support plate 1.
  • Through hole 10 10.
  • the support plate 1 is bent along with the bent display portion 01, and this part of the through hole 10 will deform as the support plate 1 is bent, thereby releasing
  • the bending stress improves the ability of the support plate 1 to return to flatness after bending, so that the support plate 1 can not only support the flexible display panel 2, but also improve the flatness of the folded display after folding and unfolding and the recovery after bending.
  • the bending ability of the support plate 1 can also increase the bending ability of the flexible display panel 2 to improve the folding effect of the folded display screen.
  • the flexible display panel 2 further includes a non-bending display portion 02 located on both sides of the bending display portion 01 along the second direction Y.
  • the support plate 1 has a patterned area 03, and the orthographic projection of the patterned area 03 on the first plane covers the orthographic projection of the bent display portion 01 of the flexible display panel 2 on the first plane. That is, in the state where the flexible display panel 2 is unfolded, the width of the patterned area 03 in the second direction Y is greater than or equal to the width of the bent display portion 01 in the second direction Y.
  • a plurality of through holes on the support plate 1 can realize bending stress release for any part of the bent display portion 01, and can be used in the flexible display panel 2 again.
  • any part of the bent display portion 01 is restored to be flat, thereby improving the display effect of the folded display screen after being folded and unfolded.
  • the width of the patterned area 03 along the second direction Y is greater than the width of the bent display portion 01 along the second direction Y, that is, part of the through holes 10 in the patterned area 03 may also be opposite to the bent display portion.
  • the junction of 01 and the non-bending display part 02 performs bending stress relief, so that when the flexible display panel 2 is bent, the flatness and return to flatness of the junction between the bend display part 01 and the non-bending display part 02 are improved. ability.
  • the support plate 1 has two patterned areas 03, the orthographic projection of the bent display portion 01 of the flexible display panel 2 on the first plane and the orthographic projection of each patterned area 03 on the first plane Has overlapping parts. As shown in FIG. 15, the overlapping portions are respectively located on both sides of the bending display portion 01 close to the non-bending display portion 02. In this way, when the flexible display panel 2 is bent with a larger bending radius, the middle part of the bent display portion 01 is approximately not bent, that is, there is almost no stress concentration in the middle part. The through hole 10 is required to relieve the bending stress.
  • each through hole 10 extends in the first direction X (ie, the direction perpendicular to the paper) on the first plane, and the flexible display panel 2 is bent on the display portion 01 is bent along a bending line parallel to the first direction X.
  • first direction X ie, the direction perpendicular to the paper
  • the flexible display panel 2 is bent on the display portion 01 is bent along a bending line parallel to the first direction X.
  • each through hole 10 is deformed in the second direction Y, and the degree of deformation is the largest, which can release the bending stress to the greatest extent and improve the flatness of the flexible display panel 2 after bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

一种支撑板(1)及折叠显示器,其中支撑板(1)包括支撑板本体(11)和多个通孔(10)。支撑板本体(11)具有至少一个图案化区域(03),多个通孔(10)设置于至少一个图案化区域(03),且沿支撑板本体(11)的厚度方向贯穿支撑板本体(11);每个通孔(10)在垂直于支撑板本体(11)的厚度方向的第一平面上的投影形状为条形。

Description

支撑板及折叠显示器
本申请要求于2020年1月21日提交的、申请号为202020141702.2以及2020年4月4日提交的、申请号为202020486804.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种支撑板及折叠显示器。
背景技术
随着显示技术的快速发展,为了满足不同的用户需求,各种类型的显示器逐渐进入市场。柔性显示技术为未来移动终端的设计开辟了崭新的应用形态方向,由于柔性显示器本身具有相对轻薄、高度柔性等特征,因而可实现折叠、卷曲等不同应用形态。
其中,柔性显示器中的折叠显示器由于具有携带方便、体积小等优点,因而成为目前显示器的研发热点。
发明内容
一方面,提供一种支撑板,包括支撑板本体和多个通孔。所述支撑板本体具有至少一个图案化区域;所述多个通孔设置于所述至少一个图案化区域,且沿所述支撑板本体的厚度方向贯穿所述支撑板本体;每个通孔在垂直于所述支撑板本体的厚度方向的第一平面上的投影形状为条形。
在一些实施例中,所述多个通孔中的每个通孔在所述第一平面上沿第一方向延伸。
在一些实施例中,所述多个通孔中的至少一个在所述第一平面上的投影形状为矩形。
在一些实施例中,多个通孔中的至少一个在所述第一平面上的投影形状为圆角矩形。
在一些实施例中,所述多个通孔中的至少一个在所述第一平面上的投影形状为由两个直线部分和两个曲线部分构成的封闭形状;所述两个直线部分均沿所述第一方向延伸,且一个直线部分的每端均与另一个直线部分的一端在第二方向上对齐,所述第二方向在所述第一平面上与所述第一方向垂直;每个曲线部分均与所述两个直线部分的各自相互对齐的一端连接。
在一些实施例中,每个曲线部分为半圆。
在一些实施例中,所述多个通孔沿第二方向排列为多列通孔,任意相邻两列通孔间隔设置;每列通孔包括沿所述第一方向排布的至少一个通孔;所 述第二方向在所述第一平面上与所述第一方向垂直。
在一些实施例中,每列通孔包括沿所述第一方向排布的多个通孔;在所述多列通孔的任意相邻两列通孔中,位于其中一列通孔中除最两端的两个通孔外,任一个通孔均与位于另一列通孔中的相邻两个通孔在垂直于所述第二方向的第二平面上的投影重叠;所述最两端的两个通孔中的每个通孔与位于另一列通孔中的一个通孔或相邻的两个通孔在垂直于所述第二方向的第二平面上的投影重叠。
在一些实施例中,所述其中一列通孔中的任意两个通孔之间的部分在所述第二平面上的投影位于所述另一列通孔中一个通孔在所述第二平面上的投影的中间。
在一些实施例中,所述多个通孔沿所述第一方向的长度中的最大值A max、其中一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距中的最小值C min、以及所述支撑板本体在所述至少一个图案化区域内沿平行于所述第一方向的弯折线弯折的弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000001
其中,每个通孔沿所述第一方向的长度为该通孔沿所述第一方向的最大长度,最大值A max为多个最大长度中的最大值;其中一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距为该两个通孔沿所述第二方向的最小第一间距,最小值C min为多个最小第一间距中的最小值;所述最大值A max、最小值C min和弯折半径R的单位相同。
在一些实施例中,所述最小值C min与所述支撑板本体的厚度t满足:t:C min=1~4。
在一些实施例中,所述多个通孔沿所述第二方向的宽度中的最大值D max与所述最小值C min满足:D max:C min=1~5;其中,每个通孔沿所述第二方向的宽度为该通孔沿所述第二方向的最大宽度,最大值D max为多个最大宽度中的最大值。
在一些实施例中,同一列通孔中每两个相邻通孔沿所述第一方向的第二间距中的最小值B min与所述最小值C min满足:B min:C min=0.5~4;其中,每两个相邻通孔沿所述第一方向的第二间距为该两个通孔沿所述第一方向的最小第二间距,最小值B min为多个最小第二间距中的最小值。
所述最大值A max与所述最小值B min满足:A max:B max=10~100。
在一些实施例中,一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距相等。
在一些实施例中,所述多个通孔中的每个通孔在所述第一平面上的投影形状相同,且面积相等。
在一些实施例中,每个通孔沿所述第一方向的最大长度的取值范围为1~50mm,支撑板本体的厚度t的取值范围为0.01~0.5mm。
第二方面,提供一种折叠显示器,包括柔性显示面板和上述任一实施例的支撑板。所述柔性显示面板具有弯折显示部;所述支撑板设置在所述柔性显示面板的与出光侧相对的一侧;所述柔性显示面板的弯折显示部在所述第一平面上的正投影与所述至少一个图案化区域中的每个图案化区域在所述第一平面上的正投影重叠。
在一些实施例中,所述至少一个图案化区域为一个,所述柔性显示面板的弯折显示部在所述第一平面上的正投影位于该图案化区域内。
在一些实施例中,所述多个通孔中的每个通孔在所述第一平面上沿第一方向延伸,所述柔性显示面板的弯折显示部沿平行于所述第一方向的弯折线弯折。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种折叠显示器的结构示意图;
图2为根据一些实施例的另一种折叠显示器的结构示意图;
图3为根据一些实施例的基于图1中柔性显示面板沿A1-A1’方向的一种剖视图;
图4为根据一些实施例的基于图1中柔性显示面板沿A1-A1’方向的另一种剖视图;
图5为根据一些实施例的基于图1中支撑板沿B1-B1’方向的一种剖视图;
图6A为根据一些实施例的基于图1中支撑板沿B1-B1’方向的另一种剖视图;
图6B为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图6C为根据一些实施例的基于图6B的支撑板弯折后的沿C1-C1’方向的 一种剖视图;
图7A为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图7B为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图8为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图9为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图10为根据一些实施例的支撑板弯折后结构示意图;
图11为图5中P处的局部放大示意图;
图12为图5的支撑件在弯折后弯折区的应力分布云图;
图13为图8中P’处的局部放大示意图;
图14为根据一些实施例的又一种折叠显示器的结构示意图;
图15为根据一些实施例的又一种折叠显示器的结构示意图;
图16为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图17为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图;
图18为根据一些实施例的基于图1中支撑板沿B1-B1’方向的又一种剖视图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
如本文所使用的,单数形式“一个”也包括复数形式,除非上下文另外明确指出。除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)” 等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在下文中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
术语“同层”是指采用同一成膜工艺形成用于形成特定图形的膜层,再利用同一掩模板通过构图工艺形成的层结构。其中,构图工艺可能包括曝光、显影和刻蚀工艺,而形成的层结构中的特定图形可以是连续的,也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。但是,诸如“连接”这样的术语也可能意味着两个或多个组件彼此之间不直接接触,但仍然相互协作或交互。这里所公开的实施例并不必然限制于本文内容。
应当理解的是,当层或元件被称为在另一层或基板上时,其可以直接在另一层或基板上,或者也可以存在中间层。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。本公开示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的 实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供一种折叠显示器,该折叠显示器可以用作电视机、手机、平板电脑、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或者部件,本公开实施例对该折叠显示器的用途不做特殊限制。
在一些实施例中,折叠显示器是液晶显示器(Liquid Crystal Display,简称LCD)。
在另一些实施例中,折叠显示器是电致发光显示器或其它类型的显示器。
在一些示例中,电致发光显示器为有机电致发光显示器(Organic Light-Emitting Diode Display)、量子点电致发光显示器(Quantum Dot Light Emitting Diodes)或微型发光二极管显示器(Micro-LED Display)。
在一些实施例中,如图1所示,折叠显示器包括柔性显示面板2以及设置在柔性显示面板2的与出光侧相对的一侧的支撑板1。
在一些示例中,柔性显示面板2和支撑板1通过胶固定在一起,即,如图1所示,柔性显示面板2和支撑板1之间还设置有胶层201。
示例的,胶层201的材料为热固性树脂或光可固化树脂。
在另一些示例中,柔性显示面板2和支撑板1通过固定件固定在一起;例如,卡扣。
当然,柔性显示面板2和支撑板1还可以通过其他结构固定在一起,本公开实施例对柔性显示面板2和支撑板1的固定方式不做特殊限制。
在一些实施例中,柔性显示面板2和支撑件1之间还设置有其它结构,例如背光组件,本公开实施例对此不进行限定。
在另一些实施例中,如图2所示,折叠显示器还包括框架3、盖板4以及其它电子配件等。当然,折叠显示器还可以包括更多或更少的组件,并且这些组件之间的相对位置可以改变。
示例的,框架3的纵截面呈U型,柔性显示面板2、支撑板1以及其它电子配件均设置于框架3内,盖板4设置于柔性显示面板2远离支撑板1的一侧。
在又一些实施例中,折叠显示器为液晶显示器,折叠显示器还包括背光组件,背光组件被配置为向柔性显示面板2提供光源。背光组件设置于柔性显示面板2和支撑板1之间。
此外,本公开实施例对柔性显示面板2的结构不进行限定。例如,在折叠显示器为电致发光显示器的情况下,柔性显示面板2为电致发光显示面板;在折叠显示器为液晶显示器的情况下,柔性显示面板2为液晶显示面板。为 便于对本公开中各实施例的理解,下面分别以柔性显示面板2为液晶显示面板和电致发光显示面板为例,对柔性显示面板2的结构进行示例性的介绍。然而,下面的示例性的介绍并不能理解为对本公开实施例所提供的柔性显示面板2的结构的限定,本公开实施例的柔性显示面板2的结构还可以有其它的变化。
在一些实施例中,折叠显示器为电致发光显示器,柔性显示面板2为电致发光显示面板。如图3所示,电致发光显示面板包括显示基板21以及用于封装显示基板21的封装层22。
在一些示例中,封装层22为封装薄膜。
在另一些示例中,封装层22为封装基板。
在一些示例中,如图3所示,电致发光显示面板具有多个亚像素区。显示基板21包括第一衬底210、以及设置在第一衬底210上的多个发光器件和多个像素驱动电路。通常的,每个像素驱动电路对应一个发光器件,且这两者设置于一个亚像素区中。每个像素驱动电路包括多个薄膜晶体管211。每个薄膜晶体管211包括有源层、源极、漏极、栅极及栅绝缘层,源极和漏极分别与有源层接触。每个发光器件包括阳极212、发光功能层213以及阴极214。每个发光器件的阳极212和对应的像素驱动电路的多个薄膜晶体管211中作为驱动晶体管的薄膜晶体管211的漏极电连接。
示例的,发光功能层213仅包括发光层。又示例的,发光功能层213除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
在另一些示例中,显示基板21还包括像素界定层215,像素界定层215包括多个开口区,一个发光器件设置于一个开口区中。
在又一些示例中,如图3所示,显示基板21还包括设置在像素驱动电路和与该像素驱动电路对应的发光器件的阳极212之间的平坦层216。
在一些示例中,电致发光显示面板是顶发光型显示面板,在此情况下,发光器件的靠近第一衬底210的阳极212呈不透明,远离第一衬底210的阴极214呈透明或半透明。
在另一些示例中,电致发光显示面板是底发光型显示面板,在此情况下,发光器件的靠近第一衬底210的阳极212呈透明或半透明,远离第一衬底210的阴极214呈不透明。
在又一些示例中,电致发光显示面板为双面发光型显示面板,在此情况下,发光器件的靠近第一衬底210的阳极212和远离第一衬底210的阴极214均呈透明或半透明。
在另一些实施例中,折叠显示器为液晶显示器,柔性显示面板2为液晶显示面板。如图4所示,液晶显示面板包括相对设置的阵列基板23和对盒基板24、以及设置在阵列基板23和对盒基板24之间的液晶层25。
在一些示例中,阵列基板23包括第二衬底230、以及设置在第二衬底230上的薄膜晶体管211和像素电极231,像素电极231与薄膜晶体管211的漏极电连接。阵列基板23具有多个亚像素区。通常的,薄膜晶体管211和对应的像素电极231设置于一个亚像素区中。
在另一些示例中,阵列基板23还包括设置在第二衬底230上的公共电极232。
示例的,像素电极231和公共电极232设置在同一层,在此情况下,像素电极231和公共电极232均为包括多个条状子电极的梳齿结构。
又示例的,像素电极231和公共电极232设置在不同层,在此情况下,如图4所示,像素电极231和公共电极232之间设置有第一绝缘层233。在公共电极232设置于薄膜晶体管211和像素电极231之间的情况下,如图4所示,公共电极232与薄膜晶体管211之间还设置有第二绝缘层234。
在一些示例中,如图4所示,对盒基板24包括设置在第三衬底240上的彩色滤光层241,在此情况下,对盒基板24也可以称为彩膜基板(Color filter,简称CF)。其中,彩色滤光层241至少包括红色光阻单元、绿色光阻单元以及蓝色光阻单元,红色光阻单元、绿色光阻单元以及蓝色光阻单元分别与阵列基板23上的亚像素区一一正对。对盒基板24还包括设置在第三衬底240上的黑矩阵图案242,黑矩阵图案242被配置为将红色光阻单元、绿色光阻单元以及蓝色光阻单元间隔开。
在一些示例中,如图4所示,液晶显示面板还包括设置在对盒基板24远离液晶层25一侧的上偏光片26以及设置在阵列基板23远离液晶层25一侧的下偏光片27。
本公开一些实施例提供一种支撑板1,可用于上述的折叠显示器中,如图5和图6所示,支撑板1包括支撑板本体11和多个通孔10。支撑板本体11具有至少一个图案化区域03,多个通孔10设置于至少一个图案化区域03,且沿支撑板本体11的厚度方向贯穿该支撑板本体11。
在一些示例中,如图5所示,支撑板本体11具有一个图案化区域03;多 个通孔10设置于该图案化区域03内。
在另一些示例中,如图6A和图6B所示,支撑板本体11具有多个图案化区域03,多个通孔10设置于多个图案化区域03内,且多个图案化区域03内的通孔数量不完全相等。这里,“不完全相等”指的是部分图案化区域内的通孔数量相等,部分图案化区域内的通孔数量不相等;或者,每个图案化区域内的通孔数量均不相等。
本公开实施例对支撑板本体11所具有的图案化区域03的数量不做限制,对每个图案化区域03内的通孔数量也不做限制,其均可根据支撑板的弯折需要进行设置。例如,在支撑板的弯折度较大的位置处设置图案化区域,在图案化区域内根据弯折时所需释放的弯折应力的大小设置通孔的数量。
示例的,如图6A所示,支撑板本体11具有两个图案化区域03,多个通孔10设置于该两个图案化区域03内,且每个图案化区域03中的通孔数量相等。
又示例的,如图6B所示,支撑板本体11具有三个图案化区域03,多个通孔设置于该三个图案化区域03内。图6B所示的支撑板弯折后呈如图6C所示的水滴状,三个图案化区域03分别位于弯折度较大的3个位置,其中,位于弯折度最大的位置处的图案化区域内的通孔数量较多。
如图5、图6A和图6B所示,每个通孔10在垂直于该支撑板本体11的厚度方向的第一平面上的投影形状为条形。这样,支撑板1在图案化区域03内进行弯折时,多个条形的通孔10会随着支撑板1的弯折而发生变形,从而释放弯折应力,有效缓解支撑板1在进行弯折时所出现的应力集中的问题,显著提高支撑板1的弯折能力;在支撑板弯折后再展开时,该多个条形的通孔会恢复原有状态,从而提高支撑板1弯折后回复平整的能力,使支撑板1获得良好的弯折和展开效果。此外,在支撑件1应用于折叠显示器中的情况下,可以进一步提高折叠显示器的弯折能力,以及折叠显示器折叠再展开后的平整度以及弯折后回复平整的能力。当然,多个通孔10在垂直于支撑板本体11的厚度方向的第一平面上的投影形状也可以是其他形状,例如,圆形、椭圆形等其它规则或不规则的形状,本公开实施例对此不进行限定,只要该通孔能满足在支撑板1发生弯折时释放弯折应力即可。
在一些实施例中,支撑板1的材料为具有一定的韧性和刚性的材料,例如金属、玻璃、陶瓷或有机材料等。材料的韧性保证了支撑板1弯折后的回复能力以及支撑板1展开后的平整度,材料的刚性保证了支撑板1的支撑性能。
在一些示例中,支撑板1的材料为金属。金属具有相对高的杨氏模量、优异的加工性能、高的材料刚性以及韧性,可匹配折叠显示器的各种需求。
在一些实施例中,如图5、图6A和图6B所示,每个通孔10在第一平面上沿第一方向X延伸。也就是说,多个通孔10的延伸方向平行,且每个通孔10沿第一方向X的尺寸大于其沿第二方向Y上的尺寸。这里,如图5和图6A、图6B所示,例如支撑板本体11为矩形,且支撑板本体11的相对的两边的延伸方向与第一方向X平行。第二方向Y在第一平面上与第一方向X垂直。这样,在支撑板1沿平行于第一方向X的弯折线12弯折的情况下,每个通孔10沿第二方向Y发生变形,且变形程度最大,可最大程度的释放弯折应力,提高支撑板1的弯折能力以及弯折后回复平整的能力。
需要说明的是,弯折线12为一虚拟的线。
在一些实施例中,如图7A所示,多个通孔10中的每个通孔10在第一平面上的投影形状为矩形。
在另一些实施中,如图7B所示,多个通孔10中的每个通孔10在第一平面上的投影形状为圆角矩形。这里,圆角矩形指矩形的四个内角均为圆角。当然,圆角矩形也可以是矩形的部分内角为圆角。图7B以矩形的四个内角均为圆角为例进行示意。
在支撑板1弯折的情况下,如图7A所示,每个通孔10在第一平面上的投影形状为矩形,则弯折应力集中在两个直角边的交点处。如图7B所示,每个通孔10在第一平面上的投影形状为圆角矩形,则弯折应力集中在圆角矩形的圆弧与相邻两边的交点处。二者相比,在第一平面上的投影形状为圆角矩形的通孔10释放弯折应力的能力大于在第一平面上的投影形状为矩形的通孔10,使得支撑板1在弯折时更不容易发生断裂。
在又一些实施例中,多个通孔10中的每个通孔10在第一平面上的投影形状为由两个直线部分和两个曲线部分构成的封闭形状。其中,两个直线部分均沿第一方向X延伸,且一个直线部分的每端均与另一个直线部分的一端在第二方向Y上对齐;每个曲线部分均与所述两个直线部分的各自相互对齐的一端连接。
在一些示例中,每个曲线部分为半圆。即,如图5和图6所示,每个通孔10在第一平面上的投影形状为由两个直线部分和两个半圆构成的封闭形状。这样,在支撑板1弯折的情况下,弯折应力分散到每个半圆处,可更大程度的分散弯折应力,提高支撑板1的弯折能力,避免支撑板1在弯折时发生断裂现象。
在又一些实施例中,多个通孔10完全相同。这里,“完全相同”指每个通孔10在第一平面上的投影形状完全相同,且投影形状的面积相等,即每个通孔10在第一平面上的投影形状的尺寸相等。
示例的,如图5和图6所示,每个通孔10在第一平面上的投影形状均为由两个直线部分和两个半圆构成的封闭形状,且该封闭形状的面积完全相等,即,每个通孔10在第一平面上的投影形状中,两个直线部分的长度、间距均相等,且两个半圆的半径均相等。
又示例的,如图7B所示,每个通孔10在第一平面上的投影形状均为圆角矩形,且该圆角矩形的投影面积相等,即每个通孔10在第一平面上的投影形状的每个直角边的长度、宽度均相等。这样,在支撑板1弯折的情况下,弯折应力分散均匀,从而避免了弯折应力分布不均导致支撑板1断裂。
在又一些实施例中,多个通孔10不完全相同。这里,“不完全相同”指的是部分相同,部分不相同;或者,全部不相同。
在一些示例中,多个通孔10在第一平面上的投影形状不完全相同。示例的,部分通孔10在第一平面上的投影形状为矩形,部分通孔10在第一平面上的投影形状为圆角矩形,部分通孔10在第一平面上的投影形状为由两个直线部分和两个半圆构成的封闭形状。又示例的,多个通孔10中的每个通孔10在第一平面上的投影形状均不相同。
在另一些示例中,如图8所示,每个通孔10在第一平面上的投影形状完全相同,但投影形状的面积不完全相等,即,每个通孔10在第一平面上的投影形状的尺寸不完全相同。
在一些实施例中,如图5-图8所示,多个通孔10沿第二方向Y排列为多列通孔10,任意相邻两列通孔10间隔设置。图5-图8以每列通孔10包括沿第一方向X排布的多个通孔10为例进行示意。当然,每列通孔10或多列通孔10中的部分列通孔10也可以仅包括一个通孔10。本公开实施例对每列通孔10中沿第一方向X排布的通孔10的数量不做限定。
在一些示例中,在多列通孔10的任意相邻两列通孔10中,位于其中一列通孔10中除最两端的两个通孔10外,任一个通孔10均与位于另一列通孔10中的相邻两个通孔10在垂直于所述第二方向Y的第二平面上的投影重叠。示例的,如图6所示,第一通孔101与相邻列通孔10中的第二通孔102和第三通孔103在垂直于所述第二方向Y的第二平面上的投影重叠。
在另一些示例中,在多列通孔10的任意相邻两列通孔10中,位于其中一列通孔10中的最两端的两个通孔10中的每个通孔10与位于另一列通孔10 中的一个通孔10或相邻的两个通孔10在垂直于所述第二方向的第二平面上的投影重叠。示例的,如图6所示,位于中间列通孔10中的第四通孔104与相邻列通孔10中的第二通孔102在垂直于所述第二方向Y的第二平面上的投影重叠。又示例的,如图6所示,第二通孔102与相邻列通孔10中的第一通孔101和第四通孔104在垂直于所述第二方向Y的第二平面上的投影重叠。
如图9所示,在多列通孔10的任意相邻两列通孔10中,位于其中一列通孔10中的任一个通孔10均与位于另一列通孔10中的任一个通孔10在垂直于所述第二方向Y的第二平面上的投影不重叠。基于此,每列通孔10中的任意相邻两个通孔10之间的实体部分与相邻列通孔10中的相邻两个通孔10之间的实体部分在第二方向Y上是连续的,例如,图9中椭圆虚线圈13标示的部分。这样,在支撑板1沿弯折线12弯折的情况下,弯折应力的方向与第二方向Y平行,使得相邻两列通孔10之间的实体部分受到的应力较大,支撑板1容易断裂。
相比于图9所示的多列通孔10的排布方式,图5-图8所示的多列通孔10的排布方式,即,相邻两列通孔10中的多个通孔10沿第二方向Y交错排布,使得每列通孔10中的任意相邻两个通孔10之间的实体部分在第二方向Y上正对相邻列通孔10中的一个通孔,可避免上述问题,有效提高支撑板1的弯折能力。
在一些示例中,如图5-图7B所示,多列通孔10中的任意相邻两列通孔10中,其中一列通孔10中的任意两个通孔10之间的部分在第二平面上的投影位于另一列通孔10中一个通孔10在所述第二平面上的投影的中间。参考图12,对支撑板1进行建模,并利用软件分析支撑板1弯折后的应力分布云图。根据应力分布云图,可以获取多个通孔10沿第一方向X的长度中的最大值A max、同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min、其中一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min、多个通孔10沿所述第二方向的宽度中的最大值D max、支撑件本体11在图案化区域03内沿平行于第一方向X的弯折线12弯折的弯折半径R(如图10所示)、以及支撑板本体11的厚度t之间的关系。
这里,每个通孔10沿第一方向X的长度为该通孔10沿第一方向X的最大长度,最大值A max为多个最大长度中的最大值。同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距为该两个通孔10沿第一方向X的最小第二间距,最小值B min为多个最小第二间距中的最小值。其中一列通孔10中的 任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距为该两个通孔10沿所述第二方向的最小第一间距,最小值C min为多个最小第一间距中的最小值。每个通孔10沿第二方向Y的宽度为该通孔10沿所述第二方向Y的最大宽度,最大值D max为多个最大宽度中的最大值。
示例的,如图5-图6以及图11所示,每个通孔10在第一平面上的投影形状完全相同,面积相等,且均匀排布于图案化区域03内。则每个通孔10沿第一方向X的最大长度A相等,即A max等于A;每两个通孔10沿第一方向X的最小第二间距B相等,即B max等于B;其中一列通孔10中的任意一个通孔与相邻列通孔中的任意一个通孔10沿第二方向Y的最小第一间距C相等,即C max等于C;每个通孔10沿第二方向Y的最大宽度D相等,即D max等于D。
另示例的,如图13所示(图13为图8中P’处的局部放大示意图),每个通孔10在第一平面上的投影形状完全相同,但面积不完全相同,即尺寸不完全相同。多个通孔10中的每个通孔10沿第一方向X的最大长度不完全相等,即,具有多个最大长度,则最大值A max即为多个最大长度中的最大值A’。多个通孔10中的同一列通孔10中,每两个相邻通孔10沿第一方向X的最小第二间距不完全相等,即,具有多个最小第二间距,则最小值B min为多个最小第二间距中的最小值B’。多个通孔10中的任意相邻两列通孔10中,其中一列通孔10中的任意一个通孔与相邻列通孔中的任意一个通孔10沿第二方向Y的最小第一间距不完全相等,即,具有多个最小第一间距,则最小值C min为多个最小第一间距中的最小值C’。多个通孔10中的每个通孔10沿所述第二方向Y的最大宽度相等,即D max等于D’。
一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000002
上述公式中的最大值A max、最小值C min和弯折半径R的单位相同。例如,均采用毫米(mm)。
这样,通过对多个通孔10的最大值A max和最小值C min设计,即对多个通孔10的形状以及多个通孔10在图案化区域03内的排布方式的设计,可使支撑板本体11匹配更小的弯折半径,提升支撑板1的弯折能力;以使其应用于折叠显示器时,提升折叠显示器的折叠效果。
在另一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000003
且最小值C min与支撑板本体11的厚度t满足:t:C min=1~4。这样,在满足最小弯折半径的情况下,可最大程度的降低支撑板本体的厚度,以使 其应用于折叠显示器时,减小折叠显示器的厚度。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000004
最大值D max与最小值C min满足:D max:C min=1~5。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000005
最小值C min与支撑板本体11的厚度t满足:t:C min=1~4;且最大值D max与最小值C min满足:D max:C min=1~5。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000006
最小值B min与最小值C min满足:B min:C min=0.5~4。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000007
最小值C min与支撑板本体11的厚度t满足:t:C min=1~4;最大值D max与最小值C min满足:D max:C min=1~5;且最小值B min与最小值C min满足:B min:C min=0.5~4。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000008
最大值A max与最小值B min满足:A max:B max=10~100。
在又一些实施例中,最大值A max、最小值C min与弯折半径R满足关系式:
Figure PCTCN2021072866-appb-000009
最小值C min与支撑板本体11的厚度t满足:t:C min=1~4;最大值D max与最小值C min满足:D max:C min=1~5;最小值B min与最小值C min满足:B min:C min=0.5~4;且最大值A max与最小值B min满足:A max:B max=10~100。这样,根据不同的弯折半径R来设计图案化区域03内各通孔10的大小、各通孔10之间的间距以及支撑板1的厚度等参数,以确保在该弯折半径R下对支撑板1进行弯折时,支撑板1受到的最大应力小于支撑板1的材料的应力,即,确保支撑板1在沿弯折线12以该弯折半径R进行弯折时,支撑板1不会断裂,并使支撑板1以不同弯折程度弯折再展开后,均具有较强的弯折后的回复平整的能力。
在一些实施例中,参考图5-图9,在至少一列通孔10中的最两端的两个通孔10或其中一端的一个通孔10沿第一方向X的实际长度小于A max的情况下,该通孔10位于该列通孔10的一端的端部未封闭。也就是说,该通孔10使得支撑板本体11在沿第一方向X的端部形成缺口。
示例的,如图5所示,多个通孔10在图案化区域03内沿第二方向Y排列成5列通孔10。在第1列通孔10、第3列通孔10和第5列通孔10中,每列通孔10的最两端的两个通孔10的位于该列通孔10的一端的端部均未封闭。
又示例的,如图8所示,多个通孔10在图案化区域03内沿第二方向Y排列成5列通孔10。第1列通孔10的其中一端的一个通孔10的位于该列通孔10的一端的端部未封闭。第3列通孔10和第5列通孔10的最两端的两个通孔10的位于该列通孔10的一端的端部均未封闭。
在另一些实施例中,参考图16-图18,每列通孔10中的最两端的两个通孔10均为封闭的通孔。
示例的,如图16所示,多个通孔10在图案化区域03内沿第二方向Y排列成5列通孔10。每列通孔10中的最两端的两个通孔10均为封闭的通孔,且每个通孔10在第一平面上的投影形状完全相同,且投影形状的面积完全相等。
另示例的,如图17所示,多个通孔10在图案化区域03内沿第二方向Y排列成5列通孔10。每列通孔10中的最两端的两个通孔10均为封闭的通孔,且除每列通孔10的最两端的两个通孔10外,其它通孔10在第一平面上的投影形状完全相同,且投影形状的面积完全相等。每列通孔10的最两端的两个通孔10在第一平面上的投影形状完全相同,且投影形状的面积完全相等。
又示例的,如图18所示,多个通孔10在图案化区域03内沿第二方向Y排列成5列通孔10。每列通孔10中的最两端的两个通孔10均为封闭的通孔。并且,多个通孔10中的每个通孔10在第一平面上的投影形状完全相同,且投影形状的面积不完全相等。
在一些实施例中,每个通孔10沿所述第一方向X的最大长度的取值范围为1mm~50mm,支撑板1的厚度t的取值范围均为0.01mm~0.5mm。
例如,每个通孔10沿沿第一方向X的最大长度可以为1mm、2mm、5mm、8mm、10mm、15mm、20mm、25mm、30mm或50mm等。支撑板1的厚度t可以为0.01mm、0.05mm、0.1mm、0.2mm或0.5mm等。
以下提供了多种具体的实施例,详细说明上述各个参数的取值。各实施例均以图5所示的多个通孔10在第一平面上的投影形状以及在图案化区域03中的排布方式为例,即,每个通孔10在第一平面上的投影形状相同,且面积相等,并且每两个通孔10沿第一方向X的第二间距以及沿第二方向Y的第一间距均相等。
例如,每个通孔10沿第一方向X的最大长度A为4mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小第二间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.2mm,每个通孔10沿第二方向Y的最大宽度D为 0.2mm,支撑板1的厚度t为0.2mm。又例如,每个通孔10沿第一方向X的最大长度A为6mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.3mm,支撑板1的厚度t为0.15mm。
又例如,每个通孔10沿第一方向X的最大长度A为9mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.1mm,支撑板1的厚度t为0.1mm。
例如,每个通孔10沿第一方向X的最大长度A为4mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.2mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.2mm。根据公式
Figure PCTCN2021072866-appb-000010
计算得到α为25,α小于30;其中α只关注计算所得数值,不关注计量单位。对该支撑板1以5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,每个通孔10沿第一方向X的最大长度A为6mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.2mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.2mm,α为12.3457,α小于30。对该支撑板1以3mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,每个通孔10沿第一方向X的最大长度A为6mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.1mm,支撑板1的厚度t为0.1mm,计算得到α为3.08642,α小于30。对该支撑板1以1.5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,每个通孔10沿第一方向X的最大长度A为4mm,同一列通孔 10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为10.4167,α小于30。对该支撑板1以1.5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,每个通孔10沿第一方向X的最大长度A为4.5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.15mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为12.3457,α小于30。对该支撑板1以3mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为2mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为25,α小于30。对该支撑板1以5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为10mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为0.2,α小于30。对该支撑板1以5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。又示例的,每个通孔10沿第一方向X的最大长度A为5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.4mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.2mm,支撑板1的厚度t为0.2mm,计算得到α为5.33,α小于30。对该支撑板1以1.5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复 平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为10mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.2mm,每个通孔10沿第二方向Y的最大宽度D为0.4mm,支撑板1的厚度t为0.2mm,计算得到α为2.67,α小于30。对该支撑板1以3mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为6mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.1mm,支撑板1的厚度t为0.1mm,计算得到α为3.09,α小于30。对该支撑板1以1.5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为6mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.2mm,每个通孔10沿第二方向Y的最大宽度D为0.5mm,支撑板1的厚度t为0.2mm,计算得到α为18.52,α小于30。对该支撑板1以2mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又示例的,每个通孔10沿第一方向X的最大长度A为8mm,同一列通孔10中每两个相邻通孔10沿第一方向X的最小间距B为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的最小第一间距C为0.1mm,每个通孔10沿第二方向Y的最大宽度D为0.1mm,支撑板1的厚度t为0.4mm,计算得到α为0.39,α小于30。对该支撑板1以5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
以下还提供了几种具体的实施例,详细说明上述各个参数的取值。各实施例均以图8所示的多个通孔10在第一平面上的投影形状以及在图案化区域03中的排布方式为例,即,每个通孔10在第一平面上的投影形状相同,但面积不完全相等。
例如,多个通孔10沿第一方向X的长度中的最大值A max为5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min为0.2mm,多个通孔沿所述第二方向的宽度中的最大值D max为0.2mm,支撑板1的厚度t为0.2mm。根据公式
Figure PCTCN2021072866-appb-000011
计算得到α为10.666667,α小于30。对该支撑板1以6mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,多个通孔10沿第一方向X的长度中的最大值A max为5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min为0.2mm,多个通孔沿所述第二方向的宽度中的最大值D max为0.2mm,支撑板1的厚度t为0.2mm,计算得到α为21.333333,α小于30。对该支撑板1以3mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,多个通孔10沿第一方向X的长度中的最大值A max为5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min为0.1mm,多个通孔沿所述第二方向的宽度中的最大值D max为0.1mm,支撑板1的厚度t为0.1mm,计算得到α为5.333333,α小于30。对该支撑板1以1.5mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,多个通孔10沿第一方向X的长度中的最大值A max为5mm,同一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min为0.1mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min为0.1mm,多个通孔沿所述第二方向的宽度中的最大值D max为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为4,α小于30。对该支撑板1以2mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
又例如,多个通孔10沿第一方向X的长度中的最大值A max为4.5mm,同 一列通孔10中每两个相邻通孔10沿第一方向X的第二间距中的最小值B min为0.2mm,一列通孔10中的任意一个通孔10与相邻列通孔10中的任意一个通孔10沿第二方向Y的第一间距中的最小值C min为0.15mm,多个通孔沿所述第二方向的宽度中的最大值D max为0.2mm,支撑板1的厚度t为0.15mm,计算得到α为12.3457,α小于30。对该支撑板1以3mm的弯折半径R进行20万次弯折测试,测试结果为测试通过,未出现断裂现象,且具有良好的回复平整的能力。
本公开一些实施例提供一种折叠显示器,如图14所示,折叠显示器包括上述任一实施例中的柔性显示面板2和上述任一实施例所述的支撑板1,支撑板1设置在柔性显示面板2的与出光侧相对的一侧。
如图14所示,柔性显示面板2具有弯折显示部01,通过对弯折显示部01进行弯折,可实现折叠显示器的折叠状态。示例的,柔性显示面板2具有一个弯折显示部01。又示例的,柔性显示面板2具有两个或两个以上弯折显示部01。本公开实施例对柔性显示面板2所具有的弯折显示部01的数量不进行限定,可以根据需要进行设置。附图14以柔性显示面板2具有一个弯折显示部01为例进行示意。
本公开实施例中,在柔性显示面板2的与出光侧相对的一侧设置支撑板1,一方面,支撑板1被配置为对柔性显示面板2进行支撑;另一方面,折叠显示器经过折叠再展开后,弯折显示部01会出现不平整的现象,支撑板1可以提升折叠显示器展开后的平整度以及弯折后回复平整的能力。
如图14和图15所示,柔性显示面板2的弯折显示部01在第一平面上的正投影与支撑板1的图案化区域03在第一平面上的正投影重叠。也就是说,在柔性显示面板2展开的状态下,在垂直于支撑板1厚度的方向上,柔性显示面板2的弯折显示部01正对支撑板1上至少一个图案化区域03中的部分通孔10。
这样,在柔性显示面板2的弯折显示部01弯折时,支撑板1随着弯折显示部01弯折,该部分通孔10会随着支撑板1的弯折而发生变形,从而释放弯折应力,提高支撑板1弯折后回复平整的能力,进而使得支撑板1除了具有对柔性显示面板2的支撑功能外,还可以提高折叠显示器折叠再展开后的平整度以及弯折后回复平整的能力。此外,支撑板1的弯折能力还可以提高柔性显示面板2的弯折能力,以提高折叠显示屏的折叠效果。
在一些示例中,如图14所示,柔性显示面板2还包括沿第二方向Y位于弯折显示部01两侧的非弯折显示部02。支撑板1具有一个图案化区域03, 该图案化区域03在第一平面上的正投影覆盖柔性显示面板2的弯折显示部01在第一平面上的正投影。也就是说,在柔性显示面板2展开的状态下,该图案化区域03沿第二方向Y的宽度大于等于该弯折显示部01沿第二方向Y的宽度。这样,在柔性显示面板2的弯折显示部01弯折时,支撑板1上的多个通孔可以对弯折显示部01的任意部分实现弯折应力释放,并能在柔性显示面板2再展开时,对弯折显示部01的任意部分实现回复平整,从而提高了折叠显示屏折叠再展开后的显示效果。此外,在图案化区域03沿第二方向Y的宽度大于该弯折显示部01沿第二方向Y的宽度的情况下,即图案化区域03中的部分通孔10还可以对弯折显示部01与非弯折显示部02的交界处进行弯折应力释放,以在柔性显示面板2弯折时,提高弯折显示部01与非弯折显示部02的交界处的平整度及回复平整的能力。
在另一些示例中,支撑板1具有两个图案化区域03,柔性显示面板2的弯折显示部01在第一平面上的正投影与每个图案化区域03在第一平面上的正投影具有重叠部分。如图15所示,该重叠部分分别位于弯折显示部01靠近非弯折显示部02的两侧。这样,在柔性显示面板2以较大的弯折半径弯折的情况下,弯折显示部01的中间部分近似未发生弯折,也就是说,该中间部分几乎不产生应力集中,因此,不需要通孔10对弯折应力进行释放。
在一些示例中,如图14和图15所示,每个通孔10在第一平面上沿第一方向X(即,垂直于纸面的方向)延伸,柔性显示面板2的弯折显示部01沿平行于第一方向X的弯折线弯折。这样,在柔性显示面板2弯折的情况下,每个通孔10沿第二方向Y发生变形,且变形程度最大,可最大程度的释放弯折应力,提高柔性显示面板2弯折后回复平整的能力,提升折叠显示器折叠再展开后的显示效果。以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种支撑板,包括:
    支撑板本体,所述支撑板本体具有至少一个图案化区域;
    多个通孔,设置于所述至少一个图案化区域,且沿所述支撑板本体的厚度方向贯穿所述支撑板本体;每个通孔在垂直于所述支撑板本体的厚度方向的第一平面上的投影形状为条形。
  2. 根据权利要求1所述的支撑板,其中,所述多个通孔中的每个通孔在所述第一平面上沿第一方向延伸。
  3. 根据权利要求1或2所述的支撑板,其中,所述多个通孔中的至少一个在所述第一平面上的投影形状为矩形。
  4. 根据权利要求1或2所述的支撑板,其中,多个通孔中的至少一个在所述第一平面上的投影形状为圆角矩形。
  5. 根据权利要求1或2所述的支撑板,其中,所述多个通孔中的至少一个在所述第一平面上的投影形状为由两个直线部分和两个曲线部分构成的封闭形状;所述两个直线部分均沿所述第一方向延伸,且一个直线部分的每端均与另一个直线部分的一端在第二方向上对齐,所述第二方向在所述第一平面上与所述第一方向垂直;每个曲线部分均与所述两个直线部分的各自相互对齐的一端连接。
  6. 根据权利要求5所述的支撑板,其中,每个曲线部分为半圆。
  7. 根据权利要求2-6任一项所述的支撑板,其中,所述多个通孔沿第二方向排列为多列通孔,任意相邻两列通孔间隔设置;每列通孔包括沿所述第一方向排布的至少一个通孔;所述第二方向在所述第一平面上与所述第一方向垂直。
  8. 根据权利要求7所述的支撑板,其中,每列通孔包括沿所述第一方向排布的多个通孔;
    在所述多列通孔的任意相邻两列通孔中,位于其中一列通孔中除最两端的两个通孔外,任一个通孔均与位于另一列通孔中的相邻两个通孔在垂直于所述第二方向的第二平面上的投影重叠;
    所述最两端的两个通孔中的每个通孔与位于另一列通孔中的一个通孔或相邻的两个通孔在垂直于所述第二方向的第二平面上的投影重叠。
  9. 根据权利要求8所述的支撑板,其中,所述其中一列通孔中的任意两个通孔之间的部分在所述第二平面上的投影位于所述另一列通孔中一个通孔在所述第二平面上的投影的中间。
  10. 根据权利要求7-9任一项所述的支撑板,其中,所述多个通孔沿所述 第一方向的长度中的最大值A max、其中一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距中的最小值C min、以及所述支撑板本体在所述至少一个图案化区域内沿平行于所述第一方向的弯折线弯折的弯折半径R满足关系式:
    Figure PCTCN2021072866-appb-100001
    其中,每个通孔沿所述第一方向的长度为该通孔沿所述第一方向的最大长度,最大值A max为多个最大长度中的最大值;其中一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距为该两个通孔沿所述第二方向的最小第一间距,最小值C min为多个最小第一间距中的最小值;所述最大值A max、最小值C min和弯折半径R的单位相同。
  11. 根据权利要求10所述的支撑板,其中,所述最小值C min与所述支撑板本体的厚度t满足:t:C min=1~4。
  12. 根据权利要求10或11所述的支撑板,其中,所述多个通孔沿所述第二方向的宽度中的最大值D max与所述最小值C min满足:D max:C min=1~5;其中,每个通孔沿所述第二方向的宽度为该通孔沿所述第二方向的最大宽度,最大值D max为多个最大宽度中的最大值。
  13. 根据权利要求10-12任一项所述的支撑板,其中,同一列通孔中每两个相邻通孔沿所述第一方向的第二间距中的最小值B min与所述最小值C min满足:B min:C min=0.5~4;其中,每两个相邻通孔沿所述第一方向的第二间距为该两个通孔沿所述第一方向的最小第二间距,最小值B min为多个最小第二间距中的最小值。
  14. 根据权利要求10-13任一项所述的支撑板,其中,所述最大值A max与所述最小值B min满足:A max:B max=10~100。
  15. 根据权利要求7-14任一项所述的支撑板,其中,一列通孔中的任意一个通孔与相邻列通孔中的任意一个通孔沿所述第二方向的第一间距相等。
  16. 根据权利要求1-15任一项所述的支撑板,其中,所述多个通孔中的每个通孔在所述第一平面上的投影形状相同,且面积相等。
  17. 根据权利要求10-16任一项所述的支撑板,其中,每个通孔沿所述第一方向的最大长度的取值范围为1~50mm,支撑板本体的厚度t的取值范围为0.01~0.5mm。
  18. 一种折叠显示器,包括:
    柔性显示面板,具有弯折显示部;
    如权利要求1-17任一项所述的支撑板,设置在所述柔性显示面板的与出光侧相对的一侧;所述柔性显示面板的弯折显示部在所述第一平面上的正投影与所述至少一个图案化区域中的每个图案化区域在所述第一平面上的正投影重叠。
  19. 根据权利要求18所述的折叠显示器,其中,所述至少一个图案化区域为一个,所述柔性显示面板的弯折显示部在所述第一平面上的正投影位于该图案化区域内。
  20. 根据权利要求19所述的折叠显示器,其中,所述多个通孔中的每个通孔在所述第一平面上沿第一方向延伸,所述柔性显示面板的弯折显示部沿平行于所述第一方向的弯折线弯折。
PCT/CN2021/072866 2020-01-21 2021-01-20 支撑板及折叠显示器 WO2021147896A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021544702A JP2023510055A (ja) 2020-01-21 2021-01-20 支持プレート及び折り畳みディスプレイ
KR1020217024181A KR20220129998A (ko) 2020-01-21 2021-01-20 지지 판 및 접이식 디스플레이
EP21733701.3A EP4095837A4 (en) 2020-01-21 2021-01-20 SUPPORT PLATE AND FOLD INDICATOR
US17/419,222 US20220147107A1 (en) 2020-01-21 2021-01-20 Support plate and foldable display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020141702 2020-01-21
CN202020141702.2 2020-01-21
CN202020486804.8 2020-04-04
CN202020486804.8U CN211742521U (zh) 2020-01-21 2020-04-04 支撑件及折叠显示器

Publications (1)

Publication Number Publication Date
WO2021147896A1 true WO2021147896A1 (zh) 2021-07-29

Family

ID=72854288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072866 WO2021147896A1 (zh) 2020-01-21 2021-01-20 支撑板及折叠显示器

Country Status (6)

Country Link
US (1) US20220147107A1 (zh)
EP (1) EP4095837A4 (zh)
JP (1) JP2023510055A (zh)
KR (1) KR20220129998A (zh)
CN (1) CN211742521U (zh)
WO (1) WO2021147896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115019640A (zh) * 2021-12-01 2022-09-06 荣耀终端有限公司 支撑结构及其制作方法以及终端设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211742521U (zh) * 2020-01-21 2020-10-23 京东方科技集团股份有限公司 支撑件及折叠显示器
CN112309996B (zh) 2020-10-28 2024-01-30 武汉华星光电半导体显示技术有限公司 支撑膜层及柔性显示面板
CN112289750A (zh) * 2020-10-28 2021-01-29 武汉华星光电半导体显示技术有限公司 支撑层及柔性显示面板
KR20220065145A (ko) * 2020-11-12 2022-05-20 삼성디스플레이 주식회사 표시장치
CN112614433A (zh) * 2020-12-29 2021-04-06 武汉华星光电半导体显示技术有限公司 柔性显示面板及柔性显示装置
CN112750805B (zh) * 2021-01-06 2023-06-06 武汉华星光电半导体显示技术有限公司 显示面板
CN112991953B (zh) * 2021-03-09 2022-08-05 武汉华星光电半导体显示技术有限公司 支撑板及可折叠显示模组
KR20220162234A (ko) * 2021-05-31 2022-12-08 삼성디스플레이 주식회사 표시 장치용 지지 부재, 이를 포함하는 표시 장치 및 표시 장치용 지지 부재의 제조 방법
CN113362712B (zh) * 2021-06-15 2023-01-24 武汉华星光电半导体显示技术有限公司 柔性显示模组
KR20230016419A (ko) * 2021-07-26 2023-02-02 삼성전자주식회사 폴더블 디스플레이 및 이를 포함하는 전자 장치
KR20230047276A (ko) * 2021-09-30 2023-04-07 삼성디스플레이 주식회사 표시 장치
CN117095618B (zh) * 2023-10-16 2024-03-15 长春希达电子技术有限公司 一种柔性显示面板制备方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216834A1 (en) * 2006-03-16 2007-09-20 Au Optronics Corporation Liquid Crystal Driving Electrode and a Liquid Crystal Display Using the Same
CN207008995U (zh) * 2017-08-17 2018-02-13 京东方科技集团股份有限公司 一种柔性面板和显示装置
CN208141720U (zh) * 2018-05-28 2018-11-23 京东方科技集团股份有限公司 柔性支撑件、柔性显示基板及显示装置
CN109360499A (zh) * 2018-12-17 2019-02-19 上海天马微电子有限公司 一种柔性显示模组及显示装置
CN210627726U (zh) * 2019-12-24 2020-05-26 上海和辉光电有限公司 折叠显示装置
CN211742521U (zh) * 2020-01-21 2020-10-23 京东方科技集团股份有限公司 支撑件及折叠显示器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983424B2 (en) * 2015-06-08 2018-05-29 Lg Display Co., Ltd. Foldable display device
KR102456889B1 (ko) * 2017-11-01 2022-10-21 엘지전자 주식회사 플렉서블 프레임 및 이를 구비하는 플렉서블 디스플레이 유닛

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216834A1 (en) * 2006-03-16 2007-09-20 Au Optronics Corporation Liquid Crystal Driving Electrode and a Liquid Crystal Display Using the Same
CN207008995U (zh) * 2017-08-17 2018-02-13 京东方科技集团股份有限公司 一种柔性面板和显示装置
CN208141720U (zh) * 2018-05-28 2018-11-23 京东方科技集团股份有限公司 柔性支撑件、柔性显示基板及显示装置
CN109360499A (zh) * 2018-12-17 2019-02-19 上海天马微电子有限公司 一种柔性显示模组及显示装置
CN210627726U (zh) * 2019-12-24 2020-05-26 上海和辉光电有限公司 折叠显示装置
CN211742521U (zh) * 2020-01-21 2020-10-23 京东方科技集团股份有限公司 支撑件及折叠显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095837A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115019640A (zh) * 2021-12-01 2022-09-06 荣耀终端有限公司 支撑结构及其制作方法以及终端设备
CN115019640B (zh) * 2021-12-01 2023-08-15 荣耀终端有限公司 支撑结构及其制作方法以及终端设备

Also Published As

Publication number Publication date
US20220147107A1 (en) 2022-05-12
EP4095837A1 (en) 2022-11-30
KR20220129998A (ko) 2022-09-26
JP2023510055A (ja) 2023-03-13
EP4095837A4 (en) 2023-07-05
CN211742521U (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2021147896A1 (zh) 支撑板及折叠显示器
US10121988B2 (en) Flexible display device
CN109216377B (zh) 显示设备及其制作方法
KR102550697B1 (ko) 플렉서블 디스플레이 장치
US10673001B2 (en) Flexible display substrate, method for fabricating the same and display device
CN107706220B (zh) 柔性显示面板及其制作方法和显示装置
WO2021143760A1 (zh) 触控面板及其制备方法、触控显示装置
US10890814B2 (en) Display having dummy sub-pixels with dummy color resists
US9853237B2 (en) Curved display apparatus
WO2020087859A1 (zh) 显示屏以及显示终端
KR20170057913A (ko) 플렉서블 디스플레이 장치
KR20180028387A (ko) 디스플레이 장치
US20220115454A1 (en) Display panel and display device
US9923040B2 (en) Array substrate and display device
US20180040638A1 (en) Display device
WO2021098639A1 (zh) 显示基板及其制备方法,显示面板
JP2008070874A (ja) 可撓性表示装置の製造装置及び製造方法
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
TW201743118A (zh) 顯示面板
JPWO2021147896A5 (zh)
KR20210019803A (ko) 디스플레이용 기판
US11861119B2 (en) Display panel and method for manufacturing the same, and display apparatus
WO2019137044A1 (zh) 像素结构及其制作方法、阵列基板和显示装置
US11281342B2 (en) Touch control structure, method of detecting touch using touch control structure, touch control apparatus, and touch control display apparatus
TWI595298B (zh) 顯示面板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021544702

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021733701

Country of ref document: EP

Effective date: 20220822