WO2021143760A1 - 触控面板及其制备方法、触控显示装置 - Google Patents

触控面板及其制备方法、触控显示装置 Download PDF

Info

Publication number
WO2021143760A1
WO2021143760A1 PCT/CN2021/071732 CN2021071732W WO2021143760A1 WO 2021143760 A1 WO2021143760 A1 WO 2021143760A1 CN 2021071732 W CN2021071732 W CN 2021071732W WO 2021143760 A1 WO2021143760 A1 WO 2021143760A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
layer
metal
metal wire
electrodes
Prior art date
Application number
PCT/CN2021/071732
Other languages
English (en)
French (fr)
Inventor
何帆
董向丹
马宏伟
颜俊
仝可蒙
樊聪
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/620,579 priority Critical patent/US11816284B2/en
Publication of WO2021143760A1 publication Critical patent/WO2021143760A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the technical field of touch display, in particular to a touch panel, a manufacturing method thereof, and a touch display device.
  • touch display technology is in a period of rapid development.
  • a touch display device with a touch display function and bendable and foldable has attracted widespread attention.
  • a touch panel including: a carrier panel, a plurality of touch electrodes, and a plurality of touch leads.
  • the bearing panel is divided into a bending area and a non-bending area.
  • the multiple touch electrodes and multiple touch leads are arranged on the carrying panel, and one touch electrode is electrically connected with at least one touch lead.
  • the part corresponding to the bending area in at least one of the touch leads is a single-layer metal wire, and at least a part of the part corresponding to the non-bending area in the at least one touch lead is a double layer metal wires.
  • all parts of at least one of the touch wires corresponding to the non-bending area are the double-layer metal wires.
  • the non-bending area includes at least one adjacent area close to the bending area, and a non-adjacent area located on a side of the adjacent area away from the bending area. At least one part of the touch lead corresponding to the adjacent area is a single-layer metal wire, and at least one part of the touch lead corresponding to the non-adjacent area is a double-layer metal wire.
  • the size of the adjacent area along the first direction is smaller than the size of the non-adjacent area along the first direction.
  • the first direction is parallel to the load-bearing panel and perpendicular to the boundary between the bending area and the adjacent area.
  • the plurality of touch electrodes includes a plurality of first touch electrodes and a plurality of second touch electrodes, and the plurality of first touch electrodes and the plurality of second touch electrodes cross each other Set up and insulated from each other.
  • each first touch electrode of the plurality of first touch electrodes is an integral structure.
  • Each second touch electrode of the plurality of second touch electrodes includes a plurality of touch sub-electrodes and a plurality of connecting parts, and two adjacent touch sub-electrodes of the second touch electrodes are One of the first touch electrodes is spaced apart.
  • the touch panel further includes: a first insulating layer. Wherein, the plurality of first touch electrodes and the plurality of touch sub-electrodes are arranged in the same layer, and the plurality of first touch electrodes and the plurality of connecting portions are located on two sides of the first insulating layer. side.
  • the first insulating layer has a plurality of first via holes, and two adjacent touch sub-electrodes in the second touch electrode pass through the first insulating layer. At least two of the first vias are electrically connected to one of the plurality of connecting portions.
  • the first touch electrode and the touch sub-electrode are both in a metal mesh structure.
  • the double-layer metal wire includes a first metal wire and a second metal wire; the first metal wire and the plurality of first touch electrodes are arranged in the same layer, and the second metal wire is The multiple connecting parts are arranged in the same layer. And/or, the single-layer metal wire and the plurality of first touch electrodes or the plurality of connection parts are provided in the same layer.
  • the first metal wire and the second metal wire are located on both sides of the first insulating layer, and the first insulating layer further has at least one second via hole.
  • the metal wire and the second metal wire are electrically connected through at least one second via on the first insulating layer.
  • each first touch electrode of the plurality of first touch electrodes is an integrated structure
  • each second touch electrode of the plurality of second touch electrodes is an integrated structure
  • the touch panel further includes: a second insulating layer located between the plurality of first touch electrodes and the plurality of second touch electrodes.
  • the double-layer metal wire includes a first metal wire and a second metal wire.
  • the first metal wire and the plurality of first touch electrodes are arranged in the same layer, and the second metal wire and the plurality of second touch electrodes are arranged in the same layer.
  • the second insulating layer further has at least one third via hole, and the first metal wire and the second metal wire are electrically connected through the at least one third via hole on the second insulating layer.
  • the single-layer metal wire and the plurality of first touch electrodes or the plurality of second touch electrodes are arranged in the same layer.
  • a plurality of touch electrodes are distributed in an array, and each of the touch leads is connected to one of the touch electrodes.
  • the touch panel further includes: a third insulating layer, and the third insulating layer is located on a side of the plurality of touch electrodes away from the carrying panel.
  • the double-layer metal wire includes a first metal wire and a second metal wire.
  • the first metal wire and the plurality of touch electrodes are arranged in the same layer, and the second metal wire is located on a side of the third insulating layer away from the carrying panel.
  • the third insulating layer has at least one fourth via hole, and the first metal wire and the second metal wire are electrically connected through at least one fourth via hole on the third insulating layer.
  • the single-layer metal wire and the plurality of touch electrodes are arranged in the same layer or located on a side of the third insulating layer away from the carrying panel.
  • the length of each of the touch leads is equal or substantially equal.
  • the orthographic projection of the first metal wire on the carrying panel overlaps or substantially overlaps the orthographic projection of the second metal wire on the carrying panel.
  • the bending area is located at the middle or edge of the touch panel.
  • a touch display device in another aspect, includes: the touch panel as described in any of the above embodiments.
  • a method for manufacturing a touch panel includes: forming a plurality of touch electrodes and a plurality of touch leads on a carrying panel, and one touch electrode is electrically connected to at least one touch lead.
  • the load-bearing panel is divided into a bending area and a non-bending area.
  • the portion corresponding to the bending area in at least one of the touch leads is a single-layer metal wire, and at least a part of the portion corresponding to the non-bending area in the at least one touch wire is a double-layer metal wire.
  • the forming a plurality of touch electrodes and a plurality of touch leads on the carrying panel includes: forming a first metal film, and patterning the first metal film to form a first metal pattern layer.
  • the first metal pattern layer includes: a plurality of first touch electrodes, a plurality of touch sub-electrodes, and a plurality of first metal wires.
  • Each first touch electrode of the plurality of first touch electrodes is an integral structure, the plurality of touch sub-electrodes are distributed in an array, and two adjacent touch sub-electrodes are located in one second touch electrode Are separated by one of the first touch electrodes.
  • a first insulating layer is formed, and the first insulating layer has a plurality of first via holes and at least one second via hole.
  • a second metal film is formed, and the second metal film is patterned to form a second metal pattern layer.
  • the second metal pattern layer includes a plurality of connection parts and a plurality of second metal lines. Each of the plurality of connecting portions electrically connects two adjacent touch sub-electrodes in one second touch electrode through at least two first via holes. One connecting portion and one first touch electrode have an intersection area. One first metal line and one second metal line are electrically connected through the at least one second via to form the double-layer metal line.
  • the first metal pattern layer or the second metal pattern layer further includes: the single-layer metal wire.
  • the forming a plurality of touch electrodes and a plurality of touch leads on the carrying panel includes: forming a first metal film, and patterning the first metal film to form a first metal pattern layer.
  • the first metal pattern layer includes: a plurality of first touch electrodes and a plurality of first metal wires. Each of the plurality of first touch electrodes is an integral structure.
  • a second insulating layer is formed, and the second insulating layer has at least one third via hole.
  • a second metal film is formed, and the second metal film is patterned to form a second metal pattern layer.
  • the second metal pattern layer includes a plurality of second touch electrodes and a plurality of second metal wires. Each of the plurality of second touch electrodes is an integral structure.
  • One second touch electrode and one first touch electrode have an intersection area.
  • a second metal wire and a first metal wire are electrically connected through the at least one third via hole to form the double-layer metal wire.
  • the first metal pattern layer or the second metal pattern layer further includes: the single-layer metal wire.
  • the forming a plurality of touch electrodes and a plurality of touch leads on the carrying panel includes: forming a first metal film, and patterning the first metal film to form a first metal pattern layer.
  • the first metal pattern layer includes a plurality of touch electrodes and a plurality of first metal wires.
  • the multiple touch electrode arrays are distributed.
  • a third insulating layer is formed, and the third insulating layer has at least one fourth via hole.
  • a second metal film is formed, and the second metal film is patterned to form a second metal pattern layer.
  • the second metal pattern layer includes a plurality of second metal lines.
  • a second metal wire and a first metal wire are electrically connected through the at least one fourth via to form the double-layer metal wire.
  • the first metal pattern layer or the second metal pattern layer further includes: the single-layer metal wire.
  • FIG. 1 is a structural diagram of a touch display device according to some embodiments.
  • FIG. 2 is a structural diagram of another touch display device according to some embodiments.
  • FIG. 3 is a region division diagram of a display panel according to some embodiments.
  • FIG. 4 is a structural diagram of a liquid crystal display panel according to some embodiments.
  • FIG. 5 is a structural diagram of an electroluminescent display panel according to some embodiments.
  • FIG. 6 is a structural diagram of a touch panel according to some embodiments.
  • FIG. 7 is a structural diagram of another touch panel according to some embodiments.
  • Fig. 8A is a cross-sectional view of Fig. 6 (or Fig. 7) in the A-A' direction;
  • Fig. 8B is a cross-sectional view of Fig. 6 (or Fig. 7) in the direction of H-H';
  • Fig. 8C is a cross-sectional view of Fig. 6 (or Fig. 7) along the H-H' direction when the third insulating layer is provided;
  • Fig. 9A is a cross-sectional view of Fig. 6 (or Fig. 7) in the direction B-B';
  • Fig. 9B is another cross-sectional view of Fig. 6 (or Fig. 7) in the direction B-B';
  • Fig. 9C is a cross-sectional view of Fig. 6 (or Fig. 7) along the B-B' direction when the third insulating layer is provided;
  • Fig. 9D is another cross-sectional view of Fig. 6 (or Fig. 7) along the B-B' direction when the third insulating layer is provided;
  • FIG. 10 is a structural diagram of yet another touch panel according to some embodiments.
  • Fig. 11A is a cross-sectional view of Fig. 10 in the direction of C-C’;
  • Fig. 11B is another cross-sectional view of Fig. 10 in the direction of C-C’;
  • Fig. 11C is a cross-sectional view of Fig. 10 along the C-C' direction when the second insulating layer is provided;
  • Fig. 11D is another cross-sectional view of Fig. 10 along the C-C' direction when the second insulating layer is provided;
  • FIG. 12 is a structural diagram of a bending area in the middle of a touch display device according to some embodiments.
  • FIG. 13 is a structural diagram of a bending area of a touch display device at the edge according to some embodiments.
  • FIG. 14 is a structural diagram of still another touch panel according to some embodiments.
  • Figure 15 is a cross-sectional view of Figure 14 in the direction D-D';
  • Fig. 16 is an enlarged view of a partial area of part F of Fig. 14;
  • Fig. 17 is an enlarged view of a partial area of part N of Fig. 14;
  • Figure 18A is a cross-sectional view of Figure 17 in the direction of E-E';
  • Figure 18B is a cross-sectional view of Figure 17 along the I-I' direction;
  • Fig. 19 is an enlarged view of a partial area of part M in Fig. 14;
  • Figure 20 is a cross-sectional view of Figure 19 along the J-J' direction;
  • Figure 21A is a cross-sectional view of Figure 14 in the G-G' direction;
  • Figure 21B is another cross-sectional view of Figure 14 in the G-G' direction;
  • Fig. 21C is another cross-sectional view of Fig. 14 in the G-G' direction;
  • FIG. 22 is a flowchart of a manufacturing method of a touch panel according to some embodiments.
  • FIG. 23 is a flowchart of another method for manufacturing a touch panel according to some embodiments.
  • FIG. 24 is a flowchart of yet another method for manufacturing a touch panel according to some embodiments.
  • FIG. 25 is a flowchart of yet another method for manufacturing a touch panel according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection and its extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • “approximately” includes the stated value and the average value within the acceptable deviation range of the specified value, where the acceptable deviation range is considered by those of ordinary skill in the art to consider the measurement being discussed and the The measurement-related error (ie, the limitations of the measurement system) of a specific quantity is determined.
  • exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • some embodiments of the present disclosure provide a touch display device 200.
  • the type of the touch display device 200 is not limited, and it may be a liquid crystal display (LCD), or It can be an electroluminescent touch display device.
  • the electroluminescent touch display device may be an organic light-emitting diode (OLED) or a quantum dot electroluminescent touch display device.
  • OLED organic light-emitting diode
  • QLED Quantum Dot Light Emitting Diodes
  • the aforementioned touch display device 200 may be a product or component with any touch and display functions, such as a display, a TV, a digital camera, a mobile phone, a tablet computer, an electronic photo frame, and the like.
  • the touch display device 200 may include a housing 1, a cover plate 2, a display panel 3, a circuit board 4, a touch layer 5, and the like.
  • the touch display device 200 is a liquid crystal touch display device
  • the touch display device 200 further includes a backlight assembly. The backlight assembly is not shown in FIG. 1 and FIG. 2.
  • the longitudinal section of the housing 1 is U-shaped, the display panel 3, the circuit board 4 and other accessories are all arranged in the housing 1, the circuit board 4 is arranged below the display panel 3, and the cover 2 is arranged far away from the display panel 3.
  • the touch display device 200 is a liquid crystal touch display device, and the liquid crystal touch display device includes a backlight assembly, the backlight assembly is disposed between the display panel 3 and the circuit board 4.
  • the touch layer 5 is disposed on the light-exit side surface of the display panel 3, as shown in FIG. 1, at this time, the touch layer 5 and the display panel 3 jointly constitute the touch panel 100.
  • the touch layer 5 is disposed on the cover plate 2 and is close to the surface of the display panel 3, as shown in FIG. 2. At this time, the touch layer 5 and the cover plate 2 together constitute a touch panel 100.
  • the display panel 3 includes a display area A1 and a peripheral area A2 located on at least one side of the display area A1.
  • FIG. 3 illustrates an example in which the peripheral area A2 surrounds the display area A1.
  • the display area A1 includes a plurality of sub-pixels P.
  • the peripheral area A2 can be used for wiring.
  • the gate driving circuit can also be provided in the peripheral area A2.
  • the display panel 3 is a liquid crystal display panel 3A.
  • the main structure of the liquid crystal display panel 3A includes an array substrate 31, a cell aligning substrate 32, and a liquid crystal layer 33 disposed between the array substrate 31 and the cell aligning substrate 32.
  • Each sub-pixel of the array substrate 31 is provided with a thin film transistor 311 and a pixel electrode 312 on the first substrate 310.
  • the thin film transistor 311 includes an active layer, a source electrode, a drain electrode, a gate electrode, and a gate insulating layer.
  • the source electrode and the drain electrode are respectively in contact with the active layer, and the pixel electrode 312 is electrically connected to the drain electrode of the thin film transistor 311.
  • the array substrate 31 further includes a common electrode 313 provided on the first substrate 310.
  • the pixel electrode 312 and the common electrode 313 may be disposed on the same layer.
  • the pixel electrode 312 and the common electrode 313 are both comb-tooth structures including a plurality of strip-shaped sub-electrodes.
  • the pixel electrode 312 and the common electrode 313 may also be provided in different layers.
  • a first interlayer insulating layer 314 is provided between the pixel electrode 312 and the common electrode 313.
  • a second interlayer insulating layer 315 is further provided between the common electrode 313 and the thin film transistor 311.
  • the array substrate 31 does not include the common electrode 313.
  • the common electrode 313 may be located in the box substrate 32.
  • the array substrate 31 further includes a flat layer 316 disposed on the side of the thin film transistor 311 and the pixel electrode 312 away from the first substrate 310.
  • the box-matching substrate 32 includes a color filter layer 321 disposed on the second substrate 320.
  • the box-matching substrate 32 may also be referred to as a color filter (CF).
  • the color filter layer 321 includes at least a red photoresist unit, a green photoresist unit and a blue photoresist unit.
  • the red photoresist unit, the green photoresist unit and the blue photoresist unit are respectively aligned with the sub-pixels on the array substrate 31. Correct.
  • the box substrate 32 further includes a black matrix pattern 322 disposed on the second substrate 320, and the black matrix pattern 322 is used to separate the red photoresist unit, the green photoresist unit, and the blue photoresist unit.
  • the liquid crystal display panel further includes an upper polarizer 34 arranged on the side of the cell aligning substrate 32 away from the liquid crystal layer 33 and a lower polarizer 35 arranged on the side of the array substrate 31 away from the liquid crystal layer 33.
  • the display panel 3 is an electroluminescence display panel 3B.
  • the electroluminescence display panel 3B may include a substrate 36 for display and an encapsulation layer 37 for encapsulating the substrate 36 for display.
  • the packaging layer 37 may be a packaging film or a packaging substrate.
  • each sub-pixel of the above-mentioned display substrate 36 includes a light emitting device and a driving circuit provided on the third substrate 360, and the driving circuit includes a plurality of thin film transistors 311.
  • the light-emitting device includes an anode 361, a light-emitting function layer 362, and a cathode 363, and the anode 361 is electrically connected to the drain of the thin film transistor 311 serving as the driving transistor among the plurality of thin film transistors 311.
  • the display substrate 36 further includes a pixel defining layer 364.
  • the pixel defining layer 364 includes a plurality of opening regions, and one light emitting device is disposed in one opening region.
  • the light-emitting functional layer 362 includes a light-emitting layer. In other embodiments, in addition to the light-emitting layer, the light-emitting functional layer 362 also includes an electron transport layer (election transporting layer, ETL), an electron injection layer (election injection layer, EIL), and a hole transporting layer (hole transporting layer) layer, HTL for short) and one or more of the hole injection layer (HIL for short).
  • ETL electron transport layer
  • EIL electron injection layer
  • HTL hole transporting layer
  • the display substrate 36 further includes a flat layer 365 provided between the driving circuit and the anode 361.
  • the touch panel 100 includes a carrier panel 10, a plurality of touch electrodes 11, and a plurality of touch leads 12.
  • the carrier panel 10 is divided into a bending area A3 and a non-bending area A4; a plurality of touch leads 12 and a plurality of touch electrodes 11 are all arranged on the carrier panel 10, and one touch electrode 11 is electrically connected to at least one touch lead 12 (for example, one touch electrode 11 and one
  • the touch leads 12 are electrically connected; for another example, one touch electrode 11 may also be electrically connected to two or more touch leads connected in parallel at the same time).
  • At least one of the touch wires 12 corresponding to the bending area A3 is a single-layer metal wire
  • at least one of the touch wires 12 corresponding to the non-bending area A4 is at least a part of the non-bending area A4 is a double-layer metal wire.
  • multiple refers to two or more than two; similarly, “multiple” refers to two or more.
  • the touch layer 5 includes a plurality of touch electrodes 11 and a plurality of touch leads 12.
  • the display panel 3 is a carrier panel 10, that is, a plurality of touch electrodes 11 and a plurality of touch leads 12 are arranged on On the light-emitting side surface of the display panel 3; in the case where the touch layer 5 and the cover plate 2 together constitute the touch panel 100, as shown in FIG. 2, the cover plate 2 is the carrier panel 10, that is, a plurality of touch electrodes 11 And a plurality of touch leads 12 are arranged on the surface of the cover plate 2 close to the display panel 3.
  • the plurality of touch electrodes 11 and the plurality of touch leads 12 are arranged on the light-emitting side surface of the display panel 3, or are arranged on the surface of the cover plate 2 close to the side of the display panel 2, the plurality of touch electrodes 11 and the Other film layers are also provided around the touch leads 12. These film layers may be, for example, protective layers to prevent the multiple touch electrodes 11 and the multiple touch leads 12 from being corroded by the external environment, or they may be close to the display panel 3. A film layer of a plurality of touch electrodes 11 and a plurality of touch leads 12.
  • the touch panel 100 can be divided into a touch area and a wiring area.
  • the touch area corresponds to the display area A1
  • the wiring area corresponds to the peripheral area A2.
  • multiple touch electrodes 11 are located in the touch area (for example, the area inside the dashed frame shown in FIGS. 6 and 7); multiple touch leads 12 may be located
  • the touch area may also be located in the routing area (for example, the area outside the dashed frame shown in FIG. 6 and FIG. 7).
  • the multiple touch electrodes 11 are only located in the touch area (for example, the area inside the dashed frame shown in FIG. 10), and the multiple touch leads 12 are only located in the wiring area ( For example, the area outside the dashed frame shown in FIG. 10).
  • the bending area A3 is located in the middle or edge of the touch panel 100. It should be noted that the "middle” can be understood as any area other than the edge of the touch panel 100, and is not limited to the middle position of the touch panel 100 in a certain direction.
  • the bending area A3 is located in the middle of the touch panel 100.
  • Fig. 8A is a cross-sectional view of Fig. 6 (or Fig. 7) in the AA' direction
  • Fig. 8B is a cross-sectional view of Fig. 6 (or Fig. 7) in the H-H’ direction
  • Fig. 8C is a cross-sectional view of Fig. 6 (or Fig. 7) 7)
  • the part of the multiple touch leads 12 corresponding to the bending area A3 is a single-layer metal wire, and the structure of the single-layer metal wire may be as shown in FIG.
  • the part of the multiple touch leads 12 corresponding to the non-bending area A4 is a double-layer metal wire, and the structure of the double-layer metal wire can be as shown in FIGS. 8B and 8C.
  • the structure shown in FIG. 8B two layers of metal wires are in direct contact to form a double-layer metal wire structure.
  • the fourth via 144 on the third insulating layer 133 between the two layers of metal wires can be used to electrically connect the two layers of metal wires together to form a double-layer metal wire structure.
  • the orthographic projections of the two layers of metal wires in the double-layer metal wires on the supporting panel 10 overlap or substantially overlap.
  • Fig. 9A is a cross-sectional view of Fig. 6 (or Fig. 7) in the B-B' direction
  • Fig. 9B is another cross-sectional view of Fig. 6 (or Fig. 7) in the B-B’ direction.
  • 9A and 9B show the transition between the single-layer metal wire corresponding to the bending area A3 and the double-layer metal wire corresponding to the non-bending area A4 in each of the multiple touch leads 12 area.
  • each of the multiple touch leads 12 corresponding to the single-layer metal wire of the bending area A3 may be the same as the lower one of the double-layer metal wires corresponding to the non-bending area A4.
  • Layer metal wires are arranged in the same layer; referring to FIG. 9B, the single-layer metal wire corresponding to the bending area A3 of each of the multiple touch leads 12 may be the same as the double-layer metal wire corresponding to the non-bending area A4 The upper layer of the metal wire in the same layer is set.
  • the two-layer metal wires can directly contact to form a double-layer metal wire structure; or, referring to FIGS. 9C and 9D, in the area where the third insulating layer 133 is provided In this case, the two layers of metal wires can be electrically connected together through the fourth via 144 on the third insulating layer 133 between the two layers of metal wires to form a double-layer metal wire structure.
  • the single-layer metal wire corresponding to the bending area A3 in FIGS. 9C and 9D can be arranged relative to the layer position of the double-layer metal wire in the non-bending area A4. With reference to the description of FIG. 9A and FIG. 9B, details are not repeated here.
  • the bending area A3 is located at the edge of the touch panel 100.
  • FIGS. 8A and 8B can also be regarded as the cross-sectional view of FIG. 10 in the AA' direction.
  • the part of the multiple touch leads 12 corresponding to the bending area A3 is a single-layer metal wire, and the structure of the single-layer metal wire is as As shown in FIG. 8A; the part of the multiple touch leads 12 corresponding to the non-bending area A4 is a double-layer metal wire, and the structure of the double-layer metal wire is shown in FIG. 8B.
  • FIG. 11A is a cross-sectional view of FIG. 10 in the C-C' direction
  • FIG. 11B is another cross-sectional view of FIG.
  • FIGS. 11A and 11B show multiple contacts.
  • Each touch lead 12 in the control lead 12 corresponds to a transition area between the single-layer metal wire in the bending area A3 and the double-layer metal wire corresponding to the non-bending area A4.
  • each of the multiple touch leads 12 corresponds to the upper layer of the single-layer metal wire in the bending area A3 and the double-layer metal wire in the non-bending area A4.
  • the metal wires are arranged in the same layer; referring to FIG. 11B, each of the multiple touch leads 12 corresponds to the single-layer metal wire in the bending area A3 and the double-layer metal wire corresponding to the non-bending area A4.
  • the metal wires of the lower layer are set in the same layer.
  • the two-layer metal wires can directly contact to form a double-layer metal wire structure; or, referring to FIGS. 11C and 11D, in the area where the second insulating layer 132 is provided In this case, the two layers of metal wires can be electrically connected together through the third via 143 on the second insulating layer 132 between the two layers of metal wires to form a double-layer metal wire structure.
  • the single-layer metal wire corresponding to the bending area A3 in FIG. 11C and FIG. 11D can be arranged relative to the layer position of the double-layer metal wire in the non-bending area A4.
  • an insulating layer (for example, the aforementioned third insulating layer 133) may also be provided between the touch electrode 11 and the touch lead 12.
  • the touch lead 12 may It is electrically connected to the touch electrode 11 through the via hole on the insulating layer.
  • the bending area A3 is located in the middle of the touch panel 100.
  • the multiple touch leads 12 in the bending area A3 include touch leads 12 located in the touch area.
  • the touch leads 12 corresponding to the bending area A3 It is a single-layer metal wire, and at least a part of the touch wire 12 corresponding to the non-bending area A4 is a double-layer metal wire. In this case, referring to FIG.
  • the non-bending area A4 also includes a partial area close to the bending area A3, which is the adjacent area A41 in the non-bending area A4, and the other areas in the non-bending area A4 are denoted as Non-adjacent area A42.
  • the touch leads 12 in the adjacent area A41 can be the same as the touch leads 12 in the bending area A3, and both are single-layer metal wires. At this time, the touch leads 12 in the non-adjacent area A42 are double-layer metal wires.
  • the touch leads 12 in the adjacent area A41 can also be the same as the touch leads 12 in the non-adjacent area A42, both of which are double metal wires; at this time, the touch leads 12 in the bending area A3 are still It is a single-layer metal wire.
  • the bending area A3 is located at the edge of the touch panel 100.
  • the touch leads 12 in the bending area A3 include the touch leads 12 in the wiring area.
  • the touch leads 12 corresponding to the bending area A3 are single-layer metal wires, and at least a part of the touch leads 12 corresponding to the non-bending area A4 are double-layer metal wires. .
  • FIG. 10 it can be seen that the touch leads 12 in the bending area A3 include the touch leads 12 in the wiring area.
  • the touch leads 12 corresponding to the bending area A3 are single-layer metal wires, and at least a part of the touch leads 12 corresponding to the non-bending area A4 are double-layer metal wires. .
  • the non-bending area A4 also includes a partial area close to the bending area A3, which is the adjacent area A41 in the non-bending area A4, and the other areas in the non-bending area A4 are denoted as Non-adjacent area A42.
  • the touch leads 12 in the adjacent area A41 can be the same as the touch leads 12 in the bending area A3, and both are single-layer metal wires.
  • the touch leads 12 in the non-adjacent area A42 are double-layer metal wires.
  • the touch leads 12 in the adjacent area A41 can also be double-layer metal wires like the touch leads 12 in the non-adjacent area A42; in this case, the touch leads 12 in the bending area A3 are still single-layer metal wires.
  • At least a part of the part corresponding to the non-bending area A4 of the multiple touch wires 12 is a double-layer metal wire, and it may be a part of the part corresponding to the non-bending area A4 of the multiple touch wires 12 Double-layer metal wire; it can also be that all the parts of the multiple touch wires 12 corresponding to the non-bending area A4 are double-layer metal wires.
  • the aforementioned non-bending area A4 may be provided on one side of the bending area A3, or may be provided on both sides of the bending area A3.
  • both of the two non-bending areas A4 may include the adjacent area A41 and the non-adjacent area A42, or one of the non-bending areas A4 may include the adjacent area A4.
  • the area A41 and the non-adjacent area A42, and the other non-bending area A4 only includes the adjacent area A41.
  • the touch panel 100 provided by the related art includes a carrier panel 10, a plurality of touch electrodes 11, and a plurality of touch leads 12.
  • the carrier panel 10 is divided into a bending area A3 and a non-bending area A4.
  • the control leads 12 are arranged on the carrying panel 10 and are electrically connected to each other; the parts corresponding to the bending area A3 and the non-bending area A4 of the plurality of touch leads 12 are all double-layer metal wires.
  • the portions corresponding to the bending area A3 and the non-bending area A4 of the multiple touch leads 12 in the touch panel 100 provided by the related art are all double-layer metal wires, the thickness of the double-layer metal wires is relatively thick, which causes The film around the touch lead 12 is not flat. Therefore, when the touch panel 100 is bent, the film around the touch lead 12 in the bending area A3 is prone to cracks.
  • the touch panel 100 includes a carrier panel 10, a plurality of touch electrodes 11, and a plurality of touch leads 12.
  • the carrier panel 10 is divided into a bending area A3 and Non-bending area A4; multiple touch leads 12 and multiple touch electrodes 11 are all arranged on the carrier panel 10, and one touch electrode 11 is electrically connected to at least one touch lead 12; in at least one touch lead 12
  • the portion corresponding to the bending area A3 is a single-layer metal wire, and at least a part of the portion corresponding to the non-bending area A4 of the at least one touch lead 12 is a double-layer metal wire.
  • the portion corresponding to the bending area A3 of the multiple touch leads 12 in the touch panel 100 provided by some embodiments of the present disclosure is a single-layer metal wire
  • the thickness of the single-layer metal wire is relatively thin, which will not cause a single-layer metal
  • the thickness of the film around the leads is not uniform. Therefore, when the touch panel 100 is bent, the film around the bending area A3 is flat, thereby reducing the risk of cracks in the film in the bending area A3.
  • at least a part of the portion corresponding to the non-bending area A4 of the multiple touch leads 12 is a double-layer metal wire
  • the two metal wires in the double-layer metal wire are connected in parallel, that is, the touch control is increased.
  • the cross-sectional area of the lead 12, so that the double-layer metal wire in the non-bending area A4 can reduce the impedance of the touch lead 12.
  • the size (length) of the adjacent area A41 along the first direction X is smaller than the size (length) of the non-adjacent area A42 along the first direction X.
  • the first direction is parallel to the bearing panel 10 and perpendicular to the boundary between the bending area A3 and the adjacent area A41. This increases the area of the non-adjacent area A42, thereby helping to increase the length of the double-layer metal wire in the non-bending area A4, and reducing the impedance of the touch leads 12; at the same time, it can also pass the adjacent area A41 close to the bending area A3.
  • the touch leads in the slab are set as a single-layer metal wire to reduce the risk of cracks in the film layer of the bending area A3 due to the unevenness of the film layers around the bending area A3 and the bending area A3. This helps to further improve the stability and reliability of the touch panel 100 during bending and use.
  • all parts of the multiple touch leads 12 corresponding to the non-bending area A4 are double-layer metal wires. Since the parts of the multiple touch leads 12 corresponding to the non-bending area A4 are all double-layer metal wires, it can reduce the risk of cracks in the film around the single-layer metal wire located in the bending area A3. ⁇ Reduce the impedance of the touch lead 12.
  • a plurality of touch electrodes 11 are distributed in an array, and each touch lead 12 is electrically connected to one touch electrode 11.
  • each touch lead 12 is connected to one touch electrode 11 and extends to be electrically connected to the driving circuit.
  • each touch lead 12 is connected to a touch electrode 11 and extends along an end of the touch area of the touch panel 100 away from the driving circuit to be electrically connected to the driving circuit. It can be understood that, in this case, the length of each touch lead 12 is equal or approximately the same, and each touch lead 12 is connected to only one touch electrode 11.
  • an original capacitance is formed between each touch electrode 11 and the ground terminal (GND).
  • the plurality of touch electrodes 11 includes a plurality of first touch electrodes 111 and a plurality of second touch electrodes 112;
  • the two second touch electrodes 112 are arranged across and insulated from each other.
  • the shape and number of the first touch electrode 111 and the second touch electrode 112 are not limited. Each first touch electrode 111 and each second touch electrode 112 can be selected according to actual needs. It is sufficient to determine the position of the touch point by detecting the capacitance.
  • the first touch electrodes 111 and the second touch electrodes 112 are both strip-shaped. In this case, there is a cross between the first touch electrodes 111 and the second touch electrodes 112. The area, that is, there is a certain overlapping area between the first touch electrode 111 and the second touch electrode. Because the first touch electrode 111 and the second touch electrode 112 are insulated from each other.
  • the aforementioned second insulating layer 132 (for example, the second insulating layer 132 shown in FIG. 11C and FIG. 11D) may be disposed between the first touch electrode 111 and the second touch electrode 112, and pass through the second insulating layer 132.
  • the insulating layer 132 realizes insulation between the first touch electrode 111 and the second touch electrode 112. Therefore, a capacitance is formed in the area where the first touch electrode 111 and the second touch electrode 112 intersect.
  • a conductor for example, a finger
  • the original capacitance of the area will be changed; by detecting the change in capacitance, In order to obtain the location of the touch point.
  • the first touch electrode 111 is an integral structure
  • the second touch electrode 112 includes a plurality of touch sub-electrodes 112a separated by a plurality of first touch electrodes 111 and a plurality of
  • the touch panel 100 further includes a first insulating layer 131 having a plurality of first via holes 141 on the first insulating layer 131, wherein the first touch electrode 111 and the touch sub-electrode 112a are arranged in the same layer,
  • the first touch electrode 111 and the connecting portion 112 b are located on both sides of the first insulating layer 131.
  • the first touch electrode 111 and the touch sub-electrode 112a are arranged on the light-emitting side of the display substrate 36.
  • the connecting portion 112b may be arranged on the first touch electrode 111 near or far from the display substrate 36.
  • a first insulating layer 131 is provided between the entire first touch electrode 111 and the touch sub-electrode 112a and the connecting portion 112b.
  • the display panel 3 may further include a protective layer 39 for protecting the first touch electrode 111 and the touch sub-electrode 112a.
  • the display panel 3 further includes a buffer layer 38 disposed on the packaging layer 37.
  • the first touch electrode 111 may be Tx (Transmit, touch transmitting electrode), and the second touch electrode 112 may be Rx (Receive, touch receiving electrode), or the first touch electrode 111 may be Rx.
  • the second touch electrode 112 may be Tx, which is not limited in various embodiments of the present disclosure.
  • the touch emitting electrode Tx has an integrated structure.
  • the touch receiving electrode Rx includes a plurality of touch sub-electrodes 112a and a plurality of connecting portions 112b. Two adjacent touch sub-electrodes 112a of the touch receiving electrode Rx are separated by a touch transmitting electrode Tx.
  • the first touch electrode 111 is the touch receiving electrode Rx and the second touch electrode 112 is the touch emitting electrode Tx, as shown in FIG.
  • the touch receiving electrode Rx has an integrated structure, and the touch emitting electrode Tx It includes a plurality of touch control sub-electrodes 112a and a plurality of connecting portions 112b. Two adjacent touch control sub-electrodes 112a of the touch transmitting electrode Tx are separated by a touch receiving electrode Rx.
  • first touch electrodes 111 have an integral structure means that the parts of each first touch electrode 111 are located on the same layer and are directly connected together.
  • “same layer arrangement” refers to a layer structure formed by using the same film forming process to form a film with a specific pattern, and then using the same mask plate to form a layer structure through a patterning process.
  • the same patterning process may include multiple exposure, development or etching processes, and the specific image in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be in different Height or different thickness.
  • each first touch electrode 111 is an integral structure, and all the touch sub-electrodes 112a and all the first touch electrodes 111 are arranged in the same layer, each Two adjacent touch sub-electrodes 112a of the second touch electrodes 112 separated by the first touch electrode 111 are connected together by the connecting portion 112b through the first via 141 on the first insulating layer 131 That is, each connecting portion 112b is arranged to cross one first touch electrode 111 to realize the electrical connection between each touch sub-electrode 112a in each second touch electrode 112.
  • Fig. 15 is a cross-sectional view of Fig. 14 in the direction D-D'.
  • Two adjacent touch sub-electrodes 112 a in the second touch electrode 112 are electrically connected to the connecting portion 112 b through at least two first via holes 141 on the first insulating layer 131.
  • the first touch electrode 111 Since two adjacent touch sub-electrodes 112a separated by the first touch electrode 111 are connected by at least two first vias 141 on the first insulating layer 131, the first touch electrode 111 is connected to There is an overlapping area between the portions 112b, and since the first touch electrode 111 and the connecting portion 112b are insulated from each other, a capacitor is formed in the area where the first touch electrode 111 and the connecting portion 112b intersect. When the intersection area is touched, the original capacitance of the area will be changed; by detecting the capacitance change, the position of the touch point can be obtained.
  • the first touch electrode 111 and the touch sub-electrode 112a are arranged in the same layer, and the first touch electrode 111 and the connecting portion 112b are located on both sides of the first insulating layer 131, which may be the first touch electrode 111 and the touch
  • the control sub-electrode 112a is disposed on the first insulating layer 131 and close to the side of the carrier panel 10, and the connecting portion 112b is disposed on the first insulating layer 131 and the side away from the carrier panel 10; it can also be the first touch electrode 111
  • the touch sub-electrode 112a is disposed on the first insulating layer 131 and a side away from the carrying panel 10, and the connecting portion 112b is disposed on the first insulating layer 131 and a side close to the carrying panel 10.
  • the embodiments of the present disclosure do not limit this.
  • the arrangement of the first insulating layer 131 is not limited.
  • the first insulating layer 131 may be provided as a whole layer or may include a plurality of first insulating layers 131. In the case where the first insulating layer 131 includes a plurality of numbers, the first insulating layer 131 is only provided in the area where the first touch electrode 111 and the connection portion 112b intersect.
  • the first insulating layer 131 is a whole layer, for example, the orthographic projection of the first touch electrode 111 and the touch sub-electrode 112a on the first insulating layer 131 is within the boundary of the first insulating layer 131, That is, the first insulating layer 131 is only provided in the touch area of the touch panel 100.
  • At least a part of the at least one touch electrode 11 has a metal mesh (Metal Mesh) structure.
  • the first touch electrode 111 and the touch sub-electrode 112a are both metal mesh structures.
  • FIG. 16 is an enlarged view of part F in FIG. 14.
  • the metal material of the metal mesh is not limited.
  • the metal material can be a simple metal or a metal alloy.
  • the metal material can be one of Ag (silver), Cu (copper), Al (aluminum), or AlNb (aluminum niobium alloy) alloy, or A metal layer stacked for multiple (at least two) metal sub-layers, for example, includes three metal sub-layers, the material of the metal sub-layer in the middle is Al (aluminum), and the metal sub-layers located on opposite sides of the middle layer
  • the material of is Ti (titanium), and this structure can be denoted as Ti/Al/Ti.
  • the single-layer metal wire may include multiple metal sub-layers. For example, it may be provided in the same layer as the first touch electrode 111 and the touch sub-electrode 112a, or may be connected to the connecting portion.
  • 112b is arranged in the same layer and has a Ti/Al/Ti structure; when the touch wire is a double-layer metal wire, one layer of the double-layer metal wire can be arranged in the same layer as the first touch electrode 111 and the touch sub-electrode 112a , Is a Ti/Al/Ti structure, and the other layer can be provided in the same layer as the connecting portion 112b, and it is also a Ti/Al/Ti structure.
  • the first touch electrode 111 and the touch sub-electrode 112a are in a metal mesh structure, on the one hand, the light transmittance of the entire touch panel 100 can be better, and on the other hand, compared to ITO, etc.
  • the transparent conductive material because the conductivity of the metal material is generally small, can make the overall conductivity of each of the first touch electrode 111 and the second touch electrode 112 made of the metal material better.
  • first touch electrode 111 and the first touch sub-electrode 131 are arranged in the same layer, referring to FIG. 14 and FIG. 16, the adjacent first touch electrode 111 and the touch sub-electrode 112a are disconnected. .
  • the shape of the metal mesh structure of the first touch electrode 111 and the touch sub-electrode 112a is not limited.
  • the remaining part of the first touch electrode 111 is composed of a plurality of rhombuses, and the ends of two rhombuses are adjacent to each other.
  • the parts are directly connected together; in each touch sub-electrode 112a, except for the touch sub-electrodes 112a at the two ends, the other touch sub-electrodes 112a have a rhombus shape.
  • each first touch electrode 111 are the two ends of the extending direction of the first touch electrode 111 and are located at the edge of the touch area.
  • the two ends of the touch sub-electrodes 112a They are two ends of the extending direction of the second touch electrodes 112 and are located at the edges of the touch area.
  • the rest of the first touch electrodes 111 except for the two ends are directly connected to form a plurality of diamonds, except for the touch sub-electrodes 112a at the two ends, the rest of the touch sub-electrodes 112a are all rhombuses.
  • the shape of the first touch electrode 111 and the touch sub-electrode 112a at the two ends can be set as an isosceles triangle, and the bottom side of the isosceles triangle faces the edge of the touch area of the touch panel 100, so that the The edge is also provided with the first touch electrode 111 and the touch sub-electrode 112a. In this way, it can be ensured that there is no touch blind area at the edge of the touch area.
  • FIG. 17 is an enlarged schematic diagram of the area of part N in FIG. 14.
  • the double-layer metal wire includes a first metal wire 121 and a second metal wire 122.
  • the first metal line 121 is provided in the same layer as the first touch electrode 111 and the touch sub-electrode 112a
  • the second metal line 122 is provided in the same layer as the connection portion 112b.
  • the orthographic projection of the first metal wire 121 on the supporting panel 10 overlaps or substantially overlaps the orthographic projection of the second metal wire 122 on the supporting panel 10.
  • FIG. 19 is an enlarged schematic diagram of the area M in FIG. 14.
  • the single-layer metal line may be the first metal line 121 or the second metal line 122.
  • FIG. 19 takes the single-layer metal wire as the second metal wire 122 as an example for illustration.
  • the single-layer metal wire can be provided in the same layer as the first touch electrode 111 and the touch sub-electrode 112a, or can be provided in the same layer as the connecting portion 112b. Referring to FIG. 20, it can be seen that FIG. 20 is a cross-sectional view in the J-J' direction of FIG. The surface of the side.
  • the orthographic projection of the first touch electrode 111 and the touch sub-electrode 112a on the first insulating layer 131 is within the boundary of the first insulating layer 131, that is, the first insulating layer 131 is also disposed on the touch panel. 100 routing area.
  • FIG. 18A is a cross-sectional view in the E-E' direction of FIG. 17, the first metal wire 121 and the second metal wire 122 are located on both sides of the first insulating layer 131, and the first insulating layer
  • the layer 131 has a second via 142, and the first metal wire 121 and the second metal wire 122 are electrically connected through the second via 142 on the first insulating layer 131.
  • FIG. 18B is a cross-sectional view of FIG. 17 along the II' direction, and FIG. 18B shows that when there is no via hole on the first insulating layer 131, the first metal line 121 and the second metal line 122 are located at the first An insulating layer 131 on both sides.
  • FIGS. 21A and 21B are cross-sectional views of FIG. 14 in the direction of G-G', and FIGS. 21A and 21B show multiple contacts.
  • each of the multiple touch leads 12 corresponds to the single-layer metal wire in the bending area A3 and the second metal wire in the double-layer metal wire corresponding to the non-bending area A4.
  • 122 is arranged in the same layer;
  • each of the multiple touch leads 12 corresponds to the single-layer metal wire in the bending area A3 and the second one in the double-layer metal wire corresponding to the non-bending area A4.
  • a metal wire 121 is arranged in the same layer.
  • the orthographic projection of the first touch electrode 111 and the touch sub-electrode 112a on the first insulating layer 131 is outside the boundary of the first insulating layer 131, that is, the first insulating layer 131 is only It is set in the touch area of the touch panel 100.
  • FIG. 21C is a case where the first insulating layer 131 is not provided in the wiring area of the touch panel 100.
  • the first metal wire 121 and the second metal wire 122 of the touch lead 12 located in the wiring area are directly attached together, that is, between the first metal wire 121 and the second metal wire 122 There is no first insulating layer 131 in between.
  • the embodiment of the present disclosure also provides a method for preparing the touch panel 100 for preparing the above-mentioned touch panel 100.
  • the manufacturing method of the touch panel 100 includes:
  • a plurality of touch electrodes 11 and a plurality of touch leads 12 are formed on the carrier panel 10, and one touch electrode 11 is electrically connected to at least one touch lead 12;
  • the load-bearing panel 10 is divided into a bending area A3 and a non-bending area A4.
  • the portion corresponding to the bending area A3 in at least one touch lead 12 is a single-layer metal wire, and at least one touch lead 12 corresponds to the non-bending area A3.
  • At least a part of the folded area A4 is a double-layered metal wire.
  • At least a part of at least one touch electrode 11 of the plurality of touch electrodes 11 formed may be provided with a metal mesh structure.
  • the manufacturing method of the touch panel 100 has the same structure and beneficial effects as the above-mentioned touch panel 100.
  • step S10 includes:
  • the first metal pattern layer includes: a plurality of first touch electrodes 111, a plurality of touch sub-electrodes 112a, and a plurality of first
  • the metal wire 121 and the first touch electrode 111 are an integral structure, and a plurality of touch sub-electrodes 112a are arranged in an array.
  • patterning the first metal thin film refers to masking, exposing, developing, and etching the first metal thin film.
  • the plurality of first touch electrodes 111, the plurality of touch sub-electrodes 112a, and the plurality of first metal wires 121 are arranged in the same layer.
  • a first insulating layer 131 is formed.
  • the insulating layer 131 has a first via 141 and a second via 142.
  • the second metal pattern layer includes a plurality of connecting portions 112b and a plurality of second metal lines 122, each of the plurality of connecting portions 112b
  • One connecting portion 112b electrically connects two adjacent touch sub-electrodes 112a in one second touch electrode 112 through at least two first vias 141, and one connecting portion 112b and one first touch electrode 111 cross each other.
  • Area; one first metal line 121 and one second metal line 122 are electrically connected through at least one second via 142 to form a double-layer metal line; the first metal pattern layer or the second metal pattern layer also includes: a single-layer metal line .
  • patterning the second metal thin film refers to masking, exposing, developing, and etching the second metal thin film.
  • first via 141 is used to electrically connect the connecting portion 112 b and two adjacent touch sub-electrodes 112 a
  • second via 142 is used to electrically connect the first metal line 121 and the second metal line 122.
  • connecting portion 112b and the second metal wire 122 are provided in the same layer.
  • the single-layer metal wire may be formed simultaneously with the first metal pattern layer, or may be formed with the second metal pattern layer.
  • the pattern layer is formed at the same time.
  • the order of forming the first touch electrode 111, the touch sub-electrode 112a, and the first metal line 121 and forming the connecting portion 112b and the second metal line 122 is not limited.
  • the first metal film may be patterned to form the first touch electrode 111, the touch sub-electrode 112a, and the first metal line 121, and then the second metal film may be patterned to form the connecting portion 112b and the second metal line. 122; It can also be patterned to the second metal film to form the connecting portion 112b and the second metal line 122, and then the first metal film is patterned to form the first touch electrode 111, the touch sub-electrode 112a and the second One metal wire 121.
  • the embodiment of the present disclosure does not limit this.
  • first touch electrode 111 the touch sub-electrode 112a, the connecting portion 112b, the first metal wire 121, and the second metal wire 122 in some embodiments of the present disclosure have the same technical features and benefits as the above embodiments.
  • the touch sub-electrode 112a the touch sub-electrode 112a
  • the connecting portion 112b the first metal wire 121
  • the second metal wire 122 in some embodiments of the present disclosure have the same technical features and benefits as the above embodiments.
  • step S10 includes:
  • the first metal pattern layer includes: a plurality of first touch electrodes 111 and a plurality of first metal wires 121; Each of the plurality of first touch electrodes 111 is an integral structure.
  • the second metal pattern layer includes a plurality of second touch electrodes 112 and a plurality of second metal wires 122; Each second touch electrode 112 in the plurality of second touch electrodes 112 is an integral structure; one second touch electrode 112 and one first touch electrode 111 have an intersection area; one second metal line 122 and One first metal line 121 is electrically connected through the at least one third via 122 to form the double-layer metal line; the first metal pattern layer or the second metal pattern layer further includes: the single-layer metal line.
  • the single-layer metal wire may be formed simultaneously with the first metal pattern layer, or may be formed with the second metal pattern layer.
  • the pattern layer is formed at the same time.
  • first touch electrode 111 and the first metal line 121 and forming the second touch electrode 112 and the second metal line 122 is not limited. Regarding the specific order of formation, it will not be repeated here.
  • step S10 includes:
  • the first metal pattern layer includes: a plurality of touch electrodes 11 and a plurality of first metal wires 121; A plurality of touch electrodes 11 are distributed in an array;
  • the second metal pattern layer includes: a plurality of second metal lines 122, a second metal line 122, and a first metal line 122;
  • a metal wire 121 is electrically connected through the at least one fourth via 144 to form the double-layer metal wire; the first metal pattern layer or the second metal pattern layer further includes: the single-layer metal wire.
  • the single-layer metal wire may be formed simultaneously with the first metal pattern layer, or may be formed with the second metal pattern layer.
  • the pattern layer is formed at the same time.
  • the order of forming the touch electrode 11 and the first metal line 121 and forming the second metal line 122 is not limited. Regarding the specific order of formation, it will not be repeated here. It is worth noting that the first metal line 121 can be provided in the same layer as the touch electrode 11, or a layer corresponding to the first metal line 121 can be formed after the second metal pattern layer is formed. In this case, different layers An insulating layer needs to be provided therebetween, and the first metal line 121 and the second metal line 122 are connected in parallel through the through hole on the insulating layer, and the second metal line 122 is electrically connected to the touch electrode 11 through the through hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geometry (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板,包括承载面板以及多个触控电极和多条触控引线。所述承载面板划分为弯折区和非弯折区。多个触控电极和多条触控引线设置在所述承载面板上,且一个触控电极与至少一条触控引线电连接。其中,至少一条所述触控引线中对应于所述弯折区的部分为单层金属线,至少一条所述触控引线中对应于所述非弯折区的部分中的至少一部分为双层金属线。

Description

触控面板及其制备方法、触控显示装置
本申请要求于2020年01月17日提交的、申请号为202010053361.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及触控显示技术领域,尤其涉及一种触控面板及其制备方法、触控显示装置。
背景技术
目前,触控显示技术处于快速发展的时期,例如,具有触控显示功能且可弯曲折叠的触控显示装置受到人们广泛的关注。
发明内容
一方面、提供一种触控面板,包括:承载面板、多个触控电极和多条触控引线。所述承载面板划分为弯折区和非弯折区。所述多个触控电极和多条触控引线设置在所述承载面板上,且一个触控电极与至少一条触控引线电连接。其中,至少一条所述触控引线中对应于所述弯折区的部分为单层金属线,至少一条所述触控引线中对应于所述非弯折区的部分中的至少一部分为双层金属线。
在一些实施例中,至少一条所述触控引线中对应于所述非弯折区的部分全部为所述双层金属线。
在一些实施例中,所述非弯折区包括靠近所述弯折区的至少一个邻接区,以及位于邻接区远离所述弯折区一侧的非邻接区。至少一条所述触控引线中对应所述邻接区的部分为单层金属线,至少一条所述触控引线中对应所述非邻接区的部分为双层金属线。
在一些实施例中,所述邻接区沿第一方向的尺寸小于所述非邻接区沿所述第一方向的尺寸。其中,所述第一方向平行于所述承载面板且垂直于所述弯折区靠近所述邻接区的边界。
在一些实施例中,多个所述触控电极包括多个第一触控电极和多个第二触控电极,所述多个第一触控电极和所述多个第二触控电极交叉设置,且相互绝缘。
在一些实施例中,所述多个第一触控电极中的每个第一触控电极均为一体结构。所述多个第二触控电极中的每个第二触控电极均包括多个触控子电极以及多个连接部,所述第二触控电极中相邻的两个触控子电极被一个所述第一触控电极间隔开。所述触控面板还包括:第一绝缘层。 其中,所述多个第一触控电极和所述多个触控子电极同层设置,且所述多个第一触控电极与所述多个连接部位于所述第一绝缘层的两侧。
在一些实施例中,所述第一绝缘层上具有多个第一过孔,所述第二触控电极中相邻的两个所述触控子电极之间通过所述第一绝缘层上的至少两个第一过孔与所述多个连接部中的一个连接部电连接。
在一些实施例中,所述第一触控电极和所述触控子电极均为金属网格结构。
在一些实施例中,所述双层金属线包括第一金属线和第二金属线;所述第一金属线与所述多个第一触控电极同层设置,所述第二金属线与所述多个连接部同层设置。和/或,所述单层金属线与所述多个第一触控电极或与所述多个连接部同层设置。
在一些实施例中,所述第一金属线和所述第二金属线位于所述第一绝缘层的两侧,所述第一绝缘层上还具有至少一个第二过孔,所述第一金属线与所述第二金属线通过所述第一绝缘层上的至少一个第二过孔电连接。
在一些实施例中,所述多个第一触控电极中的每个第一触控电极为一体结构,且所述多个第二触控电极中的每个第二触控电极为一体结构。所述触控面板还包括:第二绝缘层,第二绝缘层位于所述多个第一触控电极和所述多个第二触控电极之间。其中,所述双层金属线包括第一金属线和第二金属线。所述第一金属线与所述多个第一触控电极同层设置,所述第二金属线与所述多个第二触控电极同层设置。所述第二绝缘层上还具有至少一个第三过孔,所述第一金属线与所述第二金属线通过所述第二绝缘层上的至少一个第三过孔电连接。和/或,所述单层金属线与所述多个第一触控电极或与所述多个第二触控电极同层设置。
在一些实施例中,多个触控电极呈阵列分布,每条所述触控引线与一个所述触控电极连接。所述触控面板还包括:第三绝缘层,第三绝缘层位于所述多个触控电极远离所述承载面板的一侧。其中,所述双层金属线包括第一金属线和第二金属线。所述第一金属线与所述多个触控电极同层设置,所述第二金属线位于所述第三绝缘层远离所述承载面板的一侧。所述第三绝缘层上具有至少一个第四过孔,所述第一金属线与所述第二金属线通过所述第三绝缘层上的至少一个第四过孔电连接。和/或,所述单层金属线与所述多个触控电极同层设置或位于所述第三绝缘层远离所述承载面板的一侧。
在一些实施例中,每条所述触控引线的长度相等或大致相等。
在一些实施例中,所述第一金属线在所述承载面板上的正投影与所述第二金属线在所述承载面板上的正投影重叠或大致重叠。
在一些实施例中,所述弯折区位于所述触控面板的中部或边缘。
另一方面、提供一种触控显示装置。所述触控显示装置包括:如上述任一实施例所述的触控面板。
又一方面、提供一种触控面板的制备方法。所述制备方法包括:在承载面板上形成多个触控电极和多条触控引线,一个触控电极与至少一条触控引线电连接。其中,所述承载面板划分为弯折区和非弯折区。至少一条所述触控引线中对应于弯折区的部分为单层金属线,至少一条所述触控引线中对应于非弯折区的部分中的至少一部分为双层金属线。
在一些实施例中,所述在承载面板上形成多个触控电极和多条触控引线,包括:形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层。所述第一金属图案层包括:多个第一触控电极、多个触控子电极以及多条第一金属线。所述多个第一触控电极中的每个第一触控电极为一体结构,所述多个触控子电极阵列分布,位于一个第二触控电极中的相邻两个触控子电极被一个所述第一触控电极间隔开。形成第一绝缘层,所述第一绝缘层上具有多个第一过孔和至少一个第二过孔。形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层。所述第二金属图案层包括:多个连接部和多条第二金属线。所述多个连接部中的每个连接部通过至少两个第一过孔将一个第二触控电极中的相邻两个触控子电极电连接。一个连接部与一个第一触控电极具有交叉区域。一条第一金属线和一条第二金属线通过所述至少一个第二过孔电连接以形成所述双层金属线。其中,所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
在一些实施例中,所述在承载面板上形成多个触控电极和多条触控引线,包括:形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层。所述第一金属图案层包括:多个第一触控电极以及多条第一金属线。所述多个第一触控电极中的每个第一触控电极为一体结构。形成第二绝缘层,所述第二绝缘层上具有至少一个第三过孔。形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层。所述第二金属图案层包括:多个第二触控电极以及多条第二金属线。所述多个第二触控电极中的每个第二触控电极为一体结构。一个第二触控电极与一 个第一触控电极具有交叉区域。一条第二金属线与一条第一金属线通过所述至少一个第三过孔电连接以形成所述双层金属线。所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
在一些实施例中,所述在承载面板上形成多个触控电极和多条触控引线,包括:形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层。所述第一金属图案层包括:多个触控电极以及多条第一金属线。所述多个触控电极阵列分布。形成第三绝缘层,所述第三绝缘层上具有至少一个第四过孔。形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层。所述第二金属图案层包括:多条第二金属线。一条第二金属线与一条第一金属线通过所述至少一个第四过孔电连接以形成所述双层金属线。所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种触控显示装置的结构图;
图2为根据一些实施例的另一种触控显示装置的结构图;
图3为根据一些实施例的一种显示面板的区域划分图;
图4为根据一些实施例的一种液晶显示面板的结构图;
图5为根据一些实施例的一种电致发光显示面板的结构图;
图6为根据一些实施例的一种触控面板的结构图;
图7为根据一些实施例的另一种触控面板的结构图;
图8A为图6(或图7)在A-A’向的剖面图;
图8B为图6(或图7)在H-H’向的剖面图;
图8C为图6(或图7)在设置有第三绝缘层的情况下沿H-H’向的剖面图;
图9A为图6(或图7)在B-B’向的一种剖面图;
图9B为图6(或图7)在B-B’向的另一种剖面图;
图9C为图6(或图7)在设置有第三绝缘层的情况下沿B-B’向的一种剖面图;
图9D为图6(或图7)在设置有第三绝缘层的情况下沿B-B’向的另一种剖面图;
图10为根据一些实施例的又一种触控面板的结构图;
图11A为图10在C-C’向的一种剖面图;
图11B为图10在C-C’向的另一种剖面图;
图11C为图10在设置有第二绝缘层的情况下沿C-C’向的一种剖面图;
图11D为图10在设置有第二绝缘层的情况下沿C-C’向的另一种剖面图;
图12为根据一些实施例的一种触控显示装置的弯折区在中部的结构图;
图13为根据一些实施例的一种触控显示装置的弯折区在边缘的结构图;
图14为根据一些实施例的又一种触控面板的结构图;
图15为图14在D-D’向的剖面图;
图16为图14的F部分的局部区域放大图;
图17为图14的N部分的局部区域放大图;
图18A为图17在E-E’向的剖面图;
图18B为图17在I-I’向的剖面图;
图19为图14的M部分的局部区域放大图;
图20为图19在J-J’向的剖面图;
图21A为图14在G-G’向的一种剖面图;
图21B为图14在G-G’向的另一种剖面图;
图21C为图14在G-G’向的又一种剖面图;
图22为根据一些实施例的一种触控面板的制备方法流程图;
图23为根据一些实施例的另一种触控面板的制备方法流程图;
图24为根据一些实施例的又一种触控面板的制备方法流程图;
图25为根据一些实施例的又一种触控面板的制备方法流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“大致”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员 考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
参见图1和图2,本公开一些实施例提供一种触控显示装置200,对于触控显示装置200的类型不进行限定,可以是液晶触控显示装置(Liquid Crystal Display,简称LCD),也可以是电致发光触控显示装置。在触控显示装置200为电致发光触控显示装置的情况下,电致发光触控显示装置可以是有机电致发光触控显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光触控显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。
上述触控显示装置200可以为显示器、电视、数码相机、手机、平板电脑、电子相框等具有任何触控和显示功能的产品或者部件。
如图1和图2所示,触控显示装置200可以包括壳体1、盖板2、显示面板3、电路板4以及触控层5等。在触控显示装置200为液晶触控显示装置的情况下,触控显示装置200还包括背光组件。附图1和图2中未示意出背光组件。
其中,壳体1的纵截面呈U型,显示面板3、电路板4以及其它配件均设置于壳体1内,电路板4设置于显示面板3的下方,盖板2设置于显示面板3远离电路板4的一侧。在触控显示装置200为液晶触控显示装置,液晶触控显示装置包括背光组件的情况下,背光组件设置于显示面板3和电路板4之间。
在一些实施例中,触控层5设置在显示面板3的出光侧表面,即如图1所示,此时,触控层5和显示面板3共同构成触控面板100。在另一些实施例中,触控层5设置在盖板2上且靠近显示面板3一侧的表面,即如图2所示,此时,触控层5和盖板2共同构成触控面板100。
如图3所示,显示面板3包括显示区A1和位于显示区A1至少一侧的周边区A2,附图3以周边区A2包围显示区A1为例进行示意。显示区A1包括多个亚像素P。周边区A2可以用于布线,此外,也可以将栅极驱动电路设置 于周边区A2。
在触控显示装置200为液晶触控显示装置的情况下,显示面板3为液晶显示面板3A。如图4所示,液晶显示面板3A的主要结构包括阵列基板31、对盒基板32以及设置在阵列基板31和对盒基板32之间的液晶层33。
阵列基板31的每个亚像素均设置有位于第一衬底310上的薄膜晶体管311和像素电极312。薄膜晶体管311包括有源层、源极、漏极、栅极及栅绝缘层,源极和漏极分别与有源层接触,像素电极312与薄膜晶体管311的漏极电连接。在一些实施例中,阵列基板31还包括设置在第一衬底310上的公共电极313。像素电极312和公共电极313可以设置在同一层,在此情况下,像素电极312和公共电极313均为包括多个条状子电极的梳齿结构。像素电极312和公共电极313也可以设置在不同层,在此情况下,如图4所示,像素电极312和公共电极313之间设置有第一层间绝缘层314。在公共电极313设置在薄膜晶体管311和像素电极312之间的情况下,如图4所示,公共电极313与薄膜晶体管311之间还设置有第二层间绝缘层315。而在另一些实施例中,阵列基板31不包括公共电极313,此时,公共电极313可以位于对盒基板32中。
如图4所示,阵列基板31还包括设置在薄膜晶体管311和像素电极312远离第一衬底310一侧的平坦层316。
如图4所示,对盒基板32包括设置在第二衬底320上的彩色滤光层321,在此情况下,对盒基板32也可以称为彩膜基板(Color filter,简称CF)。其中,彩色滤光层321至少包括红色光阻单元、绿色光阻单元以及蓝色光阻单元,红色光阻单元、绿色光阻单元以及蓝色光阻单元分别与阵列基板31上的亚像素一一正对。对盒基板32还包括设置在第二衬底320上的黑矩阵图案322,黑矩阵图案322用于将红色光阻单元、绿色光阻单元以及蓝色光阻单元间隔开。
如图4所示,液晶显示面板还包括设置在对盒基板32远离液晶层33一侧的上偏光片34以及设置在阵列基板31远离液晶层33一侧的下偏光片35。
在触控显示装置200为电致发光触控显示装置的情况下,显示面板3为电致发光显示面板3B。如图5所示,电致发光显示面板3B可以包括显示用基板36和用于封装显示用基板36的封装层37。此处,封装层37可以为封装薄膜,也可以为封装基板。
如图5所示,上述的显示用基板36的每个亚像素包括设置在第三衬底360上的发光器件和驱动电路,驱动电路包括多个薄膜晶体管311。发光器件包括 阳极361、发光功能层362以及阴极363,阳极361和多个薄膜晶体管311中作为驱动晶体管的薄膜晶体管311的漏极电连接。显示用基板36还包括像素界定层364,像素界定层364包括多个开口区,一个发光器件设置在一个开口区中。在一些实施例中,发光功能层362包括发光层。在另一些实施例中,发光功能层362除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
如图5所示,显示用基板36还包括设置在驱动电路和阳极361之间的平坦层365。
本公开一些实施例还提供一种触控面板100,可以应用于上述的触控显示装置200中。如图6、图7和图10所示,该触控面板100包括承载面板10、多个触控电极11和多条触控引线12,承载面板10划分为弯折区A3和非弯折区A4;多条触控引线12与多个触控电极11均设置在承载面板10上,且一个触控电极11与至少一条触控引线12电连接(例如,可以是一个触控电极11与一条触控引线12电连接;又例如,还可以是一个触控电极11与并联的两条或两条以上的触控引线同时电连接)。其中,至少一条触控引线12中对应于弯折区A3的部分为单层金属线,至少一条触控引线12中对应于非弯折区A4的部分中至少一部分为双层金属线。
需要说明的是,上述“多个”是指两个或两个以上;同样的,“多条”是指两条或两条以上。
此处,触控层5包括多个触控电极11和多条触控引线12。在触控层5和显示面板3共同构成触控面板100的情况下,如图1所示,显示面板3为承载面板10,即,多个触控电极11和多条触控引线12设置在显示面板3的出光侧表面上;在触控层5和盖板2共同构成触控面板100的情况下,如图2所示,盖板2为承载面板10,即,多个触控电极11和多条触控引线12设置在盖板2上靠近显示面板3的一侧表面上。
此外,在多个触控电极11和多条触控引线12设置在显示面板3的出光侧表面,或者设置在盖板2靠近显示面板2一侧的表面时,多个触控电极11和多条触控引线12的周边还设置有其它膜层,这些膜层例如可以是防止多个触控电极11和多条触控引线12被外界环境侵蚀的保护层,也可以是显示面板3中靠近多个触控电极11和多条触控引线12的膜层。
需要说明的是,触控面板100可以划分为触控区和走线区,在此基础上, 触控区与显示区A1对应,走线区与周边区A2对应。在一些实施例中,如图6和图7所示,多个触控电极11位于触控区(例如图6和图7示出的虚线框内侧的区域);多条触控引线12可以位于触控区,也可以位于走线区(例如图6和图7示出的虚线框外侧的区域)。在另一些实施例中,如图10所示,多个触控电极11仅位于触控区(例如图10示出的虚线框内侧的区域),多条触控引线12仅位于走线区(例如图10示出的虚线框外侧的区域)。
在一些实施例中,弯折区A3位于触控面板100的中部或边缘。其中,需要说明的是,“中部”可以理解为除触控面板100的边缘以外的任意区域,并不局限于触控面板100沿某一方向的中间位置。
在一些实施例中,如图6和图7所示,弯折区A3位于触控面板100的中部。附图8A为图6(或图7)在A-A’向的剖面图,附图8B为图6(或图7)在H-H’向的剖面图,图8C为图6(或图7)在设置有第三绝缘层的情况下沿H-H’向的剖面图。多条触控引线12中对应于弯折区A3的部分为单层金属线,单层金属线的结构可以如图8A所示。多条触控引线12中对应于非弯折区A4的部分为双层金属线,双层金属线的结构可以如图8B和图8C所示。在图8B示出的结构中,两层金属线直接接触形成双层金属线的结构。而在图8C示出的结构中,可以通过两层金属线之间的第三绝缘层133上的第四过孔144,使两层金属线电连接在一起,形成双层金属线的结构。示例性的,双层金属线中的两层金属线在承载面板10上的正投影重叠或大致重叠。
在此基础上,图9A为图6(或图7)在B-B’向的一种剖面图,图9B为图6(或图7)在B-B’向的另一种剖面图。图9A和图9B示出了多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线之间过渡的区域。此外,参考图9A,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线可以与对应于非弯折区A4的双层金属线中的下面的一层金属线同层设置;参考图9B,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线可以与对应于非弯折区A4的双层金属线中的上面的一层金属线同层设置。
同时,在非弯折区A4内,参考图9A和图9B,两层金属线可以直接接触形成双层金属线的结构;或者,参考图9C和图9D,在设置有第三绝缘层133的情况下,可以通过两层金属线之间的第三绝缘层133上的第四过孔144,使两层金属线电连接在一起,形成双层金属线的结构。此外,在设置有第三绝缘层133的情况下,图9C和图9D中对应于弯折区A3 的单层金属线,其相对于非弯折区A4中双层金属线的层位设置可以参考对图9A和图9B的描述,此处不再赘述。
在另一些实施例中,如图10所示,弯折区A3位于触控面板100的边缘。附图8A和图8B也可以视为图10在A-A’向的剖面图,多条触控引线12中对应于弯折区A3的部分为单层金属线,单层金属线的结构如图8A所示;多条触控引线12中对应于非弯折区A4的部分为双层金属线,双层金属线的结构如图8B所示。在此基础上,图11A为图10在C-C’向的一种剖面图,图11B为图10在C-C’向的另一种剖面图,图11A和11B示出了多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线之间的过渡的区域。此外,参考图11A,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线中的上面的一层金属线同层设置;参考图11B,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线中的下面的一层金属线同层设置。
同时,在非弯折区A4内,参考图11A和图11B,两层金属线可以直接接触形成双层金属线的结构;或者,参考图11C和图11D,在设置有第二绝缘层132的情况下,可以通过两层金属线之间的第二绝缘层132上的第三过孔143,使两层金属线电连接在一起,形成双层金属线的结构。此外,在设置有第二绝缘层132的情况下,图11C和图11D中对应于弯折区A3的单层金属线,其相对于非弯折区A4中双层金属线的层位设置可以参考对图11A和图11B的描述,此处不再赘述。
需要说明的是,本公开各实施例中的“上”和“下”仅是参考对应的附图(例如9A、图9B、图11A和图11B等)的方位进行的说明,不作为限定语。
需要说明的是,图6和图7的示例中,触控电极11与触控引线12之间还可以设置有绝缘层(例如前述的第三绝缘层133),此时,触控引线12可以通过绝缘层上的过孔与触控电极11电连接。
将上述的触控面板100应用于某些实际场景中时,在一些示例中,如图12所示,弯折区A3位于触控面板100的中部,此时,参考图6和图7可知,弯折区A3的多条触控引线12包括位于触控区的触控引线12,在此情况下,位于触控面板100中部的触控引线12中,对应弯折区A3的触控引线12为单层金属线,对应非弯折区A4的至少一部分触控引线12为双层金属线。在此 情况下,参考图12,非弯折区A4还包括靠近弯折区A3的部分区域,该部分区域为非弯折区A4中的邻接区A41,非弯折区A4中其他区域记为非邻接区A42。邻接区A41的触控引线12可以和弯折区A3的触控引线12一样,均为单层金属线,此时,非邻接区A42中的触控引线12为双层金属线。当然,在另一些示例中,邻接区A41的触控引线12也可以和非邻接区A42的触控引线12一样,均为双层金属线;此时,弯折区A3的触控引线12仍为单层金属线。
在另一些示例中,如图13所示,弯折区A3位于触控面板100的边缘,参考图10可知,弯折区A3的触控引线12包括走线区的触控引线12,在此情况下,位于触控面板100边缘的触控引线12中,对应弯折区A3的触控引线12为单层金属线,对应非弯折区A4的至少一部分触控引线12为双层金属线。在此情况下,参考图13,非弯折区A4还包括靠近弯折区A3的部分区域,该部分区域为非弯折区A4中的邻接区A41,非弯折区A4中其他区域记为非邻接区A42。邻接区A41的触控引线12可以和弯折区A3的触控引线12一样,均为单层金属线,此时,非邻接区A42中的触控引线12为双层金属线。当然,邻接区A41的触控引线12也可以和非邻接区A42的触控引线12一样,均为双层金属线;此时,弯折区A3的触控引线12仍为单层金属线。
此处,多条触控引线12中对应于非弯折区A4的部分中至少一部分为双层金属线,可以是多条触控线12中对应于非弯折区A4的部分中的一部分为双层金属线;也可以是多条触控线12中对应于非弯折区A4的部分中的全部为双层金属线。
需要说明的是,上述非弯折区A4可以设置在弯折区A3的一侧,也可以设置在弯折区A3的两侧。当非弯折区A4设置在弯折区A3的两侧的情况下,可以两个非弯折区A4均包含邻接区A41与非邻接区A42,或者也可以其中一个非弯折区A4包含邻接区A41与非邻接区A42,另一个非弯折区A4仅包含邻接区A41。
相关技术提供的触控面板100,包括承载面板10、多个触控电极11和多条触控引线12,承载面板10划分为弯折区A3和非弯折区A4,触控电极11和触控引线12设置在承载面板10上且相互电连接;多条触控引线12中对应弯折区A3和非弯折区A4的部分均为双层金属线。由于相关技术提供的触控面板100中的多条触控引线12中对应弯折区A3和非弯折区A4的部分均为双层金属线,双层金属线的厚度较厚,因而会使得触控引线12周边的膜层不平整,因此,在触控面板100弯折时,会导致弯折区A3的触控引线12周边 的膜层容易发生裂纹。
基于此,本公开一些实施例提供一种触控面板100,该触控面板100包括承载面板10、多个触控电极11和多条触控引线12,承载面板10划分为弯折区A3和非弯折区A4;多条触控引线12与多个触控电极11均设置在承载面板10上,且一个触控电极11与至少一条触控引线12电连接;至少一条触控引线12中对应于弯折区A3的部分为单层金属线,至少一条触控引线12中对应于非弯折区A4的部分中至少一部分为双层金属线。由于本公开一些实施例提供的触控面板100中的多条触控引线12中对应于弯折区A3的部分为单层金属线,单层金属线的厚度较薄,不会引起单层金属引线周边的膜层厚度不均一,因此在触控面板100弯折时,弯折区A3周边的膜层平整,从而降低了弯折区A3的膜层发生裂纹的风险。在此基础上,由于多条触控引线12中对应于非弯折区A4的部分中至少一部分为双层金属线,双层金属线中的两条金属线之间并联,即增加了触控引线12的横截面积,因而非弯折区A4的双层金属线可以降低触控引线12的阻抗。
示例性的,如图12和图13所示,邻接区A41沿第一方向X的尺寸(长度)小于非邻接区A42沿第一方向X的尺寸(长度)。其中,第一方向平行于承载面板10且垂直于弯折区A3靠近邻接区A41的边界。这样增加非邻接区A42的面积,因此有助于增大非弯折区A4中双层金属线的长度,降低触控引线12的阻抗;同时还能够通过将靠近弯折区A3的邻接区A41中的触控引线设置为单层金属线,来减少由于弯折区A3与弯折区A3周边膜层不均一导致弯折区A3的膜层容易发生裂纹的风险。从而有助于进一步提升触控面板100在弯折和使用时的稳定性和可靠性。
又示例性的,多条触控引线12中对应于非弯折区A4的部分全部为双层金属线。由于多条触控引线12中对应于非弯折区A4的部分全部为双层金属线,因此在降低位于弯折区A3的单层金属线周边的膜层发生裂纹风险的同时,能够更好的降低触控引线12的阻抗。
在一些实施例中,如图6和图7所示,多个触控电极11呈阵列分布,每条触控引线12与一个触控电极11电连接。
其中,呈阵列排布的多个触控电极11中,如图6所示,每条触控引线12连接一个触控电极11,且延伸至与驱动电路电连接。或者,如图7所示,每条触控引线12连接一个触控电极11,且沿触控面板100触控区的远离驱动电路的一端延伸至与驱动电路电连接。可以理解的是,在此情况下,每条触控引线12的长度相等或者大致相等,而每条触控引线12均只连接一个触控电 极11。呈阵列排布的多个触控电极11中,每个触控电极11与接地端(GND)之间形成一个原电容,当导体(例如手指)触摸到触控面板100触控电极11的区域时,会改变该区域的原有电容;通过检测电容变化,从而获得触摸点的位置。由于每条触控引线12的长度相等或者大致相等,这样可以使各个触控引线12连接的触控电极11与地之间形成的原电容的大小更加一致,这样有助于使触控面板100各个位置的触控灵敏度比较均一。
在另一些示例中,如图10和图14所示,多个触控电极11包括多个第一触控电极111和多个第二触控电极112;多个第一触控电极111和多个第二触控电极112交叉设置,且相互绝缘。
对于第一触控电极111、第二触控电极112的形状、数量不作限定,每个第一触控电极111和每个第二触控电极112可根据实际需求选择相应的形状、数量,只要能够实现通过检测电容确定触摸点的位置即可。
示例性的,如图10所示,第一触控电极111和第二触控电极112均为条状,在此情况下,第一触控电极111和第二触控电极112之间具有交叉区域,即第一触控电极111和第二触控电极之间具有一定的重合面积。由于第一触控电极111和第二触控电极112之间相互绝缘。示例性的,第一触控电极111和第二触控电极112之间可以设置前述的第二绝缘层132(例如图11C和图11D中示出的第二绝缘层132),并通过第二绝缘层132实现第一触控电极111与第二触控电极112之间的绝缘。因此,在第一触控电极111和第二触控电极112交叉的区域会形成一个电容,当导体(例如手指)触摸到交叉区域时,会改变该区域的原有电容;通过检测电容变化,从而获得触摸点的位置。
在一些实施例中,如图14所示,第一触控电极111为一体结构,第二触控电极112包括由多个第一触控电极111间隔开的多个触控子电极112a以及多个连接部112b,触控面板100还包括第一绝缘层131,第一绝缘层131上具有多个第一过孔141,其中,第一触控电极111和触控子电极112a同层设置,且第一触控电极111与连接部112b位于第一绝缘层131的两侧。
参考图5可知,第一触控电极111和触控子电极112a设置在显示用基板36的出光侧,此时,连接部112b可以设置在第一触控电极111靠近或远离显示用基板36的一侧。在连接部112b设置在第一触控电极111靠近显示用基板36一侧的情况下,第一触控电极111和触控子电极112a整体与连接部112b之间具有第一绝缘层131。在此基础上,参见图5,显示面板3还可以包括用于保护第一触控电极111和触控子电极112a的保护层39。
为了防止在形成触控电极11时,导致封装层37被损伤划坏,基于此, 在一些实施例中,如图5所示,显示面板3还包括设置在封装层37上的缓冲层38。
此处,第一触控电极111可以为Tx(Transmit,触控发射电极),第二触控电极112可以为Rx(Receive,触控接收电极),或者,第一触控电极111可以为Rx,第二触控电极112可以为Tx,本公开各实施例对此不作限定。
在此基础上,在第一触控电极111为触控发射电极Tx,第二触控电极112为触控接收电极Rx的情况下,如图14所示,触控发射电极Tx为一体结构,触控接收电极Rx包括多个触控子电极112a以及多个连接部112b,触控接收电极Rx中相邻两个触控子电极112a由一个触控发射电极Tx间隔开。在第一触控电极111为触控接收电极Rx,第二触控电极112为触控发射电极Tx的情况下,如图14所示,触控接收电极Rx为一体结构,触控发射电极Tx包括由多个触控子电极112a以及多个连接部112b,触控发射电极Tx中相邻两个触控子电极112a由一个触控接收电极Rx间隔开。
需要说明的是,第一触控电极111为一体结构是指每个第一触控电极111的各个部分均位于同一层,且直接连接在一起。
此外,“同层设置”指的是采用同一成膜工艺形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,同一构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图像可以是连续的,也可以是不连续的,这些特定图形还可能处于不同的高度或具有不同的厚度。
在本公开一些实施例中,继续参照图14,由于每个第一触控电极111为一体结构,且所有的触控子电极112a和所有的第一触控电极111同层设置,因此,每个第二触控电极112中由第一触控电极111间隔开的相邻的两个触控子电极112a之间由连接部112b通过第一绝缘层131上的第一过孔141连接在一起,即每个连接部112b均与一个第一触控电极111交叉设置,来实现每个第二触控电极112中各个触控子电极112a之间的电性连接。
在一些实施例中,如图15所示,附图15为图14在D-D’向的剖面图。第二触控电极112中相邻两个触控子电极112a之间通过第一绝缘层131上的至少两个第一过孔141与连接部112b电连接。
由于被第一触控电极111间隔开的相邻两个触控子电极112a之间通过第一绝缘层131上的至少两个第一过孔141连接,从而使得第一触控电极111和连接部112b之间具有重叠区域,且由于第一触控电极111与连接部112b相互绝缘,因此,在第一触控电极111和连接部112b交叉的区域会形成一个 电容,当导体(例如手指)触摸到交叉区域时,会改变该区域的原有电容;通过检测电容变化,从而获得触摸点的位置。
此处,第一触控电极111和触控子电极112a同层设置,且第一触控电极111与连接部112b位于第一绝缘层131的两侧,可以是第一触控电极111和触控子电极112a设置在第一绝缘层131上且靠近承载面板10的一侧,连接部112b设置在第一绝缘层131上且远离承载面板10的一侧;也可以是第一触控电极111和触控子电极112a设置在第一绝缘层131上且远离承载面板10的一侧,连接部112b设置在第一绝缘层131上且靠近承载面板10的一侧。本公开各实施例对此不作限定。
对于第一绝缘层131的设置方式不作限定。第一绝缘层131可以设置为一整层也可以包括多个数量的第一绝缘层131。在第一绝缘层131包括多个数量的情况下,第一绝缘层131仅设置在第一触控电极111与连接部112b交叉的区域。在第一绝缘层131为一整层的情况下,示例性的,第一触控电极111和触控子电极112a在第一绝缘层131上的正投影在第一绝缘层131的边界以内,即第一绝缘层131仅设置在触控面板100的触控区。
在一些实施例中,至少一个触控电极11中的至少一部分为金属网格(Metal Mesh)结构。
示例性的,如图14和图16所示,第一触控电极111和触控子电极112a均为金属网格结构。
此处,附图16为图14中的F部分的放大图。
在第一触控电极111和触控子电极112a为金属网格结构时,对于金属网格的金属材料不进行限定。该金属材料可以为金属单质或金属合金等,示例性的,金属材料可以为Ag(银)、Cu(铜)、Al(铝)、或AlNb(铝铌合金)合金中的一种,还可以为多个(至少两个)金属子层层叠设置的金属层,例如包括三个金属子层,位于中间的金属子层的材料为Al(铝),位于中间层的相对两侧的金属子层的材料为Ti(钛),这种结构可记为Ti/Al/Ti。当触控引线12为单层金属线时,该单层金属线可以包括多个金属子层,例如,可以与第一触控电极111和触控子电极112a同层设置,也可以与连接部112b同层设置,为Ti/Al/Ti结构;当触控引线为双层金属线时,双层金属线中的其中一层可以与第一触控电极111和触控子电极112a同层设置,为Ti/Al/Ti结构,另一层可以与连接部112b同层设置,也为Ti/Al/Ti结构。
本示例中,由于第一触控电极111和触控子电极112a为金属网格结构,因此,一方面可以使得整个触控面板100的透光性较好,另一方面,相比于 ITO等透明导电材料,由于金属材料的导电率通常较小,可以使得金属材料制成的每个第一触控电极111和第二触控电极112的整体导通性更好。
应当理解到,由于第一触控电极111和第一触控子电极131同层设置,因此,参考图14和图16,相邻的第一触控电极111和触控子电极112a之间断开。
此外,对于第一触控电极111和触控子电极112a为金属网格结构的形状不进行限定。示例性的,如图14所示,每个第一触控电极111中,除最两端的部分外,其余第一触控电极111的部分由多个菱形构成,且相邻两个菱形的端部直接连接在一起;每个触控子电极112a中,除最两端的触控子电极112a,其余触控子电极112a的形状均为菱形。
需要说明的是,每个第一触控电极111的最两端的部分为第一触控电极111延伸方向的两端,且位于触控区的边缘,同样的,最两端的触控子电极112a为第二触控电极112延伸方向的两端,且位于触控区的边缘。
在此基础上,由于除最两端的第一触控电极111的其余部分由多个菱形直接连接构成,除最两端的触控子电极112a,其余触控子电极112a的形状均为菱形,因此,最两端的第一触控电极111和触控子电极112a的形状可以设置为等腰三角形,且等腰三角形的底边朝向触控面板100的触控区的边缘,以使得触控区的边缘也设置有第一触控电极111和触控子电极112a,这样一来,可以保证触控区的边缘无触控盲区。
在触控引线12中对应于非弯折区A4的部分为双层金属线的情况下,如图17所示,图17为图14中的N部分区域放大示意图。双层金属线包括第一金属线121和第二金属线122。在一些实施例中,第一金属线121与第一触控电极111和触控子电极112a同层设置,第二金属线122与连接部112b同层设置。
在此基础上,示例性的,参考图17,第一金属线121在承载面板10上的正投影与第二金属线122在承载面板10上的正投影重叠或大致重叠。
在触控引线12中对应于弯折区A3的部分为单层金属线的情况下,如图19所示,图19为图14中M部分区域放大示意图。单层金属线可以为第一金属线121或第二金属线122。图19以单层金属线为第二金属线122为例进行示意。在此基础上,单层金属线可以与第一触控电极111和触控子电极112a同层设置,也可以与连接部112b同层设置。参考图20可知,图20为图19在J-J’向的剖面图,单层金属线与连接部112b同层设置,即单层金属线设置在第一绝缘层131远离承载面板10的一侧的表面。
在一些实施例中,第一触控电极111和触控子电极112a在第一绝缘层131上的正投影在第一绝缘层131的边界以内,即第一绝缘层131还设置在触控面板100的走线区。在此情况下,如图18A所示,图18A为图17在E-E’向的剖面图,第一金属线121和第二金属线122位于第一绝缘层131的两侧,第一绝缘层131上具有第二过孔142,第一金属线121和第二金属线122通过第一绝缘层131上的第二过孔142电连接。如图18B所示,图18B为图17在I-I’向的剖面图,图18B示出了第一绝缘层131上没有过孔时,第一金属线121和第二金属线122位于第一绝缘层131的两侧。
在第一绝缘层131还设置在触控面板100的走线区的情况下,图21A和图21B为图14在G-G’向的剖面图,图21A和图21B示出了多条触控引线12中对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线之间的过渡区域。此外,参考图21A,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线中的第二金属线122同层设置;参考图21B,多条触控引线12中的每条触控引线12对应于弯折区A3的单层金属线与对应于非弯折区A4的双层金属线中的第一金属线121同层设置。
在另一些实施例中,参见图14,第一触控电极111和触控子电极112a在第一绝缘层131上的正投影在第一绝缘层131的边界以外,即第一绝缘层131仅设置在触控面板100的触控区,在此情况下,如图21C所示,图21C为在第一绝缘层131不设置在触控面板100的走线区的情况下,图14在G-G’向的剖面图,位于走线区的触控引线12的第一金属线121和第二金属线122直接贴附在一起,即第一金属走线121和第二金属走线122之间没有第一绝缘层131。
本公开实施例还提供一种触控面板100的制备方法,用于制备上述的触控面板100。
如图22所示,触控面板100的制备方法包括:
S10、在承载面板10上形成多个触控电极11和多条触控引线12,一个触控电极11与至少一条触控引线12电连接;
其中,承载面板10划分为弯折区A3和非弯折区A4,至少一条触控引线12中对应于弯折区A3的部分为单层金属线,至少一条触控引线12中对应于非弯折区A4的部分中的至少一部分为双层金属线。
应当理解到,可以设置形成的多个触控电极11中的至少一个触控电极11的至少一部分为金属网格结构。
本公开的一些实施例中,触控面板100的制备方法与上述触控面板100具有相同的结构和有益效果,具体可参考上述实施例,此处不再一一赘述。
在一些实施例中,参考图14和图23,上述步骤S10包括:
S100、形成第一金属薄膜,将第一金属薄膜图案化形成第一金属图案层,第一金属图案层包括:多个第一触控电极111、多个触控子电极112a以及多条第一金属线121,第一触控电极111为一体结构,多个触控子电极112a阵列分布。
此处,对第一金属薄膜图案化是指对第一金属薄膜进行掩模、曝光、显影以及刻蚀。
应当理解到,多个第一触控电极111、多个触控子电极112a以及多条第一金属线121同层设置。
S101、形成第一绝缘层131,绝缘层131上具有第一过孔141和第二过孔142。
S102、形成第二金属薄膜,将第二金属薄膜图案化形成第二金属图案层,第二金属图案层包括多个连接部112b和多条第二金属线122,多个连接部112b中的每个连接部112b通过至少两个第一过孔141将相一个第二触控电极112中的相邻两个触控子电极112a电连接,一个连接部112b与一个第一触控电极111具有交叉区域;一条第一金属线121和一条第二金属线122通过至少一个第二过孔142电连接以形成双层金属线;第一金属图案层或第二金属图案层还包括:单层金属线。
此处,对第二金属薄膜图案化是指对第二金属薄膜进行掩模、曝光、显影以及刻蚀。
此外,第一过孔141用于将连接部112b和相邻两个触控子电极112a电连接,第二过孔142用于将第一金属线121和第二金属线122电连接。
应当理解到,连接部112b和第二金属线122同层设置。
需要说明的是,在多条触控引线12中对应于弯折区A3的部分为单层金属线的情况下,单层金属线可以与第一金属图案层同时形成,也可以与第二金属图案层同时形成。
此外,对于形成第一触控电极111、触控子电极112a以及第一金属线121与形成连接部112b和第二金属线122的先后顺序不进行限定。可以是先对第一金属薄膜图案化以形成第一触控电极111、触控子电极112a以及第一金属线121,然后再对第二金属薄膜图案化以形成连接部112b和第二金属线122;也可以是先对第二金属薄膜图案化以形成连接部112b和第二金属线122,然 后再对第一金属薄膜图案化以形成第一触控电极111、触控子电极112a以及第一金属线121。本公开实施例对此不作限定。
应当理解到,本公开一些实施例中的第一触控电极111、触控子电极112a、连接部112b、第一金属线121以及第二金属线122具有与上述实施例相同的技术特征和有益效果,具体可参考上述实施例,此处不再一一赘述。
在一些实施例中,参考图10和图24,上述步骤S10包括:
S200、形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层,所述第一金属图案层包括:多个第一触控电极111以及多条第一金属线121;所述多个第一触控电极111中的每个第一触控电极111为一体结构。
S201、形成第二绝缘层132,所述第二绝缘层132上具有至少一个第三过孔143。
S202、形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层,所述第二金属图案层包括:多个第二触控电极112以及多条第二金属线122;所述多个第二触控电极112中的每个第二触控电极112为一体结构;一个第二触控电极112与一个第一触控电极111具有交叉区域;一条第二金属线122与一条第一金属线121通过所述至少一个第三过孔122电连接以形成所述双层金属线;所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
需要说明的是,在多条触控引线12中对应于弯折区A3的部分为单层金属线的情况下,单层金属线可以与第一金属图案层同时形成,也可以与第二金属图案层同时形成。
此外,对于形成第一触控电极111以及第一金属线121与形成第二触控电极112和第二金属线122的先后顺序不进行限定。对于其具体的形成先后顺序,此处也不再进行赘述。
在一些实施例中,参考图6、图7和图25,上述步骤S10包括:
S300、形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层,所述第一金属图案层包括:多个触控电极11以及多条第一金属线121;所述多个触控电极11阵列分布;
S301、形成第三绝缘层133,所述第三绝缘层133上具有至少一个第四过孔144;
S302、形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层,所述第二金属图案层包括:多条第二金属线122,一条第二 金属线122与一条第一金属线121通过所述至少一个第四过孔144电连接以形成所述双层金属线;所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
需要说明的是,在多条触控引线12中对应于弯折区A3的部分为单层金属线的情况下,单层金属线可以与第一金属图案层同时形成,也可以与第二金属图案层同时形成。
此外,对于形成触控电极11以及第一金属线121与形成第二金属线122的先后顺序不进行限定。对于其具体的形成先后顺序,此处也不再进行赘述。值得说明的是,第一金属线121可以与触控电极11同层设置,也可以在形成第二金属图案层之后再形成与该第一金属线121相对应的层位,此时,不同层之间需要设置绝缘层,而第一金属线121与第二金属线122之间通过绝缘层上的过孔实现并联,第二金属线122与触控电极11之间通过过孔实现电连接。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种触控面板,包括:
    承载面板,所述承载面板划分为弯折区和非弯折区;
    多个触控电极和多条触控引线,设置在所述承载面板上,且一个触控电极与至少一条触控引线电连接;
    其中,至少一条所述触控引线中对应于所述弯折区的部分为单层金属线,至少一条所述触控引线中对应于所述非弯折区的部分中的至少一部分为双层金属线。
  2. 根据权利要求1所述的触控面板,其中,至少一条所述触控引线中对应于所述非弯折区的部分全部为所述双层金属线。
  3. 根据权利要求1所述的触控面板,其中,所述非弯折区包括靠近所述弯折区的至少一个邻接区,以及位于邻接区远离所述弯折区一侧的非邻接区;
    至少一条所述触控引线中对应所述邻接区的部分为单层金属线,至少一条所述触控引线中对应所述非邻接区的部分为双层金属线。
  4. 根据权利要求3所述的触控面板,其中,所述邻接区沿第一方向的尺寸小于所述非邻接区沿所述第一方向的尺寸;
    其中,所述第一方向平行于所述承载面板且垂直于所述弯折区靠近所述邻接区的边界。
  5. 根据权利要求1~4中任一项所述的触控面板,其中,所述多个触控电极包括多个第一触控电极和多个第二触控电极,所述多个第一触控电极和所述多个第二触控电极交叉设置,且相互绝缘。
  6. 根据权利要求5所述的触控面板,其中,所述多个第一触控电极中的每个第一触控电极均为一体结构;所述多个第二触控电极中的每个第二触控电极均包括多个触控子电极以及多个连接部,所述第二触控电极中相邻的两个触控子电极被一个所述第一触控电极间隔开;
    所述触控面板还包括:第一绝缘层;
    其中,所述多个第一触控电极和所述多个触控子电极同层设置,且所述多个第一触控电极与所述多个连接部位于所述第一绝缘层的两侧。
  7. 根据权利要求6所述的触控面板,其中,所述第一绝缘层上具有多个第一过孔,所述第二触控电极中相邻的两个所述触控子电极之间通过所述第一绝缘层上的至少两个第一过孔与所述多个连接部中的一个连接部电连接。
  8. 根据权利要求6或7所述的触控面板,其中,所述第一触控电 极和所述触控子电极均为金属网格结构。
  9. 根据权利要求6~8中任一项所述的触控面板,其中,所述双层金属线包括第一金属线和第二金属线;所述第一金属线与所述多个第一触控电极同层设置,所述第二金属线与所述多个连接部同层设置;
    和/或,
    所述单层金属线与所述多个第一触控电极或与所述多个连接部同层设置。
  10. 根据权利要求9所述的触控面板,其中,所述第一金属线和所述第二金属线位于所述第一绝缘层的两侧,所述第一绝缘层上还具有至少一个第二过孔,所述第一金属线与所述第二金属线通过所述第一绝缘层上的至少一个第二过孔电连接。
  11. 根据权利要求5所述的触控面板,其中,所述多个第一触控电极中的每个第一触控电极为一体结构,且所述多个第二触控电极中的每个第二触控电极为一体结构;
    所述触控面板还包括:第二绝缘层,位于所述多个第一触控电极和所述多个第二触控电极之间;
    其中,所述双层金属线包括第一金属线和第二金属线;所述第一金属线与所述多个第一触控电极同层设置,所述第二金属线与所述多个第二触控电极同层设置;所述第二绝缘层上还具有至少一个第三过孔,所述第一金属线与所述第二金属线通过所述第二绝缘层上的至少一个第三过孔电连接;
    和/或,
    所述单层金属线与所述多个第一触控电极或与所述多个第二触控电极同层设置。
  12. 根据权利要求1~4中任一项所述的触控面板,其中,多个触控电极呈阵列分布,每条所述触控引线与一个所述触控电极连接;
    所述触控面板还包括:第三绝缘层,位于所述多个触控电极远离所述承载面板的一侧;
    其中,所述双层金属线包括第一金属线和第二金属线;所述第一金属线与所述多个触控电极同层设置,所述第二金属线位于所述第三绝缘层远离所述承载面板的一侧;所述第三绝缘层上具有至少一个第四过孔,所述第一金属线与所述第二金属线通过所述第三绝缘层上的至少一个第四过孔电连接;
    和/或,
    所述单层金属线与所述多个触控电极同层设置或位于所述第三绝缘层远离所述承载面板的一侧。
  13. 根据权利要求12所述的触控面板,其中,每条所述触控引线的长度相等或大致相等。
  14. 根据权利要求9~13中任一项所述的触控面板,其中,所述第一金属线在所述承载面板上的正投影与所述第二金属线在所述承载面板上的正投影重叠或大致重叠。
  15. 根据权利要求1~14中任一项所述的触控面板,其中,所述弯折区位于所述触控面板的中部或边缘。
  16. 一种触控显示装置,其中,包括权利要求1~15中任一项所述的触控面板。
  17. 一种触控面板的制备方法,其中,包括:
    在承载面板上形成多个触控电极和多条触控引线,一个触控电极与至少一条触控引线电连接;
    其中,所述承载面板划分为弯折区和非弯折区,至少一条所述触控引线中对应于弯折区的部分为单层金属线,至少一条所述触控引线中对应于非弯折区的部分中的至少一部分为双层金属线。
  18. 根据权利要求17所述的触控面板的制备方法,其中,所述在承载面板上形成多个触控电极和多条触控引线,包括:
    形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层,所述第一金属图案层包括:多个第一触控电极、多个触控子电极以及多条第一金属线;所述多个第一触控电极中的每个第一触控电极为一体结构,所述多个触控子电极阵列分布,位于一个第二触控电极中的相邻两个触控子电极被一个所述第一触控电极间隔开;
    形成第一绝缘层,所述第一绝缘层上具有多个第一过孔和至少一个第二过孔;
    形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层,所述第二金属图案层包括:多个连接部和多条第二金属线;所述多个连接部中的每个连接部通过至少两个第一过孔将一个第二触控电极中的相邻两个触控子电极电连接,一个连接部与一个第一触控电极具有交叉区域;一条第一金属线和一条第二金属线通过所述至少一个第二过孔电连接以形成所述双层金属线;
    其中,所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
  19. 根据权利要求17所述的触控面板的制备方法,其中,所述在承载面板上形成多个触控电极和多条触控引线,包括:
    形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层,所述第一金属图案层包括:多个第一触控电极以及多条第一金属线;所述多个第一触控电极中的每个第一触控电极为一体结构;
    形成第二绝缘层,所述第二绝缘层上具有至少一个第三过孔;
    形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层,所述第二金属图案层包括:多个第二触控电极以及多条第二金属线;所述多个第二触控电极中的每个第二触控电极为一体结构;一个第二触控电极与一个第一触控电极具有交叉区域;一条第二金属线与一条第一金属线通过所述至少一个第三过孔电连接以形成所述双层金属线;
    所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
  20. 根据权利要求17所述的触控面板的制备方法,其中,所述在承载面板上形成多个触控电极和多条触控引线,包括:
    形成第一金属薄膜,将所述第一金属薄膜图案化形成第一金属图案层,所述第一金属图案层包括:多个触控电极以及多条第一金属线;所述多个触控电极阵列分布;
    形成第三绝缘层,所述第三绝缘层上具有至少一个第四过孔;
    形成第二金属薄膜,将所述第二金属薄膜图案化形成第二金属图案层,所述第二金属图案层包括:多条第二金属线,一条第二金属线与一条第一金属线通过所述至少一个第四过孔电连接以形成所述双层金属线;
    所述第一金属图案层或第二金属图案层还包括:所述单层金属线。
PCT/CN2021/071732 2020-01-17 2021-01-14 触控面板及其制备方法、触控显示装置 WO2021143760A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/620,579 US11816284B2 (en) 2020-01-17 2021-01-14 Touch panel and manufacturing method therefore, and touch display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010053361.8 2020-01-17
CN202010053361.8A CN111261679B (zh) 2020-01-17 2020-01-17 一种触控面板及其制备方法、触控显示装置

Publications (1)

Publication Number Publication Date
WO2021143760A1 true WO2021143760A1 (zh) 2021-07-22

Family

ID=70945343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071732 WO2021143760A1 (zh) 2020-01-17 2021-01-14 触控面板及其制备方法、触控显示装置

Country Status (3)

Country Link
US (1) US11816284B2 (zh)
CN (1) CN111261679B (zh)
WO (1) WO2021143760A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611214A (zh) * 2021-08-04 2021-11-05 京东方科技集团股份有限公司 支撑结构、柔性显示装置和贴合方法
WO2023220925A1 (zh) * 2022-05-17 2023-11-23 京东方科技集团股份有限公司 触控基板、触控面板及触控显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261679B (zh) * 2020-01-17 2022-05-13 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控显示装置
CN111754878B (zh) * 2020-07-06 2022-04-12 武汉天马微电子有限公司 显示面板及显示装置
CN112002699B (zh) * 2020-08-05 2023-04-07 武汉华星光电半导体显示技术有限公司 柔性显示面板及显示装置
CN112286395A (zh) * 2020-10-30 2021-01-29 维沃移动通信有限公司 触控屏幕及电子设备
US20230165112A1 (en) * 2021-01-28 2023-05-25 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and method of manufacturing the same, display apparatus and mask
WO2023023888A1 (zh) * 2021-08-23 2023-03-02 京东方科技集团股份有限公司 触控基板、显示触控面板及显示装置
CN113986045B (zh) * 2021-11-10 2023-11-17 昆山国显光电有限公司 触控面板及触控显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219049A (ja) * 2016-08-22 2016-12-22 大日本印刷株式会社 タッチパネルセンサおよびフレキシブルプリント配線板付タッチパネルセンサ
CN107180848A (zh) * 2016-03-11 2017-09-19 三星显示有限公司 显示装置及其制造方法
CN107422931A (zh) * 2017-06-23 2017-12-01 上海天马微电子有限公司 柔性显示面板和显示装置
CN111261679A (zh) * 2020-01-17 2020-06-09 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543916B1 (ko) * 2015-09-21 2023-06-16 삼성디스플레이 주식회사 플렉서블 전자 장치
KR102586046B1 (ko) * 2016-03-31 2023-10-10 삼성디스플레이 주식회사 디스플레이 장치
KR102583831B1 (ko) * 2016-11-25 2023-09-27 엘지디스플레이 주식회사 플렉서블 전계발광 표시장치
KR102427667B1 (ko) * 2017-09-26 2022-08-02 삼성디스플레이 주식회사 디스플레이 장치
KR102380755B1 (ko) * 2017-10-25 2022-03-30 엘지디스플레이 주식회사 터치 디스플레이 패널 및 터치 디스플레이 장치
CN110518021A (zh) 2019-09-10 2019-11-29 京东方科技集团股份有限公司 显示基板及其制备方法和显示面板
CN112151588A (zh) * 2020-09-27 2020-12-29 京东方科技集团股份有限公司 显示组件及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180848A (zh) * 2016-03-11 2017-09-19 三星显示有限公司 显示装置及其制造方法
JP2016219049A (ja) * 2016-08-22 2016-12-22 大日本印刷株式会社 タッチパネルセンサおよびフレキシブルプリント配線板付タッチパネルセンサ
CN107422931A (zh) * 2017-06-23 2017-12-01 上海天马微电子有限公司 柔性显示面板和显示装置
CN111261679A (zh) * 2020-01-17 2020-06-09 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611214A (zh) * 2021-08-04 2021-11-05 京东方科技集团股份有限公司 支撑结构、柔性显示装置和贴合方法
CN113611214B (zh) * 2021-08-04 2023-07-18 京东方科技集团股份有限公司 支撑结构、柔性显示装置和贴合方法
WO2023220925A1 (zh) * 2022-05-17 2023-11-23 京东方科技集团股份有限公司 触控基板、触控面板及触控显示装置

Also Published As

Publication number Publication date
US11816284B2 (en) 2023-11-14
CN111261679A (zh) 2020-06-09
US20230152920A1 (en) 2023-05-18
CN111261679B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021143760A1 (zh) 触控面板及其制备方法、触控显示装置
CN109103231B (zh) 显示基板及其制造方法、显示装置
CN108241451B (zh) 显示装置
US11340745B2 (en) Touch structure and method for manufacturing the same, touch substrate and touch display device
WO2020168821A1 (zh) 柔性显示面板及显示装置
US11903291B2 (en) Organic light-emitting display device having touch sensor
KR102637068B1 (ko) 표시 장치 및 이의 제조 방법
US11307724B2 (en) Touch substrate, display panel and display device
US20220028933A1 (en) Array substrate and display device
CN215954284U (zh) 触控基板、显示面板及显示装置
WO2022213582A1 (zh) 显示面板和显示装置
CN108509081B (zh) 一种触控显示面板、其制作方法及显示装置
CN112186019A (zh) 显示面板及显示装置
CN113725232A (zh) 显示基板及其制作方法、显示装置
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
WO2022100342A1 (zh) 触控显示面板及其制备方法、触控显示装置
CN114556277B (zh) 触控基板及显示面板
CN114531906A (zh) 触控面板及触控显示装置
US11625132B2 (en) Touch pad and method for manufacturing the same, touch display device
WO2024000436A1 (zh) 触控结构、显示面板及显示装置
WO2023184244A1 (zh) 显示基板及显示装置
US11861119B2 (en) Display panel and method for manufacturing the same, and display apparatus
CN113867566B (zh) 显示面板和电子装置
WO2023169192A1 (zh) 显示面板及显示装置
EP3961713A1 (en) Display device and method for providing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741687

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21741687

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21741687

Country of ref document: EP

Kind code of ref document: A1