WO2020114040A1 - 车载摄像镜头及成像设备 - Google Patents

车载摄像镜头及成像设备 Download PDF

Info

Publication number
WO2020114040A1
WO2020114040A1 PCT/CN2019/106771 CN2019106771W WO2020114040A1 WO 2020114040 A1 WO2020114040 A1 WO 2020114040A1 CN 2019106771 W CN2019106771 W CN 2019106771W WO 2020114040 A1 WO2020114040 A1 WO 2020114040A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
vehicle
camera lens
group
mounted camera
Prior art date
Application number
PCT/CN2019/106771
Other languages
English (en)
French (fr)
Inventor
陈伟建
刘绪明
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to KR1020217002910A priority Critical patent/KR102572350B1/ko
Priority to EP19892249.4A priority patent/EP3865926B1/en
Priority to JP2021529512A priority patent/JP7161617B2/ja
Priority to PL19892249.4T priority patent/PL3865926T3/pl
Priority to US16/858,586 priority patent/US11125971B2/en
Publication of WO2020114040A1 publication Critical patent/WO2020114040A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof

Definitions

  • the invention relates to the technical field of optical lenses, in particular to a vehicle-mounted camera lens and imaging equipment.
  • ADAS Advanced Driving Assistant System
  • the application of the car camera in the driving assistance system is mainly after the image is collected by the optical lens, the image is processed by the photosensitive component circuit and the control component in the camera and converted into a digital signal that can be processed by the computer, so as to realize the perception of the road conditions around the vehicle Situation, realize the functions of forward collision warning, lane deviation alarm and pedestrian detection.
  • Car cameras are installed in different positions on the car, and the functions they achieve are also different. They also have various special requirements for optical lenses.
  • vehicle-mounted image sensors have also come out with new ideas and are developing toward high pixels.
  • conventional vehicle-mounted lenses have low resolution, which makes it difficult to meet market demands.
  • the object of the present invention is to provide a vehicle-mounted camera lens and imaging device to solve the above-mentioned problems.
  • the present invention provides an in-vehicle camera lens, which includes, in order from the object side to the image side, a first group with negative power, a diaphragm, a second group with positive power, and a positive power
  • the third group includes a first lens and a second lens in order from the object side to the image side, and the first group includes at least one aspheric lens.
  • the second group includes at least a third lens, and the second group includes at least one aspheric lens.
  • the third group includes a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side, where the fourth lens has positive refractive power, the object side and the image side of the fourth lens are both convex, and the fifth lens has Negative power, the fifth lens has a concave object side, the sixth lens has positive power, and the third group includes at least one aspheric lens.
  • the present invention provides an imaging device.
  • the imaging device includes the above-mentioned on-vehicle camera lens and an imaging element.
  • the imaging element is used to convert an optical image formed by the on-vehicle camera lens into an electrical signal.
  • the vehicle-mounted camera lens and imaging device provided by the present invention have the characteristics of high resolution and good imaging effect.
  • the first group of vehicle-mounted camera lenses is mainly used for collecting light.
  • the use of aspheric lenses is mainly to provide the lens with a larger focal length, so that the lens can have better recognition in a smaller field of view.
  • the second group is mainly used to correct the spherical aberration of the optical system of this lens, and to improve the resolution of the lens.
  • the third group is used to eliminate chromatic aberration.
  • the aspheric lens is mainly used to correct the astigmatism of the optical system of the lens and improve the resolution of the lens.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted camera lens provided by a first embodiment of the present invention
  • 3 is a curve diagram of the field curvature of the on-vehicle camera lens in the first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted camera lens according to a second embodiment of the present invention.
  • FIG. 7 is a field curve diagram of a vehicle-mounted camera lens in a second embodiment of the invention.
  • FIG. 8 is a distortion curve diagram of a vehicle-mounted camera lens in a second embodiment of the invention.
  • FIG. 9 is a schematic structural diagram of a vehicle-mounted camera lens according to a third embodiment of the present invention.
  • FIG. 11 is a field curve diagram of a vehicle-mounted camera lens in a third embodiment of the invention.
  • FIG. 12 is a distortion curve diagram of a vehicle-mounted camera lens in a third embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a vehicle-mounted camera lens according to a fourth embodiment of the present invention.
  • 15 is a field curve diagram of a vehicle-mounted camera lens in a fourth embodiment of the invention.
  • 16 is a distortion curve diagram of a vehicle-mounted camera lens in a fourth embodiment of the invention.
  • FIG. 17 is a schematic structural diagram of a vehicle-mounted camera lens according to a fifth embodiment of the present invention.
  • 19 is a field curve diagram of a vehicle-mounted camera lens in a fifth embodiment of the invention.
  • 20 is a distortion curve diagram of a vehicle-mounted camera lens in a fifth embodiment of the invention.
  • 21 is a schematic structural diagram of a vehicle-mounted camera lens provided by a sixth embodiment of the present invention.
  • 22 is a graph of the modulation transfer function curve of the in-vehicle camera lens in the sixth embodiment of the invention.
  • 24 is a distortion curve diagram of a vehicle-mounted camera lens in a sixth embodiment of the invention.
  • 25 is a schematic structural diagram of an imaging device according to a seventh embodiment of the present invention.
  • An object of the present invention is to provide an on-vehicle camera lens.
  • the resolution of the lens is improved, and a chip with 8M pixel specifications can be matched, which satisfies the market's urgent need for in-vehicle high-pixel lenses.
  • An object of the present invention is to provide an in-vehicle camera lens, in which the angle of view of the in-vehicle camera lens is large, more information can be collected around the car, and the hidden danger caused by the blind spot is reduced.
  • An object of the present invention is to provide an on-vehicle camera lens, in which the first lens of the first group is an aspheric lens, which can increase the focal length of the lens in the case of matching chips of the same size, thereby improving the imaging effect in the central area of the imaging plane .
  • An object of the present invention is to provide an on-vehicle camera lens, wherein the on-vehicle camera lens has a large aperture characteristic, increases the light flux of the lens, and has a good imaging effect under low light conditions, thereby reducing hidden safety hazards of driving in a dark environment.
  • An object of the present invention is to provide a vehicle-mounted camera lens.
  • Each lens is made of a glass material with good reliability, which can satisfy the harsh working environment in the vehicle-mounted field.
  • the invention provides an on-vehicle camera lens and an imaging device, which include, in order from the object side to the image side, a first group with negative power, a diaphragm, a second group with positive power, and a first group with positive power Three groups.
  • the first group includes a first lens and a second lens in order from the object side to the image side, and the first group includes at least one aspheric lens.
  • the second group includes at least a third lens, and the second group includes at least one aspheric lens.
  • the third group includes a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side, where the fourth lens has positive refractive power, the object side and the image side of the fourth lens are both convex, and the fifth lens has Negative power, the fifth lens has a concave object side, the sixth lens has positive power, and the third group includes at least one aspheric lens.
  • the first lens has negative power, the object side of the first lens is convex and the image side is concave, the first lens is an aspheric lens, and the object side of the second lens is concave.
  • the third lens has a positive refractive power
  • the object side and the image side of the third lens are convex
  • the third lens is an aspheric lens.
  • the second group further includes a seventh lens
  • the seventh lens is located between the third lens and the third group, the seventh lens has a positive refractive power, the object side and the image side of the seventh lens Both are convex, the third lens has positive power, and the object side and image side of the third lens are both convex.
  • the fourth lens and the fifth lens are cemented into a cement
  • the object side of the sixth lens is convex
  • the sixth lens is an aspheric lens
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • D 1 represents the maximum effective aperture of the first lens
  • represents the maximum angle of view of the vehicle camera lens, in radians
  • f represents the system focal length of the vehicle camera lens. Satisfying conditional expression (1) can make the front port diameter of the lens smaller, reducing the imaging system volume of the lens.
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • f Q1 represents the combined focal length of the first group
  • f Q2 represents the combined focal length of the second group
  • f represents the system focal length of the in-vehicle camera lens. Satisfying the conditional expression (2) can make the combined focal length of the first group be a negative value, which is more conducive to achieving the characteristics of a large viewing angle; the combined focal length of the second group satisfies the conditional expression (3), which can converge the light better.
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • IH max represents the image height corresponding to the maximum angle of view of the vehicle camera lens
  • represents the maximum angle of view of the vehicle camera lens, in radians
  • f represents the system focal length of the vehicle camera lens. Satisfying the conditional expression (4) can ensure that the focal length of the lens is increased and the imaging effect of the central area of the imaging surface of the lens is highlighted when the field angle of the lens and the size of the imaging surface are unchanged.
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • R 11 represents the radius of curvature of the center of the side surface of the first lens object
  • R 21 represents the radius of curvature of the center of the side surface of the second lens object
  • f represents the system focal length of the vehicle-mounted camera lens. Satisfying the conditional expressions (5) and (6) can effectively shorten the back focal length of the vehicle camera lens to reduce the total optical length of the vehicle camera lens.
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • T Q2 represents the sum of the central thickness values of the lenses of the second group
  • f represents the system focal length of the on-vehicle camera lens
  • (dn/dt) Q2 represents the sum of the refractive index temperature coefficients of the lenses of the second group.
  • the vehicle-mounted camera lens provided by the present invention satisfies the following conditional expression:
  • TTL represents the total length of the optical system of the vehicle camera lens
  • f represents the system focal length of the vehicle camera lens. Satisfying the conditional expression (9), a relatively compact vehicle camera lens can be obtained.
  • each lens in the vehicle-mounted camera lens provided by the present invention uses a glass lens.
  • the use of glass lens can effectively delay the aging of the lens, the temperature is well controlled, it can adapt to different temperature occasions, and has a higher service life and stability.
  • the aperture of the on-vehicle camera lens provided by the present invention is less than or equal to 1.5.
  • the present invention further provides an imaging device, the imaging device includes the vehicle-mounted camera lens and the imaging element of any one of the above embodiments, and the imaging element is used to convert an optical image formed by the vehicle-mounted camera lens into an electrical signal.
  • z is the distance between the curved surface and the vertex of the curved surface in the optical axis direction
  • h is the distance from the optical axis to the curved surface
  • c is the curvature of the curved surface vertex
  • K is the quadric surface coefficient
  • B, C, D, E, and F are four Surface coefficients of order, sixth order, eighth order, tenth order, and twelfth order.
  • the above-mentioned on-vehicle camera lens uses a combination of glass spherical surface and aspherical surface to better correct various aberrations of the imaging system. Compared with the existing on-vehicle lens, it has the characteristics of high resolution and good imaging effect.
  • the driving system collects a wider range of surrounding information, and the high resolution and large aperture of the on-board camera lens also allow the software to better identify and judge various types of information, ultimately improving driving safety.
  • this embodiment provides a vehicle-mounted camera lens 10, which includes, in order from the object side S0 to the image side S14, a first group Q1 having negative power, an aperture ST, and a second group having positive power Group Q2 and a third group Q3 with positive power.
  • the first group Q1 includes, in order from the object side S0 to the image side S14, a first lens L1 and a second lens L2, the first lens L1 has negative refractive power, the object side S1 of the first lens L1 is convex and the image side S2 is Concave surface, the first lens L1 is a glass aspheric lens, the second lens L2 is a lens with positive power and close to a concentric circle, the object side surface S3 of the second lens L2 is concave surface and the image side surface S4 is convex surface, the second lens L2 is Glass spherical lens.
  • the second group Q2 is composed of a third lens L3, which has a positive refractive power, the object side S5 and the image side S6 of the third lens L3 are both convex, and the third lens L3 is a glass aspheric lens.
  • the third group Q3 includes, in order from the object side S0 to the image side S14, a fourth lens L4, a fifth lens L5, and a sixth lens L6, where the fourth lens L4 has positive refractive power, the object side S7 of the fourth lens L4 and the image
  • the side surfaces S8 are all convex surfaces, and the fourth lens L4 is a glass spherical lens.
  • the fifth lens L5 has negative refractive power, the object side surface S8 of the fifth lens L5 is concave and the image side surface S9 is concave, and the fifth lens L5 is a glass spherical lens.
  • the sixth lens L6 has positive power, the object side surface S10 of the sixth lens L6 is convex and the image side surface S11 is concave, and the sixth lens L6 is a glass aspheric lens.
  • the fourth lens L4 and the fifth lens L5 are cemented into a cemented body, and S8 is a cemented surface.
  • the filter G1 provided between the third group Q3 and the imaging surface S16 has an object side surface of S12 and an image side surface of S13.
  • the modulation transfer function, field curvature and distortion curve are shown in Figure 2, Figure 3 and Figure 4, respectively. It can be seen from FIGS. 2 to 4 that the modulation transfer function value in this embodiment is very high, which indicates that the vehicle-mounted camera lens 10 proposed in this embodiment has high-resolution characteristics. It can be seen from the curve of field curvature and distortion in this embodiment that the field curvature and distortion in this embodiment can be well corrected.
  • the on-vehicle camera lens 20 provided in this embodiment is substantially the same as the on-vehicle camera lens 10 in the first embodiment.
  • the difference is that the curvature radius and material selection of each lens are different.
  • Table 3 shows.
  • the modulation transfer function, field curvature and distortion curve are shown in Figure 6, Figure 7 and Figure 8, respectively. It can be seen from FIGS. 6 to 8 that the modulation transfer function value in this embodiment is very high, which indicates that the vehicle-mounted camera lens 20 proposed in this embodiment has high-resolution characteristics. It can be seen from the field curvature and distortion curve in this embodiment that the field curvature and distortion can be corrected well in this embodiment.
  • the on-vehicle camera lens 30 provided in this embodiment is substantially the same as the on-vehicle camera lens 10 in the first embodiment, except that the second lens L2 of the on-vehicle camera lens 30 in this embodiment has negative light
  • the image side of the power is concave and the image side of the sixth lens L6 is convex, and the curvature radius and material selection of each lens are different.
  • Table 5 For the specific parameters of each lens, see Table 5.
  • the modulation transfer function, field curvature and distortion curves are shown in Figure 10, Figure 11 and Figure 12, respectively. It can be seen from FIGS. 10 to 12 that the modulation transfer function value in this embodiment is very high, which indicates that the vehicle-mounted camera lens 30 proposed in this embodiment has high-resolution characteristics. It can be seen from the curve of field curvature and distortion in this embodiment that the field curvature and distortion in this embodiment can be well corrected.
  • this embodiment provides a vehicle-mounted camera lens 40, which includes, in order from the object side S0 to the image side S16, a first group Q1 having negative power, an aperture ST, and a second group having positive power Group Q2 and a third group Q3 with positive power.
  • the first group Q1 includes, in order from the object side S0 to the image side S16, a first lens L1 and a second lens L2, the first lens L1 has negative refractive power, the object side S1 of the first lens L1 is convex and the image side S2 is The concave surface, the first lens L1 is a glass aspheric lens, the object side surface S3 of the second lens L2 is concave surface and the image side surface S4 is convex surface, and the second lens L2 is a glass spherical lens.
  • the second group Q2 includes, in order from the object side S0 to the image side S16, a third lens L3 and a seventh lens L7, the third lens L3 has a positive refractive power, and the object side S5 and the image side S6 of the third lens L3 are both convex,
  • the third lens L3 is a glass spherical lens.
  • the seventh lens L7 has positive refractive power, the object side surface S7 and the image side surface S8 of the seventh lens L7 are both convex surfaces, and the seventh lens L7 is a glass aspheric lens.
  • the third group Q3 includes, in order from the object side S0 to the image side S16, a fourth lens L4, a fifth lens L5, and a sixth lens L6, where the fourth lens L4 has positive refractive power, the object side S9 of the fourth lens L4, and the image
  • the side surfaces S10 are all convex surfaces, and the fourth lens L4 is a glass spherical lens.
  • the fifth lens L5 has negative refractive power, the object side surface S10 of the fifth lens L5 is concave and the image side surface S11 is convex, and the fifth lens L5 is a glass spherical lens.
  • the sixth lens L6 has a positive refractive power, the object side surface S12 and the image side surface S13 of the sixth lens L6 are both convex surfaces, and the sixth lens L6 is a glass aspheric lens.
  • the fourth lens L4 and the fifth lens L5 are cemented into a cemented body, and S10 is a cemented surface.
  • the filter G1 provided between the third group Q3 and the imaging surface S16 has an object side surface of S14 and an image side surface of S15.
  • the modulation transfer function, field curvature and distortion curves are shown in Figure 14, Figure 15 and Figure 16, respectively. It can be seen from FIGS. 14 to 16 that the value of the modulation transfer function in this embodiment is very high, indicating that the vehicle-mounted camera lens 40 proposed in this embodiment has high-resolution characteristics. It can be seen from the field curvature and distortion curve in this embodiment that the field curvature and distortion can be corrected well in this embodiment.
  • the on-vehicle camera lens 50 provided in this embodiment is substantially the same as the on-vehicle camera lens 40 in the fourth embodiment, except for the image side of the second lens L2 of the on-vehicle camera lens 50 in this embodiment.
  • S4 is a concave surface
  • the image side surface S11 of the fifth lens L5 is a concave surface
  • the curvature radius and material selection of each lens are different. For specific parameters of each lens, see Table 9.
  • the modulation transfer function, field curvature and distortion curves are shown in Figure 18, Figure 19 and Figure 20 respectively. It can be seen from FIGS. 18 to 20 that the modulation transfer function value in this embodiment is very high, which indicates that the vehicle-mounted camera lens 50 proposed in this embodiment has high-resolution characteristics. It can be seen from the curve of field curvature and distortion in this embodiment that the field curvature and distortion in this embodiment can be well corrected.
  • the on-vehicle camera lens 60 provided in this embodiment is substantially the same as the on-vehicle camera lens 40 in the fourth embodiment, except for: the image side S11 of the fifth lens L5 of the on-vehicle camera lens 60 in this embodiment
  • the concave surface, the radius of curvature of each lens, and the material selection are different. For the specific parameters of each lens, see Table 11.
  • the modulation transfer function, field curvature and distortion curves are shown in Figure 22, Figure 23 and Figure 24, respectively. It can be seen from FIGS. 22 to 24 that the modulation transfer function value in this embodiment is very high, which indicates that the vehicle-mounted camera lens 60 proposed in this embodiment has high-resolution characteristics. It can be seen from the curve of field curvature and distortion in this embodiment that the field curvature and distortion in this embodiment can be well corrected.
  • Table 13 shows the above six embodiments and their corresponding optical characteristics, including the system focal length f, the aperture number F#, the field of view FOV, and the total system length TTL, and the values corresponding to each of the foregoing conditional expressions.
  • the value of the modulation transfer function is very high, indicating that the vehicle camera lens provided by the present invention has high resolution characteristics; the F# aperture numbers of the above embodiments are all less than or equal to 1.5, which reflects The in-vehicle camera lens proposed by the present invention has the characteristics of a large aperture. The smaller the F# aperture number, the greater the amount of light entering the lens, and the better the imaging effect in a dark environment.
  • this embodiment provides an imaging device 100, which includes the on-vehicle camera lens (for example, the on-vehicle camera lens 10) and the imaging element 70 in any of the above embodiments.
  • the image is converted into an electrical signal.
  • the imaging element 70 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the imaging device 100 may be a car camera, a car monitor, or the like.
  • the imaging device 100 provided in this embodiment includes an on-vehicle camera lens 10. Since the on-vehicle camera lens 10 uses a combination of a glass spherical surface and an aspheric surface to better correct various aberrations of the imaging system, the imaging provided in this embodiment The device 100 has the characteristics of high resolution and good imaging effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

一种车载摄像镜头(10)及成像设备(100),从物侧(S0)到像侧(S14)依次包括:具有负光焦度第一群组(Q1),光阑(ST),具有正光焦度的第二群组(Q2)以及具有正光焦度的第三群组(Q3)。其中第一群组(Q1)从物侧(S0)到像侧(S14)依次包括第一透镜(L1)和第二透镜(L2),第一群组(Q1)至少包括一个非球面透镜。第二群组(Q2)至少包括第三透镜(L3),且第二群组(Q2)至少包括一个非球面透镜。第三群组(Q3)从物侧(S0)到像侧(S14)依次包括第四透镜(L4)、第五透镜(L5)和第六透镜(L6),其中第四透镜(L4)具有正光焦度,第四透镜(L4)的物侧面(S7)和像侧面(S8)均为凸面,第五透镜(L5)具有负光焦度,第五透镜(L5)的物侧面(S8)为凹面,第六透镜(L6)具有正光焦度,第三群组(Q3)至少包括一个非球面透镜。车载摄像镜头(10)及成像设备(100)至少具有分辨率高、成像效果好等特性。

Description

车载摄像镜头及成像设备
本申请要求于2018年12月05日提交中国专利局、申请号为2018114813250、发明名称为“车载摄像镜头及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学镜头技术领域,特别涉及一种车载摄像镜头及成像设备。
背景技术
随着ADAS(Advanced Driving Assistant System,高级驾驶辅助系统)越来越多地被应用在汽车上,车载摄像头的应用也越来越广泛,安全驾驶对车载摄像头的需求也越来越大,而光学镜头是车载摄像头中的一个重要组成部件。
车载摄像头在驾驶辅助系统的应用,主要是借由光学镜头采集图像后,由摄像头内的感光组件电路及控制组件对图像进行处理并转化为电脑能处理的数字信号,从而实现感知车辆周边的路况情况,实现前向碰撞预警、车道偏移报警和行人检测等功能。车载摄像头在汽车上安装的位置不同,实现的功能也各不相同,对光学镜头也有着各种特殊的要求。
随着电子技术的发展,车载用图像传感器也推陈出新,朝着高像素方向发展,目前常规的车载镜头分辨率低,难以满足市场的需求。
发明内容
本发明的目的在于提供一种车载摄像镜头及成像设备,以解决上述问题。
本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种车载摄像镜头,从物侧到像侧依次包括:具有负光焦度的第一群组,光阑,具有正光焦度的第二群组以及具有正光焦度的第三群组。其中第一群组从物侧到像侧依次包括第一透镜和第二透镜,第一群组至少包括一个非球面透镜。第二群组至少包括第三透镜,且第二群组至少包括一个非球面透镜。第三群组从物侧到像侧依次包括第四透镜、第五透镜和第六透镜,其中第四透镜具有正光焦度,第四透镜的物侧面和像侧面均为凸面,第五透镜具有负光焦度,第五透镜的物侧面为凹面,第六透镜具有正光焦度,第三群组至少包括一个非球面透镜。
第二方面,本发明提供一种成像设备,成像设备包括上述的车载摄像镜头及成像元件,成像元件用于将车载摄像镜头形成的光学图像转换为电信号。
相较于现有技术,本发明提供的车载摄像镜头及成像设备具有分辨率高、成像效果好等特点。车载摄像镜头的第一群组主要用于光线的收集,使用非球面透镜主要是为了给镜头提供更大的焦距,使得镜头在较小视场内能有更好的辨识度。第二群组主要用于本镜头光学系统球差的校正,提高镜头的分辨率。第三群组用于消除色差,使用非球面透镜主要为了本镜头光学系统像散的校正,提高镜头的分辨率。
本发明的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例提供的车载摄像镜头的结构示意图;
图2为本发明第一实施例中的车载摄像镜头的调制传递函数曲线图;
图3为本发明第一实施例中的车载摄像镜头的场曲曲线图;
图4为本发明第一实施例中的车载摄像镜头的畸变曲线图;
图5为本发明第二实施例提供的车载摄像镜头的结构示意图;
图6为本发明第二实施例中的车载摄像镜头的调制传递函数曲线图;
图7为本发明第二实施例中的车载摄像镜头的场曲曲线图;
图8为本发明第二实施例中的车载摄像镜头的畸变曲线图;
图9为本发明第三实施例提供的车载摄像镜头的结构示意图;
图10为本发明第三实施例中的车载摄像镜头的调制传递函数曲线图;
图11为本发明第三实施例中的车载摄像镜头的场曲曲线图;
图12为本发明第三实施例中的车载摄像镜头的畸变曲线图;
图13为本发明第四实施例提供的车载摄像镜头的结构示意图;
图14为本发明第四实施例中的车载摄像镜头的调制传递函数曲线图;
图15为本发明第四实施例中的车载摄像镜头的场曲曲线图;
图16为本发明第四实施例中的车载摄像镜头的畸变曲线图;
图17为本发明第五实施例提供的车载摄像镜头的结构示意图;
图18为本发明第五实施例中的车载摄像镜头的调制传递函数曲线图;
图19为本发明第五实施例中的车载摄像镜头的场曲曲线图;
图20为本发明第五实施例中的车载摄像镜头的畸变曲线图;
图21为本发明第六实施例提供的车载摄像镜头的结构示意图;
图22为本发明第六实施例中的车载摄像镜头的调制传递函数曲线图;
图23为本发明第六实施例中的车载摄像镜头的场曲曲线图;
图24为本发明第六实施例中的车载摄像镜头的畸变曲线图;
图25为本发明第七实施例提供的成像设备的结构示意图;
主要元素符号说明
第一群组 Q1 第一透镜 L1
第二透镜 L2 第二群组 Q2
第三透镜 L3 第七透镜 L7
第三群组 Q3 第四透镜 L4
第五透镜 L5 第六透镜 L6
光阑 ST 滤光片 G1
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本发明的一个目的在于提供一种车载摄像镜头,通过使用多片非球面透镜,提高镜头的分辨率,可以匹配8M像素规格的芯片,满足市场对车载高像素镜头迫切的需要。
本发明的一个目的在于提供一种车载摄像镜头,其中车载摄像镜头的视角大,可以收集到汽车周边更多的信息,降低因为盲区带来的安全隐患。
本发明的一个目的在于提供一种车载摄像镜头,其中第一群组第一透镜为非球面透镜,匹配同样尺寸芯片的情况下,可以增大镜头的焦距,从而提高成像面中心区域的成像效果。
本发明的一个目的在于提供一种车载摄像镜头,其中车载摄像镜头具有大光圈特性,增加镜头的通光量,在光线不足情况下也有良好的成像效果,降低昏暗环境下驾驶的安全隐患。
本发明的一个目的在于提供一种车载摄像镜头,各透镜均是使用可靠性好的玻璃材料,可以满足车载领域严苛的工作环境。
为了实现以上至少一个发明目的,本发明的技术方案如下:
本发明提供一种车载摄像镜头及成像设备,从物侧到像侧依次包括:具有负光焦度第一群组,光阑,具有正光焦度的第二群组以及具有正光焦度的第三群组。其中,第一群组从物侧到像侧依次包括第一透镜和第二透镜,第一群组至少包括一个非球面透镜。第二群组至少包括第三透镜,且第二群组至少包括一个非球面透镜。第三群组从物侧到像侧依次包括第四透镜、第五透镜和第六透镜,其中第四透镜具有正光焦度,第四透镜的物侧面和像侧面均为凸面,第五透镜具有负光焦度,第五透镜的物侧面为凹面,第六透镜具有正光焦度,第三群组至少包括一个非球面透镜。
在一种实施方式中,第一透镜具有负光焦度,第一透镜的物侧面为凸面且像侧面为凹面,第一透镜为非球面透镜,第二透镜的物侧面为凹面。
在一种实施方式中,第三透镜具有正光焦度,第三透镜的物侧面和像侧面均为凸面,第三透镜为非球 面透镜。
在一种实施方式中,第二群组还包括一个第七透镜,第七透镜位于第三透镜和第三群组之间,第七透镜具有正光焦度,第七透镜的物侧面和像侧面均为凸面,第三透镜具有正光焦度,第三透镜的物侧面和像侧面均为凸面。
在一种实施方式中,第四透镜和第五透镜胶合为粘合体,第六透镜的物侧面为凸面,第六透镜为非球面透镜。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
2<(θ*f)/D 1<3;  (1)
其中,D 1表示第一透镜的最大有效口径,θ表示车载摄像镜头的最大视场角,单位为弧度,f表示车载摄像镜头的系统焦距。满足条件式(1),可以使得镜头的前端口径较小,减小镜头的成像系统体积。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
-3<f Q1/f<0;   (2)
1<f Q2/f<4;   (3)
其中,f Q1表示第一群组的组合焦距,f Q2表示第二群组的组合焦距,f表示车载摄像镜头的系统焦距。满足条件式(2),可使第一群组的组合焦距为负值,更利于实现大视角的特性;第二群组的组合焦距满足条件式(3),能更好的收敛光线。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
-0.35<(IH max-f*θ)/f*θ<-0.2;   (4)
其中,IH max表示车载摄像镜头最大视场角对应的像高,θ表示车载摄像镜头的最大视场角,单位为弧度,f表示车载摄像镜头的系统焦距。满足条件式(4),可以保证在镜头视场角和成像面大小不变的情况下,增大镜头的焦距,突出镜头成像面中心区域的成像效果。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
1<R 11/f<3;   (5)
-4<R 21/f<-0.8;   (6)
其中,R 11表示第一透镜物侧面中心的曲率半径,R 21表示第二透镜物侧面中心的曲率半径,f表示车载摄像镜头的系统焦距。满足条件式(5)和(6),可以有效缩短车载摄像镜头的后焦距,以降低车载摄像镜头的光学总长度。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
0.8<T Q2/f<3;   (7)
-7×10 -6/℃<(dn/dt) Q2<0;   (8)
其中,T Q2表示第二群组各透镜的中心厚度值总和,f表示车载摄像镜头的系统焦距,(dn/dt) Q2表示第二群组各透镜的折射率温度系数总和。满足条件式(7)和(8)既有利于镜头分辨率的提高,也使得镜头在不同的温度环境下具有优良的成像品质。
在一种实施方式中,本发明提供的车载摄像镜头满足以下条件式:
4≤TTL/f≤8;   (9)
其中,TTL表示车载摄像镜头的光学系统总长,f表示车载摄像镜头的系统焦距。满足条件式(9),可以获得相对小型化的车载摄像镜头。
在一种实施方式中,本发明提供的车载摄像镜头中的各个透镜均采用玻璃透镜。采用玻璃透镜可以有效延缓镜头的老化,温度控制好,能适应不同的温度场合,具有较高的使用寿命和稳定性。
在一种实施方式中,本发明提供的车载摄像镜头的光圈数小于或等于1.5。
在一种实施方式中,本发明还提供一种成像设备,成像设备包括上述任意一种实施方式的车载摄像镜头及成像元件,成像元件用于将车载摄像镜头形成的光学图像转换为电信号。
Figure PCTCN2019106771-appb-000001
其中,z为曲面与曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,K为二次曲面系数,B、C、D、E、F分别为四阶、六阶、八阶、十阶、十二阶曲面系数。
上述车载摄像镜头,采用玻璃球面与非球面相结合的方式,更好地校正了成像系统的各种像差,与现 有车载镜头相比,具备分辨率高、成像效果好特性,为汽车辅助驾驶系统收集了更大范围的周围信息,而且该车载摄像镜头的高分辨率和大光圈也能让软件能更好识别,判断各类信息,最终提高驾驶安全性。
下面将参考附图和表格,描述本发明实施例的车载摄像镜头的具体实施例,在以下各个实施例中,车载摄像镜头中的各个透镜的厚度、曲率半径部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,本实施例提供一种车载摄像镜头10,从物侧S0到像侧S14依次包括:具有负光焦度的第一群组Q1,光阑ST,具有正光焦度的第二群组Q2以及具有正光焦度的第三群组Q3。
第一群组Q1从物侧S0到像侧S14依次包括第一透镜L1和第二透镜L2,第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面且像侧面S2为凹面,第一透镜L1为玻璃非球面透镜,第二透镜L2为具有正光焦度且接近同心圆的透镜,第二透镜L2的物侧面S3为凹面且像侧面S4为凸面,第二透镜L2为玻璃球面透镜。
第二群组Q2由第三透镜L3组成,第三透镜L3具有正光焦度,第三透镜L3的物侧面S5和像侧面S6均为凸面,第三透镜L3为玻璃非球面透镜。
第三群组Q3从物侧S0到像侧S14依次包括第四透镜L4、第五透镜L5和第六透镜L6,其中第四透镜L4具有正光焦度,第四透镜L4的物侧面S7和像侧面S8均为凸面,第四透镜L4为玻璃球面透镜。第五透镜L5具有负光焦度,第五透镜L5的物侧面S8为凹面且像侧面S9为凹面,第五透镜L5为玻璃球面透镜。第六透镜L6具有正光焦度,第六透镜L6的物侧面S10为凸面且像侧面S11为凹面,第六透镜L6为玻璃非球面透镜。第四透镜L4和第五透镜L5胶合为粘合体,S8为胶合面。
设于第三群组Q3与成像面S16之间的滤光片G1,其物侧面为S12,像侧面为S13。
本实施例中的车载摄像镜头10中各个透镜的相关参数如表1所示:
表1
Figure PCTCN2019106771-appb-000002
此外,本实施例中的各非球面透镜的参数如表2所示:
表2
Figure PCTCN2019106771-appb-000003
Figure PCTCN2019106771-appb-000004
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图2、图3和图4所示。由图2至图4可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头10具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
第二实施例
请参阅图5,本实施例提供的车载摄像镜头20与第一实施例当中的车载摄像镜头10大抵相同,不同之处在于:各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表3所示。
表3
Figure PCTCN2019106771-appb-000005
此外,本实施例中的各非球面透镜的参数如表4所示:
表4
Figure PCTCN2019106771-appb-000006
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图6、图7和图8所示。由图6至图8可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头20具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
第三实施例
请参阅图9,本实施例提供的车载摄像镜头30与第一实施例当中的车载摄像镜头10大抵相同,不同之处在于:本实施例当中的车载摄像镜头30的第二透镜L2具有负光焦度且其像侧面为凹面,第六透镜L6的像侧面为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表5所示。
表5
Figure PCTCN2019106771-appb-000007
Figure PCTCN2019106771-appb-000008
此外,本实施例中的各非球面透镜的参数如表6所示:
表6
Figure PCTCN2019106771-appb-000009
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图10、图11和图12所示。由图10至图12可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头30具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
第四实施例
请参阅图13,本实施例提供一种车载摄像镜头40,从物侧S0到像侧S16依次包括:具有负光焦度的第一群组Q1,光阑ST,具有正光焦度的第二群组Q2以及具有正光焦度的第三群组Q3。
第一群组Q1从物侧S0到像侧S16依次包括第一透镜L1和第二透镜L2,第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面且像侧面S2为凹面,第一透镜L1为玻璃非球面透镜,第二透镜L2的物侧面S3为凹面且像侧面S4为凸面,第二透镜L2为玻璃球面透镜。
第二群组Q2从物侧S0到像侧S16依次包括第三透镜L3和第七透镜L7,第三透镜L3具有正光焦度,第三透镜L3的物侧面S5和像侧面S6均为凸面,第三透镜L3为玻璃球面透镜。第七透镜L7具有正光焦度,第七透镜L7的物侧面S7和像侧面S8均为凸面,第七透镜L7为玻璃非球面透镜。
第三群组Q3从物侧S0到像侧S16依次包括第四透镜L4、第五透镜L5和第六透镜L6,其中第四透镜L4具有正光焦度,第四透镜L4的物侧面S9和像侧面S10均为凸面,第四透镜L4为玻璃球面透镜。第五透镜L5具有负光焦度,第五透镜L5的物侧面S10为凹面且像侧面S11为凸面,第五透镜L5为玻璃球面透镜。第六透镜L6具有正光焦度,第六透镜L6的物侧面S12和像侧面S13均为凸面,第六透镜L6为玻璃非球面透镜。第四透镜L4和第五透镜L5胶合为粘合体,S10为胶合面。
设于第三群组Q3与成像面S16之间的滤光片G1,其物侧面为S14,像侧面为S15。
本实施例中的车载摄像镜头中各个透镜的相关参数如表7所示。
表7
Figure PCTCN2019106771-appb-000010
Figure PCTCN2019106771-appb-000011
此外,本实施例中的各非球面透镜的参数如表8所示:
表8
Figure PCTCN2019106771-appb-000012
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图14、图15和图16所示。由图14至图16可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头40具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
第五实施例
请参阅图17,本实施例提供的车载摄像镜头50与第四实施例当中的车载摄像镜头40大抵相同,不同之处在于:本实施例当中的车载摄像镜头50的第二透镜L2的像侧面S4为凹面,第五透镜L5的像侧面S11为凹面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表9所示。
表9
Figure PCTCN2019106771-appb-000013
Figure PCTCN2019106771-appb-000014
此外,本实施例中的各非球面透镜的参数如表10所示:
表10
Figure PCTCN2019106771-appb-000015
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图18、图19和图20所示。由图18至图20可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头50具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
第六实施例
请参阅图21,本实施例提供的车载摄像镜头60与第四实施例当中的车载摄像镜头40大抵相同,不同之处在于:本实施例当中的车载摄像镜头60第五透镜L5的像侧面S11为凹面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表11所示。
表11
Figure PCTCN2019106771-appb-000016
此外,本实施例中的各非球面透镜的参数如表12所示:
表12
Figure PCTCN2019106771-appb-000017
在本实施例中,其调制传递函数、场曲和畸变曲线图分别如图22、图23和图24所示。由图22至图24可以看出,本实施例中的调制传递函数值非常高,说明本实施例提出的车载摄像镜头60具备高分辨率特性。从本实施例中的场曲和畸变曲线图可以看出,本实施例中场曲和畸变能被很好的校正。
表13是上述六个实施例及其对应的光学特性,包括系统焦距f、光圈数F#、视场角FOV和系统总长TTL,以及与前面每个条件式对应的数值。
表13
Figure PCTCN2019106771-appb-000018
从上述实施例中的调制传递函数曲线图可以看出,调制传递函数值非常高,说明本发明提出的车载摄像镜头具备高分辨率特性;上述实施例F#光圈数均小于或等于1.5,体现了本发明提出的车载摄像镜头具备大光圈特性,F#光圈数越小,镜头进光量越大,在昏暗环境时成像效果越好。
第七实施例
如图25所示,本实施例提供一种成像设备100,包括上述任一实施例中的车载摄像镜头(例如车载摄像镜头10)及成像元件70,成像元件70将车载摄像镜头10形成的光学图像转换为电信号。
成像元件70可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备100可以是车载摄像机、车载监控器等。
本实施例提供的成像设备100包括车载摄像镜头10,由于车载摄像镜头10采用玻璃球面与非球面相结合的方式,更好地校正了成像系统的各种像差,因此本实施例提供的成像设备100具备分辨率高、成像效果好等特性。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种车载摄像镜头,其特征在于,从物侧到像侧依次包括:
    具有负光焦度的第一群组,所述第一群组从物侧到像侧依次包括第一透镜和第二透镜,所述第一群组至少包括一个非球面透镜;
    光阑;
    具有正光焦度的第二群组,所述第二群组至少包括第三透镜,所述第二群组至少包括一个非球面透镜;
    具有正光焦度的第三群组,所述第三群组从物侧到像侧依次包括第四透镜、第五透镜和第六透镜,其中所述第四透镜具有正光焦度,所述第四透镜的物侧面和像侧面均为凸面,所述第五透镜具有负光焦度,所述第五透镜的物侧面为凹面,所述第六透镜具有正光焦度,所述第三群组至少包括一个非球面透镜。
  2. 如权利要求1所述的车载摄像镜头,所述第一透镜具有负光焦度,所述第一透镜的物侧面为凸面且像侧面为凹面,所述第一透镜为非球面透镜,所述第二透镜的物侧面为凹面。
  3. 如权利要求1所述的车载摄像镜头,所述第三透镜具有正光焦度,所述第三透镜的物侧面和像侧面均为凸面,所述第三透镜为非球面透镜。
  4. 如权利要求1所述的车载摄像镜头,所述第二群组还包括一个第七透镜,所述第七透镜位于所述第三透镜和所述第三群组之间,所述第七透镜具有正光焦度,所述第七透镜的物侧面和像侧面均为凸面,所述第三透镜具有正光焦度,所述第三透镜的物侧面和像侧面均为凸面。
  5. 如权利要求1所述的车载摄像镜头,所述第四透镜和所述第五透镜胶合为粘合体,所述第六透镜的物侧面为凸面,所述第六透镜为非球面透镜。
  6. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    2<(θ*f)/D 1<3;
    其中,D 1表示所述第一透镜的最大有效口径,θ表示所述车载摄像镜头的最大视场角,f表示所述车载摄像镜头的系统焦距。
  7. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    -3<f Q1/f<0;
    1<f Q2/f<4;
    其中,f Q1表示所述第一群组的组合焦距,f Q2表示所述第二群组的组合焦距,f表示所述车载摄像镜头的系统焦距。
  8. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    -0.35<(IH max-f*θ)/f*θ<-0.2;
    其中,IH max表示所述车载摄像镜头最大视场角对应的像高,θ表示所述车载摄像镜头最大视场角,f表示所述车载摄像镜头的系统焦距。
  9. 如权利要求1或2所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    1<R 11/f<3;
    -4<R 21/f<-0.8;
    其中,R 11表示所述第一透镜物侧面中心的曲率半径,R 21表示所述第二透镜物侧面中心的曲率半径,f表示所述车载摄像镜头的系统焦距。
  10. 如权利要求3或4所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    0.8<T Q2/f<3;
    -7×10 -6/℃<(dn/dt) Q2<0;
    其中,T Q2表示所述第二群组各透镜的中心厚度值总和,f表示所述车载摄像镜头的系统焦距,(dn/dt) Q2表示所述第二群组各透镜的折射率温度系数总和。
  11. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头满足以下条件:
    4≤TTL/f≤8;
    其中,TTL表示所述车载摄像镜头的光学系统总长,f表示所述车载摄像镜头的系统焦距。
  12. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头的各透镜均采用玻璃透镜。
  13. 如权利要求1所述的车载摄像镜头,其特征在于,所述车载摄像镜头的光圈数小于或等于1.5。
  14. 一种成像设备,其特征在于,包括如权利要求1-13任一项所述的车载摄像镜头及成像元件,所述成像元件用于将所述车载摄像镜头形成的光学图像转换为电信号。
PCT/CN2019/106771 2018-12-05 2019-09-19 车载摄像镜头及成像设备 WO2020114040A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217002910A KR102572350B1 (ko) 2018-12-05 2019-09-19 차량 탑재 촬영 렌즈 및 이미징 장치
EP19892249.4A EP3865926B1 (en) 2018-12-05 2019-09-19 Vehicle-mounted camera lens and imaging device
JP2021529512A JP7161617B2 (ja) 2018-12-05 2019-09-19 車載カメラレンズ及びイメージング設備
PL19892249.4T PL3865926T3 (pl) 2018-12-05 2019-09-19 Obiektyw kamery i urządzenie obrazujące montowane w pojeździe
US16/858,586 US11125971B2 (en) 2018-12-05 2020-04-25 Vehicle lens, camera module and vehicle camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811481325.0 2018-12-05
CN201811481325.0A CN109445068B (zh) 2018-12-05 2018-12-05 车载摄像镜头及成像设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/858,586 Continuation US11125971B2 (en) 2018-12-05 2020-04-25 Vehicle lens, camera module and vehicle camera

Publications (1)

Publication Number Publication Date
WO2020114040A1 true WO2020114040A1 (zh) 2020-06-11

Family

ID=65557314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106771 WO2020114040A1 (zh) 2018-12-05 2019-09-19 车载摄像镜头及成像设备

Country Status (7)

Country Link
US (1) US11125971B2 (zh)
EP (1) EP3865926B1 (zh)
JP (1) JP7161617B2 (zh)
KR (1) KR102572350B1 (zh)
CN (1) CN109445068B (zh)
PL (1) PL3865926T3 (zh)
WO (1) WO2020114040A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630945A (zh) * 2020-11-30 2021-04-09 凤凰光学股份有限公司 一种高像素长焦距红外共焦光学镜头
KR102473476B1 (ko) 2022-03-03 2022-12-02 나노아이텍(주) 고온 압축 성형에 의한 광학 렌즈 모듈

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445068B (zh) * 2018-12-05 2020-02-18 江西联创电子有限公司 车载摄像镜头及成像设备
CN109407279B (zh) * 2018-12-12 2021-09-14 江西联创电子有限公司 广角镜头及成像设备
CN113495342B (zh) * 2020-04-02 2024-04-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
TWI726734B (zh) 2020-05-29 2021-05-01 大立光電股份有限公司 影像擷取鏡組、取像裝置及電子裝置
CN114063247A (zh) * 2020-08-05 2022-02-18 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113009674B (zh) * 2021-03-12 2024-02-23 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN116724264A (zh) * 2021-04-01 2023-09-08 深圳市大疆创新科技有限公司 摄像头组件、拍摄装置和可移动平台
CN113777751B (zh) * 2021-09-10 2023-12-15 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备
TW202334707A (zh) * 2022-02-17 2023-09-01 佳凌科技股份有限公司 光學成像鏡頭
CN114675403B (zh) * 2022-05-30 2022-10-11 江西联创电子有限公司 光学成像镜头及成像设备
CN116299999B (zh) * 2023-01-28 2024-05-07 湖北华鑫光电有限公司 一种2g4p超广角高清车载光学镜头及成像装置
CN115951484B (zh) * 2023-03-15 2023-06-27 江西联创电子有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203606551U (zh) * 2013-10-30 2014-05-21 宁波舜宇车载光学技术有限公司 一种高像素光学镜头
CN105044885A (zh) * 2015-06-23 2015-11-11 信华精机有限公司 一种用于车载监控的光学成像系统
WO2018066641A1 (ja) * 2016-10-05 2018-04-12 マクセル株式会社 撮像レンズ系及び撮像装置
CN108445611A (zh) * 2018-06-07 2018-08-24 嘉兴中润光学科技有限公司 无热化高分辨率的定焦镜头
CN108490584A (zh) * 2018-05-09 2018-09-04 江西联创电子有限公司 光学成像镜头
CN108681050A (zh) * 2018-06-19 2018-10-19 江西联创电子有限公司 车载摄像镜头
CN109445068A (zh) * 2018-12-05 2019-03-08 江西联创电子有限公司 车载摄像镜头及成像设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125767A (ja) * 1997-10-21 1999-05-11 Asahi Optical Co Ltd 撮影レンズ系
JP5417219B2 (ja) 2010-02-25 2014-02-12 株式会社タムロン ズームレンズ
WO2011125539A1 (ja) 2010-04-07 2011-10-13 オリンパスメディカルシステムズ株式会社 対物レンズ及びそれを用いた内視鏡
TWI449944B (zh) * 2012-07-24 2014-08-21 Largan Precision Co Ltd 廣視角光學鏡頭組
CN105143948B (zh) * 2013-03-27 2018-01-09 富士胶片株式会社 摄像透镜及摄像装置
WO2014175038A1 (ja) * 2013-04-22 2014-10-30 オリンパスメディカルシステムズ株式会社 広角対物光学系
CN103439785B (zh) * 2013-09-07 2015-11-18 江西联创电子股份有限公司 高像素广角镜头的透镜成像系统
CN103676092B (zh) * 2013-10-30 2015-09-30 宁波舜宇车载光学技术有限公司 一种高像素光学镜头
TWI534469B (zh) * 2014-06-17 2016-05-21 信泰光學(深圳)有限公司 廣角投影鏡頭
JP5896061B1 (ja) * 2015-03-13 2016-03-30 株式会社リコー 光学系および撮像システム
JP2017173807A (ja) * 2016-03-16 2017-09-28 Hoya株式会社 撮像光学系
TWI582458B (zh) * 2016-04-22 2017-05-11 大立光電股份有限公司 成像光學系統鏡組、取像裝置及電子裝置
CN107436474B (zh) * 2016-05-26 2021-04-16 信泰光学(深圳)有限公司 投影镜头
CN108761743B (zh) * 2016-07-13 2020-10-02 浙江舜宇光学有限公司 七片式广角镜头
CN113189743A (zh) * 2016-11-15 2021-07-30 宁波舜宇车载光学技术有限公司 光学镜头
CN106842500B (zh) * 2016-12-27 2022-08-05 东莞市宇瞳光学科技股份有限公司 高清鱼眼镜头
US10641993B1 (en) * 2017-01-19 2020-05-05 Alex Ning Compact wide angle lens with low distortion
CN108535834B (zh) * 2017-03-01 2021-01-12 宁波舜宇车载光学技术有限公司 光学镜头和成像设备
TWI655473B (zh) 2017-05-08 2019-04-01 大立光電股份有限公司 成像系統鏡片組、取像裝置及電子裝置
TWI656376B (zh) * 2017-08-30 2019-04-11 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置
CN108469667B (zh) * 2018-05-31 2024-04-26 江西联创电子有限公司 广角镜头
JP7126868B2 (ja) 2018-06-04 2022-08-29 株式会社タムロン 撮像レンズ及び撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203606551U (zh) * 2013-10-30 2014-05-21 宁波舜宇车载光学技术有限公司 一种高像素光学镜头
CN105044885A (zh) * 2015-06-23 2015-11-11 信华精机有限公司 一种用于车载监控的光学成像系统
WO2018066641A1 (ja) * 2016-10-05 2018-04-12 マクセル株式会社 撮像レンズ系及び撮像装置
CN108490584A (zh) * 2018-05-09 2018-09-04 江西联创电子有限公司 光学成像镜头
CN108445611A (zh) * 2018-06-07 2018-08-24 嘉兴中润光学科技有限公司 无热化高分辨率的定焦镜头
CN108681050A (zh) * 2018-06-19 2018-10-19 江西联创电子有限公司 车载摄像镜头
CN109445068A (zh) * 2018-12-05 2019-03-08 江西联创电子有限公司 车载摄像镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630945A (zh) * 2020-11-30 2021-04-09 凤凰光学股份有限公司 一种高像素长焦距红外共焦光学镜头
KR102473476B1 (ko) 2022-03-03 2022-12-02 나노아이텍(주) 고온 압축 성형에 의한 광학 렌즈 모듈

Also Published As

Publication number Publication date
EP3865926A1 (en) 2021-08-18
JP7161617B2 (ja) 2022-10-26
EP3865926B1 (en) 2023-08-16
PL3865926T3 (pl) 2023-10-30
CN109445068B (zh) 2020-02-18
JP2021533422A (ja) 2021-12-02
EP3865926C0 (en) 2023-08-16
CN109445068A (zh) 2019-03-08
EP3865926A4 (en) 2021-12-15
KR20210024155A (ko) 2021-03-04
US11125971B2 (en) 2021-09-21
US20200257078A1 (en) 2020-08-13
KR102572350B1 (ko) 2023-08-28

Similar Documents

Publication Publication Date Title
WO2020114040A1 (zh) 车载摄像镜头及成像设备
CN109407279B (zh) 广角镜头及成像设备
WO2019242411A1 (zh) 车载摄像镜头
WO2018090938A1 (zh) 光学镜头
CN111650731B (zh) 广角镜头及成像设备
CN113253433B (zh) 光学成像镜头及成像设备
WO2022111524A1 (zh) 光学成像镜头及成像设备
WO2021129577A1 (zh) 光学成像镜头及成像设备
WO2021098682A1 (zh) 光学成像镜头及成像设备
CN112485889B (zh) 光学成像镜头及成像设备
CN111999864B (zh) 光学成像镜头及成像设备
WO2023116241A1 (zh) 光学成像镜头及成像设备
CN113640973B (zh) 光学成像镜头及成像设备
WO2022233304A1 (zh) 光学成像镜头及成像设备
CN113514940B (zh) 光学成像镜头及成像设备
WO2023015511A1 (zh) 光学系统、取像模组、电子设备及载具
WO2022032433A1 (zh) 光学成像系统、取像模组、电子装置和载具
CN114859528A (zh) 光学成像镜头
CN115993697A (zh) 光学镜头和电子设备
CN113267881B (zh) 光学成像镜头及成像设备
CN112835185B (zh) 光学系统、摄像模组、电子设备及汽车
CN214375523U (zh) 光学系统、摄像模组、电子设备及汽车
CN113985587B (zh) 光学成像镜头及成像设备
WO2021102749A1 (zh) 光学成像系统、取像装置及电子设备
CN117930458A (zh) 光学镜头及具有其的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002910

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021529512

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019892249

Country of ref document: EP

Effective date: 20210512

NENP Non-entry into the national phase

Ref country code: DE