WO2016050012A1 - 阵列基板、掩膜板和显示装置 - Google Patents

阵列基板、掩膜板和显示装置 Download PDF

Info

Publication number
WO2016050012A1
WO2016050012A1 PCT/CN2015/070846 CN2015070846W WO2016050012A1 WO 2016050012 A1 WO2016050012 A1 WO 2016050012A1 CN 2015070846 W CN2015070846 W CN 2015070846W WO 2016050012 A1 WO2016050012 A1 WO 2016050012A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
type
color
subpixel
Prior art date
Application number
PCT/CN2015/070846
Other languages
English (en)
French (fr)
Inventor
白珊珊
嵇凤丽
玄明花
刘建涛
许静波
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15791466.4A priority Critical patent/EP3203519B1/en
Priority to US14/768,895 priority patent/US10629655B2/en
Publication of WO2016050012A1 publication Critical patent/WO2016050012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to the field of organic light emitting diode display technologies, and in particular, to an array substrate, a mask, and a display device.
  • the array substrate of the organic light emitting diode (OLED) display device includes a plurality of sub-pixels, and each of the sub-pixels is provided with an organic light emitting diode for emitting light of a corresponding color, and the organic light emitting diode comprises a cathode, an anode and a light emitting layer.
  • the light-emitting layer mainly includes an electroluminescent layer (which functions to emit light of different colors), and may further include other layers such as an electron transport layer, an electron injection layer, a hole injection layer, a hole transport layer, and the like.
  • the luminescent layer is generally formed by evaporation.
  • the materials of the light-emitting layers are different, their light-emitting layers are respectively formed by evaporation, that is, the light-emitting layers of the same color can be simultaneously formed by evaporation.
  • FMM precision metal mask
  • the evaporation material light-emitting layer material
  • the resolution of display devices has been increasing, so the size of sub-pixels and structures therein has also been shrinking.
  • the size of the opening and the distance between the openings cannot be too small due to limitations in process and material properties, which results in a limitation of the minimum size of the light-emitting layer, which affects the resolution.
  • the technical problem to be solved by the present invention includes that the resolution of the array substrate for the existing organic light emitting diode is limited by the problem that the opening size of the precision metal mask and the distance between the openings cannot be too small.
  • Resolution array substrate, Mask and display device is limited by the problem that the opening size of the precision metal mask and the distance between the openings cannot be too small.
  • the technical solution adopted to solve the technical problem of the present invention includes an array substrate including a plurality of sub-pixels having a light-emitting layer, wherein
  • the sub-pixels are divided into a plurality of first-type sub-pixels arranged in a matrix, and second-type sub-pixels located between adjacent first-type sub-pixels in a row and column direction;
  • Each of the second type of sub-pixels and at least one of the first type of sub-pixels adjacent thereto are the same color.
  • a portion of the first type of sub-pixels and one of the first type of sub-pixels in adjacent rows and adjacent columns are of the same color and there is no second type of sub-pixels therebetween.
  • the array substrate comprises a plurality of repeating units arranged in an array, each repeating unit comprising 8 first type sub-pixels and 4 second type sub-pixels arranged in the following manner:
  • the second type of subpixel is the second type of subpixel.
  • each repeating unit 12 sub-pixels in each repeating unit are divided into 4 first color sub-pixels, 4 second color sub-pixels, and 4 third color sub-pixels; and in the array substrate,
  • Subpixels of the same color in subpixels of the same column are not adjacent;
  • Sub-pixels of the same color in sub-pixels of the same row are not adjacent.
  • the first color sub-pixel, the second color sub-pixel, and the third color sub-pixel are arranged as follows:
  • the second color sub-pixel The second color sub-pixel.
  • the projection of the luminescent layer of each of the second type of sub-pixels in the column direction and the projection of the luminescent layers of the two columns of the first type of sub-pixels adjacent to the second type of sub-pixels in the column direction respectively partially overlap
  • the projection of the light-emitting layer of each of the second-type sub-pixels in the row direction and the projection of the light-emitting layers of the two rows of the first-type sub-pixels adjacent to the second-type sub-pixels in the row direction respectively partially coincide.
  • each of the light-emitting layers has a shape of a parallelogram, and each side of the parallelogram is inclined with respect to the row direction and the column direction.
  • each of the light emitting layers of the second type of sub-pixels has two opposite sides, and the two sides are respectively the same type of sub-pixels that are the same color and adjacent to the second type of sub-pixels.
  • the two opposite sides of the luminescent layer are in the same straight line.
  • all of the luminescent layers have a diamond shape, and all of the diamonds have a pair of sides parallel to the first direction and another pair of sides parallel to the second direction.
  • the technical solution adopted to solve the technical problem of the present invention includes a mask for vapor deposition to form a light-emitting layer in the above array substrate;
  • the mask plate includes a plate body having a plurality of openings, the plurality of The openings are disposed to correspond to the positions of the light-emitting layers in the sub-pixels having the same color in the array substrate, and the light-emitting layers of the two sub-pixels of the same color and adjacent to each other correspond to one opening.
  • the arrangement of sub-pixels and the existing arrangement side Different in style, in the case of the same sub-pixel size, a better display effect can be achieved, and a higher resolution can be achieved in visual effects; at the same time, at least partially obliquely adjacent sub-pixels in the array substrate have the same color.
  • their luminescent layer at least the electroluminescent layer
  • the size can be smaller (one opening corresponds to two sub-pixels, that is, each sub-pixel size is only half of the opening), so that the resolution of the array substrate can be further improved.
  • FIG. 1 is a schematic structural view of a light-emitting layer in a repeating unit of an array substrate according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a light emitting layer of an array substrate according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light-emitting layer of a first color and a corresponding mask in an array substrate according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a light-emitting layer of a second color and a corresponding mask in an array substrate according to an embodiment of the present invention.
  • row and “column” mean two directions perpendicular to each other, and the arrangement of “row” and “column” is independent of the shape, placement mode, position, and the like of the display device (array substrate).
  • the horizontal direction is a row in the drawing, and the vertical direction is a column.
  • the embodiment provides an array substrate including a plurality of sub-pixels having a light-emitting layer, wherein
  • the sub-pixels are divided into a plurality of first-type sub-pixels arranged in a matrix, and second-type sub-pixels located between adjacent first-type sub-pixels in a row and column direction;
  • Each of the second type of sub-pixels and at least one of the first type of sub-pixels adjacent thereto have the same color.
  • This embodiment provides an array substrate including a plurality of sub-pixels of different colors (such as a red sub-pixel, a green sub-pixel, and a blue sub-pixel).
  • Each of the sub-pixels is provided with an organic light emitting diode for emitting light corresponding to the color of the sub-pixel (that is, the array substrate is an organic light emitting diode array substrate).
  • the organic light emitting diode includes a cathode, an anode, and a light emitting layer disposed between the cathode and the anode.
  • the materials of the light-emitting layers (at least the electroluminescent layer) of the sub-pixels of different colors are different, thereby achieving the purpose of emitting light of different colors.
  • each of the sub-pixels may further be provided with a thin film transistor (for driving the organic light emitting diode), a pixel defining layer (for separating the light emitting layers of different sub-pixels so that the light emitting layers of the respective sub-pixels can independently emit light), and the like.
  • a thin film transistor for driving the organic light emitting diode
  • a pixel defining layer for separating the light emitting layers of different sub-pixels so that the light emitting layers of the respective sub-pixels can independently emit light
  • Other known structures, so the size of the sub-pixels may be larger than the size of the above-mentioned light-emitting layer; in addition, other known structures such as gate lines and data lines may be included in the array substrate, which will not be described in detail herein.
  • Each sub-pixel of the array substrate is divided into a first type of sub-pixel and a second type of sub-pixel according to the position.
  • the first type of sub-pixels are sub-pixels (the sub-pixels represented by the illuminating layer in the figure) which are calibrated with the abscissa M and the ordinate S in the figure, and the first sub-pixels are arranged in a standard matrix form. That is, arranged in rows and columns that are perpendicular to each other.
  • the second type of sub-pixels are sub-pixels calibrated with the abscissa N and the ordinate P in the figure. As shown in FIG.
  • the second type of sub-pixels are located between adjacent first-type sub-pixels in the direction of rows and columns; that is, in the "gap" position of the matrix in which the first-type sub-pixels are arranged.
  • a second type of sub-pixel For example, for a second type of sub-pixel whose coordinates are (N1, P1), it is located between the first type of sub-pixels of coordinates (M1, S1) and (M2, S1) in the row direction, and is located in the column direction.
  • the coordinates are (M1, S1) and (M1, S2) between the first type of sub-pixels.
  • the second type of sub-pixels are not necessarily arranged between all adjacent first-type sub-pixels, so the number of the second-type sub-pixels is comparable. The number of first type of sub-pixels is small.
  • each of the second type of sub-pixels and at least one of the first type of sub-pixels adjacent thereto have the same color. That is, for each second type of sub-pixel, four first-type sub-pixels adjacent thereto in the direction of rows and columns (ie, four first-class ones located at the upper left, lower left, upper right, and lower right, respectively) In the sub-pixels, at least one of the first type of sub-pixels has the same color as the second type of sub-pixels. Specifically, as shown in FIG. 2, for the second type of sub-pixels whose coordinates are (N1, P1), the coordinates and coordinates are (M1, S1), (M2, S1), (M2, S2), and (M1, respectively.
  • the first first type of sub-pixels of S2) are adjacent, wherein the first type of sub-pixels with coordinates (M1, S2) and the second type of sub-pixels with coordinates (N1, P1) are the third color, the two sub-pixels
  • the pixels are the above-mentioned adjacent sub-pixels of the same color.
  • the light-emitting layer when the light-emitting layer is formed by evaporation, the light-emitting layer (including at least the electroluminescent layer, which may include other layers) of the adjacent sub-pixels of the same color may pass through the mask.
  • One of the openings 82 is formed, so that the size of the light-emitting layer of each sub-pixel can be reduced by half when the size of the opening 82 is constant, thereby improving the resolution.
  • the above-mentioned sub-pixel arrangement method is also advantageous for improving the display effect when the sub-pixel size is the same, and improving the resolution visually.
  • some of the first type of sub-pixels and one of the first type of sub-pixels in their adjacent rows and adjacent columns are of the same color and there is no second type of sub-pixels therebetween.
  • some of the first-type sub-pixels can also meet the above-mentioned adjacent and identical color conditions, so that their light-emitting layers can also be used in the mask.
  • An opening 82 is prepared.
  • the two first-type sub-pixels whose coordinates are (M3, S1) and whose coordinates are (M2, S2) are all the first color, and the rows and columns in which the two are located are adjacent. And there is no second type of subpixel between the two. Therefore, the two are adjacent sub-pixels of the same color; and the two first-type sub-pixels with coordinates (M1, S2) and (M2, S3) have the same color, but the coordinates are set between the two.
  • the second type of sub-pixels of (N1, P2) so they do not meet the above requirements for the same color and the same color.
  • a preferred array substrate of an embodiment of the present invention is described below, the array substrate comprising a plurality of repeating units 9 arranged in an array.
  • the array substrate can also be regarded as being arranged by a plurality of identical repeating units 9, wherein each repeating unit 9 has the same structure and includes a plurality of forms according to a certain form. Arranged subpixels.
  • each repeating unit 9 includes eight first type sub-pixels and four second type sub-pixels, and the sub-pixels are arranged in the following form:
  • the second type of subpixel is the second type of subpixel.
  • FIG. 1 there are 8 first-class sub-pixels in each repeating unit 9, and these first-type sub-pixels are arranged in 4 rows and 2 columns; and in repeating unit 9, there are 4 second-class sub-pixels. Pixels, which are arranged in 1 column and located between the 2 columns of the first type of sub-pixels.
  • FIG. 2 in the entire array substrate, respectively, between adjacent two columns of the first two types of sub-pixels in the adjacent two repeating units 9 (for example, the first column sub-pixels of the M2 and M3 columns) There is no second type of subpixel between.
  • the 12 sub-pixels in the repeating unit 9 are divided into four first color sub-pixels, four second color sub-pixels, and four third color sub-pixels; and in the array substrate,
  • Subpixels of the same color in subpixels of the same column are not adjacent;
  • Sub-pixels of the same color in sub-pixels of the same row are not adjacent.
  • the sub-pixels in the array substrate are preferably equally divided into three colors, that is, divided into red sub-pixels, green sub-pixels, and blue sub-pixels; and in the entire array substrate, in the same In a row or a sub-pixel of the same column (including the first-type sub-pixel and the second-type sub-pixel), there is no case where sub-pixels of the same color are adjacent.
  • Such a distribution is advantageous for increasing the above-mentioned "adjacent and identical colors" situation.
  • first color sub-pixel, the second color sub-pixel, and the third color sub-pixel merely represent sub-pixels of three different colors, and do not necessarily correspond to the above-mentioned red sub-pixels and green respectively.
  • the sub-pixels of the array substrate do not necessarily have only three colors, and may also be other modes (for example, RGBW mode, RGBY mode, etc.); correspondingly, the sub-pixels in the repeating unit 9 are different with the sub-pixel color mode.
  • the number, arrangement, etc. may also vary, and will not be described in detail herein.
  • the first color sub-pixel, the second color sub-pixel, and the third color sub-pixel are arranged as follows:
  • the second color sub-pixel The second color sub-pixel.
  • the color of the sub-pixels in each of the repeating units 9 is preferably arranged in the manner as shown in FIG.
  • the array substrate formed in this arrangement can be as shown in FIG.
  • the above arrangement only represents the relative positional relationship of each sub-pixel in the repeating unit, rather than the absolute position, so that the equivalent deformation is also the protection scope of the present invention.
  • the repeating unit is flipped horizontally (as in the repeating unit)
  • the M1 and M2 column positions are interchanged) or vertically flipped (as if the N1 column in the repeating sheet is moved up as a whole)
  • the resulting arrangement is substantially the same as the above arrangement.
  • the repeating unit is substantially the same as long as the arrangement of the sub-pixels in the entire array substrate is unchanged; for example, if N1, M2, and M3 are from FIG. If the repeating unit is selected at the position of the column, it seems that the second type of sub-pixel in the repeating unit is located on the side, but its essence is still the same as this repeating unit.
  • the projection of the luminescent layer of each of the second type of sub-pixels in the column direction and the projection of the luminescent layers of the two columns of the first type of sub-pixels adjacent to the second type of sub-pixels in the column direction Partially overlapping; respectively, the projection of the light-emitting layer of each of the second-type sub-pixels in the row direction and the projection of the light-emitting layers of the two rows of the first-type sub-pixels adjacent to the second-type sub-pixels in the row direction partially coincide.
  • the projections of the light-emitting layers of each of the second-type sub-pixels must be respectively above and below The projection portions of the light-emitting layers of the two first-type sub-pixels on the side overlap; accordingly, if the light-emitting layers of the respective sub-pixels are projected in the column direction (ie, the light-emitting layer is projected in the row direction), for each second class
  • the light-emitting layer of the sub-pixels must have their projections coincident with the projected portions of the light-emitting layers of the two first-type sub-pixels on the left and right sides thereof, respectively.
  • the light-emitting layers of the second type of sub-pixels overlap with the light-emitting layer portions of the first-type sub-pixels in the row and column directions instead of being "separated", so that, as shown in FIG. 2, the array The area of the substrate can be fully utilized to further increase the resolution.
  • the shape of the luminescent layer is a parallelogram, and each side of the parallelogram is obliquely disposed with respect to the row direction and the column direction (ie, each side of the parallelogram is neither parallel to the row direction or the column direction Not vertical).
  • the light-emitting layer is in the form of a parallelogram, and its side is not parallel to the row direction or the column direction as in the prior art, but is disposed obliquely, in such a manner as to facilitate the realization of the above-mentioned light-emitting layer.
  • each of the light-emitting layers of the second type of sub-pixels has two opposite sides, and the two sides are respectively light-emitting layers of the first-type sub-pixels of the same color and adjacent to the second-type sub-pixels.
  • the two opposite sides are in the same straight line.
  • the second type of sub-pixels with coordinates (N1, P1) and the first type of sub-pixels with coordinates (M1, S2) are the same color and adjacent, and the coordinates are (N1, P1).
  • the upper left side a of the light-emitting layer of the second type of sub-pixel is collinear (and of course parallel) with the upper left side b of the light-emitting layer of the first-type sub-pixel of coordinates (M1, S2), and the coordinates are (N1,
  • the lower right side c of the light-emitting layer of the second type of sub-pixel of P1) is collinear with the lower right side d of the light-emitting layer of the first-type sub-pixel of coordinates (M1, S2).
  • one side of the light-emitting layer of each of the second-type sub-pixels is opposite to one of the light-emitting layers of the first-type sub-pixels of the same color and adjacent to the second-type sub-pixels.
  • the sides are parallel and equal in length.
  • the two side edges are preferably parallel to each other and equal in length.
  • the lower left side e and the upper right side of the light-emitting layer of the first-type sub-pixel whose coordinates are (M1, S2) are upper right.
  • the side edges f are opposite, the two sides e and f are parallel and equal in length.
  • all of the luminescent layers have a diamond shape (ie, the sides of the luminescent layer are equal in length), all of the diamonds have a pair of sides parallel to the first direction, and another parallel to the second direction On the side.
  • all of the light-emitting layers may be diamonds of the same size, and the respective sides of the diamonds are parallel to each other, so that the light-emitting layer in the entire array substrate has the largest distribution density and the most regularity. This is most advantageous for the merging of the mask opening 82.
  • the sub-image The shape and size of the element may be different from the light-emitting layer (for example, may be larger than the light-emitting layer).
  • each of the three sub-pixels of different colors arranged in a triangle may be displayed as one “pixel”; or, according to FIG. 2
  • the method is to form the array substrate into a grid shape, and display the area ratio of the light-emitting layers of different colors divided in each grid in a "sub-pixel common" manner; the specific display method is diverse, and is not More details will be described.
  • the embodiment further provides a mask for vapor-depositing the light-emitting layer in the array substrate, the mask comprising a plate body 81 having a plurality of openings 82, the plurality of openings 82 being disposed with the array
  • the positions of the light-emitting layers of the sub-pixels having the same color in the substrate correspond, and the light-emitting layers of the two sub-pixels of the same color and adjacent one correspond to one opening 82.
  • each of the masks is used for vapor-depositing a light-emitting layer that forms a sub-pixel of one of the above-described array substrates.
  • the mask is a thin metal plate (plate 81), and the plate 81 has a plurality of openings 82, each of which has a "one piece" of sub-pixels of the color in the array substrate.
  • the layers correspond to each other. Therefore, for the light-emitting layer (at least the electroluminescent layer) of the two adjacent sub-pixels of the same color, only one opening 82 is provided in the mask.
  • the luminescent layer may comprise a plurality of layers such as an electroluminescent layer, wherein the reticle is used at least to form an electroluminescent layer, and other layers may be fabricated through the reticle, or may be The mask is manufactured.
  • the distribution of the light-emitting layer of the first color sub-pixel is as shown in the leftmost figure in FIG. 3 (only practical use is considered in the figure) In the luminescent layer of light, the luminescent layer between different sub-pixels is not shown).
  • the light-emitting layer distribution of the color is as shown in the middle diagram of FIG. 3, and the light-emitting layers of some adjacent sub-pixels are integrally connected (here, all the layers in the light-emitting layer are integrally connected as an example) .
  • the shorter length of the luminescent layer indicates an integrated light-emitting layer of the adjacent first-type sub-pixel and the second-type sub-pixel, the area of which is twice the area of the light-emitting layer of the single sub-pixel, and the longer light-emitting layer (such as the first The row light-emitting layer) represents an integrated light-emitting layer of two adjacent first-type sub-pixels, the area of which is three times the area of the light-emitting layer of a single sub-pixel (corresponding to two sub-pixels and one blank sub-pixel) .
  • each opening 82 in the figure corresponds to a “one block” of light-emitting layers, that is, a light-emitting layer corresponding to two sub-pixels, so that the size of the light-emitting layer in each sub-pixel can be reduced when the size of the opening 82 is constant. That is, the size of the sub-pixel can be reduced, so that the resolution can be improved.
  • the inclination directions of the openings 82 located in different rows are different, and the advantages of this method are as follows: in the evaporation process, the mask needs to be mounted on the frame (ie, "Zhang" is required. In order to prevent the mask from sagging due to gravity deformation, the frame needs to apply a certain pulling force to the mask; the openings 82 with different inclination directions can make the stress distribution in the mask uniform, avoid stress concentration and prevent The mask is damaged or deformed by tension.
  • the illuminating layer and the reticle of the third color sub-pixel are arranged in a similar manner to the first color sub-pixel described above, and will not be described in detail herein.
  • the arrangement of the illuminating layer and the reticle of the second color sub-pixel is as shown in FIG. 4, and the difference from the first color sub-pixel is mainly that the illuminating layers connected to each other are located in the first sub-pixel and the first sub-pixel.
  • the light-emitting layers of the two first-type sub-pixels are integrated, whereby the opening 82 of the mask is only different in the oblique direction, but the size is the same.
  • the area and shape of the opening 82 in the mask are not necessarily the same as the area and shape of the light-emitting layer.
  • the opening 82 needs to be slightly larger than the corresponding light-emitting layer. Since the above specific correspondence is known, it will not be described in detail herein.
  • the embodiment provides a display device including any one of the above array bases. board.
  • the display device is an organic light emitting diode (OLED) display device, which may specifically be any product or component having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • OLED organic light emitting diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种阵列基板、掩膜板和显示装置,涉及有机发光二极管显示技术领域,其可解决现有有机发光二极管的阵列基板分辨率因掩膜板的开口尺寸和开口间的距离不能过小而受限的问题。本发明的阵列基板包括多个具有发光层的子像素,其中,所述子像素分为呈矩阵排列的多个第一类子像素,以及在行和列方向上均位于相邻的第一类子像素之间的第二类子像素;每个所述第二类子像素和至少一个与其相邻的第一类子像素颜色相同。

Description

阵列基板、掩膜板和显示装置 技术领域
本发明涉及有机发光二极管显示技术领域,具体涉及阵列基板、掩膜板和显示装置。
背景技术
有机发光二极管(OLED)显示装置的阵列基板中包括多个子像素,每个子像素中设有用于发出相应颜色的光的有机发光二极管,有机发光二极管包括阴极、阳极和发光层。发光层主要包括电致发光层(起到发出不同颜色的光的作用),还可包括电子传输层、电子注入层、空穴注入层、空穴传输层等其他层。发光层一般通过蒸镀形成。对于不同颜色的子像素,由于其发光层的材料不同,因此它们的发光层要分别通过蒸镀形成,即,相同颜色的发光层可通过蒸镀同时形成。在通过蒸镀形成每种颜色的发光层时,需要使用精密金属掩膜板(FMM),精密金属掩膜板为具有许多开口的金属薄板(其厚度通常为30~40微米),开口对应于需要形成发光层的位置,从而蒸镀材料(发光层材料)只能通过开口而蒸镀形成在所需位置处,而不会进入其他颜色的子像素中。
随着技术的发展,显示装置的分辨率不断提高,故子像素及其中结构的尺寸也不断缩小。对于精密金属掩膜板,由于工艺和材料性能的限制,其开口尺寸和开口间的距离均不能过小,这就导致发光层的最小尺寸受到限制,从而影响了分辨率的提升。
发明内容
本发明所要解决的技术问题包括,针对现有的有机发光二极管的阵列基板分辨率因精密金属掩膜板的开口尺寸和开口间的距离不能过小而受限的问题,提供一种具有更高分辨率的阵列基板、 掩膜板和显示装置。
解决本发明技术问题所采用的技术方案包括一种阵列基板,包括多个具有发光层的子像素,其中,
所述子像素分为呈矩阵排列的多个第一类子像素,以及在行和列方向上均位于相邻的第一类子像素之间的第二类子像素;
每个所述第二类子像素和至少一个与其相邻的第一类子像素颜色相同。
优选的是,部分第一类子像素和处于其相邻行、相邻列的一个第一类子像素颜色相同且二者之间无第二类子像素。
优选的是,所述阵列基板包括多个呈阵列排列的重复单元,每个重复单元包括按照以下方式排列的8个第一类子像素和4个第二类子像素:
第一类子像素      第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素。
进一步优选的是,每个重复单元中的12个子像素分为4个第一颜色子像素、4个第二颜色子像素和4个第三颜色子像素;且在阵列基板中,
同一列的子像素中同颜色的子像素不相邻;且
同一行的子像素中同颜色的子像素不相邻。
进一步优选的是,在每个重复单元中,第一颜色子像素、第二颜色子像素和第三颜色子像素的排列方式如下:
第一颜色子像素     第二颜色子像素
第三颜色子像素
第三颜色子像素     第一颜色子像素
第二颜色子像素
第二颜色子像素     第三颜色子像素
第一颜色子像素
第三颜色子像素     第一颜色子像素
第二颜色子像素。
优选的是,每个所述第二类子像素的发光层沿列方向的投影和与该第二类子像素相邻的两列第一类子像素的发光层沿列方向的投影分别部分重合;每个所述第二类子像素的发光层沿行方向的投影和与该第二类子像素相邻的两行第一类子像素的发光层沿行方向的投影分别部分重合。
进一步优选的是,每个所述发光层的形状为平行四边形,所述平行四边形的每个侧边相对所述行方向和列方向均是倾斜设置的。
进一步优选的是,每个所述第二类子像素的发光层均具有两个相对侧边,该两个侧边分别和与该第二类子像素同颜色且相邻的第一类子像素的发光层的两个相对侧边处于相同的直线中。
进一步优选的是,所有发光层的形状均为菱形,所有菱形均有平行于第一方向的一对侧边和平行于第二方向的另一对侧边。
解决本发明技术问题所采用的技术方案包括一种掩膜板,其用于蒸镀形成上述的阵列基板中的发光层;所述掩膜板包括带有多个开口的板体,所述多个开口设置为与所述阵列基板中具有相同颜色的子像素中的发光层的位置对应,且两个同颜色且相邻的子像素中的发光层对应一个开口。
解决本发明技术问题所采用的技术方案包括一种显示装置,其包括:
上述的阵列基板。
本发明提供的阵列基板中,子像素的排布方式与现有排布方 式不同,其在子像素尺寸相同的情况下,可实现更好的显示效果,在视觉效果上达到更高的分辨率;同时,阵列基板中至少部分斜向相邻的子像素的颜色相同,由此,它们的发光层(至少是电致发光层)可通过掩膜板中的一个开口形成,这样,在掩膜板中允许的最小开口尺寸一定的情况下,用其形成的子像素的尺寸可更小(一个开口对应两个子像素,即每个子像素尺寸只有开口的一半),从而使阵列基板的分辨率可进一步提高。
附图说明
图1为本发明的实施例提供的阵列基板的一个重复单元中的发光层的结构示意图;
图2为本发明的实施例提供的阵列基板的发光层的结构示意图;
图3为本发明的实施例提供的阵列基板中第一颜色的发光层及对应掩膜板的结构示意图;以及
图4为本发明的实施例提供的阵列基板中第二颜色的发光层及对应掩膜板的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
在本发明中,“行”和“列”是指相互垂直的两个方向,且“行”和“列”的设置与显示装置(阵列基板)的形状、放置方式、所处位置等无关。为了易于描述,在本发明的描述中,以附图中的横向为行,纵向为列。
实施例1:
本实施例提供一种阵列基板,包括多个具有发光层的子像素,其中,
所述子像素分为呈矩阵排列的多个第一类子像素,以及在行和列方向上均位于相邻的第一类子像素之间的第二类子像素;
每个所述第二类子像素和至少一个与其相邻的第一类子像素的颜色相同。
实施例2:
本实施例提供一种阵列基板,该阵列基板包括多个不同颜色的子像素(如红色子像素、绿色子像素和蓝色子像素)。每个子像素中设有一个用于发出与该子像素颜色相对应的光的有机发光二极管(即,该阵列基板为有机发光二极管阵列基板)。有机发光二极管包括阴极、阳极以及设置在阴极和阳极之间的发光层。不同颜色的子像素的发光层(至少是电致发光层)的材料不同,从而实现发出不同颜色的光的目的。
相应地,每个子像素中可还设有薄膜晶体管(用于驱动有机发光二极管)、像素界定层(用于将不同子像素的发光层隔开以使各子像素的发光层可独立发光)等其他已知结构,故子像素的尺寸可大于上述发光层的尺寸;另外,阵列基板中还可包括栅极线、数据线等其他已知结构,在此不再详细描述。
阵列基板的各子像素按照所处位置的不同分为第一类子像素和第二类子像素。如图2所示,第一类子像素为图中以横坐标M和纵坐标S标定的子像素(图中以发光层代表子像素),这些第一类子像素按照标准的矩阵形式排列,即按照相互垂直的行和列排列。第二类子像素为图中以横坐标N和纵坐标P标定的子像素。如图2所示,第二类子像素在行和列的方向上均位于相邻的第一类子像素之间;也就是说,在第一类子像素排列成的矩阵的“间隙”位置处设有第二类子像素。例如,对于坐标为(N1,P1)的第二类子像素,其在行方向上位于坐标为(M1,S1)和(M2,S1)的第一类子像素之间,而在列方向上位于坐标为(M1,S1)和(M1,S2)的第一类子像素之间。而且,如图2所示,不一定在所有相邻的第一类子像素之间都布置有第二类子像素,故第二类子像素的数量可比 第一类子像素的数量少。
在本实施例提供的阵列基板中,每个第二类子像素和至少一个与其相邻的第一类子像素的颜色相同。也就是说,对于每个第二类子像素,在行和列的方向上与其相邻的4个第一类子像素(即分别位于其左上、左下、右上和右下的四个第一类子像素)中,至少有一个第一类子像素的颜色与该第二类子像素的颜色相同。具体地,如图2所示,对于坐标为(N1,P1)的第二类子像素,其与坐标分别为(M1,S1)、(M2,S1)、(M2,S2)和(M1,S2)的4个第一类子像素相邻,其中坐标为(M1,S2)的第一类子像素与坐标为(N1,P1)的第二类子像素均为第三颜色,这两个子像素即为上述的相邻且颜色相同的子像素。
如图3和图4所示,在通过蒸镀形成发光层时,上述相邻且颜色相同的子像素中的发光层(至少包括电致发光层,也可包括其他层)可通过掩膜板中的一个开口82形成,故在开口82尺寸不变的情况下,每个子像素的发光层的尺寸可减小为原来的一半,从而提高了分辨率。在此情况下,这两个子像素的发光层的全部或部分层是连为一体的,但由于两个子像素的有机发光二极管的驱动电路仍是分开的,且二者之间有像素界定层,因此二者仍可独立进行显示。
同时,上述的子像素排布方式还有利于在子像素尺寸相同的情况下改善显示效果,在视觉上提高分辨率。
优选地,部分第一类子像素和处于其相邻行和相邻列的一个第一类子像素颜色相同且二者之间无第二类子像素。
也就是说,除了第一类子像素和第二类子像素外,部分第一类子像素之间也可符合上述相邻且颜色相同的条件,故它们的发光层也可用掩膜板中的一个开口82制备。当然,此时还要求两个第一类子像素之间没有第二类子像素,否则这两个子像素的发光层会与第二类子像素的发光层交叠。具体地,如图2所示,坐标为(M3,S1)和坐标为(M2,S2)的两个第一类子像素均为第一颜色,二者所处的行和列均相邻,并且二者之间也没有第二类子像素, 故二者即为上述相邻且颜色相同的子像素;而坐标为(M1,S2)和(M2,S3)的两个第一类子像素虽然颜色相同,但二者之间设有坐标为(N1,P2)的第二类子像素,故它们不符合上述相邻且颜色相同的要求。
下面对本发明实施例的一种优选的阵列基板进行说明,该阵列基板包括多个呈阵列排列的重复单元9。
也就是说,如图1、图2所示,阵列基板也可看成是由多个相同的重复单元9排列而成的,其中每个重复单元9的结构相同,并包括多个按照一定形式排列的子像素。
由于整个阵列基板中的子像素的排布是比较规律的,故在制备和驱动时比较方便。
具体地,每个重复单元9包括8个第一类子像素和4个第二类子像素,且这些子像素按照以下的形式排列:
第一类子像素     第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素
第一类子像素     第一类子像素
第二类子像素。
也就是说,如图1所示,每个重复单元9中有8个第一类子像素,这些第一类子像素排成4行2列;而重复单元9中有4个第二类子像素,它们排成1列,并位于2列第一类子像素之间。这样,如图2所示,在整个阵列基板中,分别位于相邻的两个重复单元9中的相邻的两列第一类子像素之间(比如,M2和M3两列第一列子像素之间)没有第二类子像素。
如图2所示,上述重复单元9中的12个子像素分为4个第一颜色子像素、4个第二颜色子像素和4个第三颜色子像素;且在阵列基板中,
同一列的子像素中同颜色的子像素不相邻;且
同一行的子像素中同颜色的子像素不相邻。
具体地,在RGB模式下,阵列基板中的子像素优选按数量等分为3种颜色,即,分为红色子像素、绿色子像素和蓝色子像素;且在整个阵列基板中,在相同行或相同列的子像素(包括第一类子像素和第二类子像素)中,均不存在同颜色的子像素相邻的情况。这样的分布比较利于增加上述“相邻且颜色相同”的情况。
当然,应当理解,此处的“第一颜色子像素、第二颜色子像素、第三颜色子像素”只是代表三种不同颜色的子像素,而并不一定分别对应上述的红色子像素、绿色子像素、蓝色子像素。而且,阵列基板的子像素也不一定只有三种颜色,其也可为其他的模式(例如RGBW模式、RGBY模式等);随着子像素颜色模式的不同,相应地,重复单元9中子像素的个数、排列方式等也可变化,在此不再详细描述。
更优选地,在每个重复单元9中,第一颜色子像素、第二颜色子像素和第三颜色子像素的排列方式如下:
第一颜色子像素     第二颜色子像素
第三颜色子像素
第三颜色子像素     第一颜色子像素
第二颜色子像素
第二颜色子像素     第三颜色子像素
第一颜色子像素
第三颜色子像素     第一颜色子像素
第二颜色子像素。
也就是说,每个重复单元9中的子像素的颜色优选按照如图1所示的方式排列。按照这种排列方式形成的阵列基板可如图2所示。
当然,应当理解,以上的排列仅代表重复单元中各子像素的相对位置关系,而不是绝对位置,故其等价的变形也是本发明的保护范围。例如,若将重复单元进行水平翻转(如将重复单元中的 M1和M2列位置互换)或竖直翻转(如将重复单中的N1列整体上移),则所得的排列与上述排列实质上仍是相同的。或者,若选取阵列基板中的不同部分作为重复单元,则只要最终整个阵列基板中子像素的排布方式不变,则重复单元实质上仍相同;例如,若从图2中N1、M2、M3列所在的位置选取重复单元,则看起来重复单元中的第二类子像素是位于边上的,但其实质仍与本重复单元相同。
优选的,如图2所示,每个第二类子像素的发光层沿列方向的投影和与该第二类子像素相邻的两列第一类子像素的发光层沿列方向的投影分别部分重合;每个第二类子像素的发光层沿行方向的投影和与该第二类子像素相邻的两行第一类子像素的发光层沿行方向的投影分别部分重合。
也就是说,如果将各子像素的发光层沿行方向投影(即将该发光层投影到列方向上),则对于每个第二类子像素的发光层,其投影必定分别与在其上下两侧的两个第一类子像素的发光层的投影部分重合;相应地,若将各子像素的发光层沿列方向投影(即将该发光层投影到行方向上),则对于每个第二类子像素的发光层,其投影必定分别与在其左右两侧的两个第一类子像素的发光层的投影部分重合。
按照以上的方式,第二类子像素的发光层在行和列的方向上都与第一类子像素的发光层部分重合,而非“分开”排布,这样,如图2所示,阵列基板的面积可被充分利用,从而进一步提高分辨率。
更优选地,发光层的形状为平行四边形,且平行四边形的每个侧边相对行方向和列方向均是倾斜设置的(即,平行四边形的每个侧边与行方向或列方向既不平行也不垂直)。
也就是说,如图2所示,发光层为平行四边形的形式,且其侧边并非像现有技术一样平行于行方向或列方向,而是倾斜设置的,这样的方式便于实现上述发光层在行和列方向上的“部分重合”排布。
更优选地,每个第二类子像素的发光层均具有两个相对侧边,该两个侧边分别和与该第二类子像素同颜色且相邻的第一类子像素的发光层的两个相对侧边处于相同的直线中。
也就是说,对于以上所说的相邻且颜色相同的子像素的发光层,它们中的两组相对侧边是相互平行的,且分别处于两条直线中。例如,如图1所示,坐标为(N1,P1)的第二类子像素和坐标为(M1,S2)的第一类子像素同颜色且相邻,则坐标为(N1,P1)的第二类子像素的发光层的左上侧边a与坐标为(M1,S2)的第一类子像素的发光层的左上侧边b共线(当然也就平行),而坐标为(N1,P1)的第二类子像素的发光层的右下侧边c与坐标为(M1,S2)的第一类子像素的发光层的右下侧边d共线。这样,当用掩膜板中的一个开口82形成这两个子像素的发光层时,该开口82的两个相对侧边是相互平行的直线,比较便于加工和实现。
更优选的是,每个第二类子像素的发光层的一个侧边,和与该第二类子像素同颜色且相邻的第一类子像素的发光层中一个侧边相对,这两个侧边相互平行且等长。
也就是说,对于以上所说的相邻且颜色相同的两个子像素的发光层,它们必然具有一组正相对的侧边,则这两个侧边优选相互平行且长度相等。例如,如图1所示,对于坐标为(N1,P1)的第二类子像素的发光层,其左下侧边e与坐标为(M1,S2)的第一类子像素的发光层的右上侧边f相对,则这两个侧边e、f平行且等长。
进一步优选的是,所有发光层的形状均为菱形(即,该发光层的各边长相等),所有菱形均有平行于第一方向的一对侧边,以及平行于第二方向的另一对侧边。
也就是说,如图2所示,所有的发光层可都为尺寸相等的菱形,且各菱形的相应的侧边都相互平行,从而整个阵列基板中的发光层分布密度最大,也最为规整,最有利于掩膜板开口82的合并。
当然,由于以上所述的发光层仅为子像素的一部分,故子像 素的形状、尺寸可与发光层不同(比如,可大于发光层)。
同时,对于上述的阵列基板,用其进行显示的方法是多样的,例如,可以每3个排成三角形的不同颜色的子像素为一个“像素”进行显示;或者,也可按照图2中的方式将阵列基板划成网格状,并按照每个网格中划分的不同颜色的发光层的面积比例以“子像素公用的”方式进行显示;其具体的显示方法是多样的,在此不再详细描述。
当然,应当理解,以上所述的重复单元9的形式、发光层的形状等都不应视为对本发明的限定。
本实施例还提供一种用于蒸镀形成上述阵列基板中的发光层的掩膜板,该掩膜板包括带有多个开口82的板体81,该多个开口82设置为与上述阵列基板中具有相同颜色的子像素的发光层的位置相对应,且两个同颜色且相邻的子像素中的发光层对应一个开口82。
也就是说,每个掩膜板用于蒸镀形成上述阵列基板中的某一种颜色的子像素的发光层。具体地,掩膜板为一金属薄板(板体81),且该板体81上具有多个开口82,每个开口82均与上述阵列基板中的“一块”该种颜色的子像素的发光层相对应,故对于上述两个相邻且颜色相同的子像素中的发光层(至少是电致发光层),掩膜板中只要设置一个开口82即可。其中,如前所述,发光层可包括电致发光层等多个层,这里的掩膜板至少用于形成电致发光层,而其他的层可通过该掩膜板制造,也可通过其他的掩膜板制造。
具体地,对于以上优选的阵列基板(即图2中所示的阵列基板),其第一颜色子像素的发光层的分布如图3中最左侧的图所示(图中只考虑实际用于发光的发光层,而未显示不同子像素间的发光层)。
而在整个阵列基板中,该颜色的发光层分布如图3的中间图所示,部分相邻子像素的发光层连成一体(此处以发光层中的所有层均分别连成一体为例)。其中,长度较短的发光层(如第二行发光 层)表示相邻的第一类子像素和第二类子像素中的连为一体的发光层,其面积为单个子像素的发光层面积的二倍,而较长的发光层(如第一行发光层)则表示两个相邻的第一类子像素中的连为一体的发光层,其面积为单个子像素的发光层面积的三倍(对应两个子像素和一个空白的子像素)。
相应地,用于蒸镀形成该颜色的发光层的掩膜板如图3中右侧的图所示。可见,该图中每个开口82均对应“一块”发光层,也就是对应两个子像素的发光层,从而在开口82尺寸不变的情况下,每个子像素中的发光层的尺寸可缩小,即子像素的尺寸可缩小,从而可以提高分辨率。
按照以上的排列方式,如图3所示,位于不同行的开口82的倾斜方向不同,这种方式的优点如下:在蒸镀过程中,掩膜板需要被装在框架上(即需要“张网”),为避免掩膜板因重力变形下垂,故该框架需要对掩膜板施加一定的拉力;上述倾斜方向不同的开口82可使掩膜板中的应力分布均匀,避免应力集中,防止掩膜板被拉力损坏或变形。
相应地,第三颜色子像素的发光层、掩膜板的排列方式与上述第一颜色子像素的类似,在此不再详细描述。
第二颜色子像素的发光层、掩膜板的排列方式则如图4所示,其与第一颜色子像素的区别主要在于,其中连为一体的发光层都位于第一类子像素和第二类子像素之间,而不存在两个第一类子像素中的发光层为一体的情况,由此其掩膜板的开口82仅仅是倾斜方向不同,但尺寸是一样的。
当然,按照通常的工艺要求,掩膜板中的开口82的面积、形状不一定与发光层的面积、形状完全相同,通常而言,开口82需要略大于其所对应的发光层。由于以上的具体对应关系是已知的,故在此不再详细描述。
实施例3:
本实施例提供了一种显示装置,其包括上述任意一种阵列基 板。所述显示装置是有机发光二极管(OLED)显示装置,其具体可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种阵列基板,包括多个具有发光层的子像素,其中,
    所述子像素分为呈矩阵排列的多个第一类子像素,以及在行和列方向上均位于相邻的第一类子像素之间的第二类子像素;
    每个所述第二类子像素和至少一个与其相邻的第一类子像素颜色相同。
  2. 根据权利要求1所述的阵列基板,其中,
    部分第一类子像素和处于其相邻行和相邻列的一个第一类子像素颜色相同且二者之间无第二类子像素。
  3. 根据权利要求1或2所述的阵列基板,其中,所述阵列基板包括多个呈阵列排列的重复单元,每个重复单元包括按照以下方式排列的8个第一类子像素和4个第二类子像素:
    第一类子像素             第一类子像素
    第二类子像素
    第一类子像素             第一类子像素
    第二类子像素
    第一类子像素             第一类子像素
    第二类子像素
    第一类子像素             第一类子像素
    第二类子像素。
  4. 根据权利要求3所述的阵列基板,其中,每个所述重复单元中的12个子像素分为4个第一颜色子像素、4个第二颜色子像素和4个第三颜色子像素;且在阵列基板中,
    同一列的子像素中同颜色的子像素不相邻;且
    同一行的子像素中同颜色的子像素不相邻。
  5. 根据权利要求4所述的阵列基板,其中,在每个所述重复单元中,所述第一颜色子像素、第二颜色子像素和第三颜色子像素的排列方式如下:
    第一颜色子像素             第二颜色子像素
    第三颜色子像素
    第三颜色子像素             第一颜色子像素
    第二颜色子像素
    第二颜色子像素             第三颜色子像素
    第一颜色子像素
    第三颜色子像素             第一颜色子像素
    第二颜色子像素。
  6. 根据权利要求1或2所述的阵列基板,其中,
    每个所述第二类子像素的发光层沿列方向的投影和与该第二类子像素相邻的两列第一类子像素的发光层沿列方向的投影分别部分重合;且
    每个所述第二类子像素的发光层沿行方向的投影和与该第二类子像素相邻的两行第一类子像素的发光层沿行方向的投影分别部分重合。
  7. 根据权利要求6所述的阵列基板,其中,
    所述发光层的形状为平行四边形,所述平行四边形的每个侧边相对所述行方向和列方向均是倾斜设置的。
  8. 根据权利要求7所述的阵列基板,其中,
    每个所述第二类子像素的发光层均具有两个相对侧边,该两个侧边分别和与该第二类子像素同颜色且相邻的第一类子像素的发光层的两个相对侧边处于相同的直线中。
  9. 根据权利要求8所述的阵列基板,其中,
    所有发光层的形状均为菱形,所有菱形均有平行于第一方向的一对侧边和平行于第二方向的另一对侧边。
  10. 一种掩膜板,其中,
    所述掩膜板用于蒸镀形成权利要求1至9中任意一项所述的阵列基板中的发光层;
    所述掩膜板包括带有多个开口的板体,所述多个开口设置为与所述阵列基板中具有相同颜色的子像素的发光层的位置相对应,且所述两个同颜色且相邻的子像素中的发光层对应一个开口。
  11. 一种显示装置,包括:
    权利要求1至9中任意一项所述的阵列基板。
PCT/CN2015/070846 2014-09-29 2015-01-16 阵列基板、掩膜板和显示装置 WO2016050012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15791466.4A EP3203519B1 (en) 2014-09-29 2015-01-16 Array substrate, method of manufacturing the array substrate using a mask plate and display device
US14/768,895 US10629655B2 (en) 2014-09-29 2015-01-16 Array substrate and display device having offset sub-pixel arrangements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410515822.3A CN104299974B (zh) 2014-09-29 2014-09-29 阵列基板、掩膜板、显示装置
CN201410515822.3 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016050012A1 true WO2016050012A1 (zh) 2016-04-07

Family

ID=52319639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070846 WO2016050012A1 (zh) 2014-09-29 2015-01-16 阵列基板、掩膜板和显示装置

Country Status (4)

Country Link
US (1) US10629655B2 (zh)
EP (1) EP3203519B1 (zh)
CN (1) CN104299974B (zh)
WO (1) WO2016050012A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716163B (zh) * 2015-03-26 2018-03-16 京东方科技集团股份有限公司 像素结构以及显示基板和显示装置
CN107275359B (zh) * 2016-04-08 2021-08-13 乐金显示有限公司 有机发光显示装置
US20230276685A9 (en) * 2016-08-26 2023-08-31 Najing Technology Corporation Limited Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
EP3343544B1 (en) * 2016-12-28 2022-06-15 Vestel Elektronik Sanayi ve Ticaret A.S. Method for a display device
CN107068729B (zh) 2017-05-09 2020-06-02 京东方科技集团股份有限公司 像素结构及其制作方法、显示基板和显示装置
CN108565277B (zh) 2018-01-04 2021-09-28 上海天马有机发光显示技术有限公司 显示面板及其制作方法
CN108866476B (zh) * 2018-06-29 2020-03-10 京东方科技集团股份有限公司 掩膜版及其制作方法、蒸镀方法、显示屏
TWI683416B (zh) * 2018-12-22 2020-01-21 友達光電股份有限公司 發光元件基板
KR20200106589A (ko) 2019-03-04 2020-09-15 삼성디스플레이 주식회사 표시 장치, 표시 장치의 제조장치 및 표시 장치의 제조방법
CN110098239B (zh) * 2019-05-17 2021-11-02 京东方科技集团股份有限公司 像素结构、显示基板、掩模板及蒸镀方法
US11557635B2 (en) * 2019-12-10 2023-01-17 Samsung Display Co., Ltd. Display device, mask assembly, and apparatus for manufacturing the display device
CN111244330A (zh) * 2020-01-15 2020-06-05 武汉华星光电半导体显示技术有限公司 蒸镀方法、蒸镀装置以及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001536A1 (en) * 2006-06-30 2008-01-03 Tze-Chien Tsai Pixel structure for electroluminescent panel and method of fabricating same
CN103898442A (zh) * 2014-03-13 2014-07-02 昆山允升吉光电科技有限公司 一种配套掩模板及其蒸镀方法
CN104037204A (zh) * 2014-05-05 2014-09-10 友达光电股份有限公司 显示装置
CN104037201A (zh) * 2014-06-11 2014-09-10 上海和辉光电有限公司 像素阵列、显示器以及将图像呈现于显示器上的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516630A (ja) * 2000-12-20 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセンスカラー表示パネル
US7880785B2 (en) * 2004-07-21 2011-02-01 Aptina Imaging Corporation Rod and cone response sensor
JP4835719B2 (ja) * 2008-05-22 2011-12-14 ソニー株式会社 固体撮像装置及び電子機器
US9041625B2 (en) * 2010-04-21 2015-05-26 Lg Display Co., Ltd. Subpixel arrangement structure for a display device and display device
CN104992654B (zh) * 2011-07-29 2019-02-22 深圳云英谷科技有限公司 显示器的子像素排列及其呈现方法
JP2013073800A (ja) * 2011-09-28 2013-04-22 Canon Inc 表示装置
US20130106891A1 (en) * 2011-11-01 2013-05-02 Au Optronics Corporation Method of sub-pixel rendering for a delta-triad structured display
TWI559524B (zh) * 2013-01-15 2016-11-21 友達光電股份有限公司 電激發光顯示面板之畫素結構
CN103123927B (zh) * 2013-01-24 2015-05-06 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
KR102136275B1 (ko) * 2013-07-22 2020-07-22 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
KR102061796B1 (ko) * 2013-10-14 2020-01-03 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102066139B1 (ko) * 2013-11-21 2020-01-14 엘지디스플레이 주식회사 유기 발광 표시 패널 및 이를 포함하는 유기 발광 표시 장치
US9337241B2 (en) * 2014-03-19 2016-05-10 Apple Inc. Pixel patterns for organic light-emitting diode display
CN103985735A (zh) * 2014-04-25 2014-08-13 友达光电股份有限公司 一种显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001536A1 (en) * 2006-06-30 2008-01-03 Tze-Chien Tsai Pixel structure for electroluminescent panel and method of fabricating same
CN103898442A (zh) * 2014-03-13 2014-07-02 昆山允升吉光电科技有限公司 一种配套掩模板及其蒸镀方法
CN104037204A (zh) * 2014-05-05 2014-09-10 友达光电股份有限公司 显示装置
CN104037201A (zh) * 2014-06-11 2014-09-10 上海和辉光电有限公司 像素阵列、显示器以及将图像呈现于显示器上的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203519A4 *

Also Published As

Publication number Publication date
EP3203519A1 (en) 2017-08-09
US20160254327A1 (en) 2016-09-01
US10629655B2 (en) 2020-04-21
CN104299974B (zh) 2017-02-15
EP3203519A4 (en) 2018-05-30
EP3203519B1 (en) 2021-07-14
CN104299974A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016050012A1 (zh) 阵列基板、掩膜板和显示装置
TWI741192B (zh) 像素結構、oled顯示幕以及蒸鍍掩膜板
US10686018B2 (en) Display device and manufacturing method thereof
KR101878087B1 (ko) 픽셀 구조체 및 그 디스플레이 방법, 및 관련된 디스플레이 장치
WO2018161809A1 (zh) Oled阵列基板及其制造方法和显示装置
CN114994973B (zh) 显示基板和显示装置
CN104465714B (zh) 一种像素结构及其显示方法、显示装置
US10290683B2 (en) Organic light emitting display device
TWI585726B (zh) 畫素結構
US20200357862A1 (en) Pixel arrangement, manufacturing method thereof, display panel, display device and mask
WO2019201170A1 (zh) 像素排列结构、显示面板、掩膜版组件及蒸镀设备
US9735207B2 (en) Display substrate and driving method thereof, display apparatus
TWI506774B (zh) 畫素結構及其金屬光罩
WO2019019604A1 (zh) 显示基板、显示装置及其显示方法、掩模板
WO2018205662A1 (zh) 像素结构、其制作方法、显示面板及显示装置
WO2020019698A1 (zh) 掩膜板及蒸镀装置
CN108321178B (zh) 像素结构、掩膜板及显示装置
CN107086239A (zh) 像素结构及其制备方法和显示装置
WO2016127560A1 (zh) 一种有机发光二极管阵列基板及其制作方法、显示装置
KR102028989B1 (ko) Oled 표시 장치
WO2016050014A1 (zh) 有机发光二极管阵列基板、显示装置
WO2016115862A1 (zh) 有机发光二极管像素排列结构
WO2020215401A1 (zh) 一种发光器件及其制作方法、和显示面板
US10868084B2 (en) Foldable display panel
KR20150106622A (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14768895

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015791466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015791466

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE