WO2020019698A1 - 掩膜板及蒸镀装置 - Google Patents

掩膜板及蒸镀装置 Download PDF

Info

Publication number
WO2020019698A1
WO2020019698A1 PCT/CN2019/074099 CN2019074099W WO2020019698A1 WO 2020019698 A1 WO2020019698 A1 WO 2020019698A1 CN 2019074099 W CN2019074099 W CN 2019074099W WO 2020019698 A1 WO2020019698 A1 WO 2020019698A1
Authority
WO
WIPO (PCT)
Prior art keywords
openings
region
mask plate
adjacent
sub
Prior art date
Application number
PCT/CN2019/074099
Other languages
English (en)
French (fr)
Inventor
吕孝鹏
李伟丽
张璐
赵晶晶
王亚
甘帅燕
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to KR1020207009452A priority Critical patent/KR102334155B1/ko
Priority to JP2020519786A priority patent/JP6942248B2/ja
Priority to US16/742,933 priority patent/US20200149149A1/en
Publication of WO2020019698A1 publication Critical patent/WO2020019698A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present application relates to the field of display technology, and in particular, to a mask plate and a vapor deposition device.
  • Organic light-emitting diodes are also called organic electro-luminescence displays.
  • OELD display panels are made of very thin organic material coatings and substrates. When an electric current passes through, these organic materials will emit light.
  • An OLED display panel is composed of a plurality of light-emitting pixel units arranged in a matrix structure. For a color OLED, each light-emitting pixel unit generally includes three color sub-pixels: red R, green G, and blue B.
  • a metal material mask is used to control the coating position of the organic material on the substrate. Since the R / G / B color sub-pixels of the OLED display panel are formed by evaporation of organic light-emitting materials of different colors, it is necessary to use a mask to vapor-deposit the corresponding color of organic materials of the R / G / B color sub-pixels. For example, after the R color sub-pixel evaporation is completed, the mask corresponding to the R color is removed, and then a G color mask is installed for evaporation. After the G color sub-pixel evaporation is completed, the G color corresponding Remove the mask, and then install a B-color mask for vapor deposition. During this evaporation process, the evaporation device is opened multiple times, and impurities such as dust are easily mixed into the substrate, which seriously affects the coating effect of the organic light emitting material layer.
  • the purpose of the present application is to provide a mask plate and a vapor deposition device, which can realize vapor deposition of at least two color sub-pixels by using only one mask plate.
  • an embodiment of the present application provides a mask including: a first region, where a plurality of first openings are provided in the first region; and a second region, which is located on both sides of the first region in a predetermined direction, wherein A plurality of third openings are provided in at least one second region, and the third openings are disposed adjacent to the first opening and have the same structure; in the first state, at least a part of the plurality of first openings is used to form a first seed For the pixel, in the second state, the mask is moved a predetermined distance in a predetermined direction, and at least a part of the plurality of third openings and the plurality of first openings are used together to form a sub-pixel different from the first seed pixel.
  • the embodiment of the present application further provides a vapor deposition device, which includes any of the mask plates described above.
  • the mask plate and the vapor deposition device provided in the embodiments of the present application provide a plurality of first openings that can form any color sub-pixel in the first region of the mask plate, and are arranged along a predetermined area in at least one second region.
  • a plurality of third openings having the same structure as the first opening are provided in the direction, and the mask can be moved a predetermined distance to achieve evaporation of at least two color sub-pixels, avoiding undesirable risks such as color mixing, and improving the evaporation of the mask.
  • Plating effect and evaporation efficiency are provided in the embodiments of the present application.
  • FIG. 1 is a schematic diagram of pixel arrangement of an OLED display panel in Embodiment 1.
  • FIG. 1 is a schematic diagram of pixel arrangement of an OLED display panel in Embodiment 1.
  • FIG. 2 is a schematic structural diagram of a mask plate provided in Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a moving process of the mask plate shown in FIG. 2 during evaporation of sub-pixels of different colors;
  • FIG. 4 is a schematic diagram of pixel arrangement of an OLED display panel in Embodiment 2;
  • FIG. 5 is a schematic structural diagram of a mask plate provided in Embodiment 2 of the present application.
  • FIG. 6 is a schematic diagram of a moving process of the mask plate shown in FIG. 5 when sub-pixels of different colors are evaporated.
  • FIG. 7 is a schematic diagram of pixel arrangement of an OLED display panel in Embodiment 3.
  • FIG. 8 is a schematic structural diagram of a mask plate provided in Embodiment 3 of the present application.
  • FIG. 9 is a schematic diagram of a moving process of the mask plate shown in FIG. 8 when different color sub-pixels are evaporated; FIG.
  • FIG. 10 is a schematic structural diagram of a mask plate provided in Embodiment 4 of the present application.
  • FIG. 11 is a schematic diagram of a moving process of the mask plate shown in FIG. 10 during evaporation of sub-pixels of different colors.
  • FIG. 1 is a schematic diagram of the pixel arrangement of the OLED display panel in the first embodiment.
  • an OLED display panel includes a plurality of groups of light-emitting pixel units 100 arranged in a matrix structure along a first direction X and a second direction Y.
  • Each group of light-emitting pixel units 100 includes sub-pixels 110 of N colors, where N ⁇ 3 .
  • the sub-pixel 110 of each color includes an organic light-emitting material layer 120.
  • the organic light-emitting material layer of the sub-pixel 110 of each color is formed by vacuum evaporation coating of an organic material of a corresponding color.
  • the sub-pixels include, but are not limited to, three colors of sub-pixels: red R, green G, and blue B.
  • the OLED display panel is arranged along each row of the first direction X.
  • the colors of the sub-pixels 110 are the same.
  • the distance between two adjacent sub-pixels 110 in the second direction Y is D1
  • the distance in the first direction X is D2.
  • OLED display panels use masks to control the coating positions of organic materials of different colors on the substrate.
  • the mask is generally made of INVAR and has a thickness of 20-40 ⁇ m.
  • Invar is a nickel-iron alloy that has a very low coefficient of thermal expansion and can maintain a fixed length over a wide temperature range.
  • FIG. 2 is a schematic structural diagram of a mask plate provided in Embodiment 1 of the present application.
  • an embodiment of the present application provides a mask.
  • the mask includes a first region 10 and a second region 20.
  • the second region 20 is located on both sides of the first region 10 in a predetermined direction.
  • the first region 10 is provided with a plurality of first openings 11 distributed along a first direction X and a second direction Y that are perpendicular to each other, and the plurality of first openings 11 respectively correspond to a plurality of groups of light emission.
  • the sub-pixel setting of any color of the pixel unit is used to form a sub-pixel of any color.
  • a second region 20 is generally provided on both sides of the first region 10 of the mask in a predetermined direction as a buffer.
  • a plurality of third openings 21 are provided in one of the second regions 20.
  • the third openings 21 are adjacent to the first openings 11 and have the same structure, that is, the shapes, sizes, and processing of the first openings 11 and the third openings 21. The accuracy is the same.
  • the mask In the first state, at least a part of the plurality of first openings 11 is used to form a first seed pixel.
  • the mask In the second state, the mask is moved a predetermined distance in a predetermined direction.
  • the first openings 11 are used together to form a sub-pixel different from the first seed pixel.
  • the difference refers to another seed pixel having a different color from the first seed pixel.
  • the mask can complete the evaporation of at least two color sub-pixels by moving a predetermined distance in a predetermined direction.
  • a plurality of first openings 11 forming any color sub-pixel are provided in the first region 10 of the mask, and are arranged in a predetermined direction in at least one second region 20
  • the plurality of third openings 21 having the same structure as the first opening 11 can move the mask plate by a predetermined distance to realize evaporation of at least two color sub-pixels.
  • the mask plate does not need to be removed during the evaporation process, thereby It can prevent impurities such as dust from being mixed on the substrate, improves the evaporation effect and the evaporation efficiency, and has a simple structure and low cost.
  • the plurality of third openings 21 in the second region 20 are arranged in the same manner as the arrangement of the plurality of first openings 11, and the plurality of third openings 21 are in a direction at a predetermined angle from a predetermined direction.
  • the arrangement is M rows, M ⁇ 1 and is an integer.
  • the plurality of first openings 11 and the plurality of third openings 21 are arranged in a row in a direction perpendicular to the predetermined direction.
  • two adjacent first openings 11 Within the first region 10 and the second region 20, two adjacent first openings 11.
  • the first two adjacent third openings 21 and the first pitch d1 of the adjacent first and third openings 11 and 21 in a predetermined direction satisfy Equation (1):
  • L is a predetermined distance that the mask plate moves in a predetermined direction.
  • L is the distance D1 between the two adjacent sub-pixels 110 along the second direction Y;
  • L is the two adjacent sub-pixels 110 along the first direction The distance D2 in the direction X.
  • the second region 20 serves as a process buffer for the first region 10, and each second region 20 is further provided with second openings 22 aligned in rows and columns along the first direction X and the second direction Y, at least one The plurality of second openings 22 in the second region 20 are provided on one side of the corresponding plurality of third openings 21 in a predetermined direction.
  • the second openings 22 in each second region 20 are at least two rows, and the processing accuracy of the second openings 22 is lower than that of the first openings 11.
  • the shape and size of the second opening 22 may be the same as or different from the shape and size of the first opening 11.
  • the inner edge of the second opening 22 is rough, and organic materials of different colors will remain on the rough edge of the second opening 22 during evaporation. As a result, there may be an adverse risk such as color mixing, so the second opening 22 cannot be used for vapor deposition.
  • the overall size of the mask plate is the smallest.
  • the size of the opening pattern corresponding to the two colors of R and G is set to the same size during pixel layout, and the mask can be completed when the mask is moved a predetermined distance in a predetermined direction.
  • the two color sub-pixels are evaporated.
  • the size of the opening pattern corresponding to multiple colors such as R / G / B can also be designed to be the same size, and the sub-pixels of multiple colors can be evaporated when the mask is sequentially moved in a predetermined direction for a predetermined distance.
  • the embodiment of the present application takes the opening pattern size of three colors of R / G / B as an example for illustration.
  • the plurality of first openings 11 in the first region 10 respectively correspond to a sub-pixel setting of any one color of the plurality of sets of light-emitting pixel units, such as a red sub-pixel.
  • the predetermined direction is the second direction Y, and the second region 20 is located on both sides of the first region 10 along the second direction Y.
  • the first region 10 and a plurality of first openings 11 in one of the second regions 20 are aligned in rows and columns along the first direction X and the second direction Y, and the plurality of third openings 21 are distributed in a row along the second direction Y.
  • the first opening 11 corresponds to the shape of the organic light emitting material layer 120 of the sub-pixel 110, and the size of the first opening 11 is larger than the size of the organic light emitting material layer 120.
  • the shape of the first opening 11 may be any one of a square hole, a circular hole, and a polygonal hole, and is not limited to the rectangular hole shown in the drawings.
  • the mask plate can be sequentially moved by a predetermined distance L to achieve evaporation of at least two color sub-pixels, avoiding undesirable risks such as color mixing, and improving the evaporation effect of the mask plate.
  • FIG. 3 is a schematic diagram of a moving process of the mask plate shown in FIG. 2 when different color sub-pixels are evaporated.
  • one of the colors such as a red organic material
  • the first region 10 of the mask plate is disposed corresponding to the organic light emitting material layer of the substrate of the OLED display panel.
  • a row of third openings 21 in the two areas 20 and the remaining multiple first openings 11 in the first area 10 are collectively arranged corresponding to the organic light emitting material layer of the substrate, and green is placed in another evaporation chamber in the evaporation device.
  • the opening 21 and the remaining multiple first openings 11 in the first region 10 are collectively arranged corresponding to the organic light emitting material layer of the substrate, and a blue organic material is placed in another evaporation chamber in the evaporation device to complete the blue sub-pixel.
  • the evaporation is shown in the arrow c in the figure.
  • the mask plate need not be repeatedly disassembled, so that impurities such as dust can be prevented from being mixed into the mask plate, the evaporation effect and the evaporation efficiency are improved, and the structure is simple and the cost is low.
  • the evaporation process of the two-color or more-color sub-pixels is similar to the evaporation process of the three-color sub-pixels, and the evaporation order of multiple colors is not limited to the examples in the drawings, and will not be described again.
  • FIG. 4 is a schematic diagram of the pixel arrangement of the OLED display panel in the second embodiment.
  • the structure of the OLED display panel is similar to that of the OLED display panel shown in FIG. 1, except that the color of the sub-pixels 110 in each column of the OLED display panel along the second direction Y is the same.
  • FIG. 5 is a schematic structural diagram of a mask plate provided in Embodiment 2 of the present application.
  • the mask includes a first region 10 and a second region 20.
  • the design principle of the mask is similar to that of the mask shown in FIG. 2, except that,
  • the predetermined direction is a first direction X, and the second region 20 is located on both sides of the first region 10 along the first direction X.
  • the first region 10 and a plurality of third openings 21 in one of the second regions 20 are aligned in rows and columns along the first direction X and the second direction Y, and the plurality of third openings 21 are distributed in a row along the first direction X.
  • the area of the mask plate shown in FIG. 5 is larger than the area of the mask plate shown in FIG. 2.
  • the volume will also be larger.
  • FIG. 6 is a schematic diagram of a moving process of the mask plate shown in FIG. 5 when sub-pixels of different colors are evaporated.
  • one of the colors such as red organic material
  • the first region 10 of the mask is disposed corresponding to the organic light emitting material layer of the substrate of the OLED display panel.
  • a row of third openings 21 in the two regions 20 and the remaining plurality of first openings 11 in the first region 10 are collectively disposed corresponding to the organic light emitting material layer of the substrate, and blue is placed in another evaporation chamber in the evaporation device.
  • the evaporation process of the two-color or more-color sub-pixels is similar to the evaporation process of the three-color sub-pixels, and the evaporation order of multiple colors is not limited to the examples in the drawings, and will not be described again.
  • FIG. 7 is a schematic diagram of the pixel arrangement of the OLED display panel in the third embodiment.
  • the structure of the OLED display panel is similar to that of the OLED display panel shown in FIG. 1, except that the color sub-pixels 110 of the same color among the color sub-pixels 110 of the adjacent N rows of the OLED display panel are sequentially staggered.
  • FIG. 8 is a schematic structural diagram of a mask plate provided in Embodiment 3 of the present application.
  • a plurality of first openings 11 and a plurality of third openings 21 are arranged in a direction at a predetermined angle from a predetermined direction, for example, a direction at an acute angle of 45 °.
  • Rows, and the plurality of third openings 21 are arranged in M rows, where M ⁇ N ⁇ 1 and an integer, and N is the type of the sub-pixels to be formed. Therefore, the plurality of first openings 11 in the first region 10 respectively correspond to the sub-pixel settings of any color of the plurality of sets of light-emitting pixel units shown in FIG. 7, and are used to form sub-pixels of any color, for example, Red subpixel.
  • the second region 20 is located on both sides of the first region 10 in a predetermined direction. At least one second region 20 is provided with a plurality of third openings 21. The first opening 11 and the third opening 21 are adjacent to each other and have the same structure. In this way, the mask can complete the evaporation of at least two color sub-pixels by moving a predetermined distance in a predetermined direction.
  • L is a predetermined distance that the mask plate moves in a predetermined direction.
  • D is the distance D1 between two adjacent sub-pixels 110 along the second direction Y;
  • D is the two adjacent sub-pixels 110 along the first direction The distance D2 in the direction X.
  • the predetermined direction is the first direction X
  • the second region 20 is located on both sides of the first region 10 along the first direction X.
  • the plurality of first openings 11 and the plurality of third openings 21 are arranged in a row in a direction at an acute angle with the predetermined direction, and the plurality of third openings 21 are arranged in two rows. That is, each adjacent three rows of the first region 10 and the plurality of third openings 21 in one of the second regions 20 are sequentially staggered, and are expanded in the first direction X with each adjacent three rows as a cycle.
  • the second region 20 serves as a process buffer for the first region 10.
  • Each second region 20 is further provided with second openings 22 aligned in rows and columns along the first direction X and the second direction Y. At least one of the second regions 20
  • the second opening 22 is provided on a side of the corresponding plurality of third openings 21 in a predetermined direction.
  • the second openings 22 in each second region 20 are at least two rows, and the processing accuracy of the second openings 22 is lower than that of the first openings 11.
  • the shape and size of the second opening 22 may be the same as or different from the shape and size of the first opening 11.
  • the overall size of the mask plate is the smallest.
  • the first opening 11 corresponds to the shape of the organic light emitting material layer 120 of the sub-pixel 110, and the size of the first opening 11 is larger than the size of the organic light emitting material layer 120.
  • the shape of the first opening 11 may be any one of a square hole, a circular hole, and a polygonal hole, and is not limited to the rectangular hole shown in the drawings.
  • FIG. 9 is a schematic diagram of a moving process of the mask plate shown in FIG. 8 when sub-pixels of different colors are evaporated.
  • one of the colors such as a red organic material
  • the first region 10 of the mask plate is disposed corresponding to the organic light emitting material layer of the substrate of the OLED display panel.
  • a row of third openings 21 in the two regions 20 and the remaining plurality of first openings 11 in the first region 10 are collectively disposed corresponding to the organic light emitting material layer of the substrate, and blue is placed in another evaporation chamber in the evaporation device.
  • the third opening 21 and the remaining multiple first openings 11 in the first region 10 are collectively arranged corresponding to the organic light emitting material layer of the substrate, and a green organic material is placed in another evaporation chamber in the evaporation device to complete the green sub-pixel.
  • the evaporation is shown in the arrow c in the figure.
  • the evaporation process of the two-color or more-color sub-pixels is similar to the evaporation process of the three-color sub-pixels, and the evaporation order of multiple colors is not limited to the examples in the drawings, and will not be described again.
  • FIG. 10 is a schematic structural diagram of a mask plate provided in Embodiment 4 of the present application.
  • the mask includes a first region 10 and a second region 20, as shown by a dashed box in FIG. 10.
  • the design principle of the mask is similar to that of the mask shown in FIG. 8, except that,
  • the predetermined direction is the second direction Y, and the second region 20 is located on both sides of the first region 10 along the second direction Y.
  • the plurality of third openings 21 are distributed in two rows along the second direction Y.
  • the area of the mask plate shown in FIG. 10 is smaller than the area of the mask plate shown in FIG. 8, and the volume of the corresponding evaporation device will also be smaller. Since it is small, it is preferable to use the mask shown in FIG.
  • FIG. 11 is a schematic diagram of a moving process of the mask plate shown in FIG. 10 during evaporation of sub-pixels of different colors.
  • one of the colors such as green organic material is placed in an evaporation chamber in the evaporation device.
  • the first region 10 of the mask plate is disposed corresponding to the organic light emitting material layer of the substrate of the OLED display panel.
  • a row of third openings 21 in the two regions 20 and the remaining plurality of first openings 11 in the first region 10 are collectively provided corresponding to the organic light emitting material layer of the substrate, and blue is placed in another evaporation chamber in the evaporation device Colored organic material to complete the evaporation of the blue sub-pixels, as shown by arrow b in the figure; move the mask again along the direction of arrow A shown in FIG.
  • the evaporation process of the two-color or more-color sub-pixels is similar to the evaporation process of the three-color sub-pixels, and the evaporation order of multiple colors is not limited to the examples in the drawings, and will not be described again.
  • the mask provided in the embodiment of the present application is directed to the OLED display panels of the same color sub-pixels 110 distributed in the same row, or the color sub-pixels 110 of the same color among the color sub-pixels 110 of adjacent N rows are sequentially staggered.
  • a third opening 21 can be provided on both sides of the first area 10 of the mask in the first direction X or the second direction Y, and at least two color sub-pixels can be realized by moving a predetermined distance. Evaporation.
  • the length of the two adjacent color sub-pixels of the OLED display panel in the second direction Y is shorter than the length in the first direction X, they are disposed on both sides of the first region 10 of the mask plate along the second direction Y
  • the area of the third opening 21 is smaller than that of the mask plate provided with the third opening 21 on both sides in the first direction X, and the volume of the corresponding evaporation device is also small. Pixel arrangement.
  • an embodiment of the present application further provides a vapor deposition device, which includes any of the mask plates described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种掩膜板,包括:第一区域(10),第一区域(10)内设置有多个第一开口(11);第二区域(20),位于第一区域(10)沿预定方向的两侧,其中至少一个第二区域(20)内设置有多个第三开口(21),第三开口(21)与第一开口(11)相邻设置且具有相同的结构;在第一状态中,多个第一开口(11)的至少一部分用于形成第一种子像素(110),在第二状态中,掩膜板沿预定方向移动预定距离,多个的第三开口(21)的至少一部分和多个第一开口(11)一起用于形成与第一种子像素(110)相异的一种子像素(110)。还公开了一种蒸镀装置。

Description

掩膜板及蒸镀装置
相关申请的交叉引用
本申请要求享有于2018年7月27日提交的名称为“掩膜板及蒸镀装置”的中国专利申请201810843949.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,特别是涉及一种掩膜板及蒸镀装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OELD),又称为有机电激光显示(Organic Electroluminesence Display)。OELD显示面板采用非常薄的有机材料涂层和基板制成,当有电流通过时,这些有机材料就会发光。OLED显示面板由多个发光像素单元按照矩阵结构排列组合而成,对于彩色OLED,一般每个发光像素单元包括三种颜色的子像素:红色R、绿色G和蓝色B。
一般采用金属材料的掩膜板来控制有机材料在基板上的镀膜位置。由于OLED显示面板的R/G/B颜色子像素采用不同颜色的有机发光材料蒸镀形成,所以需要采用掩膜板对R/G/B颜色子像素分别蒸镀对应颜色的有机材料。例如,在R颜色子像素蒸镀完成后,将R颜色对应的掩膜板卸下,再安装G颜色的掩膜板进行蒸镀,G颜色子像素蒸镀完成后,再将G颜色对应的掩膜板卸下,再安装B颜色的掩膜板进行蒸镀。在这种蒸镀过程中,蒸镀装置多次打开,灰尘等杂质容易混入基板上,严重影响有机发光材料层的镀膜效果。
发明内容
本申请的目的是提供一种掩膜板及蒸镀装置,其仅使用一个掩膜板即可实现至少两种颜色子像素的蒸镀。
一方面,本申请实施例提供了一种掩膜板,其包括:第一区域,第一区域内设置有多个第一开口;第二区域,位于第一区域沿预定方向的两侧,其中至少一个第二区域内设置有多个第三开口,第三开口与第一开口相邻设置且具有相同的结构;在第一状态中,多个第一开口的至少一部分用于形成第一种子像素,在第二状态中,掩膜板沿预定方向移动预定距离,多个第三开口的至少一部分和多个第一开口一起用于形成与第一种子像素相异的一种子像素。
另一方面,本申请实施例还提供了一种蒸镀装置,其包括如前所述的任一种掩膜板。
本申请实施例提供的掩膜板及蒸镀装置,通过在掩膜板的第一区域内设置可以形成任一种颜色子像素的多个第一开口,并在至少一个第二区域内沿预定方向设置与第一开口具有相同结构的多个第三开口,将掩膜板移动预定距离,即可实现至少两种颜色子像素的蒸镀,避免出现混色等不良风险,提高了掩模板的蒸镀效果和蒸镀效率。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是实施例一中的OLED显示面板的像素排布示意图;
图2是本申请实施例一提供的掩膜板的结构示意图;
图3是图2所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图;
图4是实施例二中的OLED显示面板的像素排布示意图;
图5是本申请实施例二提供的掩膜板的结构示意图;
图6是图5所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
图7是实施例三中的OLED显示面板的像素排布示意图;
图8是本申请实施例三提供的掩膜板的结构示意图;
图9是图8所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图;
图10是本申请实施例四提供的掩膜板的结构示意图;
图11是图10所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。
实施例一
图1是实施例一中的OLED显示面板的像素排布示意图。
参阅图1,OLED显示面板包括沿第一方向X和第二方向Y呈矩阵结构排列的多组发光像素单元100组成,每组发光像素单元100包括N种颜色的子像素110,其中N≥3。每种颜色的子像素110包括有机发光材料层120,每种颜色的子像素110的有机发光材料层由相应颜色的有机材料进行真空蒸发镀膜形成。子像素包括但不限于三种颜色的子像素:红色R、绿色G和蓝色B,以R/G/B三种颜色的子像素为例,OLED显示面板沿第一方向X每一排的子像素110的颜色相同,相邻的两个子像素110沿第二方向Y的间距为D1,沿第一方向X的间距为D2。
OLED显示面板采用掩膜板来控制不同颜色的有机材料在基板上的镀膜位置。掩膜板一般由因瓦合金(INVAR)制备而成,厚度一般为20-40μm。因瓦合金是一种镍铁合金,它的热膨胀系数极低,能在很宽的温度范围内保持固定长度。蒸镀时,掩膜板放置于基板与蒸镀装置之间,蒸镀装置内放置对应颜色的有机发光材料,以在基板上蒸镀不同颜色的子像素110。
图2是本申请实施例一提供的掩膜板的结构示意图。
参阅图2,本申请实施例提供了一种掩膜板,掩膜板包括第一区域10 和第二区域20,第二区域20位于第一区域10沿预定方向的两侧。
如图2中虚线框所示,第一区域10内设置有沿相互垂直的第一方向X和第二方向Y分布的多个第一开口11,多个第一开口11分别对应于多组发光像素单元的任一种颜色的子像素设置,用于形成任一种颜色的子像素。
为了保证第一开口11的尺寸加工精度,通常在掩膜板的第一区域10沿预定方向的两侧各设置第二区域20作为缓冲。其中一个第二区域20内设置有多个第三开口21,第三开口21与第一开口11相邻设置且具有相同的结构,即第一开口11与第三开口21的形状、尺寸及加工精度均相同。
在第一状态中,多个第一开口11的至少一部分用于形成第一种子像素,在第二状态中,掩膜板沿预定方向移动预定距离,多个第三开口21的至少一部分和多个第一开口11一起用于形成与第一种子像素相异的一种子像素。所述相异指的是,与第一种子像素的颜色不同的另一种子像素。由此,掩膜板通过沿预定方向移动预定距离能够完成至少两种颜色的子像素的蒸镀。
本申请实施例提供的掩膜板,通过在掩膜板的第一区域10内设置形成任一种颜色子像素的多个第一开口11,并在至少一个第二区域20内沿预定方向设置与第一开口11具有相同结构的多个第三开口21,将掩膜板移动预定距离即可实现至少两种颜色子像素的蒸镀,蒸镀过程中不需要将掩膜板卸下,从而可以防止灰尘等杂质混入基板上,提高了蒸镀效果和蒸镀效率,且结构简单、成本低。
下面结合附图详细描述本申请实施例提供的掩膜板的具体结构。
再次参阅图2,第二区域20内的多个第三开口21以与多个第一开口11的排列方式相同的方式排列,且沿与预定方向呈预定角度的方向,多个第三开口21排列为M排,M≥1且为整数。
进一步地,沿垂直于预定方向的方向上,多个第一开口11和多个第三开口21排列成行,在第一区域10和第二区域20内,相邻的两个所述第一开口11、相邻的两个所述第三开口21以及相邻的第一开口11和第三开口21沿预定方向的第一间距d1均满足式(1):
d1=N×L        (1)
其中,L为掩膜板沿预定方向移动的预定距离。当预定方向为第二方向Y时,L为相邻的两个子像素110沿第二方向Y的间距D1;当预定方向为第一方向X时,L为相邻的两个子像素110沿第一方向X的间距D2。
如前所述,第二区域20作为第一区域10的工艺缓冲,每个第二区域20内进一步设置有沿第一方向X和第二方向Y呈行列对齐排列的第二开口22,至少一个第二区域20内的多个第二开口22设置在相应的多个第三开口21的沿预定方向的一侧。每个第二区域20内的第二开口22至少为两排,并且第二开口22的加工精度低于第一开口11的加工精度。第二开口22的形状及尺寸与第一开口11的形状及尺寸可以相同,也可以不同。
由于第二开口22的尺寸加工精度低于第一开口11的尺寸加工精度,第二开口22的内侧边缘处比较粗糙,不同颜色的有机材料蒸镀时会留在第二开口22粗糙的边缘处,从而可能会出现混色等不良风险,故第二开口22不能用于蒸镀。
另外,当多个第三开口21排列为一排时,掩膜板的整体尺寸最小。为了完成多种颜色子像素的蒸镀,在第二区域20中,第一开口11与相邻的第二开口22沿预定方向的第二间距d2≥d1。
为了减少掩膜板的制作费用,一般在像素排版时将掩膜板上对应于R和G两种颜色的开口图案尺寸设计为同样大小,则掩膜板沿预定方向移动预定距离时即可完成该两种颜色子像素的蒸镀。有些情况下也可以将对应于R/G/B等多种颜色的开口图案尺寸设计为同样大小,则掩膜板沿预定方向依次移动预定距离时即可完成多种颜色子像素的蒸镀。
为了描述方便,本申请实施例以R/G/B三种颜色的开口图案尺寸设计为同样大小为例进行说明。
图2中,第一区域10内的多个第一开口11分别对应于多组发光像素单元的任一种颜色的子像素设置,例如红色子像素。预定方向为第二方向Y,第二区域20位于第一区域10沿第二方向Y的两侧。
第一区域10与其中一个第二区域20内的多个第一开口11沿第一方向X和第二方向Y呈行列对齐排列,多个第三开口21沿第二方向Y分布为一排。第一区域10和第二区域20内相邻的两个第一开口11、相邻的两个 第三开口21以及相邻的的第一开口11和第三开口21沿第二方向Y的第一间距均为d1=3×D1,其中一个第二区域20内第三开口21与相邻的第二开口22沿第二方向Y的第二间距d2≥d1,即可实现至少两种颜色子像素的蒸镀。
进一步地,第一开口11与子像素110的有机发光材料层120的形状对应,并且第一开口11的尺寸大于有机发光材料层120的尺寸。另外,第一开口11的形状可以为方形孔、圆形孔和多边形孔中的任一种,而不限于附图所示的矩形孔。
由此,通过在掩膜板的第一区域10内设置多个第一开口11,并在第二区域20内沿预定方向设置与第一开口11具有相同结构的多个第三开口21,将掩膜板依次移动预定距离L,即可实现至少两种颜色子像素的蒸镀,避免出现混色等不良风险,提高了掩膜板的蒸镀效果。
图3是图2所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
参阅图3,在蒸镀装置内的一种蒸发室内放置其中一种颜色例如红色有机材料,掩膜板的第一区域10对应于OLED显示面板的基板的有机发光材料层设置。通过第一区域10内的多个第一开口11蒸镀完红色子像素,如图中箭头a所示;然后将掩膜板沿图3所示的箭头A方向移动距离L=D1,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置绿色有机材料,完成绿色子像素的蒸镀,如图中箭头b所示;再次将掩膜板沿图3所示的箭头A方向移动距离L=D1,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置蓝色有机材料,完成蓝色子像素的蒸镀,如图中箭头c所示。
蒸镀过程中不需要将掩膜板反复拆卸,从而可以防止灰尘等杂质混入掩膜板上,提高了蒸镀效果和蒸镀效率,且结构简单、成本低。
可以理解的是,两种颜色或者更多种颜色子像素的蒸镀过程与上述三种颜色子像素的蒸镀过程类似,多种颜色的蒸镀顺序也不限于附图示例,不再赘述。
实施例二
图4是实施例二中的OLED显示面板的像素排布示意图。
参阅图4,该OLED显示面板与图1所示的OLED显示面板结构类似,不同之处在于,OLED显示面板沿第二方向Y每一列的子像素110的颜色相同。
图5是本申请实施例二提供的掩膜板的结构示意图。
参阅图5,掩膜板包括第一区域10和第二区域20,如图5中虚线框所示,该掩膜板的设计原理与图2所示的掩膜板类似,不同之处在于,预定方向为第一方向X,第二区域20位于第一区域10沿第一方向X的两侧。
第一区域10与其中一个第二区域20内的多个第三开口21沿第一方向X和第二方向Y呈行列对齐排列,多个第三开口21沿第一方向X分布为一排。第一区域10和第二区域20内相邻的两个第一开口11、相邻的两个第三开口21以及相邻的第一开口11和第二开口21沿第一方向X的第一间距均为d1=3×D2,其中一个第二区域20内第三开口21与相邻的第二开口22沿第二方向Y的第二间距d2≥d1,即可实现至少两种颜色子像素的蒸镀。
对于图1和图4所示的同样尺寸的OLED显示面板来说,图5所示的掩膜板的面积相对于图2所示的掩膜板的面积较大些,相应的蒸镀装置的体积也会较大。
图6是图5所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
参阅图6,在蒸镀装置内的一种蒸发室内放置其中一种颜色例如红色有机材料,掩膜板的第一区域10对应于OLED显示面板的基板的有机发光材料层设置。通过第一区域10内的多个第一开口11蒸镀完红色子像素,如图中箭头a所示;然后将掩膜板沿图3所示的箭头A方向移动距离L=D2,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置蓝色有机材料,完成蓝色子像素的蒸镀,如图中箭头b所示;再次将掩膜板沿图3所示的箭头A方向移动距离L=D2,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共 同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置绿色有机材料,完成绿色子像素的蒸镀,如图中箭头c所示。
可以理解的是,两种颜色或者更多种颜色子像素的蒸镀过程与上述三种颜色子像素的蒸镀过程类似,多种颜色的蒸镀顺序也不限于附图示例,不再赘述。
实施例三
图7是实施例三中的OLED显示面板的像素排布示意图。
参阅图7,该OLED显示面板与图1所示的OLED显示面板结构类似,不同之处在于,OLED显示面板相邻N排的颜色子像素110中同种颜色的颜色子像素110依次错开排列。
图8是本申请实施例三提供的掩膜板的结构示意图。
参阅图8,该掩膜板第一区域10内,沿与预定方向呈预定角度的方向上,例如,呈45°锐角的方向上,多个第一开口11和多个第三开口21排列成排,并且多个第三开口21排列为M排,其中,M≥N-1且为整数,N为待形成的子像素的种类。由此,第一区域10内的多个第一开口11分别对应于图7所示的多组发光像素单元的任一种颜色的子像素设置,用于形成任一种颜色的子像素,例如红色子像素。
第二区域20位于第一区域10沿预定方向的两侧,至少一个第二区域20内设置有多个第三开口21,第一开口11与第三开口21相邻设置且具有相同的结构,以使掩膜板通过沿预定方向移动预定距离能够完成至少两种颜色子像素的蒸镀。
进一步地,在第一区域10和第二区域20内,相邻的两个所述第一开口11、相邻的两个所述第三开口21以及相邻的第一开口11和第三开口21沿预定方向的第一间距d1均满足式(2):
d1=L          (2)
其中,L为掩膜板沿预定方向移动的预定距离。当预定方向为第二方向Y时,D为相邻的两个子像素110沿第二方向Y的间距D1;当预定方向为第一方向X时,D为相邻的两个子像素110沿第一方向X的间距D2。
图8中,预定方向为第一方向X,第二区域20位于第一区域10沿第 一方向X的两侧。沿与预定方向呈锐角的方向上,多个第一开口11和多个第三开口21排列成排,并且多个第三开口21排列为两排。即第一区域10与其中一个第二区域20内的多个第三开口21中每相邻三排依次错开排列,并以每相邻三排为周期在第一方向X上扩展,多个第三开口21沿第一方向X分布为两排。第一区域10和第二区域20内相邻的两个第一开口11、相邻的两个第三开口21以及相邻的第一开口11和第三开口21沿第一方向X的第一间距d1均满足d1=D2。
第二区域20作为第一区域10的工艺缓冲,每个第二区域20内进一步设置有沿第一方向X和第二方向Y呈行列对齐排列的第二开口22,至少一个第二区域20内的第二开口22设置在相应的多个第三开口21的沿预定方向的一侧。每个第二区域20内的第二开口22至少为两排,并且第二开口22的加工精度低于第一开口11的加工精度。第二开口22的形状及尺寸与第一开口11的形状及尺寸可以相同,也可以不同。
另外,当多个第三开口21排列为两排时,掩膜板的整体尺寸最小。为了完成多种颜色子像素的蒸镀,在第二区域20中,第三开口21与相邻的第二开口22沿预定方向的第二间距d2≥d1。
进一步地,第一开口11与子像素110的有机发光材料层120的形状对应,并且第一开口11的尺寸大于有机发光材料层120的尺寸。另外,第一开口11的形状可以为方形孔、圆形孔和多边形孔中的任一种,而不限于附图所示的矩形孔。
图9是图8所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
参阅图9,在蒸镀装置内的一种蒸发室内放置其中一种颜色例如红色有机材料,掩膜板的第一区域10对应于OLED显示面板的基板的有机发光材料层设置。通过第一区域10内的多个第一开口11蒸镀完红色子像素,如图中箭头a所示;然后将掩膜板沿图3所示的箭头A方向移动距离L=D2,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置蓝色有机材料,完成蓝色子像素的蒸镀,如图中箭头b所示;再次将掩膜板沿图3所示的箭头A方向移动距离L=D2,使第二 区域20内的两排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置绿色有机材料,完成绿色子像素的蒸镀,如图中箭头c所示。
可以理解的是,两种颜色或者更多种颜色子像素的蒸镀过程与上述三种颜色子像素的蒸镀过程类似,多种颜色的蒸镀顺序也不限于附图示例,不再赘述。
实施例四
图10是本申请实施例四提供的掩膜板的结构示意图。
参阅图10,掩膜板包括第一区域10和第二区域20,如图10中虚线框所示,该掩膜板的设计原理与图8所示的掩膜板类似,不同之处在于,预定方向为第二方向Y,第二区域20位于第一区域10沿第二方向Y的两侧。多个第三开口21沿第二方向Y分布为两排。第一区域10和第二区域20内相邻的两个第一开口11、相邻的两个第三开口21以及相邻的第一开口11和第三开口21沿第二方向Y的第一间距d1均满足d1=D1,其中一个第二区域20内第三开口21与相邻的第二开口22沿第二方向Y的第二间距d2≥d1,即可实现至少两种颜色子像素的蒸镀。
对于图7所示的同一种OLED显示面板来说,图10所示的掩膜板的面积相对于图8所示的掩膜板的面积较小些,相应的蒸镀装置的体积也会较小,故优选采用图10所示的掩膜板。
图11是图10所示的掩膜板在蒸镀不同颜色子像素时的移动过程示意图。
参阅图11,在蒸镀装置内的一种蒸发室内放置其中一种颜色例如绿色有机材料,掩膜板的第一区域10对应于OLED显示面板的基板的有机发光材料层设置。通过第一区域10内的多个第一开口11蒸镀完绿色子像素,如图中箭头a所示;然后将掩膜板沿图3所示的箭头A方向移动距离L=D1,使第二区域20内的一排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置蓝色有机材料,完成蓝色子像素的蒸镀,如图中箭头b所示;再次将掩膜板沿图3所示的箭头A方向移动距离L=D1,使第二 区域20内的两排第三开口21和第一区域10内的其余多个第一开口11共同对应于基板的有机发光材料层设置,并在蒸镀装置内的另一种蒸发室内放置红色有机材料,完成红色子像素的蒸镀,如图中箭头c所示。
可以理解的是,两种颜色或者更多种颜色子像素的蒸镀过程与上述三种颜色子像素的蒸镀过程类似,多种颜色的蒸镀顺序也不限于附图示例,不再赘述。
由此,本申请实施例提供的掩膜板,针对同种颜色子像素110分布在同一排的OLED显示面板,或者相邻N排的颜色子像素110中同种颜色的颜色子像素110依次错开排列的OLED显示面板,均可以在掩膜板的第一区域10沿第一方向X或者第二方向Y的两侧设置第三开口21,通过移动预定距离即可实现至少两种颜色子像素的蒸镀。
另外,由于OLED显示面板相邻的两个颜色子像素在第二方向Y上的长度小于在第一方向X的长度,故在掩膜板的第一区域10沿第二方向Y的两侧设置第三开口21,相对于沿第一方向X的两侧设置第三开口21的掩膜板的面积要小些,相应的蒸镀装置的体积也会较小,具体根据不同的OLED显示面板的像素排布情况进行选择。
另外,本申请实施例还提供了一种蒸镀装置,其包括如前所述的任一种掩膜板。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (12)

  1. 一种掩膜板,其中,所述掩膜板包括:
    第一区域,所述第一区域内设置有多个第一开口;
    第二区域,位于所述第一区域沿预定方向的两侧,其中至少一个所述第二区域内设置有多个第三开口,所述第三开口与所述第一开口相邻设置且具有相同的结构;
    在第一状态中,多个所述第一开口的至少一部分用于形成第一种子像素,
    在第二状态中,所述掩膜板沿所述预定方向移动预定距离,多个所述的第三开口的至少一部分和多个所述第一开口一起用于形成与所述第一种子像素相异的一种子像素。
  2. 根据权利要求1所述的掩膜板,其中,所述第三开口以与多个所述第一开口的排列方式相同的方式排列,且沿与所述预定方向呈预定角度的方向,多个所述第三开口排列为M排,M≥1且为整数。
  3. 根据权利要求2所述的掩膜板,其中,沿垂直于所述预定方向的方向上,多个所述第一开口和多个所述第三开口排列成行,在所述第一区域和所述第二区域内,相邻的两个所述第一开口、相邻的两个所述第三开口以及相邻的第一开口和第三开口沿所述预定方向的第一间距d1均满足式(1):
    d1=N×L       (1)
    其中,L为所述掩膜板沿所述预定方向移动的预定距离,N为待形成的子像素的种类。
  4. 根据权利要求1或2所述的掩膜板,其中,沿与所述预定方向呈预定角度的方向上,多个所述第一开口和多个所述第三开口排列成排,并且多个所述第三开口排列为M排,其中,M≥N-1且为整数,N为待形成的子像素的种类。
  5. 根据权利要求4所述的掩膜板,其中,在所述第一区域和所述第 二区域内,相邻的两个所述第一开口、相邻的两个所述第三开口以及相邻的第一开口和第三开口沿所述预定方向的第一间距d1均满足式(2):
    d1=L           (2)
    其中,L为所述掩膜板沿所述预定方向移动的预定距离。
  6. 根据权利要求1至3任一项所述的掩膜板,其中,在第二区域内还设置有多个第二开口,在至少一个所述第二区域中,所述第二开口设置在相应的多个所述第三开口的沿所述预定方向的一侧。
  7. 根据权利要求6所述的掩膜板,其中,在第二区域中,所述第三开口与相邻的所述第二开口沿所述预定方向的第二间距d2满足式(3):
    d2≥d1         (3)。
  8. 根据权利要求7所述的掩膜板,其中,在第二区域中,所述第二开口为多个,多个所述第二开口排列成至少两排。
  9. 根据权利要求6所述的掩膜板,其中,待形成的子像素的种类为三个,所述预定方向为第二方向,第一方向垂直于所述第二方向,所述第一区域与其中一个所述第二区域内的多个所述第三开口沿所述第一方向和所述第二方向呈行列对齐排列,多个所述第三开口沿所述第二方向分布为一排;
    在至少一个所述第二区域内,所述第二开口设置在相应的多个第三开口(21)的沿所述第二方向的一侧。
  10. 根据权利要求6所述的掩膜板,其中,待形成的子像素的种类为三个,所述预定方向为第一方向,所述第一方向垂直于第二方向,所述第一区域与其中一个所述第二区域内的多个所述第三开口中每相邻三排依次错开排列,并以每相邻三排为周期在所述第一方向上扩展,多个所述第三开口沿所述第一方向分布为两排;
    在至少一个所述第二区域内,所述第二开口设置在相应的多个所述第三开口的沿所述第一方向的一侧。
  11. 根据权利要求1至3任一项所述的掩膜板,其中,所述第一开口 的形状为方形孔、圆形孔和多边形孔中的任一种。
  12. 一种蒸镀装置,其中,包括如权利要求1至11任一项所述的掩膜板。
PCT/CN2019/074099 2018-07-27 2019-01-31 掩膜板及蒸镀装置 WO2020019698A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207009452A KR102334155B1 (ko) 2018-07-27 2019-01-31 마스크 플레이트 및 증착 장치
JP2020519786A JP6942248B2 (ja) 2018-07-27 2019-01-31 マスクプレート及び蒸着装置
US16/742,933 US20200149149A1 (en) 2018-07-27 2020-01-15 Mask and vapor deposition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810843949.6 2018-07-27
CN201810843949.6A CN109055892B (zh) 2018-07-27 2018-07-27 掩膜板及蒸镀装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/742,933 Continuation US20200149149A1 (en) 2018-07-27 2020-01-15 Mask and vapor deposition device

Publications (1)

Publication Number Publication Date
WO2020019698A1 true WO2020019698A1 (zh) 2020-01-30

Family

ID=64836790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074099 WO2020019698A1 (zh) 2018-07-27 2019-01-31 掩膜板及蒸镀装置

Country Status (6)

Country Link
US (1) US20200149149A1 (zh)
JP (1) JP6942248B2 (zh)
KR (1) KR102334155B1 (zh)
CN (1) CN109055892B (zh)
TW (1) TWI682042B (zh)
WO (1) WO2020019698A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055892B (zh) * 2018-07-27 2020-01-10 云谷(固安)科技有限公司 掩膜板及蒸镀装置
CN110034248B (zh) * 2019-04-17 2021-09-03 京东方科技集团股份有限公司 一种掩膜设备、制备oled器件以及制备oled显示面板的方法
KR20200136549A (ko) * 2019-05-27 2020-12-08 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN111411323B (zh) * 2020-03-31 2023-01-20 云谷(固安)科技有限公司 一种掩膜板
CN111575648B (zh) * 2020-06-23 2022-07-15 京东方科技集团股份有限公司 掩膜板组件及其制造方法
CN111883571B (zh) * 2020-08-06 2023-06-02 京东方科技集团股份有限公司 显示背板、显示装置、掩膜版、蒸镀方法和显示方法
CN113215529B (zh) * 2021-04-30 2023-05-12 合肥维信诺科技有限公司 精密掩膜板和掩膜板组件
CN113637940A (zh) * 2021-08-30 2021-11-12 重庆翰博显示科技研发中心有限公司 一种能够提高蒸镀品质的oled蒸镀用掩膜板及其应用方法
CN114107895A (zh) * 2021-11-26 2022-03-01 京东方科技集团股份有限公司 一种精细金属掩膜板及有机电致发光显示面板
CN114300587B (zh) * 2021-12-29 2023-08-18 江苏第三代半导体研究院有限公司 一种micro LED的制备方法
CN115216737B (zh) * 2022-07-19 2024-03-26 京东方科技集团股份有限公司 蒸镀装置及蒸镀方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147182A (ja) * 2004-11-16 2006-06-08 Eastman Kodak Co 有機elパネルの製造方法、有機elパネルおよび蒸着マスク
CN102162082A (zh) * 2010-02-12 2011-08-24 株式会社爱发科 蒸镀掩模、蒸镀装置、薄膜形成方法
CN102956845A (zh) * 2012-10-12 2013-03-06 华映视讯(吴江)有限公司 屏蔽以及有机发光材料层的制作方法
TW201408795A (zh) * 2012-08-29 2014-03-01 Chunghwa Picture Tubes Ltd 遮罩以及有機發光材料層的製作方法
CN106435473A (zh) * 2016-11-11 2017-02-22 京东方科技集团股份有限公司 掩模板及其制作方法、有机发光二极管显示器的制作方法
CN109055892A (zh) * 2018-07-27 2018-12-21 云谷(固安)科技有限公司 掩膜板及蒸镀装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545504B2 (ja) * 2004-07-15 2010-09-15 株式会社半導体エネルギー研究所 膜形成方法、発光装置の作製方法
CN100482848C (zh) * 2006-06-12 2009-04-29 友达光电股份有限公司 屏蔽、应用其的蒸镀装置和显示面板制造方法
KR100784541B1 (ko) * 2006-07-14 2007-12-11 엘지전자 주식회사 마스크 및 이를 이용한 전계 발광 소자의 제조방법
CN101803459A (zh) * 2007-09-10 2010-08-11 株式会社爱发科 蒸镀装置
CN101752407B (zh) * 2009-12-31 2011-03-30 四川虹视显示技术有限公司 一种oled显示器及其掩膜板和掩膜板对位方法
KR20140087823A (ko) * 2012-12-31 2014-07-09 엘아이지에이디피 주식회사 박막증착용 금속마스크 및 이를 이용하는 박막증착방법
CN107868931A (zh) * 2016-09-23 2018-04-03 昆山国显光电有限公司 精密金属遮罩、oled基板及其对位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147182A (ja) * 2004-11-16 2006-06-08 Eastman Kodak Co 有機elパネルの製造方法、有機elパネルおよび蒸着マスク
CN102162082A (zh) * 2010-02-12 2011-08-24 株式会社爱发科 蒸镀掩模、蒸镀装置、薄膜形成方法
TW201408795A (zh) * 2012-08-29 2014-03-01 Chunghwa Picture Tubes Ltd 遮罩以及有機發光材料層的製作方法
CN102956845A (zh) * 2012-10-12 2013-03-06 华映视讯(吴江)有限公司 屏蔽以及有机发光材料层的制作方法
CN106435473A (zh) * 2016-11-11 2017-02-22 京东方科技集团股份有限公司 掩模板及其制作方法、有机发光二极管显示器的制作方法
CN109055892A (zh) * 2018-07-27 2018-12-21 云谷(固安)科技有限公司 掩膜板及蒸镀装置

Also Published As

Publication number Publication date
TW201920723A (zh) 2019-06-01
JP2020536176A (ja) 2020-12-10
CN109055892A (zh) 2018-12-21
TWI682042B (zh) 2020-01-11
JP6942248B2 (ja) 2021-09-29
US20200149149A1 (en) 2020-05-14
CN109055892B (zh) 2020-01-10
KR102334155B1 (ko) 2021-12-02
KR20200044945A (ko) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2020019698A1 (zh) 掩膜板及蒸镀装置
TWI585726B (zh) 畫素結構
WO2019201170A1 (zh) 像素排列结构、显示面板、掩膜版组件及蒸镀设备
WO2018161809A1 (zh) Oled阵列基板及其制造方法和显示装置
JP6421190B2 (ja) 画素構造及び該画素構造を有する有機発光表示装置
US9262961B2 (en) Pixel arrangement of color display apparatus
CN109148543B (zh) 一种像素结构及显示面板
TWI506774B (zh) 畫素結構及其金屬光罩
WO2017185769A1 (zh) 像素阵列及其制造方法和有机发光二极管阵列基板
WO2016050012A1 (zh) 阵列基板、掩膜板和显示装置
WO2016127560A1 (zh) 一种有机发光二极管阵列基板及其制作方法、显示装置
US20210336147A1 (en) Mask
WO2017016201A1 (zh) 掩膜板组及制造电致发光层的方法、显示面板及驱动方法
WO2019033856A1 (zh) 一种掩膜版、oled显示基板、显示装置及制作方法
WO2017198008A1 (zh) 电致发光显示器件、其制作方法及显示装置
US9269752B2 (en) Organic electroluminescence display
WO2020215401A1 (zh) 一种发光器件及其制作方法、和显示面板
TW201839972A (zh) 畫素結構
JP7043592B2 (ja) 画素ディスプレイモジュール及び画素ディスプレイモジュールを製造するためのマスク
US20140041586A1 (en) Masking Device for Vapor Deposition of Organic Material of Organic Electroluminescent Diode
CN110634909A (zh) 一种显示基板、显示面板及显示装置
WO2019227926A1 (zh) 像素排列结构、显示面板及掩膜版组件
KR20150106622A (ko) 유기 발광 표시 장치
CN111697025B (zh) Oled显示器件、显示面板、显示装置以及制造方法
US20240023376A1 (en) Display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207009452

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020519786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841282

Country of ref document: EP

Kind code of ref document: A1