WO2020168821A1 - 柔性显示面板及显示装置 - Google Patents

柔性显示面板及显示装置 Download PDF

Info

Publication number
WO2020168821A1
WO2020168821A1 PCT/CN2019/128259 CN2019128259W WO2020168821A1 WO 2020168821 A1 WO2020168821 A1 WO 2020168821A1 CN 2019128259 W CN2019128259 W CN 2019128259W WO 2020168821 A1 WO2020168821 A1 WO 2020168821A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
interdigital
display panel
flexible display
same
Prior art date
Application number
PCT/CN2019/128259
Other languages
English (en)
French (fr)
Inventor
李栋
田宏伟
王纯阳
张慧娟
刘政
李小龙
赵梦
谢明哲
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/965,920 priority Critical patent/US11374065B2/en
Publication of WO2020168821A1 publication Critical patent/WO2020168821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a flexible display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • organic light-emitting diode organic light-emitting diode
  • a flexible display panel has a display area and a peripheral area surrounding the display area; the flexible display panel also has a bending area.
  • the flexible display panel includes: a multilayer conductive layer disposed in the display area; and at least one interdigital capacitor disposed in an overlapping area of the bending area and the peripheral area.
  • the at least one interdigital capacitor and at least one conductive layer in the multilayer conductive layer are arranged in the same layer and the same material.
  • each of the at least one interdigital capacitor includes two interdigital capacitor plates arranged crosswise.
  • Each of the two interdigital capacitor plates includes: a plurality of interdigital fingers, and the extending direction of the plurality of interdigital fingers is consistent with or approximately the extending direction of the bending axis of the bending zone. Consistent; and, for the bending induction portion connected to the plurality of interdigital fingers, the extension direction of the bending induction portion crosses the extension direction of the bending axis of the bending zone.
  • the at least one interdigital capacitor includes a plurality of interdigital capacitors, and the plurality of interdigital capacitors and at least two conductive layers in the multilayer conductive layer are arranged in the same layer and the same material.
  • the flexible display panel further includes: a first insulating layer disposed between every two adjacent conductive layers of the at least two conductive layers, and the first insulating layer is provided with first via holes located in different layers. The interdigital capacitors are arranged in parallel through the first via hole arranged in the first insulating layer between the two conductive layers.
  • the at least one interdigital capacitor includes a plurality of interdigital capacitors, and the plurality of interdigital capacitors and at least two conductive layers in the multilayer conductive layer are arranged in the same layer and the same material. At least two of the interdigital capacitors in the plurality of interdigital capacitors are located in the same overlapping area of the bending area and the peripheral area.
  • the at least one interdigital capacitor includes a plurality of interdigital capacitors, and the plurality of interdigital capacitors are arranged in the same layer and the same material as a conductive layer in the multilayer conductive layer.
  • the plurality of interdigital capacitors are respectively located in different overlapping areas of the bending area and the peripheral area.
  • the flexible display panel further includes: a second insulating layer disposed under the interdigital capacitor, the second insulating layer includes a plurality of strip-shaped protrusions arranged in parallel and spaced apart, the The extending direction of the plurality of strip-shaped protrusions is consistent or substantially consistent with the extending direction of the bending axis of the bending zone.
  • the plurality of interdigital fingers in the interdigital capacitor plate of the interdigital capacitor are conductive films covering the plurality of strip-shaped protrusions.
  • the thickness of the strip-shaped protrusions ranges from 1 ⁇ m to 3 ⁇ m.
  • the distance between each adjacent two interdigital fingers in the plurality of interdigital fingers ranges from 3 ⁇ m to 5 ⁇ m, and the value of the size of the interdigital fingers along the extending direction perpendicular to itself The range is 3 ⁇ m ⁇ 5 ⁇ m.
  • the flexible display panel further includes: a third insulating layer covering the interdigital capacitor, a part of the third insulating layer is filled in two adjacent ones of the interdigital capacitor Between the interdigital fingers, the insulating medium of the interdigital capacitor is formed.
  • the insulating medium includes a silicon-based organic material.
  • the flexible display panel further includes: a substrate; a plurality of driving circuits arranged on the substrate and located in the display area, each of the plurality of driving circuits drives
  • the circuit includes a driving thin film transistor and a storage capacitor;
  • the driving thin film transistor includes a gate, a source, and a drain;
  • the storage capacitor includes a first electrode and a second electrode; and, the plurality of driving circuits are arranged far away from the A plurality of light-emitting devices on one side of the substrate and located in the display area, each of the plurality of light-emitting devices includes an anode; the light-emitting device is configured to emit light under the driving of the driving circuit .
  • the multilayer conductive layer includes an anode layer where the anode is located, a source and drain electrode layer where the source and drain are located, a gate layer where the gate is located, and a layer where the first electrode is located. At least two of the first electrode layer where the second electrode is located and the second electrode layer where the second electrode is located.
  • the first electrode layer and the gate layer are the same film; the second electrode layer is disposed between the gate layer and the source and drain electrode layers.
  • the flexible display panel further includes: a fourth insulating layer disposed between the gate layer and the second electrode layer; and, a fourth insulating layer disposed between the second electrode layer and the source drain electrode layer.
  • a fifth insulating layer, the fifth insulating layer is provided with a second via hole, and the second electrode in the second electrode layer passes through the second via hole in the fifth insulating layer and the source and drain electrode layer The drain is electrically connected.
  • the first electrode layer and the second electrode layer are different films.
  • the first electrode layer and the second electrode layer are respectively the same thin film as one of the gate layer, the source/drain electrode layer, or the anode layer.
  • the flexible display panel further includes: an auxiliary electrode layer disposed between the source and drain electrode layer and the anode layer; the auxiliary electrode layer is electrically connected to the anode layer, and The drain in the source-drain electrode layer is electrically connected.
  • the multilayer conductive layer further includes the auxiliary electrode layer.
  • the light emitting device is a top emission type light emitting device, and the anode of the light emitting device can reflect light.
  • a display device in another aspect, includes: a flexible display panel as described in some of the above embodiments;
  • each interdigital capacitor of the flexible display panel includes two interdigital capacitor plates
  • the two interdigital capacitor plates are electrically connected to the first voltage terminal and the second voltage terminal, respectively.
  • the display device further includes: a detection circuit electrically connected to the interdigital capacitor; the detection circuit is configured to determine the The bending state of the flexible display panel.
  • FIG. 1 is a top view of a flexible display panel according to some embodiments of the present disclosure
  • Fig. 2 is a structural diagram of an interdigital capacitor in some embodiments of the present disclosure
  • Fig. 3 is an equivalent circuit diagram of a driving circuit and a light emitting device in some embodiments of the present disclosure
  • FIG. 4 is a structural diagram of a flexible display panel according to some embodiments of the present disclosure.
  • FIG. 5 is a structural diagram of another flexible display panel in some embodiments of the present disclosure.
  • FIG. 6 is an equivalent circuit diagram of an interdigital capacitor arranged in parallel with two conductive layers of the same layer and the same material according to some embodiments of the present disclosure
  • FIG. 7 is a structural diagram of yet another flexible display panel in some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of yet another flexible display panel in some embodiments of the present disclosure.
  • FIG. 9 is a structural diagram of a display device in some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of another display device in some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • a bend sensor is usually attached to the screen of the display screen to use the bend sensor to sense the bending state of the display screen.
  • attaching the bending sensor directly to the screen of the display screen will greatly increase the thickness of the display screen, which is not conducive to the bending of the screen, and will also increase the manufacturing process of the display screen and increase the cost of the display screen.
  • the flexible display panel 100 has a display area (Ative Area, AA area for short) A and a peripheral area B surrounding the display area A, and the flexible display panel also has a bending area C. As shown in FIG. 1, the bending area C may be located in the middle of the flexible display panel 100.
  • the above-mentioned flexible display panel 100 includes: a multilayer conductive layer 1 arranged in the display area A; and, arranged in the bending area C and At least one interdigital capacitor 2 in the overlap area D of the peripheral area B.
  • the at least one interdigital capacitor 2 and at least one conductive layer 2 in the multilayer conductive layer 2 are arranged in the same layer and the same material.
  • the capacitance of each interdigital capacitor 2 in the at least one interdigital capacitor 2 can change with the change of the bending state of the flexible display panel 100.
  • the "same layer and same material arrangement" in this article refers to a layer structure formed by using the same film forming process to form a thin film for forming a specific pattern, and then using the same mask through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights Or have different thicknesses.
  • multiple element or component patterns (such as source and drain) can be arranged in the same layer without increasing the number of film production, which is beneficial to reduce the thickness of the flexible display panel 100 and simplify the manufacturing process of the flexible display panel 100.
  • the "same layer and same material arrangement” mentioned below in this article has the same meaning as the above "same layer and same material arrangement".
  • the above-mentioned flexible display panel 100 includes various types.
  • the flexible display panel 100 is a top-emission type display panel.
  • the flexible display panel 100 is a bottom emission type display panel.
  • the flexible display panel 100 as a top-emitting display panel as an example, the structure of the flexible display panel 100 is schematically described.
  • the flexible display panel 100 includes: a substrate 3, a plurality of driving circuits 4 arranged on the substrate 3 and located in the display area A, and A plurality of light emitting devices 5 on a side of the plurality of driving circuits 4 away from the substrate 3 and located in the display area A.
  • the light emitting device 5 is configured to emit light under the driving of the driving circuit 4.
  • Each light emitting device 5 includes an anode 501.
  • the light emitting device 5 is a top emission type light emitting device, and the anode 51 of the light emitting device 5 can reflect light.
  • the structure of the foregoing anode 501 may be a stack structure of a transparent electrode layer/reflective metal layer/transparent electrode layer.
  • the material of the transparent electrode layer is, for example, ITO (Indium Tin Oxides, indium tin oxide), and the material of the reflective metal layer is, for example, silver simple substance.
  • each of the plurality of driving circuits 4 includes a driving thin film transistor 401 and a storage capacitor 402.
  • the storage capacitor 402 includes a first electrode 4021 and a second electrode 4022.
  • the driving thin film transistor 401 adopts a thin film transistor with a top gate structure as shown in FIG. 4, FIG. 5, FIG. 7 or FIG.
  • the driving transistor 401 includes a gate 4011 arranged on one side of the substrate 3, a source 4012 and a drain 4013 arranged on the side of the gate 4011 away from the substrate 3, wherein the source 4012 and the drain 4013 are in the same layer. Same material settings.
  • the multilayer conductive layer 1 disposed in the display area A includes: the anode layer 101 where the anode 501 is located, the gate layer 102 where the gate 4011 is located, the source electrode 4012 and the drain electrode 4013.
  • the drain electrode layer 103 is at least two of the first electrode layer 104 where the first electrode 4021 is located and the second electrode layer 105 where the second electrode 4022 is located.
  • layer B where A is located means that the pattern corresponding to layer B includes the pattern corresponding to A. If layer B also includes the pattern corresponding to C, then the pattern corresponding to A and the pattern corresponding to C are set in the same layer and material.
  • the meaning of the "same layer and same material arrangement" represents the same meaning as the above "same layer and same material arrangement".
  • the pattern corresponding to layer B may include multiple patterns corresponding to A.
  • the at least one interdigital capacitor 2 may all be arranged in any one of the two overlapping areas D.
  • the at least one interdigital capacitor 2 includes a plurality of interdigital capacitors 2, and the plurality of interdigital capacitors 2 may be respectively arranged in the two overlapping regions D, or both may be arranged in the two overlapping regions D. Any one of the overlapping areas D is in the overlapping area D.
  • the at least one interdigital capacitor 2 and at least one conductive layer 2 in the multilayer conductive layer 2 are arranged in the same layer and the same material. That is, in the case where the at least one interdigital capacitor 2 includes one interdigital capacitor 2, the interdigital capacitor 2 may be connected to the anode layer 101, the source and drain electrode layers 103, the gate layer 102, the first electrode layer 104 and Any layer in the second electrode layer 105 is provided with the same layer and the same material; in the case that the at least one interdigital capacitor 2 includes a plurality of interdigital capacitors 2, the plurality of interdigital capacitors 2 can be simultaneously connected to the anode layer 101, Any one of the source/drain electrode layer 103, the gate layer 102, the first electrode layer 104, and the second electrode layer 105 is provided with the same layer and the same material, or with the anode layer 101, the source/drain electrode layer 103, the gate layer 102, At least two of the first electrode layer 104 and the second electrode layer 105 are provided
  • the interdigital capacitor 2 and the anode layer 101 are arranged in the same layer and the same material.
  • FIG. 7 there is shown a situation where a plurality of interdigital capacitors 2 are arranged in the same layer and the same material as the anode layer 101 and the source/drain electrode layer 103.
  • the at least one interdigital capacitor 2 is arranged in the overlapping area D of the bending area C and the peripheral area B, and the at least one interdigital capacitor 2 is connected to the display
  • At least one conductive layer 1 in the multi-layer conductive layer 1 in the area A is provided with the same layer and the same material, which can avoid increasing the thickness of the flexible display panel 100, simplify the manufacturing process of the flexible display panel 100, and reduce the thickness of the flexible display panel 100. Production costs.
  • the above-mentioned driving circuit 4 usually further includes a switching thin film transistor.
  • the structure of the driving circuit 4 includes various types. For example, “2T1C”, “6T1C”, “7T1C”, “6T2C” or “7T2C” and other structures.
  • T represents a thin film transistor
  • the number before “T” represents the number of thin film transistors
  • C represents a storage capacitor
  • the number before “C” represents the number of storage capacitors.
  • one of the thin film transistors is called a driving thin film transistor
  • the remaining thin film transistors are called a switching thin film transistor.
  • the structure of the driving circuit 4 is schematically described, wherein the equivalent circuit diagram of the driving circuit 4 and the light emitting device 5 is shown in FIG. 3.
  • the structure of the switching thin film transistor in the above-mentioned “2T1C” structure is the same as the structure of the driving thin film transistor 401.
  • the gate of the switching thin film transistor is electrically connected to the gate line (GL), the source of the switching thin film transistor is electrically connected to the data line (DL), and the drain of the switching thin film transistor is electrically connected. It is electrically connected to the gate 4011 of the driving thin film transistor 401 and the first electrode 4021 of the storage capacitor 402, the source 4012 of the driving thin film transistor 401 is electrically connected to the power terminal (Drain Voltage, VDD for short), and the drain 4013 of the driving thin film transistor 401 is electrically connected.
  • the gate of the switching thin film transistor is electrically connected to GL
  • the drain of the switching thin film transistor is electrically connected to DL
  • the source of the switching thin film transistor is electrically connected to the gate 4011 of the driving thin film transistor 401 and the first electrode 4021 of the storage capacitor 402
  • the drain 4013 of the driving thin film transistor 401 is electrically connected to VDD
  • the source 4012 of the driving thin film transistor 401 is electrically connected to the anode 501 of the light emitting device 5 and the second electrode 4022 of the storage capacitor 402
  • the cathode of the light emitting device 5 is electrically connected to VSS .
  • the first electrode layer 104 and the second electrode layer 105 have multiple arrangements.
  • the first electrode layer 104 and the gate layer 102 are the same film (that is, the first electrode layer 104 and the gate layer 102 are provided in the same layer and the same material), and the second electrode layer 105 is provided Between the gate layer 102 and the source-drain electrode layer 103.
  • the flexible display panel 100 further includes: a fourth insulating layer 6 disposed between the gate layer 102 and the second electrode layer 105, and a fifth insulating layer 7 disposed between the second electrode layer 105 and the source/drain electrode layer 103 ,
  • the fifth insulating layer 7 is provided with a second via hole, and the second electrode 4022 in the second electrode layer 105 is electrically connected to the drain electrode 4013 in the source/drain electrode layer 103 through the second via hole in the fifth insulating layer 7 .
  • the manufacturing process of the flexible display panel 100 can be simplified.
  • the second electrode layer 105 between the gate layer 102 and the source/drain electrode layer 103, the number of conductive layers 1 can be increased, so that the overlap area D between the bending area C and the peripheral area B can be increased.
  • the position of the interdigital capacitor 2 is selectable.
  • the first electrode layer 104 and the second electrode layer 105 are different films.
  • the first electrode layer 104 and the second electrode layer 105 are the same film as one of the gate layer 102, the source and drain electrode layer 103, or the anode layer 101, respectively, that is, the first electrode layer 104 and the second electrode layer 105 can be made of Any two conductive layers 1 in the flexible display panel 100 are extended. In this way, the number of films in the flexible display panel 100 can be reduced, and the thickness of the flexible display panel 100 can be reduced.
  • the flexible display panel 100 further includes an auxiliary electrode layer 8 disposed between the source and drain electrode layer 103 and the anode layer 101, and the auxiliary electrode 8 is electrically connected to the anode layer 101. It is connected and electrically connected to the drain 4013 in the source-drain electrode layer 103.
  • the conductive layer 1 further includes an auxiliary electrode layer 8.
  • the number of the conductive layers 1 can be increased, and the position selectivity of the interdigital capacitor 2 in the overlapping area D can be increased.
  • the size of the drain 4013 of the driving thin film transistor 401 can be reduced without increasing the resistance, thereby increasing the pixel density of the flexible display panel 100 or increasing the aperture ratio of the flexible display panel 100.
  • each interdigital capacitor 2 includes two interdigital capacitor plates 201 arranged crosswise.
  • Each interdigital capacitor plate 201 includes a plurality of interdigital fingers 2011 and a bending sensing portion 2012 connected to the plurality of interdigital fingers 2011.
  • the extension direction of the plurality of interdigital fingers 2011 is consistent with or substantially the same as the extension direction of the bending axis of the bending zone C (shown by the dashed line aa' in FIG. 1 and FIG.
  • extension direction of the bending induction portion 2012 is the same as
  • the extension directions of the bending axis aa' of the bending zone C intersect (that is, there is an angle between the extension direction of the bending induction portion 2012 and the extension direction of the bending axis aa').
  • each interdigital 2011 includes multiple types, and the specific structure is not limited.
  • the structure of each interdigital 2011 may be a flat rectangular strip.
  • the facing area between two adjacent interdigital fingers 2011 is the area of the facing parts of the two flat rectangular strips.
  • the capacitance value of the interdigital capacitor 2 is directly opposite to the two adjacent interdigital capacitors 2011.
  • the area is proportional and inversely proportional to the distance d between two adjacent interdigital fingers 2011.
  • the distance d between every two adjacent interdigital fingers 2011 will change.
  • the capacitance value between each adjacent two interdigital fingers 2011 will change with the change of the distance d, that is, the capacitance value of the interdigital capacitor 2 will be Changes with the change of the distance d. In this way, by setting an external circuit, the capacitance change of the interdigital capacitor 2 can be sensed, and the bending state of the flexible display panel 100 can be judged.
  • the distance d between each two adjacent interdigital fingers 2011 ranges from 3 ⁇ m to 5 ⁇ m, and each interdigital finger 2011 extends along a dimension L perpendicular to its extending direction.
  • the value range is 3 ⁇ m ⁇ 5 ⁇ m.
  • the flexible display panel 100 further includes: a third insulating layer 9 covering the interdigital capacitor 2, a part of the third insulating layer 9
  • the interdigital capacitor 2 is filled between two adjacent interdigital fingers 2011 to form the insulating medium 202 of the interdigital capacitor 2.
  • the third insulating layer 9 covering the anode layer 101 and the interdigital capacitor 2 can be referred to as a pixel defining layer.
  • the pixel defining layer can be reserved in the overlapping area D. In this way, the part of the pixel defining layer filled between two adjacent interdigital fingers 2011 constitutes the insulation of the interdigital capacitor 2 Medium 202.
  • the bending induction portion 2012 in the interdigital capacitor 2 deforms under the action of stretching or pressing, so that one of the two adjacent interdigital fingers 2011
  • the increase or decrease of the distance d between the two leads to tensile or compressive deformation of the insulating medium, which in turn causes the capacitance value of the interdigital capacitor 2 to change.
  • the bending state of the flexible display panel 100 can be judged by sensing the change of the capacitance value of the interdigital capacitor 2 through an external circuit.
  • the insulating medium can be selected from materials with greater elasticity and higher dielectric constant, such as silicon-based organic materials.
  • the interdigital capacitor 2 in the overlap area D there are many ways to arrange the interdigital capacitor 2 in the overlap area D. Some embodiments of the present disclosure do not limit this, and can be selected and set according to actual needs.
  • the flexible display panel 100 includes a plurality of interdigital capacitors 2, and the plurality of interdigital capacitors 2 and at least two conductive layers 1 in the multilayer conductive layer 1 in the display area A are arranged in the same layer and the same material. .
  • the flexible display panel 100 further includes: a first insulating layer 10 disposed between each adjacent two conductive layers 1 of the at least two conductive layers 1.
  • the first insulating layer 10 is provided with a first via G, and the interdigital capacitors 2 in different layers are arranged in parallel through the first via G in the first insulating layer 10 between the two conductive layers 1 .
  • the interdigital capacitors 2 arranged in parallel may be located in the same overlapping area D.
  • the interdigital capacitors 2 located in different layers are arranged in parallel through the first via G, in the actual manufacturing process, the interdigital capacitors 2 located in different layers and arranged in parallel are all arranged in the bending area C and the peripheral area. In the same overlap area D where B overlaps.
  • the interdigital capacitors 2 located in different layers are arranged between the two
  • the parallel arrangement of the first via G in the first insulating layer 10 between the two layers means that, in the two-layer interdigital capacitor 2, one interdigital capacitor plate 201 in each interdigital capacitor 2 is connected to the same potential, and each The other interdigital capacitor plate 201 in the interdigital capacitor 2 is connected to another potential, and its equivalent circuit diagram is shown in FIG. 6.
  • the capacitance values of the interdigital capacitors 2 in different layers all change, and the total capacitance change value is equal to that of the interdigital capacitor 2 in each layer. with.
  • the total capacitance can be increased, and the flexible display panel 100 can be bent.
  • the total capacitance has a large change value, so that when the capacitance change is detected by an external circuit, the detection sensitivity can be improved.
  • the area of each interdigital capacitor 2 can be reduced. It is beneficial to realize the narrow frame design of the flexible display panel 100.
  • the interdigital capacitors 2 located in different layers are arranged in parallel through the first via G, it is possible to provide leads on only one layer of the interdigital capacitors 2 to connect the two interdigital capacitors of the interdigital capacitors 2 of the layer.
  • the electrode plate 21 only needs to provide a constant voltage difference, which simplifies the manufacturing process of the flexible display panel 100.
  • the flexible display panel 100 includes a plurality of interdigital capacitors 2, and the plurality of interdigital capacitors 2 and at least two conductive layers 1 of the multilayer conductive layer 1 are arranged in the same layer and the same material. At least two of the interdigital capacitors 2 in the plurality of interdigital capacitors 2 are located in the same overlapping area D of the bending area C and the peripheral area B.
  • At least two interdigital capacitors 2 located in the same overlapping area D are arranged in the same layer and the same material as the anode layer 101 and the source and drain electrode layers 103 in the display area A, respectively.
  • one of the interdigital capacitors 2 is caused by the bending of the flexible display panel 100. In the case where the metal wire in the middle is broken, it can avoid affecting the detection of the bending state of the flexible display panel 100 by other interdigital capacitors 2.
  • the flexible display panel 100 includes a plurality of interdigital capacitors 2, and the plurality of interdigital capacitors 2 are arranged in the same layer and the same material as a conductive layer 1 in the multilayer conductive layer 1.
  • a plurality of interdigital capacitors 2 are respectively located in different overlapping areas D of the bending area C and the peripheral area B.
  • the above-mentioned multiple interdigital capacitors 2 and the anode layer 101 in the multilayer conductive layer 1 are arranged in the same layer and the same material, and are located in different overlapping regions D respectively.
  • Each overlapping area D may be provided with one interdigital capacitor 2 or a plurality of interdigital capacitors 2. This example does not limit this.
  • the multiple interdigital capacitors 2 can be used to detect the degree of bending of different parts of the flexible display panel 100 located in the bending area C, which is beneficial to The accuracy of determining the bending state of the flexible display panel 100 is improved.
  • the flexible display panel 100 further includes a second insulating layer 11 disposed under the interdigital capacitor 2 (that is, the side of the interdigital capacitor 2 close to the substrate 3).
  • the layer 11 includes a plurality of strip-shaped protrusions 111 arranged in parallel and spaced apart, and the extending direction of the plurality of strip-shaped protrusions 111 is consistent with or substantially the same as the extending direction of the bending axis aa' of the bending zone C.
  • the plurality of interdigital fingers 2011 in the interdigital capacitor plate 201 of the interdigital capacitor 2 are conductive films covering the plurality of strip-shaped protrusions 111.
  • the shape of the vertical section of the interdigital 2011 may be an arch as shown in FIG. 8.
  • the facing area of two adjacent interdigital fingers 2011 is equal to the product of the thickness H of the strip-shaped protrusion 111 and the length of the strip-shaped protrusion 111.
  • each strip-shaped protrusion 111 is not specifically limited. In actual applications, it can be set reasonably according to needs.
  • the thickness H of each strip-shaped protrusion 111 ranges from 1 ⁇ m to 3 ⁇ m.
  • first insulating layer 11 located under each layer of the interdigital capacitor 2 may be one layer or multiple layers, which is not specifically limited here.
  • the interdigital capacitor 2 and the auxiliary electrode layer 8 are arranged in the same layer and the same material, and the first insulating layer 11 located below the interdigital capacitor 2 includes a plurality of spaces formed on the substrate 3 and parallel to each other.
  • the flexible display panel 100 in the foregoing embodiment includes a variety of manufacturing methods, which are not limited in some embodiments of the present disclosure, and can be selected and set according to actual needs.
  • the preparation method of the flexible display panel includes: S100a-S400a.
  • a buffer layer is deposited on a substrate 3 (for example, a polyimide flexible substrate) with a thickness of 5 ⁇ m-10 ⁇ m.
  • the buffer layer is, for example, a composite layer of a silicon nitride film and a silicon oxide film, and the lower layer in the composite layer has a thickness of The silicon nitride film, the upper layer has a thickness of ⁇ silicon oxide film.
  • the deposition thickness on the surface of the buffer layer facing away from the substrate 3 is After the dehydrogenation treatment of the amorphous silicon layer, the conversion of polysilicon is completed through an Excimer Laser Annealing (ELA) process.
  • the active layer is formed through processes such as exposure and etching. Then a gate insulating layer, a gate 4011, a first interlayer insulating layer (that is, the fourth insulating layer 6), and a second interlayer insulating layer (that is, the first Five insulating layer 7), source and drain electrode layer 103, and the production of the first electrode 4021 and the second electrode 4022 of the storage capacitor 402.
  • a flat layer is deposited on the surface of the source and drain metal layer 103 facing away from the substrate 3, and an anode 501 is deposited on the surface of the flat layer facing away from the substrate 3.
  • the anode 501 extends into the overlapping area D of the peripheral area B and the bending area C.
  • the anode 501 located in the display area A and the interdigital capacitor 2 located in the overlap area D are formed by one patterning process.
  • the width of the interdigital capacitor 2 obtained in the interdigital capacitor 2 ranges from 3 ⁇ m to 5 ⁇ m
  • the interval d between two adjacent interdigital fingers 2011 ranges from 3 ⁇ m to 5 ⁇ m.
  • the structure of the interdigital 2011 may be a flat rectangular strip, and the thickness of the interdigital 2011 may be the same as the thickness of the anode 501.
  • a pixel defining layer is formed on the surface of the anode 501 facing away from the substrate 3 through a patterning process, and the pixel defining layer extends into the overlapping area D of the bending area C and the peripheral area B, Therefore, a part of the pixel defining layer can be filled between two adjacent interdigital fingers 2011 to form the insulating medium of the interdigital capacitor 2.
  • the material of the pixel defining layer may be a silicon-based organic material.
  • the preparation method of the flexible display panel includes: S100b ⁇ S600b .
  • S100b as shown in FIG. 5, this step is basically the same as S100a in some of the foregoing embodiments, and will not be repeated here.
  • S200b as shown in FIG. 5, this step is basically the same as S200a in some of the foregoing embodiments, and will not be repeated here.
  • a third interlayer insulating layer is deposited on the surface of the source and drain electrode layer 103 facing away from the substrate 3, and an auxiliary electrode layer 8 is formed in the third interlayer insulating layer. And drain 4013 vias.
  • S400b deposit a first metal film on the surface of the third interlayer insulating layer facing away from the substrate 3, and form the auxiliary electrode layer 8 in the display area A through processes such as exposure and etching.
  • the interdigital capacitor 2 located in the overlapping area D of the bending area C and the peripheral area B.
  • the width of the interdigital capacitor 2 obtained in the interdigital capacitor 2 ranges from 3 ⁇ m to 5 ⁇ m
  • the distance between two adjacent interdigital fingers 2011 ranges from 3 ⁇ m to 5 ⁇ m.
  • the structure of the interdigital 2011 may be a flat rectangular strip, and the thickness of the interdigital 2011 may be the same as the thickness of the auxiliary electrode layer 8.
  • a fourth interlayer insulating layer (that is, the first insulating layer 10) is deposited on the surface of the auxiliary electrode layer 8 facing away from the substrate 3, and in the fourth interlayer insulating layer A via hole is formed for connecting the auxiliary electrode layer 8 and the anode layer 101, and for connecting the interdigital capacitor 2 arranged on the same layer and the same material as the auxiliary electrode layer and the interdigital capacitor 2 arranged on the same layer and the same material as the anode layer 101 Via G.
  • a second metal layer is deposited on the surface of the fourth interlayer insulating layer facing away from the substrate 3, and the anode layer 101 in the display area A is formed by exposure and etching processes, and
  • the interdigital capacitor 2 in the overlapping area D of the folding area C and the peripheral area B, the interdigital capacitor 2 and the interdigital capacitor 2 of the same layer and the same material as the auxiliary electrode layer 8 are arranged in the fourth interlayer insulating layer
  • the vias G are connected in parallel.
  • the width of the interdigital fingers 2011 ranges from 3 ⁇ m to 5 ⁇ m, and the distance d between two adjacent interdigital fingers 2011 ranges from 3 ⁇ m to 5 ⁇ m.
  • the structure of the interdigital 2011 may be a flat rectangular strip, and the thickness of the interdigital 2011 may be the same as the thickness of the anode layer 101.
  • the above embodiment provides a method for preparing a flexible display panel including two-layer interdigital capacitors 2 arranged in parallel. It should be noted that when the flexible display panel includes three or more layers of interdigital capacitors 2 arranged in parallel , Can also be prepared by a similar method.
  • the method for preparing the flexible display panel is to prepare the interdigital capacitor 2 with the same layer and the same material as the auxiliary electrode layer 8 in the display area A and the interdigital fingers 2011 formed on the strip-shaped protrusions 111 as an example.
  • the process includes: S100c ⁇ S500c.
  • S100c as shown in FIG. 8, this step is basically the same as S100a in some of the foregoing embodiments, and will not be repeated here.
  • S200c as shown in FIG. 8, this step is basically the same as S200a in some of the foregoing embodiments, and will not be repeated here.
  • a fifth interlayer insulating layer (that is, the second insulating layer 11) is deposited on the surface of the source and drain electrode layer 103 facing away from the substrate 3, and is located in the display area through a patterning process.
  • the formation of A is used to connect the auxiliary electrode layer 8 and the drain 4013 through holes, and a plurality of spaced and parallel strip-shaped protrusions 111 are formed in the overlapping area D located in the bending area C and the peripheral area B.
  • the extending direction of the strip-shaped protrusion 111 is the same or substantially the same as the extending direction of the bending axis aa' of the bending zone C.
  • a first metal layer is formed on the surface of the fifth interlayer insulating layer facing away from the substrate 3, and the first metal layer extends to the overlapping area D of the bending area C and the peripheral area B .
  • the auxiliary electrode layer 8 is formed in the display area A through one patterning process, the interdigital fingers 2011 are formed in the overlapping area D of the bending area C and the peripheral area B, and the bending sensing portion 2012 connecting the plurality of interdigital fingers 2011 is formed. At the same time, reserve electrode leads.
  • step S500c as shown in FIG. 8, on the basis of step S400c, continue to complete the production of the anode layer 101 and the pixel defining layer.
  • the above embodiment provides a method for preparing the interdigital capacitor 2 with the same layer and the same material as the conductive layer 1 and the interdigital capacitors 2011 are formed on the strip-shaped protrusions 111. It should be noted that when multiple interdigital capacitors When the capacitors 2 are arranged in the same layer and the same material as at least two conductive layers 1, each interdigital capacitor 2 can be prepared by a similar method. And when the multilayer interdigital capacitors 2 are connected in parallel to each other, they can also be prepared by similar methods provided in some of the above embodiments.
  • the display device 200 includes a flexible display panel 100 as provided in some of the above embodiments.
  • Each interdigital capacitor 2 in the flexible display panel 100 includes two interdigital capacitor plates 21.
  • the two interdigital capacitor plates 21 are respectively connected to the first voltage terminal and the second voltage terminal.
  • the first voltage terminal is a high voltage terminal
  • the second voltage terminal is a low voltage terminal; or, the second voltage terminal is a high voltage terminal, and the first voltage terminal is a low voltage terminal.
  • the high-voltage terminal and the low-voltage terminal are relative terms, and the specific voltage is not limited.
  • the voltage of the high voltage terminal may be 10V
  • the voltage of the low voltage terminal may be 5V.
  • the display device 200 further includes a detection circuit 200 electrically connected to the interdigital capacitor 2.
  • the two interdigital capacitor plates 21 of the interdigital capacitor 2 are also electrically connected to a detection circuit 200, and the detection circuit 200 is configured to determine the bending of the flexible display panel 100 according to the change value of the capacitance of the interdigital capacitor 2. Fold state.
  • a display device 1000 provided by an embodiment of the present disclosure applies a constant voltage difference to the two interdigital capacitor plates 21 of the interdigital capacitor 2.
  • the two adjacent two The distance d between the interdigital fingers 211 changes, and the capacitance of each interdigital capacitor 2 changes.
  • the bending state of the display device 1000 can be detected.
  • the detection circuit 200 may be designed as a circuit that converts the change value of the capacitance into a change value of the voltage, and then determines the bending state of the display device 1000 according to the change value of the voltage.
  • the detected capacitance change value is equal to the sum of the capacitance change values of the interdigital capacitors 2 in each layer.
  • the total capacitance change value can be increased , Thereby improving detection sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性显示面板,具有显示区和围绕所述显示区的周边区;所述柔性显示面板还具有弯折区。所述柔性显示面板包括:设置在所述显示区内的多层导电层;以及,设置在所述弯折区和所述周边区的交叠区域内的至少一个叉指电容器。所述至少一个叉指电容器与所述多层导电层中的至少一层导电层同层同材料设置。

Description

柔性显示面板及显示装置
本申请要求于2019年02月22日提交的、申请号为201910133977.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种柔性显示面板及显示装置。
背景技术
随着柔性OLED(Organic Light-Emitting Diode,有机发光二极管)技术的发展,出现了较多类型的柔性显示装置,例如可折叠的手机、像幕布一样的电视或手机电脑二合一产品等。
发明内容
一方面,提供一种柔性显示面板。所述柔性显示面板具有显示区和围绕所述显示区的周边区;所述柔性显示面板还具有弯折区。所述柔性显示面板包括:设置在所述显示区内的多层导电层;以及,设置在所述弯折区和所述周边区的交叠区域内的至少一个叉指电容器。所述至少一个叉指电容器与所述多层导电层中的至少一层导电层同层同材料设置。
在一些实施例中,所述至少一个叉指电容器中的每个叉指电容器包括交叉设置的两个叉指电容极板。所述两个叉指电容极板中的每个叉指电容极板包括:多个叉指,所述多个叉指的延伸方向与所述弯折区的弯折轴线的延伸方向一致或大致一致;以及,与所述多个叉指连接的弯折感应部,所述弯折感应部的延伸方向与所述弯折区的弯折轴线的延伸方向相交叉。
在一些实施例中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的至少两层导电层同层同材料设置。所述柔性显示面板还包括:设置在所述至少两层导电层中每相邻两层导电层之间的第一绝缘层,所述第一绝缘层中设置有第一过孔,位于不同层的所述叉指电容器通过设置在二者所处导电层之间的第一绝缘层中的第一过孔并联设置。
在一些实施例中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的至少两层导电层同层同材料设置。所述多个叉指电容器中有至少两个叉指电容器位于所述弯折区和所述周边区的同一交叠区域内。
在一些实施例中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的一层导电层同层同材料设置。所述多 个叉指电容器分别位于所述弯折区和所述周边区的不同交叠区域内。
在一些实施例中,所述柔性显示面板,还包括:设置在所述叉指电容器下方的第二绝缘层,所述第二绝缘层包括间隔且平行排列的多个条状凸起,所述多个条状凸起的延伸方向与所述弯折区的弯折轴线的延伸方向一致或大致一致。所述叉指电容器的叉指电容极板中的多个叉指为覆盖在所述多个条状凸起上的导电薄膜。
在一些实施例中,所述条状凸起的厚度的取值范围为1μm~3μm。
在一些实施例中,所述多个叉指中每相邻的两个叉指之间的间距的取值范围为3μm~5μm,所述叉指的沿垂直于自身延伸方向的尺寸的取值范围为3μm~5μm。
在一些实施例中,所述柔性显示面板,还包括:覆盖在所述叉指电容器上的第三绝缘层,所述第三绝缘层中的一部分填充在所述叉指电容器中相邻的两个叉指之间,构成所述叉指电容器的绝缘介质。
在一些实施例中,所述绝缘介质包括硅基有机材料。
在一些实施例中,所述柔性显示面板,还包括:衬底;设置在所述衬底上、且位于所述显示区内的多个驱动电路,所述多个驱动电路中的每个驱动电路包括驱动薄膜晶体管和存储电容器;所述驱动薄膜晶体管包括栅极、源极和漏极,所述存储电容器包括第一电极和第二电极;以及,设置在所述多个驱动电路远离所述衬底的一侧、且位于所述显示区内的多个发光器件,所述多个发光器件中的每个发光器件包括阳极;所述发光器件被配置为在所述驱动电路的驱动下发光。所述多层导电层包括所述阳极所处的阳极层、所述源极和所述漏极所处的源漏电极层、所述栅极所处的栅极层、所述第一电极所处的第一电极层以及所述第二电极所处的第二电极层中的至少两层。
在一些实施例中,所述第一电极层与所述栅极层为同一薄膜;所述第二电极层设置在所述栅极层和所述源漏电极层之间。所述柔性显示面板还包括:设置在所述栅极层与所述第二电极层之间的第四绝缘层;以及,设置在所述第二电极层与所述源漏电极层之间的第五绝缘层,所述第五绝缘层中设置有第二过孔,所述第二电极层中的第二电极通过所述第五绝缘层中的第二过孔与所述源漏电极层中的漏极电连接。
在一些实施例中,所述第一电极层和所述第二电极层为不同的薄膜。所述第一电极层和所述第二电极层分别与所述栅极层、所述源漏电极层或所述阳极层中的一者为同一薄膜。
在一些实施例中,所述柔性显示面板,还包括:设置在所述源漏电极层 和所述阳极层之间的辅助电极层;所述辅助电极层与所述阳极层电连接,并与所述所述源漏电极层中的漏极电连接。所述多层导电层还包括所述辅助电极层。
在一些实施例中,所述发光器件为顶发射型发光器件,所述发光器件的阳极能够反射光。
另一方面,提供一种显示装置。所述显示装置包括:如上述一些实施例中所述的柔性显示面板;
在所述柔性显示面板的每个叉指电容器包括两个叉指电容极板的情况下,所述两个叉指电容极板分别与第一电压端和第二电压端电连接。
在一些实施例中,所述显示装置,还包括:与所述叉指电容器电连接的检测电路;所述检测电路被配置为,根据所述叉指电容器的电容量的变化值,确定所述柔性显示面板的弯折状态。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据本公开一些实施例中的一种柔性显示面板的俯视图;
图2为根据本公开一些实施例中的一种叉指电容器的结构图;
图3为根据本公开一些实施例中的一种驱动电路和发光器件的等效电路图;
图4为根据本公开一些实施例中的一种柔性显示面板的结构图;
图5为根据本公开一些实施例中的另一种柔性显示面板的结构图;
图6为根据本公开一些实施例中的一种分别与两层导电层同层同材料设置的叉指电容器并联设置的等效电路图;
图7为根据本公开一些实施例中的又一种柔性显示面板的结构图;
图8为根据本公开一些实施例中的又一种柔性显示面板的结构图;
图9为根据本公开一些实施例中的一种显示装置的结构图;
图10为根据本公开一些实施例中的另一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
目前,对于可折叠的显示屏或者可弯曲的显示屏,通常在显示屏的屏幕上贴合有弯折传感器,以利用该弯折传感器感知显示屏的弯折状态。但是,将弯折传感器直接贴合至显示屏的屏幕上,会使得显示屏的厚度大幅度增加,不利于屏幕的弯折,并且,还会增加显示屏的制程工序、增加显示屏的成本。
基于此,本公开的一些实施例提供一种柔性显示面板100。如图1所示,该柔性显示面板100具有显示区(Ative Area,简称AA区)A和围绕该显示区A的周边区B,该柔性显示面板还具有弯折区C。如图1所示,弯折区C可以位于该柔性显示面板100的中部。
在一些实施例中,如图4、图5、图7和图8所示,上述柔性显示面板100包括:设置在显示区A内的多层导电层1;以及,设置在弯折区C和周边区B的交叠区域D内的至少一个叉指电容器2。所述至少一个叉指电容器2与所述多层导电层2中的至少一层导电层2同层同材料设置。所述至少一个叉指电容器2中的每个叉指电容器2的电容量能够随柔性显示面板100的弯折状态的变化而发生变化。
本文中的“同层同材料设置”指的是,采用同一成膜工艺形成用于 形成特定图形的薄膜,然后利用同一掩模版通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。这样可以通过同层设置多个元件或部件的图形(例如源极和漏极),而不增加薄膜制作的次数,有利于减小柔性显示面板100的厚度,简化柔性显示面板100的制作工艺。本文的下面提及的“同层同材料设置”与上述“同层同材料设置”具有相同的含义。
上述柔性显示面板100的类型包括多种。例如,柔性显示面板100为顶发光型显示面板。又如,柔性显示面板100为底发光型显示面板。
下面以柔性显示面板100为顶发光型显示面板为例,对柔性显示面板100的结构进行示意性说明。
如图4、图5、图7和图8所示,柔性显示面板100包括:衬底3,设置在衬底3上、且位于显示区A内的多个驱动电路4,以及设置在所述多个驱动电路4的远离衬底3的一侧、且位于显示区A内的多个发光器件5。此处,发光器件5被配置为在驱动电路4的驱动下发光。每个发光器件5包括阳极501。
在一些示例中,发光器件5为顶发射型发光器件,发光器件5的阳极51能够反射光。示例性的,上述阳极501的结构为可以为透明电极层/反射金属层/透明电极层的堆叠结构。透明电极层的材质例如为ITO(Indium Tin Oxides,氧化铟锡),反射金属层的材质例如为银单质。
在一些实施例中,所述多个驱动电路4中的每个驱动电路4包括驱动薄膜晶体管401和存储电容器402。存储电容器402包括第一电极4021和第二电极4022。
在一些示例中,驱动薄膜晶体管401采用如图4、图5、图7或图8所示的顶栅结构的薄膜晶体管。驱动晶体管401包括设置在衬底3的一侧的栅极4011,设置在栅极4011的背离衬底3的一侧的源极4012和漏极4013,其中,源极4012和漏极4013同层同材料设置。
在一些示例中,设置在显示区A内的多层导电层1包括:阳极501所处的阳极层101、栅极4011所处的栅极层102、源极4012和漏极4013所述的源漏电极层103第一电极4021所处的第一电极层104和第二电极4022所处的第二电极层105中的至少两层。
本文中“A所处的B层”指的是,B层所对应的图案包括A所对应 的图案。若B层还包括C所对应的图案,则A所对应的图案与C所对应的图案同层同材料设置。该“同层同材料设置”所代表的含义与上述“同层同材料设置”的含义相同。本文中,B层所对应的图案可以包括多个A所对应的图案。
在一些示例中,如图1所示,由于周边区B围绕显示区A设置,这样弯折区C会与周边区B形成两个交叠区域D。在一些示例中,所述至少一个叉指电容器2可以全部设置在该两个交叠区域D中的任意一个交叠区域D内。在另一些示例中,所述至少一个叉指电容器2包括多个叉指电容器2,该多个叉指电容器2可以分别设置在该两个交叠区域D内,也可以均设置在该两个交叠区域D中的任意一个交叠区域D内。
所述至少一个叉指电容器2与所述多层导电层2中的至少一层导电层2同层同材料设置。也即,在所述至少一个叉指电容器2包括一个叉指电容器2的情况下,该叉指电容器2可以与阳极层101、源漏电极层103、栅极层102、第一电极层104和第二电极层105中的任意一层同层同材料设置;在所述至少一个叉指电容器2包括多个叉指电容器2的情况下,该多个叉指电容器2可以同时与阳极层101、源漏电极层103、栅极层102、第一电极层104和第二电极层105中的任意一层同层同材料设置,或与阳极层101、源漏电极层103、栅极层102、第一电极层104和第二电极层105中的至少两层同层同材料设置。
如图4所示,示出了叉指电容器2与阳极层101同层同材料设置的情形。如图7所示,示出了多个叉指电容器2分别与阳极层101和源漏电极层103同层同材料设置的情形。
本公开的实施例提供的柔性显示面板100,将所述至少一个叉指电容器2设置在弯折区C和周边区B的交叠区域D内,并使得所述至少一个叉指电容器2与显示区A中多层导电层1中的至少一层导电层1同层同材料设置,既可以避免增加柔性显示面板100的厚度,还可以简化柔性显示面板100的制程工序,降低柔性显示面板100的制作成本。
在一些实施例中,上述驱动电路4通常还包括开关薄膜晶体管。
驱动电路4的结构包括多种。例如“2T1C”“6T1C”、“7T1C”、“6T2C”或“7T2C”等结构。此处,“T”表示为薄膜晶体管,位于“T”前面的数字表示为薄膜晶体管的个数,“C”表示为存储电容器,“C”前面的数字表示为存储电容器的个数。上述每种结构中,其中一个薄膜晶体管称为驱动薄膜晶体管,其余的薄膜晶体管称为开关薄膜晶体管。
下面以驱动电路4的结构为“2T1C”结构为例,对驱动电路4的结构进行示意性说明,其中,驱动电路4与发光器件5的等效电路图如图3所示。示例性的,上述“2T1C”结构中的开关薄膜晶体管的结构与驱动薄膜晶体管401的结构相同。
如图3所示,开关薄膜晶体管的栅极与栅线(Gate Line,简称GL)电连接,开关薄膜晶体管的源极与数据线(Data Line,简称DL)电连接,开关薄膜晶体管的漏极与驱动薄膜晶体管401的栅极4011和存储电容器402的第一电极4021电连接,驱动薄膜晶体管401的源极4012与电源端(Drain Voltage,简称VDD)电连接,驱动薄膜晶体管401的漏极4013与发光器件5的阳极501和存储电容器402的第二电极4022电连接,发光器件5的阴极与公共电极端(Series Voltage,简称VSS)电连接。或者,开关薄膜晶体管的栅极与GL电连接,开关薄膜晶体管的漏极与DL电连接,开关薄膜晶体管的源极与驱动薄膜晶体管401的栅极4011和存储电容器402的第一电极4021电连接,驱动薄膜晶体管401的漏极4013与VDD电连接,驱动薄膜晶体管401的源极4012与发光器件5的阳极501和存储电容器402的第二电极4022电连接,发光器件5的阴极与VSS电连接。这样一来,如图5所示,在GL输出高电平时,开关薄膜晶体管导通,将DL上的输入信号传输至驱动薄膜晶体管401的栅极4011,并对存储电容402进行充电;在GL输出低电平且VDD输出高电平时,存储电容器402为驱动薄膜晶体管401的栅极4011提供高电平,使得驱动薄膜晶体管401导通,进而使得发光器件5发光。
在一些实施例中,第一电极层104和第二电极层105具有多种设置方式。
在一些示例中,如图4所示,第一电极层104与栅极层102为同一薄膜(也即第一电极层104与栅极层102同层同材料设置),第二电极层105设置在栅极层102和源漏电极层103之间。柔性显示面板100还包括:设置在栅极层102与第二电极层105之间的第四绝缘层6,以及设置在第二电极层105与源漏电极层103之间的第五绝缘层7,第五绝缘层7中设置有第二过孔,第二电极层105中的第二电极4022通过第五绝缘层7中的第二过孔与源漏电极层103中的漏极4013电连接。
通过将第一电极层104与栅极层102设置为同一薄膜,能够简化柔性显示面板100的制备工艺。通过将第二电极层105设置在栅极层102和源漏电极层103之间,能够增加导电层1的数量,这样一来,能够增 加在弯折区C和周边区B的交叠区域D内设置叉指电容器2的位置选择性。
在另一些示例中,第一电极层104和第二电极层105为不同的薄膜。第一电极层104和第二电极层105分别与栅极层102、源漏电极层103或阳极层101中的一者为同一薄膜,也即第一电极层104和第二电极层105可以由柔性显示面板100中的任意两层导电层1延伸获得。这样可以减少柔性显示面板100中的薄膜数量,减小柔性显示面板100的厚度。
在一些实施例中,如图5和图8所示,柔性显示面板100还包括:设置在源漏电极层103和阳极层101之间的辅助电极层8,该辅助电极8与阳极层101电连接,并与源漏电极层103中的漏极4013电连接。此时,导电层1还包括辅助电极层8。
通过设置辅助电极层8,能够增加导电层1的数量,进而能够增加在交叠区域D内设置叉指电容器2的位置选择性。而且,能够在避免增加电阻的情况下,减小驱动薄膜晶体管401的漏极4013的尺寸,进而能够增加柔性显示面板100的像素密度,或增大柔性显示面板100的开口率。
在一些实施例中,上述叉指电容器2的结构可以为:每个叉指电容器器2包括交叉设置的两个叉指电容极板201。每个叉指电容极板201包括多个叉指2011以及与该多个叉指2011连接的弯折感应部2012。该多个叉指2011的延伸方向与弯折区C的弯折轴线(如图1和图2中虚线aa'所示)的延伸方向一致或大致一致,该弯折感应部2012的延伸方向与弯折区C的弯折轴线aa'的延伸方向相交叉(也即弯折感应部2012的延伸方向与弯折轴线aa'的延伸方向之间具有夹角)。
上述多个叉指2011的结构包括多种,具体结构不做限定。示例性的,每一个叉指2011的结构可以为平面矩形条。这样一来,相邻的两个叉指2011之间的正对面积即为即两个平面矩形条的正对部分的面积。
此处,在一个叉指电容器2中的两个叉指电容极板201之间的电压差恒定的情况下,叉指电容器2的电容值与相邻的两个叉指2011之间的正对面积成正比,与相邻的两个叉指2011之间的间距d成反比。
基于此,在相邻的两个叉指2011之间的正对面积恒定的情况下,相邻的两个叉指2011之间的间距d越小,则叉指电容器2的电容值就越大;相邻的两个叉指2011之间的间距d越大,则叉指电容器2的电容值就越小。
在柔性显示面板100沿弯折轴线aa'发生弯折的情况下,随着柔性显示面板100的弯折状态的改变,每相邻的两个叉指2011之间的间距d会发生变化,在每相邻的两个叉指2011相对的面积一定的情况下,每相邻的两个叉指2011之间的电容值会随间距d的变化而变化,也即叉指电容器2的电容值会随间距d的变化而变化。这样通过设置外接电路便可以感知叉指电容器2的电容变化,并判断柔性显示面板100的弯折状态。
在一些实施例中,如图2所示,每相邻的两个叉指2011之间的间距d的取值范围为3μm~5μm,每个叉指2011沿垂直于自身延伸方向的尺寸L的取值范围为3μm~5μm。
在一些实施例中,如图4、图5、图7和图8所示,柔性显示面板100还包括:覆盖在叉指电容器2上的第三绝缘层9,第三绝缘层9中的一部分填充在叉指电容器2中相邻的两个叉指2011之间,构成该叉指电容器2的绝缘介质202。
以叉指电容器2与阳极层101同层同材料设置为例,如图4所示,覆盖在阳极层101和叉指电容器2上的第三绝缘层9可以称为像素界定层。在实际制作像素界定层时,可以在交叠区域D内保留该像素界定层,这样一来,像素界定层填充在相邻的两个叉指2011之间的部分则构成叉指电容器2的绝缘介质202。在柔性显示面板100沿弯折轴线aa'发生弯折时,该叉指电容器2中的弯折感应部2012在拉伸作用或挤压作用下发生变形,使得相邻的两个叉指2011之间的间距d增大或减小,使得绝缘介质产生拉伸或压缩变形,进而使得叉指电容器2的电容值产生变化。通过外部电路感知叉指电容器2的电容值的变化即可判断柔性显示面板100的弯折状态。
在一些示例中,绝缘介质可以选择具有较大弹性以及较高介电系数的材料,例如硅基有机材料。
本公开实施例中,叉指电容器2在交叠区域D内的设置方式有多种,本公开的一些实施例对此不做限定,可以根据实际需要选择设置。
在一些实施例中,柔性显示面板100包括多个叉指电容器2,且该多个叉指电容器2与显示区A中的多层导电层1中的至少两层导电层1同层同材料设置。柔性显示面板100还包括:设置在至少两层导电层1中每相邻的两层导电层1之间的第一绝缘层10。该第一绝缘层10中设置有第一过孔G,位于不同层的叉指电容器2通过设置在二者所处导电层1之间的第一绝缘层10中的第一过孔G并联设置。并联设置的叉指 电容器2可以位于同一个交叠区域D内。
这里,由于位于不同层的叉指电容器2通过第一过孔G并联设置,因此,在实际制作的过程中,位于不同层且并联设置的叉指电容器2均设置在弯折区C和周边区B交叠的同一个交叠区域D内。
以多个叉指电容器2分别与显示区A中的阳极层101和辅助电极层8同层同材料设置为例,如图5所示,位于不同层的叉指电容器2通过设置在二者之间的第一绝缘层10中的第一过孔G并联设置是指,该两层叉指电容器2中,每个叉指电容器2中的一个叉指电容极板201连接至同一电位,每个叉指电容器2中的另一个叉指电容极板201连接至另一电位,其等效电路图如图6所示。当柔性显示面板100沿弯折轴线aa'弯折时,位于不同层的叉指电容器2的电容值均发生变化,总的电容量变化值等于各层中叉指电容器2的电容量变化值之和。
通过将位于不同层的叉指电容器2通过二者之间的第一绝缘层10中的第一过孔G并联设置,能够增大总的电容量,在柔性显示面板100产生弯折的情况下,总的电容量的变化值较大,这样在通过外接电路检测电容量的变化时,可以提高检测灵敏度。而且,在确保能够与叉指电容器2的电容量变化值进行较为有效的检测的情况下,通过设置将多个叉指电容器2设置在不同层,可以减小每个叉指电容器2的面积,有利于实现柔性显示面板100的窄边框设计。此外,由于位于不同层的叉指电容器2通过第一过孔G并联设置,因此,可以仅在其中的一层叉指电容器2上设置引线,向该层叉指电容器2的两个叉指电容极板21提供恒定的电压差即可,简化柔性显示面板100的制作工艺。
在另一些实施例中,柔性显示面板100包括多个叉指电容器2,且该多个叉指电容器2与多层导电层1中的至少两层导电层1同层同材料设置。该多个叉指电容器2中有至少两个叉指电容器2位于弯折区C和周边区B的同一交叠区域D内。
示例性的,如图7所示,位于同一交叠区域D内的至少两个叉指电容器2分别与显示区A中的阳极层101和源漏电极层103同层同材料设置。
通过设置多个叉指电容器2,且将该多个叉指电容器2分别与至少两层导电层1同层同材料设置,在由于柔性显示面板100的弯折而使得其中一层叉指电容器2中的金属线发生断裂的情况下,可以避免影响其他叉指电容器2对柔性显示面板100的弯折状态的检测。
在又一些实施例中,柔性显示面板100包括多个叉指电容器2,该多个叉指电容器2与多层导电层1中的一层导电层1同层同材料设置。多个叉指电容器2分别位于弯折区C和周边区B的不同交叠区域D内。
示例性的,如图4所示,上述多个叉指电容器2与多层导电层1中的阳极层101同层同材料设置,且分别位于不同的交叠区域D内。每个交叠区域D内可以设置有一个叉指电容器2,也可以设置有多个叉指电容器2。本示例对此不做限定。
通过将多个叉指电容器2设置在不同的交叠区域D内,可以利用多个叉指电容器2分别对柔性显示面板100位于弯折区C内的不同部分的弯折程度进行检测,有利于提高对柔性显示面板100的弯折状态进行确定的准确性。
在又一些实施例中,参见图8,柔性显示面板100还包括设置在叉指电容器2下方(也即叉指电容器2的靠近衬底3的一侧)的第二绝缘层11,第二绝缘层11包括间隔且平行排列的多个条状凸起111,该多个条状凸起111的延伸方向与弯折区C的弯折轴线aa'的延伸方向一致或大致一致。叉指电容器2的叉指电容极板201中的多个叉指2011为覆盖在多个条状凸起111上的导电薄膜。
在一些示例中,叉指2011的竖直截面的形状可以为如图8所示的拱形。相邻的两个叉指2011的正对面积等于条状凸起111的厚度H和条状凸起111的长度之积。通过设置多个条状凸起111,并将导电薄膜覆盖在多个条状凸起111上以形成多个叉指2011,能够增大相邻的两个叉指2011之间的正对面积。根据公式ΔC=ε×S/Δd可以得知,在该叉指电容器2发生相同形变(也即相邻两个叉指2011之间的距离变化值,如公式中的Δd所示)的情况下,相邻两个叉指2011之间的正对面积(也即公式中的S)越大,电容量的变化值(也即公式中的ΔC)越大,有利于提高检测灵敏度。而且,在确保能够对叉指电容器2的电容量的变化值进行有效检测的情况下,有利于减小叉指电容器2的制作面积。
此处,对每一个条状凸起111的厚度H不做具体限定,在实际应用中,可以根据需要进行合理设置。
在一些示例中,每一个条状凸起111的厚度H的取值范围为1μm~3μm。
需要说明的是,位于每一层叉指电容器2下方的第一绝缘层11可以为一层,也可以为多层,在此不做具体限定。
如图8所示,示出了叉指电容器2与辅助电极层8同层同材料设置,且位于叉指电容器2下方的第一绝缘层11包括形成在衬底3上的多个间隔且平行排列的条状凸起111的情形。
上述实施例中的柔性显示面板100包括多种制备方法,本公开的一些实施例对此不做限定,可以根据实际需要选择设置。
在一些实施例中,以制备与显示区A中的阳极层11同层同材料设置的叉指电容器2为例,柔性显示面板的制备方法包括:S100a~S400a。
S100a,如图4所示,在厚度为5μm~10μm的衬底3(例如为聚酰亚胺柔性衬底)上沉积缓冲层。该缓冲层例如为氮化硅薄膜和氧化硅薄膜的复合层,复合层中的下层为厚度为
Figure PCTCN2019128259-appb-000001
的氮化硅薄膜,上层为厚度为
Figure PCTCN2019128259-appb-000002
的氧化硅薄膜。
S200a,如图4所示,在缓冲层背离衬底3的一侧表面上沉积厚度为
Figure PCTCN2019128259-appb-000003
的非晶硅层,通过脱氢处理后,通过准分子激光退火(Excimer Laser Annealing,简称ELA)工艺完成多晶硅的转化。通过曝光刻蚀等工艺形成有源层。然后在有源层的背离衬底3的一侧表面上形成栅绝缘层、栅极4011、第一层间绝缘层(也即第四绝缘层6)、第二层间绝缘层(也即第五绝缘层7)和源漏电极层103,以及存储电容器402的第一电极4021和第二电极4022的制作。
S300a,如图4所示,在源漏金属层103的背离衬底3的一侧表面上沉积平坦层,并在平坦层背离衬底3的一侧表面上沉积阳极501。阳极501延伸至周边区B和弯折区C的交叠区域D内。通过一次构图工艺形成位于显示区A的阳极501和位于交叠区域D内的叉指电容器2。此处,所获得的叉指电容器2中叉指2011的宽度的范围为3μm~5μm,相邻的两个叉指2011之间的间距d的范围为3μm~5μm。叉指2011的结构可以为平面矩形条,叉指2011的厚度可以与阳极501的厚度一致。
S400a,如图4所示,通过构图工艺在阳极501的背离衬底3的一侧表面上形成像素界定层,该像素界定层延伸至弯折区C和周边区B的交叠区域D内,使得该像素界定层中的一部分可以填充在相邻的两个叉指2011之间,构成叉指电容器2的绝缘介质。该像素界定层的材料可以为硅基有机材料。
在另一些示例中,以制备与显示区A中的辅助电极层8和阳极层101同层同材料的多个并联设置的叉指电容器2为例,柔性显示面板的制备方法包括:S100b~S600b。
S100b,如图5所示,本步骤与上述一些实施例中的S100a基本相同,在此不再赘述。
S200b,如图5所示,本步骤与上述一些实施例中的S200a基本相同,在此不再赘述。
S300b,如图5所示,在源漏电极层103的背离衬底3的一侧表面上沉积第三层间绝缘层,并在该第三层间绝缘层中形成用于连接辅助电极层8和漏极4013的过孔。
S400b,如图5所示,在第三层间绝缘层的背离衬底3的一侧表面上沉积第一金属薄膜,通过曝光、刻蚀等工艺形成位于显示区A内的辅助电极层8,以及位于弯折区C和周边区B的交叠区域D内的叉指电容器2。此处,所获得的叉指电容器2中叉指2011的宽度的范围为3μm~5μm,相邻的两个叉指2011之间的间距的范围为3μm~5μm。叉指2011的结构可以为平面矩形条,叉指2011的厚度可以与辅助电极层8的厚度一致。
S500b,如图5所示,在辅助电极层8的背离衬底3的一侧表面上沉积第四层间绝缘层(也即第一绝缘层10),并在该第四层间绝缘层中形成用于连接辅助电极层8和阳极层101的过孔,以及用于连接与辅助电极层同层同材料设置的叉指电容器2和与阳极层101同层同材料设置的叉指电容器2的过孔G。
S600b,如图5所示,在第四层间绝缘层的背离衬底3的一侧表面上沉积第二金属层,通过曝光刻蚀等工艺形成位于显示区A的阳极层101,以及位于弯折区C和周边区B的交叠区域D内的叉指电容器2,该叉指电容器2和与辅助电极层8同层同材料设置的叉指电容器2通过设置在第四层间绝缘层中的过孔G并联连接。此处,与阳极层101同层同材料设置的叉指电容器2中,叉指2011的宽度的范围为3μm~5μm,相邻的两个叉指2011之间的间距d的范围为3μm~5μm。叉指2011的结构可以为平面矩形条,叉指2011的厚度可以与阳极层101的厚度一致。
此处,上述实施例提供了柔性显示面板包括并联设置的两层叉指电容器2的制备方法,需要说明的是,当柔性显示面板包括并联设置的三层或三层以上的叉指电容器2时,同样可以通过类似的方法制备获得。
在又一些实施例中,以制备与显示区A中的辅助电极层8同层同材料设置且叉指2011形成在条状凸起111上的叉指电容器2为例,柔性显示面板的制备方法进行包括:S100c~S500c。
S100c,如图8所示,本步骤与上述一些实施例中的S100a基本相同, 在此不再赘述。
S200c,如图8所示,本步骤与上述一些实施例中的S200a基本相同,在此不再赘述。
S300c,如图8所示,在源漏电极层103的背离衬底3的一侧表面上沉积第五层间绝缘层(也即第二绝缘层11),并通过一次构图工艺在位于显示区A的形成用于连接辅助电极层8和漏极4013的过孔,在位于弯折区C和周边区B的交叠区域D内形成多个间隔且平行排列的条状凸起111,多个条状凸起111的延伸方向与弯折区C的弯折轴线aa'的延伸方向一致或大致一致。
S400c,如图8所示,在第五层间绝缘层的背离衬底3的一侧表面上形成第一金属层,第一金属层延伸至弯折区C和周边区B的交叠区域D。通过一次构图工艺在位于显示区A形成辅助电极层8,在位于弯折区C和周边区B的交叠区域D内形成叉指2011,以及连接多个叉指2011的弯折感应部2012,同时预留出电极引线。
S500c,如图8所示,在步骤S400c的基础上,继续在完成阳极层101和像素界定层等的制作。
此处,上述实施例提供了与一层导电层1同层同材料设置且叉指2011形成在条状凸起111上的叉指电容器2的制备方法,需要说明的是,当多个叉指电容器2分别与至少两层导电层1同层同材料设置时,每一层叉指电容器2均可以通过类似的方法制备获得。且当多层叉指电容器2之间相互并联连接时,同样也可以通过上述一些实施例提供的类似的方法制备获得。
本公开的一些实施例提供一种显示装置1000。如图9和图10所示,该显示装置200包括如上述一些实施例中提供的柔性显示面板100,在柔性显示面板100中的每个叉指电容器2包括两个叉指电容极板21的情况下,该两个叉指电容极板21分别与第一电压端和第二电压端连接。第一电压端为高电压端,第二电压端为低电压端;或,第二电压端为高电压端,第一电压端为低电压端。
此处,高电压端和低电压端是相对而言的,并不对具体电压进行限定。示例性的,高电压端的电压可以为10V,低电压端的电压可以为5V。
在一些实施例中,显示装置200还包括与叉指电容器2电连接的检测电路200。上述叉指电容器2的两个叉指电容极板21还分别与检测电路200电连接,该检测电路200被配置为,根据叉指电容器2的电容量 的变化值,确定柔性显示面板100的弯折状态。
本公开实施例提供的一种显示装置1000,通过向叉指电容器2的两个叉指电容极板21施加一恒定的电压差,在该显示装置200发生弯折时,随着相邻的两个叉指211之间的间距d发生变化,每个叉指电容器2的电容量均发生变化。通过检测电路对叉指电容器2的电容量的变化值进行检测,可以检测显示装置1000的弯折状态。
在一些示例中,检测电路200可以设计为将电容量的变化值转化成电压的变化值,然后根据电压的变化值判断该显示装置1000的弯折状态的电路。
需要说明的是,在叉指电容器2为多个,且分别与显示区A内的至少两层导电层1同层同材料设置,且位于不同层的叉指电容器2相互并联设置的情况下,所检测到的电容量的变化值等于各层中叉指电容器2的电容量变化值之和,在每个叉指电容器2的形变量一定的情况下,能够增大总的电容量的变化值,从而提高检测灵敏度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种柔性显示面板,具有显示区和围绕所述显示区的周边区;所述柔性显示面板还具有弯折区;
    所述柔性显示面板包括:
    设置在所述显示区内的多层导电层;以及,
    设置在所述弯折区和所述周边区的交叠区域内的至少一个叉指电容器,所述至少一个叉指电容器与所述多层导电层中的至少一层导电层同层同材料设置。
  2. 根据权利要求1所述的柔性显示面板,其中,所述至少一个叉指电容器中的每个叉指电容器包括交叉设置的两个叉指电容极板;
    所述两个叉指电容极板中的每个叉指电容极板包括:
    多个叉指,所述多个叉指的延伸方向与所述弯折区的弯折轴线的延伸方向一致或大致一致;以及,
    与所述多个叉指连接的弯折感应部,所述弯折感应部的延伸方向与所述弯折区的弯折轴线的延伸方向相交叉。
  3. 根据权利要求2所述的柔性显示面板,其中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的至少两层导电层同层同材料设置;
    所述柔性显示面板还包括:
    设置在所述至少两层导电层中每相邻两层导电层之间的第一绝缘层,所述第一绝缘层中设置有第一过孔,位于不同层的所述叉指电容器通过设置在二者所处导电层之间的第一绝缘层中的第一过孔并联设置。
  4. 根据权利要求2所述的柔性显示面板,其中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的至少两层导电层同层同材料设置;
    所述多个叉指电容器中有至少两个叉指电容器位于所述弯折区和所述周边区的同一交叠区域内。
  5. 根据权利要求2所述的柔性显示面板,其中,所述至少一个叉指电容器包括多个叉指电容器,所述多个叉指电容器与所述多层导电层中的一层导电层同层同材料设置;
    所述多个叉指电容器分别位于所述弯折区和所述周边区的不同交叠区域内。
  6. 根据权利要求2~5中任一项所述的柔性显示面板,还包括:
    设置在所述叉指电容器下方的第二绝缘层,所述第二绝缘层包括间隔且 平行排列的多个条状凸起,所述多个条状凸起的延伸方向与所述弯折区的弯折轴线的延伸方向一致或大致一致;
    所述叉指电容器的叉指电容极板中的多个叉指为覆盖在所述多个条状凸起上的导电薄膜。
  7. 根据权利要求6所述的柔性显示面板,其中,所述条状凸起的厚度的取值范围为1μm~3μm。
  8. 根据权利要求2~7中任一项所述的柔性显示面板,其中,所述多个叉指中每相邻的两个叉指之间的间距的取值范围为3μm~5μm,所述叉指的沿垂直于自身延伸方向的尺寸的取值范围为3μm~5μm。
  9. 根据权利要求2~8中任一项所述的柔性显示面板,还包括:
    覆盖在所述叉指电容器上的第三绝缘层,所述第三绝缘层中的一部分填充在所述叉指电容器中相邻的两个叉指之间,构成所述叉指电容器的绝缘介质。
  10. 根据权利要求9所述的柔性显示面板,其中,所述绝缘介质包括硅基有机材料。
  11. 根据权利要求1~10中任一项所述的柔性显示面板,还包括:
    衬底;
    设置在所述衬底上、且位于所述显示区内的多个驱动电路,所述多个驱动电路中的每个驱动电路包括驱动薄膜晶体管和存储电容器;所述驱动薄膜晶体管包括栅极、源极和漏极,所述存储电容器包括第一电极和第二电极;以及,
    设置在所述多个驱动电路远离所述衬底的一侧、且位于所述显示区内的多个发光器件,所述多个发光器件中的每个发光器件包括阳极;所述发光器件被配置为在所述驱动电路的驱动下发光;
    所述多层导电层包括所述阳极所处的阳极层、所述源极和所述漏极所处的源漏电极层、所述栅极所处的栅极层、所述第一电极所处的第一电极层以及所述第二电极所处的第二电极层中的至少两层。
  12. 根据权利要求11所述的柔性显示面板,其中,所述第一电极层与所述栅极层为同一薄膜;所述第二电极层设置在所述栅极层和所述源漏电极层之间;
    所述柔性显示面板还包括:
    设置在所述栅极层与所述第二电极层之间的第四绝缘层;以及,
    设置在所述第二电极层与所述源漏电极层之间的第五绝缘层,所述第五 绝缘层中设置有第二过孔,所述第二电极层中的第二电极通过所述第五绝缘层中的第二过孔与所述源漏电极层中的漏极电连接。
  13. 根据权利要求11所述的柔性显示面板,其中,所述第一电极层和所述第二电极层为不同的薄膜;
    所述第一电极层和所述第二电极层分别与所述栅极层、所述源漏电极层或所述阳极层中的一者为同一薄膜。
  14. 根据权利要求11所述的柔性显示面板,还包括:设置在所述源漏电极层和所述阳极层之间的辅助电极层;所述辅助电极层与所述阳极层电连接,并与所述所述源漏电极层中的漏极电连接;
    所述多层导电层还包括所述辅助电极层。
  15. 根据权利要求11~14中任一项所述的柔性显示面板,其中,所述发光器件为顶发射型发光器件,所述发光器件的阳极能够反射光。
  16. 一种显示装置,包括:如权利要求1~15中任一项所述的柔性显示面板;
    在所述柔性显示面板的每个叉指电容器包括两个叉指电容极板的情况下,所述两个叉指电容极板分别与第一电压端和第二电压端电连接。
  17. 根据权利要求16所述的显示装置,还包括:与所述叉指电容器电连接的检测电路;所述检测电路被配置为,根据所述叉指电容器的电容量的变化值,确定所述柔性显示面板的弯折状态。
PCT/CN2019/128259 2019-02-22 2019-12-25 柔性显示面板及显示装置 WO2020168821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/965,920 US11374065B2 (en) 2019-02-22 2019-12-25 Flexible display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910133977.3 2019-02-22
CN201910133977.3A CN109786430B (zh) 2019-02-22 2019-02-22 一种柔性显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020168821A1 true WO2020168821A1 (zh) 2020-08-27

Family

ID=66486925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128259 WO2020168821A1 (zh) 2019-02-22 2019-12-25 柔性显示面板及显示装置

Country Status (3)

Country Link
US (1) US11374065B2 (zh)
CN (1) CN109786430B (zh)
WO (1) WO2020168821A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786430B (zh) 2019-02-22 2021-01-26 京东方科技集团股份有限公司 一种柔性显示面板及显示装置
BR112021023955B1 (pt) * 2019-05-31 2024-03-05 Samsung Electronics Co., Ltd Dispositivo eletrônico dobrável incluindo estrutura de proteção de exibidor
CN110224009B (zh) * 2019-06-06 2021-04-23 京东方科技集团股份有限公司 一种衬底基板、显示面板及其制作方法、显示装置
CN110277429B (zh) * 2019-06-20 2021-11-16 武汉天马微电子有限公司 一种柔性显示面板及柔性显示装置
CN110379309B (zh) * 2019-07-12 2021-11-23 京东方科技集团股份有限公司 一种显示面板及其检测方法
CN110459579B (zh) * 2019-08-21 2022-01-25 京东方科技集团股份有限公司 一种柔性显示面板及其弯折检测方法
CN110491921B (zh) * 2019-08-22 2022-01-25 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN110416193B (zh) 2019-08-22 2021-03-16 合肥鑫晟光电科技有限公司 一种电容、阵列基板及其制备方法和显示面板
CN110752222B (zh) * 2019-10-31 2021-11-26 厦门天马微电子有限公司 一种显示面板、其制作方法及显示装置
CN110718563B (zh) * 2019-11-19 2021-11-09 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN110890387A (zh) * 2019-11-26 2020-03-17 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN111179758B (zh) * 2020-01-06 2022-07-08 京东方科技集团股份有限公司 柔性显示面板、显示装置及显示装置的控制方法
KR20210122391A (ko) * 2020-03-31 2021-10-12 삼성디스플레이 주식회사 표시 장치
CN111681586B (zh) * 2020-06-11 2022-08-16 Oppo广东移动通信有限公司 折叠屏及其控制方法、电子设备
US20240184327A1 (en) * 2021-08-10 2024-06-06 Chengdu Boe Optoelectronics Technology Co., Ltd. Foldable Display Device and Driving Method Therefor
CN113745305B (zh) * 2021-09-07 2022-09-27 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN114566506A (zh) * 2022-02-21 2022-05-31 深圳市华星光电半导体显示技术有限公司 柔性tft基板、柔性显示面板以及柔性显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
CN106247920A (zh) * 2016-07-07 2016-12-21 中国计量大学 一种基于弹性基底夹心叉指电容的表面应变检测器件
KR20170025870A (ko) * 2015-08-31 2017-03-08 엘지디스플레이 주식회사 연성 표시 장치
CN109786430A (zh) * 2019-02-22 2019-05-21 京东方科技集团股份有限公司 一种柔性显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157594C (zh) * 1999-07-09 2004-07-14 Nec东金株式会社 静电电容式应变传感器及其使用方法
JP2018066933A (ja) * 2016-10-21 2018-04-26 株式会社ジャパンディスプレイ 表示装置
CN107195667B (zh) * 2017-06-30 2020-02-21 武汉天马微电子有限公司 一种柔性有机发光显示面板和电子设备
CN109427258B (zh) * 2017-09-05 2021-09-17 乐金显示有限公司 显示装置
CN108550612B (zh) * 2018-05-29 2020-11-13 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
KR20170025870A (ko) * 2015-08-31 2017-03-08 엘지디스플레이 주식회사 연성 표시 장치
CN106247920A (zh) * 2016-07-07 2016-12-21 中国计量大学 一种基于弹性基底夹心叉指电容的表面应变检测器件
CN109786430A (zh) * 2019-02-22 2019-05-21 京东方科技集团股份有限公司 一种柔性显示面板及显示装置

Also Published As

Publication number Publication date
CN109786430B (zh) 2021-01-26
US11374065B2 (en) 2022-06-28
CN109786430A (zh) 2019-05-21
US20210043701A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2020168821A1 (zh) 柔性显示面板及显示装置
US10541282B2 (en) Organic light emitting display having touch sensors and method of fabricating the same, and display device
US11744134B2 (en) Organic light emitting display having touch sensor and method of fabricating the same
US10418424B2 (en) Organic light emitting display having touch sensor with amorphous transparent conductive layer and method of fabricating the same
US11372450B2 (en) Flexible display device including touch sensor
US11782565B2 (en) Display device having one or more opaque conductive layers and blackened layers
US10763313B2 (en) Display device
US10795472B2 (en) Display device
US11903291B2 (en) Organic light-emitting display device having touch sensor
JP2020038679A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916114

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19916114

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19916114

Country of ref document: EP

Kind code of ref document: A1